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1 Introduction

Quantum field theory [1, 2] is an important part of modern fundamental research. Quantum
electrodynamics (QED), developed in the 1940’s and the standard model of elementary particles,
which was developed in the 1970’s, have proven to be very successful. Predictions from QED have
been verified experimentally with very high precision and, up to now, the predictions from the
standard model have been confirmed by all accelerator experiments.

A fundamental concept of the standard model are symmetries. They led to the classification
of the ‘elementary particle zoo’ in the 1960’s. With the help of symmetries the spectrum of
‘elementary’ hadronic particles could be understood as bound states of just a few basic building
blocks, the quarks [3, 4]. Gauge symmetries enforce the existence of gauge bosons, elementary
particles that mediate the forces in the standard model.

Although the standard model has been very successful, there are still open questions. To name
just a few, these are the hierarchy problem, that the standard model has no dark matter candidate
and that it has not been unified with gravity. These are some of the reasons why the standard
model is not considered a fundamental theory but rather an effective theory of electroweak and
strong interactions. We thus are in need for a theory beyond the standard model. For a review of
such theories see e. g. the article by N. Polonsky [5].

With present knowledge supersymmetry, which combines the spacetime symmetry with
a symmetry between bosons and fermions, is a promising candidate for an extension of the
standard model. Indeed, it is the only known symmetry that allows to combine internal and
external symmetries in a nontrivial way. Therefore it is important to gain deeper insight into
supersymmetric theories.

Supersymmetry (SuSy) has become a research field in itself and is now an important ingredient
in most theories that go beyond the standard model. Supersymmetry predicts that for every
elementary particle a superpartner exists. These are particles that have the same quantum
numbers as the particles themselves except for the spin. If SuSy is unbroken the superpartners
have the same mass as the original particles. Since these superpartners have not been observed
yet, supersymmetry has to be broken in nature. If supersymmetry is broken the superpartners
can be much heavier than the particles themselves explaining why they have not been found
yet in accelerator experiments so far. Up to now there has been no experimental evidence for
supersymmetry. However the hope is that it will be found in new experiments done at the LHC at
CERN.



1 Introduction

For the analysis of supersymmetric extensions of the standard model simpler models are studied,
e. g. Wess-Zumino models or supersymmetric sigma models [6, 7, 8]. Wess-Zumino models have
a very simple structure since there are no gauge degrees of freedom but only Yukawa interactions.
Nevertheless they exhibit all generic properties of supersymmetric theories. Two-dimensional
sigma models are very similar to four-dimensional gauge theories which represent an essential
part of the standard model. Of special interest are phase transitions, especially the order of the
phase transition at critical points.

However, all the models mentioned above are in general not analytically solvable and approxi-
mation schemes are needed. Widely used approximation schemes suffer from the problem that
they either break supersymmetry explicitly or, if they preserve supersymmetry, the predictions
for phase transitions and critical exponents are not correct because fluctuations of light degrees
of freedom are not treated properly. For example, the mean field approximation, which is a
good approximation for phase transitions in higher dimensions, breaks supersymmetry due to
the different treatment of fermions and bosons [9]. The loop calculation can be extended in a
supersymmetric way, but it is not possible to obtain results on phase transitions [10, 11].

Non-perturbative results are often obtained using lattice calculations where the spacetime
continuum is replaced by a lattice. Although it is a very successful and powerful method,
there are still difficulties in formulating supersymmetry on the lattice. One problem is that
Lorentz-symmetry is explicitly broken by the lattice implying broken supersymmetry as well.
However, in recent years a lot of progress has been made in realising supersymmetry on the lattice,
see e. g. [12, 13, 14, 15, 16].

In order to determine the influence of supersymmetry breaking in the lattice calculation on the
results, manifestly supersymmetric approximation schemes are needed and should be compared
to lattice calculations. Such an approach is provided by the functional renormalisation group
equations (FRG) [17, 18]. They deal with the physics of scales and allow to understand the physics
at large scales (small momenta) in terms of fundamental interactions at small scales. This is
of particular interest in elementary particle physics where it is desired to gain a macroscopic
description of atomic nuclei out of the simple laws that govern the fundamental interactions.

The functional renormalisation group equations have been successfully applied to a wide
variety of phenomena, ranging from critical phenomena and phase transitions to applications in
finite temperature field theory, QCD and quantum gravity, for reviews see [19, 20, 21, 22, 23, 24].

For the description of macroscopic behaviour there exist powerful tools such as statistical
descriptions whereas the microscopic physics is often governed by simple laws. In fact, there is a
gap between the microscopic and macroscopic description that has to be bridged. The functional
renormalisation group allows to integrate out fluctuations in a systematic way. It acts like a
microscope where the resolution can be continuously changed.

With the functional renormalisation group correlation functions can be calculated. The latter

contain all information about the physical system after the fluctuations have been integrated



out. The exact equations are derived as formal identities from the functional integral that defines
the theory. The solution of the flow equation corresponds to a trajectory in theory space, that
is the space of all action functionals. Different types of these equations have been formulated
[25, 26, 27, 28, 29, 30, 31] but the application to non-perturbative systems is hindered by the
complexity of the functional differential equations. An exact equation that provides simple
access to systematic expansions is a formulation based on the effective action introduced by C.
Wetterich [17, 18].

Up to now the extension of the FRG to supersymmetric theories, which is the aim of this
thesis, has been pursued only in a very few attempts. In principle, two approaches are possible
for such an extension. On the one hand, we could take care of the symmeries with the aid of
Ward-Takahashi identities as it has also been done in studies of Yang-Mills theories, see e. g.
(18, 22, 32, 33, 34, 35] . On the other hand, we could construct approximations schemes such that
supersymmetry is manifestly preserved during the RG flow. We will follow the latter approach.

In this thesis we formulate the flow equations in superspace. This guarantees that supersymmetry
will not be broken by the regulator or the truncation. This ansatz has not been pursued in
great detail in earlier studies, in most cases only perturbative results have been obtained. First
steps in extending the FRG to supersymmetry have been accomplished by F. Vian and M.
Bonini [36, 37, 38], B. Geyer and S. Falkenberg [39] as well as by K. Aoki and co-workers [40].
Applications of non-perturbative renormalisation group methods on supersymmetric theories
can be found in the papers by S. Arnone and co-workers [41, 42]. More recently, a general theory
of scalar superfields which include the Wess-Zumino model with a Polchinsky-type RG has
been formulated by O. Rosten [43, 44]. A Wilson effective action for Wess-Zumino models by
perturbative iteration of the functional RG has been formulated by H. Sonoda and K. Ulker [45].

This work is organised as follows: In chapter 2 the basic facts of quantum field theory are
collected and the functional renormalisation group equations are derived. Chapter 3 gives a short
introduction to the main concepts of supersymmetry that are used in the subsequent chapters.
In chapter 4 the functional RG is employed for a study of supersymmetric quantum mechanics,
a supersymmetric model which was studied intensively in the literature. A lot of results have
previously been obtained with different methods and we compare these to the ones from the FRG.
We investigate the N = 1 Wess-Zumino model in two dimensions in chapter 5. This model shows
spontaneous supersymmetry breaking and an interesting fixed-point structure. Chapter 6 deals
with the three dimensional N =1 Wess-Zumino model. Here we discuss the zero temperature
case as well as the behaviour at finite temperature. Moreover, this model shows spontaneous
supersymmetry breaking, too. In chapter 7 the two-dimensional N = (2,2) Wess-Zumino model
is investigated. For the superpotential a non-renormalisation theorem holds and thus guarantees

that the model is finite. This allows for a direct comparison with results from lattice simulations.
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The compilation of this work is solely due to the author. However, parts of the results have been
obtained in collaboration with colleagues from research groups in Jena, Miinster and Southampton.
The octave program used to calculate the exact values of the energy of the first excited state in
chapter 4 has been provided by A. Wipf. The perturbative calculations of the propagator in chapter 7
have been done by G. Bergner (now University of Miinster). The Python program used to calculate
the momentum-dependent wave-function renormalisation has been developed by T. Fischbacher

(University of Southampton).



2 Functional renormalisation group

In this chapter we sketch the main aspects of the functional renormalisation group (FRG). As
the FRG is formulated in Euclidean space-time, we will only discuss this case. For the case of a
Minkowskian space-time the reader is referred to the numerous textbooks on QFT, for example
the one by M. E. Peskin and D. V. Schroeder [1], S. Weinberg [2, 46] or J. Zinn-Justin [47]. For an
introduction to critical phenomena and renormalisation group, see the textbook by J. Cardy [48],
for reviews on the FRG see e.g. the paper by J. Berges, N. Tetradis and C. Wetterich [17] or
H. Gies [18].

2.1 Basics of QFT

The conventions in this chapter follow [1, 18] if not stated otherwise. The basic objects in quantum
field theory are correlation functions as they contain all physical information about the theory.
The correlators or n-point functions are defined as the product of # fields located at different
points in space-time averaged over the quantum fluctuations, i. e. all possible field configurations.

In Euclidean field theories, the weight of a field configuration is the exponentiated action

(p(x1)...0(x,)) = 9\7/ Do 39 o(x1) ... 0(x,) (2.1)

with normalisation constant N. In the following discussion we will concentrate on scalar fields,
afterwards we will discuss the generalisation for fermionic fields.
All n-point correlation functions can be obtained from the generating functional Z[]] with J

being an external source. The generating functional is defined through
Z[J] = / Dy & *l017) 0 (2.2)

with the shorthand notation /x Jo = f d?x J (x)¢(x) for the external source term. Functional

differentiation with respect to the external source yields

1 0"Z[]]
(p(x1) ...0(x,)) = Z[0] (5](x1)(3](xn))

(2.3)

J=0

With the generating functional Z[]] another important quantity, the generating functional W{J]
of the connected n-point functions, is defined as W[J] = In(Z[]]). The Legendre transformation
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of W{J] yields the effective action. It is defined as

I'[¢] = 51]1P (/x]¢ - WU]) . (2.4)

Because of the properties of the Legendre transformation, the effective action is always a convex
functional. For a detailed discussion of the effective action and its properties see [49]. Its

maximum at J = Jy,, gives the vacuum expectation value of the microscopic or classical field ¢:

__ 9 _ oWl 1 8z[]]

The macroscopic field ¢ is the expectation value of the microscopic field ¢ in the presence of the

source J. The equations of motion for the macroscopic field read

G / SWI1 81 (») /Sl(y) ]
56 =), 50 se00) T/ sp V) T =) (2.6)

For constant fields the effective action is an extensive quantity and after scaling out the volume,

the effective potential is given by [50]

Verr(¢) = V' -TI¢l. (2.7)

As the effective potential is the part of the effective action that contains no derivatives, it is a
convex function as well. For a vanishing source, the effective action coincides with the vacuum
energy. Veg(¢) therefore is the energy density of the corresponding state. If symmetries are not
spontaneously broken (cf. section 2.3) the vacuum state of the theory is given by the absolute
minimum of the effective potential. We will discuss the case of spontaneously broken symmetry
below.

The effective action is the generating functional of the one-particle-irreducible correlation
functions. This means that the effective action contains the complete information about the
quantum field theory. For example the vacuum state is given by the minimum of the effective
potential, whether symmetries of the Lagrangian are preserved or not depends on the location of
the minima. The second derivative of the effective action gives the inverse propagator and the
poles of the propagator determine the masses of the particles. From higher-order derivatives
of the effective action the one-particle-irreducible amplitudes can be calculated which yield the

S-matrix elements.

From the generating functional an equation for the effective action can be obtained:
orlg)
-Tl¢] _ / 7390 e—S[¢+<p]+/ 3¢¢ ¢ (2.8)

This equation can only be solved exactly for very special cases, e. g. the Schwinger model.



2.2 The Renormalisation Group

A very successful approximation is a vertex expansion which leads to the Dyson-Schwinger
equations [51, 52, 53], which consist of infinitely many coupled integral equations. They are the
equations of motion for the Green functions. For reviews on the Dyson-Schwinger equations see
e. g. the works by R. Alkhofer and L. v. Smekal [54] or C. Fischer [55].

In this work we follow a different approach based on the concept of renormalisation.

2.2 The Renormalisation Group

The name renormalisation group (RG) has been invented in the 1950s [56, 57], as there was hope
that all fundamental physics could be expressed through symmetry and group theory rather
than dynamics. At first it was applied to the high energy behaviour of renormalised quantum
electrodynamics. K. Wilson realised that it could be put to work for a much larger field of
applications, namely the field of critical phenomena [25, 26, 58]. Today it is used for a large class of
physical problems such as critical phenomena with long-distance correlations or fluid turbulence.

Wilson’s idea was to start at a microscopic theory at large momentum scale A and to integrate
out the fluctuations momentum shell by momentum shell. This leads to scale-dependent actions
that are connected through continuous RG transformations. The RG flow describes how the scale-
dependent couplings change under the RG transformation, see e. g. the review by K. G. Wilson
and J. B. Kogut [27] for a discussion of the renormalisation group and critical phenomena. For a
historical inspired introduction to the RG the reader is referred to Wilson’s Nobel Prize lecture
[59] and the review by M. Fisher [60].

The renormalisation idea involves a reexpressing of parameters K of the theory through new
parameters K’ without changing its physical content. This was first introduced by Kadanoff [61, 62].
Such a transformation has the form {K'} = R ({K}) with R depending on the transformation
and the rescaling parameter. At a fixed point of the transformation {K} = {K*} and for R

differentiable at the fixed point the transformations can be linearised around the fixed point,

K, —Ki =) Tar(Ky - K}), (2.9)
b

with T, = (8 Ka/oK b) "K:’K*. The eigenvalues of T are denoted by A!. The left eigenvectors are

denoted by {e’} such that
Z e{lTab = )Llei. (2.10)

In general, the matrix T does not need to be symmetric and left and right eigenvectors do not

need to be identical.

The scaling variables u; = Y. et (K, — K¥) play an important role in the description of critical
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phenomena. They transform multiplicatively at the fixed point,
uy = Auy. (2.11)

To distinguish between different kinds of fixed points, the notation A; = b% is introduced, where
b is the rescaling parameter and 0; is the renormalisation group eigenvalue. It 1 > 0, uy is called a
relevant direction, because repeated renormalisation iterations will drive the system away from the
fixed point. For 0; < 0 u; is called irrelevant, as it will tend to zero during the RG transformations.
For 0; = 0 u; is called marginal and it cannot be decided from the linear approximation whether
u; is driven towards the fixed point or away from it.

For an N-dimensional system near the fixed point which has # relevant eigenvalues there are
N —nirrelevant directions. They form an (N — n)-dimensional hypersurface. All points on this
hypersurface are attracted towards the fixed point. This surface is called critical hypersurface
and the long-distance behaviour of systems whose parameters sit on this surface is controlled
by the fixed point. For the system to end up in this hypersurface, a fine tuning of the » relevant
directions is required.

All critical models that flow into the same fixed point make up a universality class, i. e. they
show the same quantitative behaviour near a phase transition. This behaviour is governed by
the long-range fluctuations and is independent of the details of the specific system. Universality
means that near a fixed point the behaviour does not depend on these details.

The rescaling factor b depends on the RG transformation used and not on the model. A
description of the critical behaviour, in which b does not enter explicitly, is given in terms of the
B-functions. For this, an infinitesimal transformation with b = 1 + 6/ and §/ < 1 is considered.

This leads to an infinitesimal transformation of the couplings,

dK,

K, — K, +
- di

81+ 0(81%), (2.12)

and the RG transformations can be written in infinitesimal form as

dK,
=P ({x}) (2.13)

with 3, the renormalisation group B-function. The fixed points are the zeros of the 3-function and

the matrix T takes the form

9fa
Ty =06 — 85(;, ol. (2.14)

The renormalisation group eigenvalues are

(1+80)°% =1 +6,0l. (2.15)

10



2.3 Spontaneous symmetry breaking

Therefore they are given by the eigenvalues of the matrix —98/ 9, at the zero of the S-function.

One form that incorporates the idea of the RG equations is the Callan-Symanzik equation
(63, 64], which is a differential equation for the evolution of the n-point correlation functions
under variation of an energy scale parameter.

Other RG equations have been derived by F. ]. Wegner and A. Houghton [28] as well as by
J. Polchinski [30]. Here the approach based on the effective average action as introduced by
C. Wetterich [65] is followed.

Two fixed points of Ising-like systems® are of special interest in the following chapters. One of
these is the so-called GaufSian fixed point, which describes a free, non-interacting theory. Its
name is derived from the fact that this fixed point has a Gauflian probability distribution. For a
detailed discussion of this type of fixed point see the textbook by J. Zinn-Justin [47].

In space-times with less than four dimensions also a nontrivial fixed point exists, called the
Wilson-Fischer fixed point [66]. It has been found by an e-expansion, in which the dimension of
space-time is taken to be a continuous parameter. The vicinity of four dimensions is explored by

taking the deviation from four dimensions, ¢ = 4 — d, as an expansion parameter.

2.3 Spontaneous symmetry breaking

Systems that exhibit spontaneous symmetry breaking are systems whose dynamics are invariant
under some symmetry but the ground state is not. The most prominent example is a ferromagnet
at low temperature. Its Hamiltonian is rotationally invariant. In an external magnetic field the
elementary magnets are oriented along the magnetic field lines and keep their orientation even
after the external field is turned off such that the spherical symmetry of the material is broken. If
the material is heated above a specific temperature the orientation of the elementary magnets is
lost and the spherical symmetry is restored.

For a system with spontaneous symmetry breaking, the potential in the Lagrangian does not
have one uniquely determined minimum, instead it has degenerate minima with the same energy.
The effective potential in this case is not strictly convex anymore but is flat between degenerate
minima.

For every continuous global symmetry in d > 2 that is spontaneously broken Goldstones
theorem states that there must be a massless particle contained in the theory [67]. If the massless
particles are bosons, they are called Goldstone bosons. For example, pions can be interpreted as
(approximate) Goldstone bosons, see e. g. [46] for a discussion.

A proof of this theorem can be found in [1, 68]. In general, a broken global symmetry leads to
a Goldstone mode with the same quantum numbers as the generator of the symmetry. As we
shall see in the next chapter, this implies that the Goldstone mode for supersymmetry breaking is

fermionic [69].

"The Ising model is a simple model that is used to describe a ferromagnet.

11
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2.4 Derivation of the flow equation

To compute the effective action in the FRG approach the quantum fluctuations are integrated out
in successive momentum shells [65]. The effective average action generalises the block spin picture
introduced by Kadanoff [62] to continuous space [70]. The aim of this section is to construct
an equation for an interpolating action, the effective average action I'y, with a momentum-shell
parameter k. We restrict ourselves to bosonic degrees of freedom, the generalisation to fermionic

or gauge degrees of freedom is straightforward as we shall discuss below.

The interpolating action has to fulfil the conditions I't,» = Spare and I = I' and it is

constructed from a scale dependent generating functional

ZiJ1 E/ Dy oS0l Jo-ASle] (2.16)

The scale-dependent cutoff action is chosen to be

dd
88ilpl =5 [ Gro ORGP (1)

Ry is a regulator function and is required to have the following properties:
e Ri(g) — 0for k — 0 so that Wy_,[]] = W[J]
® Ri(g) — oo for k — A so that Ty_,, = S[¢]
e R;(g) >0 for g¢> — 0 so that Ry serves as an infrared regulator

Typical bosonic regulators are

Rk:q—2 or Rk=<k2—p2)0 k—2—1 . (2.18)
e/ 1 P?

With this scale-dependent cutoft action we introduce a modified Legendre transformation in

order to obtain the scale-dependent effective action

Tlg] = Wil + / 16— AS[¢] (2:19)

with the macroscopic field ¢ defined by

OWilJ]
6] (x)

d(x) = ={(¢p(x));. (2.20)

12



2.4 Derivation of the flow equation
Taking the derivative 9, = kdy with respect to the ‘RG-time’ ¢ =In (k/a), yields
9] =0 Wil +3, [ 19-0:88.1¢) )
The source ] is scale-independent and we calculate the derivative of Wy []] in the following:

o:WilJ] =0:InZ[]] =

l/goatngo e Slol+/, 9T-ASklg] (2.22)

! Slel+/, eJ-ASkle] _ 1 / 822[]] Wi 1/ 5% eWk
22,01 /at k/ Dpgpe _22[]] qatR" 5j6]  © 2 qatRk 5J8]

Where the last term can be computed

5e"r § oW, W &W, 3w

5757 o7 \& o1 5] o] ¢ 8787

Inserting this back into the equation above yields

2 2
0 Wi[J] =e™ %/atRk (eWk Wi OW, +eMk 0 Wk) 0:ASk + = ! /8 Rk6 Wi (2.24)
q

5] &) 58] 8J8]

With this the effective action reads

1 2w
o) =3 [ gy (229

82w,
Now the term 575]

derivative of the effective action which yields the equation of motion

OTklg] _ /6Wk[ 18] (») /w(y)
S (x) 8] (y) 6¢(x) d¢(x)

L is expressed through the effective action. For this we need the functional

$(y) +J(x) = (Rkg) (x) = J (x) = (Rx) (x). (2.26)

Solving the above equation for J(x) and taking a functional derivative yields

8J(x) _  OT[g]
dp(y) 8 (x)S¢(y)

+Ri(x, ). (2.27)

Together with the identity

L 8 W) / SWilll 81(q)
6 — — = = .
W9 =5ty = 56@) 010 L, 57@0Iq") 3(q) (2.28)
this leads to
, Wi [J] ( 0°Tx[¢] )
8(q—d) = R .
WD = | Sr@ora) \se@res@ T (2:29)

13



2 Functional renormalisation group

such that
FWilJ] _ (8°Tilgl \7
570] < 53¢ +Rk> . (2.30)
With this the flow equation reads
3 Ti[¢] = l/aR Tk + Ry N T R Ok ) (2.31)
Lkl k 3609 r k 6¢5¢ 2.31

In the denominator the regulator Ry serves as an infrared regulator as it suppress the massless

modes whereas the term 9d; Ry in the numerator serves as an ultraviolet regulator.

As stated above, the generalisation of equation (2.31) to a number of scalar fields and to
fermionic fields is straightforward [71, 72, 73, 74]. In this case the trace is taken not only in
momentum space but over all internal and external indices as well. For fermionic theories it has
to be taken into account that the first derivative acts from the left and the second from the right.

Also, instead of the trace the supertrace has to be taken. Thus the flow equation reads

— —
_1 @, p\" - @) _ 909
AVEE sn[(rk +R) atRk] with (1) =~ 50 (232)

where the indices a,b summarise field components, internal and Lorentz indices, as well as

space-time or momentum coordinates.

In a block-matrix notation for the bosonic and fermionic sector the scale-dependent propagator

can be written as

-1 [Gpp Gpr
(r,(f) + Rk> = : (2.33)
GFB GFF
The regulator does not mix bosonic and fermionic degrees of freedom. In block-matrix notation
it reads
REE 0 )
Re=|* : (2.34)
( 0 RIF

Thus, we obtain the following result for the flow equation:

1 1
akrk = E Tr GBBakREB - 5 Tr GppakRip (235)

14



2.5 Properties of the flow equation
2.5 Properties of the flow equation

The flow equation has a simple one-loop structure, but in contrast to perturbation theory the fully
dressed propagators enter and not only the bare ones. The one-loop structure is a consequence of
the cutoff action being quadratic in the fields [75].

The flow equation is derived from the generating functional which is usually taken as the
starting point to define a quantum field theory (QFT). As already stated in section 2.1 the effective
action contains all the information about the quantum field theory. Therefore it is also possible to
use the flow equation and initial conditions as the starting point for the field theory because the
flow equation defines a trajectory to the full quantum effective action.

This trajectory lies in the so-called theory space, that is the space of all action functionals
spanned by all possible invariant operators of the fields. The trajectory is determined by the choice
of the regulator, which is a manifestation of the RG scheme dependence. Note that the trajectory
is a non-universal quantity. As long as the cutoff A can be removed, however, the endpoint
is unique and independent of the regulator if no approximations are made. Approximations
introduce a regulator dependence of the infrared observables, but for a good approximation this

dependence is small.

2.6 Truncations

It is in general not possible to solve the flow equation analytically, and therefore approximations

have to be employed. The most common ones [17, 18] are listed in this section.

The vertex expansion is an expansion in the number of fields which reads
= 1 )
Telgl =Y w / A%y ... A%, T (x, . x) (21 . (X)), (2.36)

This approximation yields flow equations for the vertex functions I“,E") that interpolate between

the bare and the fully dressed vertices.

Another possibility is the operator expansion. The effective action is made up from operators
with increasing mass dimensions. A particular type of this kind of expansion is the derivative
expansion [76, 77], which is an expansion in powers of the momentum. For scalar field theories it

reads
Ti[¢] = / d’x <Vk(¢)+%Zk(¢) (aﬂ¢)2+o(a4)). (2.37)

Vi denotes the so-called effective potential, Zj is the wave-function renormalisation.

15



2 Functional renormalisation group

In order to obtain a good approximation already from the first terms of the expansion, higher
derivative operators must have only a small influence compared to the operators of order one.
For this to be true the anomalous dimension # of the quantum field, that is the deviation of the
scaling law from the one expected from dimensional analysis, has to be small.

The lowest order in the derivative expansion is called the local potential approximation (LPA).
To this order only the potential is taken to be scale-dependent. In addition, at the next-to-leading
order (NLO) a wave function renormalisation is taken into account. From the wave-function

renormalisation the anomalous dimension can be calculated with the relation
n =-0¢1InZ. (2.38)

In this work, mostly a derivative expansion is employed. However, we shall perform an
expansion in terms of super-covariant derivatives in order to preserve supersymmetry (see

section 4.2.2).

2.7 Spectrally adjusted flows

Spectrally adjusted flows are used mostly in gauge theories [22, 78, 79]. As we will need it later on
the main ideas are shortly sketched. For a more detailed discussion see e. g. [78]. Any truncation
selects a hypersurface in the space of all actions. A good truncation is one whose trajectory in the
hypersurface is close to the exact RG trajectory projected onto the hypersurface.

The regulator can be improved with respect to this property if the full second functional
derivative of the effective action — evaluated in the presence a background field - instead of the
squared momentum is used in the argument. This leads to an improvement because the spectrum
is not fixed but adjusted during the flow. By including the full F,({Z) the regulator is adjusted to the

flow of the spectrum.

2.8 Recovering perturbation theory

The FRG contains all orders of perturbation theory [75, 80, 81]. To see this, the effective action is

expanded in a perturbation series
T =S+ AL}, (2.39)
n
Considering just the classical action on the right hand side, the flow equation reads

one—loo 1 1
atrk loop = = TI‘

1
_ =— ©)
27 S@[¢] + Ry 9:Ry 5 Tr 9, In (S™[¢] + Rk) (2.40)
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2.8 Recovering perturbation theory

Integration with respect to k yields

one—100 one—loo k dk, 1 ~O0ne—100
AT, ! P[] = AT, ! Plo] +/ Watrk, : Pl¢] (2.41)
A
Inserting the above expression leads to
_ _ 1
AT} 1°°p[¢>] = AT}¢ 1°°P[¢] ) Tr [In (S(Z) [¢] +Ri)] = Tr [In (8(2) [¢] +Ra)] (2.42)

The cutoft-dependent terms regularise the expression whereas the k-dependent term is finite.
Renormalisation implies that the scale-dependent part AT, is independent of the cutoft A. In this
scheme it corresponds to adjusting the A independence of ATy with k # A (regularisation) and

fixing the A independent parts of AT (renormalisation conditions).

Higher loop orders can be calculated in a similar fashion [75, 80].
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3 Basics of supersymmetry

In the early 1970s supersymmetry (SuSy) was invented by Golfand and Likhtman [82], followed
by Akulov and Volkov [83, 84] and independently in the context of string theory as a symmetry
of two-dimensional world-sheet theory [85, 86, 87, 88]. Later it was realised that SuSy could be a
symmetry of four-dimensional quantum field theory and might be important for particle physics.

One reason for introducing supersymmetry is that divergences due to radiative corrections are
less severe in supersymmetric theories because of cancellations between bosonic and fermionic
loops. Supersymmetry provides a dark matter candidate and might solve the hierarchy problem.
Nevertheless SuSy cannot be the full answer since it has to be broken at low energy scales.

Supersymmetry became popular when it was realised by Haag, Lopuszanski and Sohnius [89]
that it allows to circumvent the prerequisites of the Coleman-Mandula theorem [90]. This theorem
states that in a theory with a non-trivial scattering matrix in more than 1 + 1 dimensions the
only possible conserved quantities that transform as tensors under the Lorentz group are the
generators of the Poincaré group and generators of internal symmetries. Haag, Lopuszanski and
Sohnius proved [89] that fermionic symmetry operators allow for a unification of space-time and
internal symmetries.

The main ideas of supersymmetry will be sketched here without going too deep into the
technical details, only general aspects of supersymmetry are presented. There are a lot of excellent
textbooks, review articles and lecture notes available, for example the review by M. E. Sohnius
[91], the textbooks by S. Weinberg [92] and P. West [93], the lecture notes by A. Wipf [94, 95] and
A. Bilal [96] or an article by Y. Shadmi [97]. All these articles were used for this chapter, and the
reader is referred to them for a more thorough introduction to supersymmetry. The technical

details of the specific models that are investigated are assembled in the respective chapters.

3.1 Supersymmetry algebra

The supersymmetry algebra enlarges the Poincaré algebra by generators Q; and Q;, called
supercharges, with i = 1...N. The SuSy generators transform as spinors under the Lorentz group,
obey anticommutation relations among each other and commute with translations. The SuSy

generators transform bosons into fermions and vice versa:

Q|boson) = |fermion) and Q |fermion) = |boson) (3.1)
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3 Basics of supersymmetry

One of the generators Q and Q lowers the spin by 1/2 the other raises it by 1 /2. The anticommutator
of two successive SuSy transformations Q; and Q; acts as a translation.

The supersymmetry algebra contains the Poincaré algebra and as each irreducible repre-
sentation of the Poincaré algebra corresponds to a particle, each irreducible representation of
a supersymmetry algebra corresponds to several particles that are related by supersymmetry
transformations. All these particles form a supermultiplet. Successively applying all generators
Q; to Q on the particle with the largest spin the supermultiplet can be constructed. Without
gravity, the largest spin in a renormalisable quantum field theory is one, restricting the number of
supercharges in four dimensions to N < 4. For a theory with gravity we have N < 8 because
gravity cannot consistently couple to spins larger than two.

Because the supercharges commute with the generator of translations, [Q, P*] = 0, all particles
in a supermultiplet have the same mass. The energy of the particles is always non-negative and if
supersymmetry is unbroken the ground state energy is always zero. A supermultiplet contains
the same number of bosonic and fermionic degrees of freedom. For proofs see e. g. [96].

In the following mostly the N = 1 scalar multiplet in various dimensions is considered. It
contains a bosonic field ¢ which can be real or complex depending on the space-time dimension,
a Majorana fermion y and an auxiliary field F. The latter is called an auxiliary field because it has
algebraic equations of motion. An action that contains the auxiliary field is called an off-shell
action because the supersymmetry algebra closes without taking into account the equations of
motion. An action where the auxiliary field is integrated out is called an on-shell action because

the supersymmetry algebra closes only when the equations of motion are used.

3.2 Superspace

Superspace, which was introduced by A. Salam and J. Strathdee [98], is a formalism in which
supersymmetry is inherently manifest. Analogue to three-dimensional Euclidean space which is
extended to four-dimensional Minkowski space for Lorentz invariant theories, Minkowski space
(or Euclidean space) is extended to superspace for supersymmetric theories. In this section only
N =1 superspace which is generated by one supercharge is discussed. For the formulation of a
superspace with two supercharges see e. g. [93] and appendix E.1.

The elements of superspace are superfields which combine the components of the supermultiplet.
These are fields @ (x, 9, 0) that depend on the space-time coordinates x and Grassmann variables
6 and 6. Therefore in superspace anticommuting coordinates are added to the commuting
coordinates of space-time. In general the SuSy algebra is reducible. In order to reduce the degrees
of freedom in a superfield, various constraints are applied. One often demands that the superfield

has to be real. The expansion of the superfield ® in 6 and 0 reads

D(x,0,0) = ¢(x) + Oy (x) +(x)0 + OOF (x). (3.2)
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3.3 Spontaneous breaking of supersymmetry

The SuSy transformations for the component fields have the structure
0p~vy, Sy ~0dp+F, OF~ay. (3.3)

The superfield has too many degrees of freedom. In order to reduce these, the superfield has to
obey constraints that are compatible with supersymmetry, i. e. they have to anticommute with
the supercharges. The supercharges D and D fulfil these requirements so they are used to put
constraints on the superfield.

In superspace it is straightforward to construct supersymmetric actions. For this it is needed
that the product of superfields is again a superfield and that the 69-component of the superfield
transforms into a total derivative under SuSy transformations. Therefore the highest component
of any analytic function of superfields and its super-covariant derivatives yield a function of the
component fields that changes by a total derivative under SuSy transformations and gives the
Lagrange density.

To obtain the component formulation, the superspace integral has to be performed, that is
the Grassmann coordinates in the action have to be integrated out. Due to the properties of
the Grassmann numbers this projects onto the highest component. From the action of the
supersymmetry generators on the superfield the supersymmetry transformations of component
fields can be read oft after an expansion in the Grassmann parameters.

Although we mostly use the component formulation in the following, we need the superspace
formulation for the construction of the supersymmetric cutoff action. Following this procedure it
is guaranteed that the regulator does not break supersymmetry. Implementing this ansatz, the
regulator structure necessary to preserve supersymmetry differs from the one usually found for

theories with bosons and fermions.

3.3 Spontaneous breaking of supersymmetry

Spontaneous supersymmetry breaking means that the variation of some field under SuSy
transformations does not vanish in the ground state. This implies that the auxiliary field acquires
a non-vanishing vacuum expectation value as it is the only Lorentz scalar in the transformation.
Equivalently, supersymmetry breaking implies that the ground state energy becomes non-zero.

This follows from
Enmin = (0|E|0) = Z |Qi|0)[° (3.4)
which implies
(0[E[0) #0 = Q;[0) #0. (3.5)
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3 Basics of supersymmetry

The ground state energy can also be obtained from the expectation value of the scalar potential
Emin = (0]V]0). (3.6)

From this we conclude that SuSy is broken if and only if the minimum of the potential is positive.
This criterion is also valid even if no off-shell formulation with auxiliary fields exists for a theory.

From the Goldstone theorem it follows that supersymmetry breaking yields a massless spin 1/2
particle which is called Goldstino [99]. A proof for this can be found e. g. in [100].

There are several mechanisms that are discussed for spontaneous breaking of supersymmetry,
for example the O’Raifeartaigh mechanism [101], a scalar model with three multiplets where the
equations of motion for the auxiliary fields are such that they cannot vanish simultaneously. Other
mechanisms are discussed e. g. in the papers by P. Martin [69], E. Poppitz and S. Trivedi [100]
or E. Witten [102]. For a review on spontaneous SuSy breaking see for example the review by
Y. Shadmi and Y. Shirman [103].

3.4 Kihler potential

In order to properly define the Kéhler potential in chapter 7, we give a short introduction to
complex manifolds in this section, following lecture notes by J. v. Holten [104].

On an N dimensional complex manifold there exists a finite set of local complex coordinate
systems (Z%, 2z, (i,i) = 1,...,N) that covers the manifold such that the transition functions
between two sets of coordinate systems are holomorphic. The metric on the manifold is given

through the line element
ds* = g,idéidz". (3.7)

A Kéhler manifold is a complex manifold with the condition that the holomorphic and

antiholomorphic curl of the metric vanishes:

Siij = &jii» ity = &iji (3.8)
From this it follows that the metric can be derived from a real function K(z, z) through

0°K
0zi0zt

8i(z,2) = (3.9)

with K(z, z) being the Kahler potential.

A supersymmetric theory with a (complex) chiral superfield, such as the )N = 2 Wess-Zumino
model in two dimensions, can be constructed from a real superfield-valued Kéhler potential. The
Kihler potential also allows for an elegant way to construct (supersymmetric) non-linear sigma

models, see e. g. the textbook by P. West [93].

22



4 Supersymmetric quantum mechanics

In order to extend the FRG to supersymmetric theories the formalism is first applied to
supersymmetric quantum mechanics (SuSy-QM). This model was initiated by H. Nicolai [105]
in 1976 and later formulated by E. Witten [102] in 1981. Witten suggested this model in order
to understand supersymmetry breaking in a simple non-relativistic system rather than in the
complicated setting of supersymmetric gauge theories. This model turned out to be interesting in
its own right, see e. g. the articles by A. Wipf [94] and A. Kahre [106] or the report by E. Cooper,
A. Kahre and U. Sukhatme [107].

SuSy-QM can be formulated as a 0 + 1 dimensional field theory. As it is the simplest
supersymmetric model that allows for supersymmetry breaking it is well suited to study how the
FRG can be extended to supersymmetric theories. The techniques developed in this chapter can
easily be generalised to Wess-Zumino models in various dimensions.

It is possible to calculate the energy of the first exited state numerically by diagonalising the
Hamiltonian. This offers a benchmark test for the applicability of the FRG to supersymmetric
theories. The results reported in this chapter are published in [108]. In this paper additionally a
formulation of the flow equations in superspace can be found which yields the same results as the
formulation in components presented here.

SuSy-QM with broken symmetry has previously been investigated with non-perturbative
renormalisation methods by A. Horikoshi et. al. [109]. They found good agreements for the
ground state energy and the first excited state in regions where quantum tunnelling is not
important. M. Weyrauch [110] found that an inclusion of a wave-function renormalisation
improves the results in this regime.

Both Horikoshi et. al. and Weyrauch used regulators which break supersymmetry explicitly.
This makes it difficult to distinguish between explicit SuSy breaking by the regulator and
spontaneous breaking that is inherent in the theory. For this reason we will always consider a
regulator that preserves supersymmetry. The chapter focuses on unbroken SuSy.

This chapter is organised as follows: First the model is presented and the convention for the
notations are described. The supersymmetric flow equations are then derived at leading and
next-to-leading order and the first excited state is calculated for different regulators. The chapter
concludes with a discussion of terms beyond next-to-leading order and the differences that arise

in a supersymmetric theory compared to a non-supersymmetric one.
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4 Supersymmetric quantum mechanics

4.1 Description of the model

We consider supersymmetric quantum mechanics in the Euclidean formulation. The real

superfield written in components reads
D(x) = ¢(x) +Oy(x) + ¥ (x)0 + OOF (x). (4.1)

It contains a bosonic field ¢, an auxiliary field F and fermions y,%. The 6 and  are constant

anticommuting spinors. A function of the superfield has the expansion

W(®) = W(¢) + Oy +F0)W'(¢) +00(FW'($) - W' (9)¥y) (4.2)

with W (®) being polynomial in the superfield and W (¢) the same polynomial of the bosonic

field. The supercharges that generate the supersymmetry transformations 8, = £Q — Qe are
Q=id;+600, and Q=idy+60;, (4.3)
their anticommutator is the generator of time translations
{Q,Q} = 2id, =2H. (4.4)
The variation of the superfield reads
8. @ =& (iy +i0F + 0¢ + 00y) — (i +10F - 0¢ + 00y «. (4.5)
For the components this implies the transformations
8. =idy —ive, Sy =(p—iF)é, & =&(d+iF), O.F =—&y —e. (4.6)
The covariant derivatives are D = id; — 09, and D = idg — 00,. They obey the anticommutation

relations {D, D} = {D, D} = 0 and {D, D} = —2i0,.

The off-shell action for supersymmetric quantum mechanics is given by

Sot (¢, F, y, ¥/] =/ drdedo [}LCD(DD -DD)® +iW(®)] (4.7)
=/ dr B‘Pz —igy + %Fz +iIFW'(¢) —iW"(¢)1/7‘l’] . (4.8)

After eliminating the auxiliary field F with its equation of motion F = -iW'(¢) this yields the
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4.2 The supersymmetric flow equation

action of a supersymmetric anharmonic oscillator:
- 1 12 - . 1 ’ 2 . " -
Sonl$ > 9] = [ dr| 597 —igy + SWHP)" —iW (§) gy (4.9)
For the bosonic potential V (¢) follows the identity

V(§) =3 W ()" (4.10)

The ground state energy is given by the minimum of the effective potential. The energy gap
between the ground state and the first excited state is given by the pole of the propagator in
the complex plane or the exponential decay of the correlator respectively. In the truncation
considered in this chapter the wave-function renormalisation is independent of the momentum.

In this case the energy gap is given by the curvature at the minimum of the effective potential:

142
El—E()= dc‘lf—(()(z(p)

The case with a momentum-dependent wave-function will be discussed in chapter 7.

=W (HW"($) + W"($)? (4.11)
¢=Pmin

As we are interested in unbroken supersymmetry in the following, we consider only superpo-
tentials that are of the form W ~ O(¢*"). This implies a vanishing ground state energy E, = 0.
In this chapter the choice of the superpotential differs from the following ones on the N =1
Wess-Zumino models where we consider potentials that exhibit spontaneous SuSy breaking. This

requires potentials of the type W ~ O(¢*"*").

4.2 'The supersymmetric flow equation

In this section we sketch the derivation of the supersymmetric flow equation. The regulator
structure and method can be generalised to the supersymmetric models with scalar fields in

different dimensions that will be considered in the following chapters.

4.2.1 The supersymmetric cutoff action

In order to preserve supersymmetry throughout the calculations we choose the cutoff action to

be quadratic in the superfields and the regulator to be a function of covariant derivatives,

ASL[D] = %/ S—Zd@d@ O (-q) Ry (D,D) @(q). (4.12)

The function Ry has to obey the general requirements for a regulator (cf. section 2.4). Using the

anticommutation relations for the covariant derivatives the regulator function can be decomposed
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4 Supersymmetric quantum mechanics

into
N 1, -
R (D,D) =iri(k,q*) + 3 (DD - DD) r5(k,q%) (4.13)
with a factor 1’ chosen for convenience such that the function r; matches the potential term. In

components the cutoft action reads

d
ASk[¢, F, i,y = % / ZZ [r2(k,q%) (¢ +2q9y + F?) +2ir, (k,q*) (F¢ +yy)].  (4.14)

In the cutoff action r, (k,g*) plays the role of a momentum-dependent mass. The term r,(k, g*)
is a modification of the kinetic term, similar to the regulators used for non-supersymmetric
theories. Therefore we choose r,(k,g?) - ¢* to be a typical regulator for a bosonic theory such as
the regulators in equation (2.18).

Written as a matrix in the space of the component fields (¢, F, v, ) the regulator takes the

form

RE 0 2 i 0 i
Ry = ( k ) with RE = (q "2 171) and R! = ( 1> +1r1) . (4.15)

0 R} ir, qry —ir 0

Requiring supersymmetry relates the regulators for bosonic and fermionic fields and introduces
additional constraints on fermionic and bosonic regulators. Note that, in order to preserve
supersymmetry, the auxiliary field has to be regularised (cf. section 4.6). The regulator structure
constructed here generalises to supersymmetric models with scalar fields (Wess-Zumino models)
in two to four dimensions. We will discuss these models in the following chapters.

For the components the flow equation for SuSy-QM is a flow equation for fermions and bosons

with the special regulator structure given in equation (4.15) that ensures supersymmetry.

4.2.2 The supercovariant derivative expansion

In order to solve the flow equation we employ a truncation that is called supercovariant expansion'.
The first term in this expansion contains no covariant derivatives, but an arbitrary function of
the superfield. This approximation is called the local potential approximation. It corresponds to
considering a scale-dependent superpotential. The second term in the expansion contains the

derivatives D and D and has the form
Z(®)DDZ(®) or Z(®)DDZ(®D) (4.16)

with Z(®) an arbitrary function of the superfield. This corresponds to additionally considering a

scale dependent wave-function renormalisation. Because of the anticommutation relation for

"This terminology changes for supersymmetric theories with more than one supercharge. What remains is an
expansion that corresponds to an expansion in the auxiliary field.
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4.3 Local potential approximation

the supercovariant derivatives an arbitrary function g(DD) in between the functions Z can be
reduced to a function g(p) - DD. In this way it is possible to construct a momentum-dependent

wave-function renormalisation (cf. chapter 7). The third term is of the form
Y(®)DDY(®)DDY (D). (4.17)

Again an arbitrary function of DD reduces to a multiplicative function depending on the

momentum.

It is important to keep in mind that this expansion is not an expansion in momenta as it is
normally considered in the derivative expansion. It is rather an expansion in powers of the
auxiliary field F: The local potential approximation contains a term linear in F, the wave function
renormalisation a term proportional to F? and the third term is proportional to F°. This fact is

used to project out the different parts of the expansion.

4.3 Local potential approximation
We first consider the local potential approximation. In this truncation the effective action reads

I'k[o, F, 9, v] :/dedé/dr[id)(DD—DD)CD +i-Wk(CD)]
:/dT [%¢2—1¢¢+%F2+iFW,;(¢)—iW,;'(gb)lpl//].

In the local potential approximation the classical action with a scale-dependent superpotential is
considered. After performing the functional derivatives, the fields are assumed to be constant. In

momentum space the second derivatives read

(F](f) +Rk) (9.9)

P +r,) + WIE+iW® i(W] +1y) Wy W'y
(W +1,) 1+7 0 0 ,
- . 2 ooy | 3@
-iW/y 0 0 q(l+1r2) —i(W( +1)
iw"y 0 q(1 +1;) +i(W, + 1) 0
(4.18)
To calculate the right hand side of
1 o o1 1 1
Ol = 2 STr [Fk + Rk] OkRi 1 = 2 Tr (GkokRy)pp — 2 Tr (GrOxkRi)pp 5 (4.19)
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4 Supersymmetric quantum mechanics

we need the inverse of the supermatrix® (4.18). For this the inverse propagator is decomposed

into bosonic and fermionic parts:
T +Re = G = Gk + UM + Magy + W Ms iy (4.20)
The propagator itself reads
Gi =Gox — Gox (WM, + May) Goj + Gox (M1GoxMz — MaGoxMy — Ms) Gox§y . (4.21)

The explicit form of the matrices and the inversion of the propagator can be found in appendix B.1.
Projecting on the terms linear in the auxiliary fields® leads to the following flow equation*:
WI;” dq akrz [(1 + r2)2p2 - (WI;’ + 1’1) 2] + 2(1 + Tz)akrl (WI;’ + 1’1)

nW, =—~ [ 2L .
2 ) 2n [(1+72)2p% + (W] +11)?

(4.22)

Integrating with respect to ¢ (and dropping the irrelevant constant of integration) finally yields

the flow equation for the superpotential

1 / % (1+7y)0kr; — akrz(W]Z((b) + 7'1). (4.23)

WD) =35 ) o (1+72)2p? + (W($) +11)>

As it is required by supersymmetry the flow equation for the superpotential coincides with the
one obtained by a projection on the terms proportional to yy. This projection yields an equation
for W/ (¢). Details on the calculation can be found in appendix B.2. There the equality of both

equations is explicitly shown.

4.3.1 Discussion of different regulators

In this section we discuss and compare different regulators or regularisation schemes by varying
the regulator.

As supersymmetric quantum mechanics is an ultraviolet finite theory we can use very simple
regulators. However, these regulators will not be sufficient in the more complicated models as we

shall see in the following chapters.

In the following we will focus on the simplest nontrivial potential given by

Wa(¢) =ed + %sz + §¢3 + qul. (4.24)

*For the inversion of a supermatrix see e. g. [111].

3This projection can be achieved in general by a functional derivative with respect to the auxiliary field and then
setting the auxiliary field and the fermions equal to zero.

“4For the explicit calculation see appendix B.2.

5A short remark concerning the dimensions of the couplings: For a numerical treatment the couplings have to be
dimensionless. In this chapter all couplings and the fields are measured in units of the mass. This implies that the
mass parameter m is identical to one throughout this chapter.
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4.3 Local potential approximation

The Callan-Symanzik regulator

Due to the ultraviolet finiteness of SuSy-QM only an infrared regulator is needed. For this reason,
the simplest choice, r, = 0 and r; = k, is sufficient. We refer to this as the Callan-Symanzik
regulator in the following as it is very similar to the one used in the Callan-Symanzik equation.

For this regulator equation (4.23) simplifies to

1

1
kWi () = 1 m

(4.25)

We compare the polynomial approximation and the numerical solution of the partial differential
equation.

As abenchmark test for the quality of the approximations E, the energy of the first excited state,
is determined from the curvature of the effective potential at its minimum ¢,,;,. The effective
potential Vy is defined as limj_, %(W,;)z. From W,_(¢min) = 0 we obtain the energy of the first

excited state as

El = W]Z_>o(¢min)- (426)

For a polynomial expansion of the superpotential the ansatz reads

Wi(¢) =)

n

(K
%)qs" with Wioa = Wa =e¢ + g& + §¢3 + Z¢4. (4.27)

Since only W/ (¢) enters on the right hand side of the flow equation, the couplings ay and a, will
not determine the flow of the other couplings. This generalises to Wess-Zumino models in various
dimensions as well. As long as the superpotential is convex it can always be expanded around
¢ = 0. At the cutoff A the non-vanishing coupling constants are (a;,4a,,4a;,d4) = (e,m, g,a). For
the ansatz given in equation 4.27 the classical superpotential becomes non-convex if g* > 3ma.
An expansion around the fields minimising W) (¢) would be better adjusted to the flow as this

has the largest contributions to the flow. In this case the expansion reads

an (k)

n

Wi(¢) = D, === (¢ —do(k))", Wy (¢o) = 2di5 = 0. (4.28)

In general, the field ¢y minimising the superpotential does not coincide with the field ¢,
minimising the bosonic potential. The system of coupled ordinary differential equations for the
coupling constants can be derived by comparison of coefficients.

As an even potential remains even during the flow, all odd couplings obey a,,.; (k) = 0 for
n > 1. Moreover we have di¢o(k) = 0, implying that the minimum of W} is scale invariant. The

system of differential equations is given in [108] up to order N = 10.
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g=0, polyn. approx. g=2, polyn. approx.

25 .
f k=1000 ——
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Figure 4.1: Flow of W' (¢) with Callan-Symanzik regulator for W), =1+ ¢ + g¢* + ¢°.
Left panels: g = 0, Right panels: g = 2, First row: polynomial approximation to order ¢!, Second row:
solution of the partial differential equation (4.25).
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CS 2.203 2.137 2.062 1979 1.890 1.798 1.710 1.633 1.584 1.590
exp 2.195 2.130 2.055 1.972 1.884 1.791 1.701 1.622 1.569 1.684
0 2.197 2.132 2.058 1.975 1.888 1.794 1.705 1.626 1.576 1.581

PDE

exact 2.022 1.970 1.905 1.827 1.738 1.639 1.534 1.426 1.323 1.235

Table 4.1: Upper part: Energy of the first excited state calculated in different orders of the polynomial
approximation with the Callan-Symanzik regulator for e = m = a = 1. Lower part: Solutions from the
partial differential equation (PDE) for the Callan-Symanzik (CS), the exponential (exp) and the 8-regulator.
For comparison, also the exact values from a numerical diagonalisation of the Hamiltonian are given.
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4.3 Local potential approximation

As the superpotential becomes non-convex, ¢,,;, moves away from the expansion point ¢,
signalling the breakdown of the polynomial approximation for large couplings. It is known
from non-supersymmetric quantum mechanics that for non-convex potentials the polynomial

approximation fails and the full partial differential equation has to be solved [109, 112, 113, 114].

We solve the partial differential equation with the NDSolve routine of MATHEMATICA. ¢
is chosen in the range (-200,200), on the boundary the potential is kept at its classical value.
The flow of W;? from the polynomial approximation and the solution to the partial differential

equation is depicted in figure 4.1.

In table 4.1 the results for the energy E, from polynomial approximations to different orders
and the solution of the partial differential equation are listed. For convex superpotentials the
results obtained from the former converge rapidly to the ones from the latter. The results deviate
about 10% from the exact results. For non-convex potentials the results deviate even more. In the
next paragraph two different regulators are investigated. It will turn out that the observed large

deviation is a problem of the LPA in a supersymmetric theory and not of this particular regulator.

Exponential- and 0-regulator

The Callan-Symanzik regulator serves only as an infrared regulator. The exponential (left) and a

0-regulator, defined as

PP (k) = ke, rO (P k) =k -0k - ¢) (4.29)

serve as infrared and ultraviolet regulators. The corresponding flow equations read

oo

2 2\ ,—q*/k?
BkW,EeXP)(Qb) = L/ dq (k+2q])e and

2k2 | 21 @ + (W] (§) + ke /K2
2 i X (4.30)
1 k ) " |k - Wy
AW (¢) = W (” (1 - sign Wy) +2arctan 2kW} ) '

The results in the convex regime do not deviate much from each other (see table 4.1). In
the non-convex regime they do not yield better results than the Callan-Symanzik regulator.
The ground state energy from the LPA has an error of about 10% for the choice of couplings
(e,m,a) = (1,1,1). This is due to contributions from higher orders in the auxiliary fields that are
neglected in the LPA. Recall that the effective action is expanded in the supercovariant derivatives
and the auxiliary field mixes different orders of the momentum. Because of the auxiliary fields,

wave function renormalisation has contributions to zeroth order of the momentum.

31



4 Supersymmetric quantum mechanics
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Figure 4.2: The effective potential Vj calculated with the Callan-Symanzik regulator for a non-convex
classical superpotential. The polynomial approximation does not reproduce the global structure which
should not deviate much from the classical potential. The solution of the partial differential equation gives
the correct asymptotic behaviour. The parameters in the classical potential aree =m =a =1and g = 2.

4.3.2 The global structure of the potential

For a convex superpotential at the cutoff scale the polynomial approximation works quite well
near the origin but it breaks down in the non-convex case. In figure 4.2 the asymptotic behaviour
of the effective potential is shown, calculated from the solution of the partial differential equation
and from the polynomial approximation. As expected, the polynomial approximation fails to

reproduce the correct asymptotic behaviour whereas the full partial differential equation succeeds.

4.4 Next-to-leading order approximation

In this section we investigate how the results of the previous section change if a wave-function
renormalisation is included. A constant wave-function renormalisation is driven by the odd
couplings and is scale invariant for this model. Therefore we have to consider a field-dependent

wave-function renormalisation. The ansatz for the effective action in this case reads®
-1 o
Tvlo,F, ¢, v] = / drdodo [ZZk(QD)(DD —DD)Zi (D) +iW, (D)

= / dr [@ (¢* = 2iyy + F?) = Z($)Z(9) (i + F) gy +iFWi(¢) —iW, (¢) vy | (4.31)

®In order to include a field-dependent wave-function renormalisation such that supersymmetry is preserved, two
functions are necessary on which the supercovariant derivatives act. For this reason Z} instead of Zj is considered
in the following. This is different to the terminology normally used in theories without supersymmetry.
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4.4 Next-to-leading order approximation

where primes denote derivatives with respect ¢. For Z(®) = ® the truncation in the previous

section is recovered.

For Wess-Zumino models with spontaneous supersymmetry breaking a constant wave-function
renormalisation has a nontrivial flow equation and then it is sufficient to take Z(®) = Z; - .

However, for the supersymmetric quantum mechanics the full ¢-dependence is needed.

In order to respect reparameterisation invariance of the physical quantities [17] under rescaling

we choose the cutoff action to be
1 PR P ry, - =
AS; = [ drdfdd Z,(@)%0 [m + (DD —DD)] O
- 1 r . .-
= / dqg Zk(qﬁ)2 (qurzqﬁz + Eze +ir F¢ + (qr, - 1r1)1//1//> (4.32)

with @ = (¢,0,0,0) being a background field. This ansatz of a spectrally adjusted flow [78, 115] is
inspired by functional optimisation [22]. The field ¢ can be understood as a parameter labelling

the classes of regulators.

The flow of Z; can either be read off from $2, F2 or yy. The simplest choice is F? because there
are no time derivatives involved. However, due to this mixing of powers of the momentum, the
wave-function renormalisation has a strong influence on the flow of the superpotential. This
explains the large error in the ground state energy found in the LPA compared to the exact result.
It is related to the fact that the F>-term in the off-shell formulation originates from the kinetic
term but in the process of integrating out the auxiliary field enters the definition of the effective
bosonic potential. Projecting on vanishing yy as well as on constant scalar field and considering

the Callan-Symanzik regulator leads to the coupled flow equations

HWi(9) = - W,;”%,
90002 (W ~(ZUD)Z () - 3ZL<¢1X;"(¢)2) fq; | (4.33)
with
N=(1+ka)Z, (§)° and D=W'($) +kZ, (). (4.34)

To solve these equations a value for the background field ¢ has to be chosen. A good choice would
be ¢ = Pumin because E; is of interest, but this value has to be determined through a self-consistency
calculation. From gauge theory it is known that it suffices to take ¢ = ¢, see e. g. [18]. This
already improves the results tremendously. For this reason we will use this approximation in the

following. The flow equation then simplifies a great deal.
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4 Supersymmetric quantum mechanics
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Figure 4.3: Dependence of the energy on the coupling g for (e,m,a) = (1,1,1). The polynomial
approximation is of order n = 10.

g 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

PDE 2.203 2.137 2.062 1.979 1.890 1.798 1.710 1.633 1.584 1.590
PDE+WF 2.089 2.031 1.961 1.879 1.788 1.690 1.589 1.489 1.402 1.341
exact 2.022 1.970 1.905 1.827 1.738 1.639 1.534 1.426 1.323 1.235

Table 4.2: Energy of the first excited state for the classical superpotential (4.27) with (e,m,a) = (1,1,1)
and various values of g calculated from the solution to flow equations with Callan-Symanzik regulator
with and without wave-function renormalization.

With wave-function renormalisation included the on-shell effective bosonic potential is given by

r 2
M) . (4.35)

1

The curvature of this potential with respect to canonically renormalised fluctuations y = Z(¢)

yields the energy gap. The energy of the first excited state reads

¢V (27 (x)

Ev=\—q7 = lim
dXZ k—0 ZI
smin=Z($osin) (Ze(#))

Wi (¢)

3 : (4.36)

¢ :(pmin

Note that there are no additional terms from differentiation of the wave-function renormalisation
because W'(¢)|¢=¢,., = 0. In table 4.2 we list the results with and without wave-function
renormalisation .

The wave-function renormalisation improves the results for (e,m,a) = (1,1,1) considerably.

This is shown in figure 4.3.
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4.5 Beyond next-to-leading order

x
X
35|
3 -
up 25t
2 -
15
exact
polyomial
pDGL  x
; ‘ ‘ ‘ pD("jL and wave func.ren. =
0 1 2 3 4 5 6

a

Figure 4.4: Dependence of the energy on the coupling a, e = m = g = 1. The polynomial approximation is
of order n =10

If the classical potential is in the convex regime of the superpotential, i.e. g </3a the results
for the energy gap are independent of the regulator and an accuracy of up to 1% is achieved if the
wave-function renormalisation is included in the truncation. As soon as the superpotential enters
the non-convex regime, the results obtained with the flow equation deviate strongly from the exact
solutions. We expect that this is due to terms of higher order in the derivative expansion, such
as ®[DD®]* ~ F? +... (cf. section 4.5). As the expansion in super-covariant derivatives mixes
different orders of momentum, these can influence the flow equations at lower order. However,
as can be seen from a diagrammatic expansion of the flow equation (cf. appendix F), auxiliary
field operators (and their SuSy partners) that come with powers larger than F? do not directly
contribute to the flow equation of the superpotential. Because of this it is reasonable to expect a
good convergence at next-to-next-to-leading order.

Up to now we only considered a dependence of the energy of the first excited state on the
coupling g. In order to study the dependence on the coupling a we choose the other parameters
to be e = m = g = 1 such that the superpotential at the ultraviolet cutoft is convex. Even for large
couplings a the results with wave-function renormalisation reproduce the exact results up to a 1%

accuracy. This is shown in figure 4.4.

4.5 Beyond next-to-leading order

A truncation beyond next-to-leading order corresponds to taking into account both a term

cubic in the auxiliary field and its supersymmetric partner terms. This is obtained from
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4 Supersymmetric quantum mechanics
¢ [} (DD -DD) @]2. To calculate this term in components, we first consider

(DD ~DD) ® = (F - ig) - 5 (6 - 09) - 00 (i¥ + §). (437)

1
2
Taking the square of this expression yields
2
(% (DD - DD) cp) = (Fig)" ~2i (40 - By) (F - i6) ~200 (if +$) (F - i¢) + 1009
(4.38)

For the 00 component we finally obtain

® (DDO)*

=F (F-ig)" +2i (§y +94) (F i) -2¢ (iF +§) (F - i6) + 547

PP —iF? + §2F + 21 (§y + ) (F — i) + 2ig + %W (430)

60

In matrix notation the second functional derivatives of this term reads

4q'q°¢ +2qq'F -29F  2qq'y 299y
2q'F 3F 207 2
AD(q.q) = o _ v W s(-q-q). (440
2qq'y 2qy 0 2q'F —2qF
2qq'y -2qy -2q'F +2qF 0

In expression (4.40) the fields are constant. Beyond next-to-leading order the auxiliary field
enters in the fermionic propagator. Thus, the fermionic propagator also influences the flow

equation for the bosonic superpotential which is not the case at next-to-leading order.

4.6 Differences between theories with and without supersymmetry

Before concluding this chapter, we discuss of the differences in the flow equations of theories with
and without supersymmetry.
In order to illustrate the differences, we consider a purely bosonic theory with an auxiliary field.

The auxiliary field is introduced similar as in the supersymmetric case. Here the action reads:
d 1 2 1 2 '
S=[ d 5(/5 - EF +W'(¢)F (4.41)

Note that this is a truncation in terms of the auxiliary field F as well as in the scalar field ¢. In the
full effective action a potential for the auxiliary field has to be taken into account.

The equation of motion of the auxiliary field is F = W'(¢) and the bosonic potential is
defined as V(¢) = %W’((b)z. In this case it is natural to use a regulator for the bosonic field
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4.6 Differences between theories with and without supersymmetry

Ri(q*) = ¢*r2(k,q*) and none for the auxiliary field. The flow equation for the potential is

determined by projecting on constant fields which yields

q*oxr2 ]
(ra+1)g> + W' ()2 + FW"(¢) '

(4.42)

ok (%FZ + W’(¢)F> = % Tr[

Using the equations of motion for the auxiliary field, this gives the well-known flow equation for

the bosonic potential

q* okt
(ra+1)g* + V,;'(qﬁ) '

Vi) =5 Tr (4.4

In the supersymmetric case the auxiliary field has to be regularised as well, or else supersymmetry is
broken. Due to this regularisation, the auxiliary field becomes dynamic and the bosonic potential
is not directly accessible. The quantity that is of interest now is the flow of the superpotential
from which the effective bosonic potential is calculated in the end.

The truncation in superspace enforces a scale-dependent superpotential. Its flow equation can
be derived in component formulation through the projection on vanishing auxiliary field or it
can be calculated directly in superspace, which yields the same result.

Consider a similar procedure in the purely bosonic theory above. The results for the potential

V calculated from the truncation
1., 1, 1.,
Iy = 5({) +Vi(¢) andfrom Ty = Egb + EF + W (¢)F (4.44)

differ. This is caused by the different truncations because different types of diagrams are resummed.
Additionally, the action

) (4.49)

is a different truncation in terms of ¢ than

[y =/ %sz + Vi(¢). (4.46)

Because the auxiliary field introduces terms at zero momentum, for a consistent derivative
expansion’ a potential for the auxiliary field has to be taken into account. Such a potential for the
auxiliary field modifies the relation between W, (¢) and F and therefore the effective potential
Vi(¢) calculated from integrating out the auxiliary fields. After integrating out the auxiliary
fields, the same diagrams as in the description in terms of ¢ can only be obtained if a full auxiliary

field potential is included.

7not a supercovariant derivative expansion

37



4 Supersymmetric quantum mechanics

In a supersymmetric theory, however, including a potential for the auxiliary field introduces
additional terms with derivatives due to the superpartners. This leads to additional differences in

the flow equations of supersymmetric and non-supersymmetric theories.

4.7 Lessons to be learnt from SuSy-QM

In this chapter we have successfully demonstrated that it is possible to extend the FRG to a
supersymmetric model. The main ingredient is the choice of a supersymmetric regulator function
quadratic in the superfields. This implies that the regulators for fermions and bosons have to
obey certain relations which ensure that supersymmetry is preserved.

In order to solve the flow equation non-perturbatively we employ an expansion of the effective
action in super-covariant derivatives. In this expansion terms without time derivatives appear
even at higher orders of super-covariant derivatives. This is due to the presence of the auxiliary
field and makes it necessary to go to next-to-leading order in order to obtain quantitatively
correct results even for small couplings. This implies that the higher powers in the auxiliary
field, or more general, an auxiliary field potential, have a strong influence when the coupling
constants become large. This result is surprising because the anomalous dimension is still small.
In non-supersymmetric theories this is a signal that the next-to-leading order represents already
a quite reasonable truncation.

The reason for the mixing of different orders of the momentum lies in the nature of supersym-
metry. In the off-shell formulation of a theory with a scalar multiplet, the auxiliary field and
the derivative of the scalar field occur on equal footing. This can easily be seen from the SuSy
transformation of the fermionic field v which is proportional to ¢ — iF.

The physical order parameter that was investigated, the energy of the first excited state, should
be a universal quantity and therefore not depend on the regulator. We have demonstrated that
this is indeed the case by considering three different regulators.

We will employ the techniques developed in this chapter to study the two-dimensional N = 1
Wess-Zumino model in the next chapter. SuSy-QM can be derived from the two-dimensional
model by dimensional reduction. Because of this, it is no surprise that the regulator and the

structure of the flow equation carry over to this two-dimensional model as well.
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5 The two-dimensional N = 1 Wess-Zumino

model

This chapter extends and generalises the results obtained within supersymmetric quantum
mechanics to the Wess-Zumino model with N = 1 in two dimensions. The Wess-Zumino model
is a simple scalar model that exhibits spontaneous supersymmetry breaking. It was again first
introduced and examined by E. Witten [116].

Previously it has been investigated with lattice methods. Ranft and Schiller [117] did pioneering
work based on Hamiltonian Monte-Carlo methods. They found that this model exhibits a SuSy
phase transition. Beccaria and co-workers [118, 119] investigated the phase diagram and the
ground state energy with similar methods. Catterall and Karamov [120] investigated the phase
diagram as well. A review about supersymmetry on the lattice is given by J. Giedt [121]. The
investigation of this model with lattice methods represents a great challenge although there exist
formulations of the lattice action that restore supersymmetry in the continuum limit as proposed
by Golterman and Petcher [122]. However, the sign of the Pfaffian changes which is a potential
problem for the Monte Carlo simulations. Nonetheless, recently considerable progress in treating
this model on the lattice has been made [16].

The FRG does not have this problem as no Pfaffian has to be calculated. Thus, it is in principle
possible to derive results that go beyond the present lattice calculations. Nevertheless all quantities
considered in the following are still cutoff dependent. To remove the ultraviolet cutoff and to
work with cutoff independent quantities remains for future work. Such work could be inspired by
recent research on the lattice [16].

The results reported in this chapter are published in [123, 124] as well as in the proceedings [125].
This chapter is organised as follows: First the model is presented and the SuSy flow equations
are derived. They are discussed in leading and next-to-leading order, for which the fixed-point
structure is investigated. A model with perturbations to the Gauflian fixed point is then explored.
In the end the phase transition between broken and unbroken supersymmetry is discussed as

well as the behaviour of the mass as the RG scale is lowered to the infrared.
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5 The two-dimensional N = 1 Wess-Zumino model

5.1 The Wess-Zumino model

The two-dimensional N = 1 Wess-Zumino model is a supersymmetric model with one supercharge
and Yukawa-like interactions. In an off-shell formulation the theory has a scalar field ¢, a Majorana

spinor field y and an auxiliary field F. They are combined into a real superfield

D(x,0) =¢(x) + éy*w(x) + %(éy*G)F(x). (5.1)

with the constant Majorana spinor 6 and with yy = iygy;. In the following the y-matrices are

taken to be in the Majorana representation. The spinors y and  are related by
g=y'C (5.2)

with C = 1 the charge conjugation matrix (cf. appendix A for details on the Clifford algebra).

Majorana spinors in a Majorana representation are real. The supercharges read
Q = _li - aea Q = _li - éa) {Qa Q} = Zla (53)
00 00
and from 6O = i€[Q, @] the SuSy transformations are obtained. In components they read
8¢ =&ysy, Oy = (F +ipxdp)e, Oy =&(F —idoys), OF =iedy. (5.4)

The superderivatives are

o . R R L
D_£+1<70, D——%—lea, {D,D} = -2ig (5.5)

and the action is given by
S =/ d*x d6 db (%DCD)/*DGD + W(CD))
, |1 w1 L, 1 ., :

To show the invariance under the above SuSy transformations we need Fierz identities derived

from

1 1 1
VX = —EXV/ - 5)’#()5)’;41//) - EY*(XV*V’) (5.7)

as well as the symmetry relations (cf. appendix A)

YX ==V VYuX = Xvu¥  and  Yysx = {yxv. (5.8)
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5.2 The supersymmetric flow equations

The Euclidean off-shell action is unstable. However, after the auxiliary fields have been integrated

out, the on-shell action is stable.

5.2 The supersymmetric flow equations

For the derivation of the flow equation we proceed along the lines of supersymmetric quantum
mechanics in the last chapter. Therefore only the differences are discussed here. For the products

of covariant derivatives the following relations,

2n+1

Lo\ i . 1 1. n
<5Dy*D> = 5DJD (%) ' and (5Dy*D) = 5DysD ()", (5.9)

hold with 9* being the Laplacian. These relations are the key feature in the construction of
the supersymmetric cutoft action. The most general function quadratic in the superfields that

contains only covariant derivatives is the superspace integral of
1.
ECDD ((7?1 (k, —82) — ysr2(k, —82)) DO (5.10)

with r, (k,—0%) = ¢*#1 (k,—0%). Written out in components and in momentum space the cutoff

action takes the form

d2
3503 [ Sl () 6+ () B =20 (6?) Fg + (g (ko) + s (k) v].

(27)?
(5.11)
In matrix notation the regulator reads
¢’ (k.q°) —ri (k.q’)
- (_7‘1 (k.q*) -r2(k.q) and  Ri =gr> (k.q") +yen (kq°) - (5.12)

Asin the SuSy-QM, r; (k, ¢*) is a momentum-dependent mass term and r, (k,q?) is a momentum-

dependent deformation of the kinetic term.

5.3 The local potential approximation

To solve the flow equation we first employ the local potential approximation. As an ansatz for the

effective action we use
] , (1 i 1, 1, ,
rk [¢) F) l//) V’] = d*x an¢a”¢ + Ewaw - EF + EWk ((/5)1//)’%1// - Wk(¢)F > (513)

which is the classical action but with a scale-dependent superpotential. In the approximation of

-1
constant fields it is possible to calculate the scale dependent propagator (F,(cz) + Rk> . The inverse
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5 The two-dimensional N = 1 Wess-Zumino model

propagator reads

A W'e, v 1
T,iz) + Ry = e KO B VY with e, = (5.14)
W/ ysy ® e B 0

where the operators on the diagonal are given by

A= (q2(1 +1r) —FW + %WIEAL)I/_/)/*I/I -W[ —r

, B=i(1+r)qd+ys(ri + W;). (5.15)
W, —1—1’2) 2)4 + ys(r + Wy

Using the above relations, the inverse can be calculated, see [124] for the details. Inserting 5.15

into the flow equation yields for the first derivative of the superpotential

o [ )W) 2(1412)? = (W] +1)?
aka:_Wk /_Z 2 22 ) " 1 2\2 k1 + qz 2 ) If, ! 3 zakrz ,
4m? \(?(1 +12)2 + (W] +11)?) 2P +r)2+ (W) +11)2)

(5.16)

where we have projected on the terms linear in F. Integration with respect to ¢ and dropping an

irrelevant constant leads to the flow equation of the superpotential:

aka _ l d2q (1’2 + l)akrl - (7’1 + W]Z((p))aer

2/ @2m)? gl +r)*+ (W +r)? (517)

Again, a projection onto sy results in the same flow equation for the superpotential.

In contrast to supersymmetric quantum mechanics, potentials with dynamical supersymmetry
breaking are of interest in this chapter, i.e. superpotentials or order O(¢*"*!). Therefore the
mass-like regulator r; (k,q*) does not screen potential zero modes of W"(¢), whose highest

power is odd as well, but merely shifts them. We will set it to zero in the following.

For the local potential approximation we will use the simple regulator

r =0, r,= (% - 1) 0 (k> —pz). (5.18)

Keep in mind, however, that in two dimensions this regulator will not be sufficient for the
next-to-leading approximation, so that we will need a regulator which diverges stronger in the

infrared in the second part of this chapter.

With the choice of the regulator introduced above it is possible to perform the momentum

integrals analytically. This yields the flow equation

kW)
4 k2 + W) (¢)?

kK- W)
S AW WO e B G

Wi (¢) =
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5.4 Fixed-point analysis

Note that due to the construction, the flow equation ensures that the superpotential is convex
in the infrared. However, this is not necessarily true for its derivative or the bosonic potential
as can be seen from the equations (5.19). As a consequence the effective potential V' = %W’i(gb)
calculated from the superpotential is not necessarily convex, especially in the regime with
unbroken supersymmetry. This can be traced back to the truncation, where a potential for the
auxiliary field and supersymmetric partner terms are neglected. In order to obtain the ‘true’
convex effective potential, such terms have to be taken into account.

Finally we would like to add that the flow equation for W} (¢) changes its sign for W, (¢) = k2.

This sign change will give constraints on the fixed point solution discussed below.

5.4 Fixed-point analysis

Before we solve the above flow equation for a given bare superpotential at the ultraviolet cutoft A
we investigate the fixed-point structure. It will turn out, however, that the picture obtained from
the LPA will change in next-to-leading order approximations. In two dimensions only part of
the fixed points are accessible in the LPA, that is at y = =9, In (Z?) = 0. This is also known from
bosonic theories in two dimensions [126, 127]. In this respect the supersymmetric model will
behave very similar to the bosonic theories .

Since a fixed-point study requires a scaling form of the flow equation it is rewritten in terms
of dimensionless quantities w;(¢) = Wi () /kand t =In (k/A). The two-dimensional field ¢ is
dimensionless. To keep the notation consistent with the following chapters we use ¢ = ¢ in the
dimensionless flow equations. The flow of the dimensionless potential reads
1 wi(o)

oW (@) +wi(p) =— —

L wl(p)? 520

Fixed points are characterised by the condition d;wx(¢) = 0. The dimensionless equation for the
first derivative is

L wile) . 2 wilg)wi(g)

C4ml+ w(9)?  4r (1 +w)(p)2)? (5.21)

ow, (@) +w,(9) =

We first solve the equation with a polynomial approximation before the solution to the full

nonlinear differential equation is considered.

5.4.1 Polynomial approximation

The flow equation for w’ can always be expanded around its minimum ¢ = 0 even if the bosonic

potential is a double-well potential. The polynomial approximation is justified for small values of
the field ¢.
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5 The two-dimensional N = 1 Wess-Zumino model

IR-stable fixed-points
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Figure 5.1: Projection of the coefficients of all fixed points for different truncations on the plane of the
couplings A and bj.

At the ultraviolet cutoff we choose W, = 1, (¢* —a2) and we employ the expansion w/(¢) =
Ai(@* —a?) + Zﬁz b,i:¢*. An even potential remains even under the flow and thus only even
terms have to be considered in the ansatz. The dimensionless couplings A,, b;; are related to the

bare, dimensionful ones via A, = /_\/ kand b;; = bi /k. ais dimensionless, therefore a, = a, holds.

The flow equations in this approximation are

1 6A}-a? 3b
it S AP 4t

2 e
i 2m s ol
3b,, 61
oA =— A + # -As
15bs,  60ba;- 12 4003
Oubyy = or  O0bu Ay 40N, (5.22)
27 T
n+1l)(n+2
dubang == L) o OesBarres Ban)-

4

The fixed-point equations are obtained by setting the left hand side equal to zero. The system
of coupled equations has a triangular form and can be solved iteratively. From the equation
for 0,1 we can read off that all fixed-point couplings have to obey a relation between A and b,.
This is shown in figure 5.1. The system of N equations yields 2N + 1 real fixed points. One is
the Gaufian fixed point with all couplings equal to zero, the other ones come in pairs due to
the underlying Z, symmetry. The largest root of the system of equations turns out to be the
infrared stable fixed point. With increasing order of truncation it converges to |Aq| = 0.982. For
the convergence behaviour see table 5.1 where the coefficients of the fixed point are shown for

different truncations. All other roots are bounded by |A*| = [A|.
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5.4 Fixed-point analysis

Coeflicients at infrared fixed point

2n A* by b¢ bg bl by, b3, bl

2 0.7236

4 0.9019 0.5227

6 0.9535 0.7354 0.8372

8 0.9711 0.8148 1.199 1.694

10 0.9777 0.8451 1.345 2.420 3.801

12 0.9802 0.8570 1.402 2.716 5.401 9.030

14 0.9812 0.8617 1.425 2.836 6.054 12.77 22.23

16 0.9816 0.8636 1.435 2.884 6.318 14.29 31.33 56.11

Table 5.1: The coefficients of the infrared-stable fixed-point potential for different truncation orders.

Stability analysis and critical exponents

The coupling constants at the fixed point and the radius of convergence are regulator dependent,
hence they are not physical quantities. The critical exponents are, however, universal and classify
the fixed points. They are defined as the negative eigenvalues 6’ of the stability matrix at the fixed

point (see section 2.2).

The flow equation for a? reads

2 _ 1 [
o.a; = oy —-a; - (/\_t) 0. (5.23)
At any fixed point the (0,0)-component of the stability matrix is By’ = —1. Due to the triangular
form of the system (5.22) it follows that B;,,° = 0. Therefore a? is always an eigendirection of
B;/ with eigenvalue 0° = 1 independent of the regulator. The value of this critical exponent
receives corrections at higher orders in the derivative expansion, but it will always remain to be
an eigendirection because couplings of higher order do not contribute to the flow equation of a’.
This implies that the superpotential in the LPA always has at least one infrared-unstable direction.

All other 2N — 1 fixed points turn out to have more than one infrared-unstable direction.

The critical exponent vyy = (0°) = 1 does not correspond to the scaling exponent in the
correlation length, unlike in the bosonic Ising model. Rather, the critical exponent governs how

the bosonic mass scales with the RG scale. It also plays a role in describing the phase diagram.

For a polynomial approximation to order 2n = 16 the critical exponents are calculated with

two different regulators
2 2 2
r2=(£—1)9<k—2—1) and r2=<k—2—1)9<k—2—1). (5.24)
4] q q q
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5.4 Fixed-point analysis

The results are shown in table 5.2. Positive exponents, which belong to infrared-unstable directions,
are highlighted in gray. The variation in the positive critical exponents is of order 10% or less.
This confirms the expected regulator independence. The fixed points can be labelled by the slope
A4 of the dimensionless superpotential w'(¢?). The largest slope corresponds to the fixed point
with the most infrared-stable directions. As the slope decreases, the number of infrared-unstable
directions increases. The Gauflian fixed point with Ay = 0 has no infrared-stable directions. Thus
we conclude that each fixed point defines a different non-perturbative renormalised Wess-Zumino
model in the ultraviolet in two dimensions. If these fixed points survive to higher orders, the
number of physical parameters increases for these fixed points.

At a fixed point the relevant directions are infrared repulsive and the fine tuning of the relevant
direction to the fixed point brings the system to its critical point. For the maximally infrared-stable
fixed point the unstable direction a? is the only parameter that has to be fine tuned. In this
respect a? is similar to the temperature in Ising like systems or to the mass in O(N) models. In
the domain of the maximally infrared-stable fixed point the tuning of a? distinguishes between
the supersymmetric broken and unbroken phase. In the domain of N relevant directions there
is an N-dimensional hypersurface that separates the supersymmetric and non-supersymmetric
phase. Unlike the Ising-like systems a; does not influence the higher couplings because it can
be expanded around ¢ = 0. For this reason the remaining couplings are attracted towards the
maximally infrared-stable fixed point. As long as the polynomial approximation is valid the flow
of w" is governed by the maximally infrared-stable fixed point. This is also the case in higher
dimensions (cf. chapter 6).

This behaviour remains unchanged if higher orders in the supercovariant derivative expansion
are taken into account because the superpotential (or its derivative) does not couple to higher

orders of the auxiliary field.

5.4.2 Solving the nonlinear differential equation

To go beyond the approximation of small fields we have to consider the nonlinear differential
equation. The case of two dimensions is special because the field is dimensionless and the term

(d —2)pw"(¢) is not present in the left hand side of the fixed point equation

L wile) 2 wilpwi(g)

41+ wi(@)?  4m (1 +w)(9)?)? 529

ow,(9) +w,(p) =—

The right hand side contains w" as highest derivative. Due to this, an infrared-stable solution is
found if the fixed point equation for w" is considered. For simplicity of notation u = w"(¢) is

introduced. The fixed point equation then reads

(1-H)A+u>)u" =2u> B -u>) u- 1 +u?) 4nu. (5.26)
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Figure 5.2: Left panel: All types of possible solutions to the fixed-point differential equation in local-
potential approximation: (1) ¥ > yerit> (2) ¥ = Verit» finite @ range, (3) y = yerit, oscillating solution, (4)
Y < Yerit> oscillating solution, (5) solution with just one extremum . Right panel: Comparison between
the numerical solution to the differential equation (ODE) and the polynomial approximation (Poly) to
16th order for three different fixed points. The fixed points FP1, FP2, and FP3 have the initial slope
y = 0.287,1.4262 and 1.963. The fixed point FP3 is the maximally infrared-stable fixed point.

In [124] it is proven that the nonlinear equation has oscillating solutions with |u| < 1 if the starting
slope 4'(0) =y < Yerir. FOr y > yoi there are diverging solutions that are confined to a finite range
of the field ¢. In figure 5.2, left panel, we depict all possible types of solutions. The oscillating
solution is shown in figure 5.2, right panel, for three different slopes together with the Taylor
expansion from the polynomial approximation. The Taylor expansion is a good approximation
for the first half of one period.

Now we can make the connection between the fixed points found in the polynomial approx-
imation and from the solution of the differential equation. In case of y < y; the solutions to
the polynomial approximation belong to the Taylor expansion of the oscillating solutions. The
solutions are bounded by it = 2\ corresponding to the infrared-stable fixed point. Therefore
there are infinitely many sine-Gordon type solutions to the fixed point equation.

Due to the factor (1 — u?) in equation (5.26) the left hand side of equation (5.26) vanishes at
u = 1. For a regular solution this implies that the right hand side has to vanish as well. From
this we find a condition for the slope at the critical point, namely that it has to be equal to
U (QPerit) = +/871. At @it the solution can either continue with the same slope or it can be reflected
which leads to an oscillating solution. This is different from the situation in three dimensions,
where a similar condition arises. However, there it determines a unique solution without the

possibility of reflection (cf. chapter 6).

5.4.3 Fixed points at next-to-leading order

It is known from the fixed-point analysis of two-dimensional bosonic theories [126, 127] that in

the LPA with # = 0 only oscillating solutions and solutions that are defined over a finite ¢ range
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5.4 Fixed-point analysis

are accessible. For 7 # 0 a term ~ 7w enters on the left hand side of the flow equation, changing
the picture when the next-to-leading order is taken into account. Now, regular non-periodic
solutions with a polynomial asymptotic behaviour emerge. In this case the approximation for the

effective action is
) 2 oo (1 e i 1\ 1 ,
Tv[o,F 4, y] = [ d*x|Z; Ea,,gba ¢ + Ew&/\// - 5F + EWk(gb)l//y*l// -Wi(HF|. (5.27)
As cutoff action we choose

1 d? _
AS = 3 / (2—7322,2 [r24°¢” + r2F? =211 F¢ + 9§ (gra + psr1)y] . (5.28)

With this, the flow equation for the superpotential is obtained by a projection onto the terms

linear in the auxiliary field and by an integration with respect to ¢.

(5.29)

1/ d’q [ (1+75)Z} k(1 Z3) (W +1122)0;(r, Z2)

HWi== [ — - :
TR 4 | ZE R )+ (W22 ZE@(L+10)? + (W] +1122)?

The flow equation of the wave-function renormalisation is obtained by a projection onto the terms
quadratic in the auxiliary field. As only a field-independent wave-function renormalisation is
considered, the flow equation for the wave-function renormalisation can additionally be projected
onto ¢ = 0:

d*p 1
022 =-W.'( )ZZZ/ — (1+ry) X
=W [ (e (Z3p2(1 +7,)2 + (W) +7,22)2)°

[zz,% (WE() +1Z2) (1+715) Ox(r Z2) + (z;pz(l +r)? = (W (@) +rlz§)2) ak(rzzi)”

(5.30)

Taking into account the running of a wave-function renormalisation the simple regulator we
have used before leads to artificial singularities in the infrared. For this reason, we use a different
regulator

2

r7=0 and r,= (I% - 1) 0 (k2 —pz) (5.31)

in the subsequent calculations. After the rescalings y = Zx$, Wi (x) = Wi(¢) and W, = W, Z,
W, =W,Z;2,...the flow equations read:

n o nk>  (n-2)K*W? +nk? W
koW, - =YW, =- In1 , .
W0 =X Wae == + STW,? "R (532)

k2 (Wm 2 (WHZ (WHZ 2 (WH4
_ k MW nl1 k k

h "2 "2 2 nn + 2 + "2 2)2

am \ w2 | Wik 2T (W)

x=0
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5 The two-dimensional N = 1 Wess-Zumino model

In terms of the dimensionless superpotential t(y) = W(X)/k, this can be rewritten as

"n2
1’] i ’1 (ﬂ_z)mk +}7 ( 112)
0¢tv — —X1o, + 10 =— + In(1+w;"), .
k() = S X1} + 10k R~ P— k (5.33)
2
1 m;CH ’/Im;crz "n2 zm;:l
== - ln<1+m )+— (5:34)
(e (mgz) w41 | C)T o 1)
=0
Polynomial approximation
For a polynomial solution we use the expansion
N

w, (1) =4 (x* = a7) + D banex™ (5.35)

n=1

The limit y — 0 on the right-hand side of equation (5.34) exists and the equation can be resolved

with respect to #. This yields

4)?

= .36
=22 (5:36)

A polynomial approximation of equation (5.33) yields the flow equation for the coupling a?:

, ﬁCQ%MO(M%%MW)

A i3 4
5 (1-3) (-3 on

As in the LPA a? is an eigendirection of the stability matrix and the corresponding critical

exponent is given by

o (11 12
9—< 2) = vw_eo—z_q. (5.38)

This relation is called superscaling relation because it relates the anomalous dimension with the
critical exponent. In Ising-like systems the main thermodynamic exponents (a, 3, y, §) are related
among each other by scaling relations. They can be deduced from the exponents v and # of
correlation functionsby hyperscaling relations, but no other connection between these exponents
exists. In this respect the superscaling relation is specific to supersymmetric theories as it provides
a connection between vy, and # that does not exist in non-supersymmetric theories.

The superscaling relation is exact at next-to-leading order, and although it might receive
corrections from higher-order derivative operators beyond next-to-leading order it still constitutes
a new relation between 7 and v. In fact, quantitative corrections beyond next-to-leading order

are expected to be quite large because the anomalous dimension is large. The value for the critical
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5.4 Fixed-point analysis

2n 2 4 6 8 10 12 14

] 0.3284 0.4194 0.4358 0.4386 0.4388 0.4387 0.4386
2- ’7/2 0.8358 0.7903 0.7821 0.7807 0.7806 0.78065 0.7807
l/Vw 0.8358 0.7903 0.7821 0.7807 0.7806 0.78065 0.7807

Table 5.3: Numerical verification of the superscaling relation (5.38): anomalous dimension # and the
critical exponent vy ! of a® for increasing orders in a polynomial truncation evaluated for the maximally
infrared-stable fixed point. They converge fast with increasing order of the truncation.
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Figure 5.3: Left panel: Regular potentials for # = 0.1. The asymptotic behaviour of these potentials is given
by 0"(x) = x'®. Right panel: Lines of fixed points in the -y plane (solid curves) and the anomalous
dimension as a function of y = 21 obtained from equation (5.36) (dotted curve). Also displayed are the
fixed point solutions obtained from a polynomial approximation of equation (5.33) and (5.34) for different
truncations.

exponent shows a sufficiently fast convergence with the order of the polynomial approximation,
as can be seen from the first row in table 5.3. Additionally we give in this table a numerical
verification of the superscaling relation.

The superscaling relation and its consequences for the infrared flow of the masses in the regime

with broken supersymmetry will be discussed later.

Fixed points from the nonlinear flow equation

In the limit of large x the right hand side of the fixed point equation following from equation (5.33)
is subdominant, implying the asymptotic behaviour

2/

oy ~ X (5.39)

for the superpotential. Such solutions are shown in figure 5.3 (left panel) for # = 0.1. For 7 = 0 the
asymptotic potential grows faster than any polynomial. This agrees with the results in the previous

section. For 7 # 0 a new class of solutions emerge that are regular over the whole ¢-range.
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5 The two-dimensional N = 1 Wess-Zumino model

The fixed point equation for the second derivative of the superpotential reads

u' [(nB+u?) 1 5 2 3
—|[————-=]In(1 _ 1
4 ( 2ut u? n( +u)+1+u2 212
nx , u?[ 1+3u? n(3 +2u?) n6+u*) 1 5
= =Du+Fu+ o - -— (1 . G
(n=Du+ Zu'+ e wirw) T\ s = n(l+u)|. (5.40)

As in the case of the LPA the vanishing of the factor multiplying u” at some y.,i yields a condition
on the slope 1 at .. Due to the term J#xu’ the slope is no longer independent of x.i;, however.

In order to investigate this equation we first consider # as a free parameter in equation (5.40).
This is similar to the way Neves et. al. [127] investigated the two-dimensional bosonic models.
As initial conditions #(0) = 0 we use and #'(0) = y = 2\ because we are only interested in odd
solutions for u. Integrating the equation with a generic slope for a given # ends in a singularity
because the factor multiplying u” becomes zero at some point. Nevertheless it is possible to find
regular solutions by fine tuning the slope at the origin. For # = 0.1 three solutions are shown in
the left panel of figure 5.3.

All regular solutions define lines of fixed points in the -y plain. These lines are shown in the
right panel of figure 5.3. The largest value of # for which a regular solution exists is # = 2/3. For
this # the potential behaves as u ~ y. For 0 < < 2/3 we can read off from the monotony of the
functions that the factor multiplying #” in equation (5.40) has only one root at some y = xcir. By
fine tuning of the starting slope we can achieve that the right hand side vanishes.

The outermost curve in figure 5.3 corresponds to solutions u(y) with no nodes, the next curve
to solutions with one node and the third curve to solutions with two nodes. Solutions with more

nodes can be found for small 7 and y. We also display # as a function of y,

2

4y

yz + 87‘[’ (5~41)

n(y) =
in figure 5.3, right panel. Its intersections with the lines of fixed points pick out the solutions that
satisfy the fixed-point equation (5.40) and the equation for the anomalous dimension. This can
be observed in the polynomial approximation of the fixed-point equation which converges to the
maximally infrared-stable solution with # = 0.4386 and y = +1.759.

The point # = 0 and y = +3.529 where all curves meet corresponds to solutions that diverge for
a finite value of ¢. These solutions were discussed in the local potential approximation. As the
slope at u = 1 does not depend on ¢ for # = 0, the solution either diverges without any cusps
such that it lies on the outermost curve or it oscillates a number of times and then diverges such

that it lies on one of the inner curves with one node or more.

The solutions at leading and at next-to-leading order seem to be qualitatively very different.

! Again, we use the abbreviation u = roj.
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5.5 The Gauflian Wess-Zumino model

The leading order solutions are either oscillatory, the infrared-stable solution even has cusps, or
they have a compact target space whereas the next-to-leading order solutions allow for solutions
that behave like to ~ y*/" for large fields but exhibit oscillatory behaviour for small fields.

An important parameter to understand the connection between leading and next-to-leading
order is the anomalous dimension # from which the asymptotic polynomial behaviour originates.
It has been derived from a small field expansion around y = 0, but a field-dependent wave-function
renormalisation is expected to behave as Z; (¢ — o) — 1 and correspondingly #(y — o) — 0.
Thus it is reasonable to expect that the true asymptotic behaviour of the fixed-point potential is
bound to lie between the one from leading and next-to-leading order, i. e. it will show a stronger
divergence at y — oo than the one predicted by the next-to-leading order results.

Before concluding this section on the fixed points a short discussion of the situation in
two-dimensional bosonic theories is in order. T. Morris [126] as well as R. Neves et. al. [127]
discovered that solutions which have a polynomial asymptotic behaviour can only be found for
non-vanishing anomalous dimensions. Morris demonstrated that at next-to-leading order the
fixed-point solutions, which are classified by their number of nodes, correspond to conformal
field theories described by Zamolodchikov [128].

We expect the fixed-point solutions discovered here to correspond to conformal theories as well.
For the two-dimensional N = 2 Wess-Zumino model it has recently been demonstrated with
lattice simulations that the infrared fixed point of this model describes N = 2 superconformal
minimal models [129].

Having studied the structure of the general fixed-point solutions now we will investigate a

specific model.

5.5 The Gaufsian Wess-Zumino model

In this section we are interested in a quadratic perturbation to the GaufSian fixed point at the
ultraviolet cutoff A. We take it to be of the form W), = A, (¢? —a%). This means that we consider
an asymptotically free theory with infinitely many couplings set to zero at the ultraviolet cutoff
scale. The ultraviolet cutoff is not removed in the following. Instead the non-universal bare
quantities are used.

The regulator dependence of the RG trajectories and the large variation in the values of
non-universal quantities for different regulators makes it difficult to compare the results to lattice
calculations because the lattice regularisation of the same physical system might lead to a different
lattice cutoft A = 7/ g,,,. For this reason we make such a comparison only on a qualitative level.

From a different viewpoint the regulator choice can be interpreted as belonging to the theory
itself, namely that the initial conditions, the perturbation at the cutoft scale and the regulator

determine the RG trajectory at a finite scale A. The problem of this interpretation is that the
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Figure 5.4: Flow of the superpotential with the starting conditions W), (¢) = NG af\), A = 1000,
Aa =100, a5 =03.

couplings of infinitely many operators have to be adjusted when the cutoft scale is changed along
the lines of constant physics. In order to find out how much these operators actually affect the flow
of the superpotential, we vary the cutoff scale A. For a given A, the couplings in W} = A, (¢? —a3)
are adjusted such that fixed reference couplings a,, and 1,, are obtained at a reference scale A,
ignoring higher-order couplings. For large enough A, the solutions of the flow equation show
that the dependence on the ultraviolet cutoft scale of the ground state energy at k = 0 is small.

To calculate the flow of the superpotential we have to pay attention to the diverging derivatives
in the infrared-stable solutions at ¢.,;; of the fixed point equations. For ¢ € [~ Porit] We use
the polynomial approximation and outside of this regime the partial differential equation. At
the point ¢ both solutions have to be matched which is achieved by taking the polynomial
approximation at ¢ as a boundary condition. The details of the calculation are discussed
in [124]. An example for the flow of a superpotential with dynamical supersymmetry breaking is
shown in figure 5.4.

In this truncation the effective potential is given by 3 W} . As already discussed in the chapter
on supersymmetric quantum mechanics this potential is not guaranteed to be convex. To obtain
a convex potential higher orders in the super-covariant derivative expansion have to be taken
into account.

In the Wess-Zumino models there is a connection between supersymmetry breaking and the
restoration of Z, symmetry. If supersymmetry is unbroken the bosonic potential is a double-well
potential and the Z, symmetry is broken. In the phase with broken supersymmetry the bosonic
potential is a single-well potential and the Z, symmetry is restored.

If the bare potential is chosen in the phase with unbroken supersymmetry the scalar potential
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Figure s5.5: Left panel: Phase diagram in the space of the dimensionless couplings specified at the cutoft
scale A for different truncations. right panel: Comparison between two different regulators

has two minima with V' = 0. These minima approach ¢ = 0 during the flow. At the phase
transition there is just one minimum with ¢ = 0 and V' = 0 such that the phase transition for
SuSy breaking and the restoration of the Z, symmetry coincide. In the next chapter this relation

is used in order to consider supersymmetry breaking at finite temperature.

5.5.1 Phase diagram

We will stay in the LPA to discuss the phase diagram. For a superpotential of order Wy ~ O(¢*"*!)
supersymmetry is broken or unbroken depending on the parameter a%. As the criterion for
supersymmetry breaking we take a non-vanishing ground state energy of the effective potential.
This can only be the case if W, (¢) is nonzero on the whole ¢-range. As the minimum of W, (¢)
is located at ¢ = 0 the polynomial approximation can be used to calculate the phase diagram. The
minimum is given by W, (0) = kA,a?. It freezes out because the coupling A; flows to its infrared
fixed point Ay as discussed in the previous section and a? ~ +k™! depending on the value at the
cutoff scale. This is a direct consequence of the fact that a7 at the fixed point is governed by the
critical exponent 0° = 1. The value of d, at the cutoff scale determines whether a system that
is broken at the cutoff scale remains in the broken regime (a> — +) or flows to the unbroken
phase (a7 — —c0). The change in the sign is taken as the signal for the phase transition. The phase
transition line consists of those values (a%,1,) at which the sign change occurs. In figure 5.5, left
panel, the phase diagram is shown. The values have been calculated with a truncation up to ¢*°.
The convergence is fast as the truncation order is increased.

In the strong coupling limit Ay, — oo there is a maximal value for 1,a% above which
supersymmetry can never be broken dynamically. From a numerical solution at a high-order
truncation an estimate for this value is A AG% |aie A = 0.263. This is in agreement with qualitative

results from the literature [116, 119].
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5 The two-dimensional N = 1 Wess-Zumino model

We have additionally calculated the phase diagram with the regulator

ry = (k—j—l) 9<k—j—1) . (5.42)
q q

A comparison between the two regulators is shown in the right panel of figure 5.5. We observe
a strong dependence of the values of the phase transition on the regulator. The numerical
values differ by a factor of approximately two. Due to the regulator dependence a quantitative
comparison between non-universal quantities in the FRG and in the lattice calculation [119],
where just one point in the phase diagram was calculated, is not sensible. More lattice points are
needed to compare dimensionless ratios that are less affected by scheme dependencies.

As the ground state energy and the fermionic mass are order parameters for the phase transition
from broken to unbroken supersymmetry, they should exhibit a scaling behaviour near the phase
transition. However, in the considered truncation such a scaling behaviour cannot be found. The
auxiliary field is nonzero in the broken phase, therefore its expectation value yields a field valued
order parameter. We expect fluctuations of the auxiliary field to play an important role near the
critical point. The fluctuations might establish a scaling behaviour. To describe these fluctuations,
a potential for the auxiliary field must be included. Such terms come from higher orders in the
super-covariant derivative expansion and therefore the quantitative description of the critical

regime is a hard challenge to tackle in the framework of the flow equations.

5.5.2 Scaling of the mass term

As in supersymmetric quantum mechanics the curvature at the minimum of the effective potential
is defined as the bosonic mass in the infrared limit k — 0. For renormalised fields y = Z;¢ the

bosonic potential takes the form

wy (x-Zh))*
Vi (x) = (Wi <§Z;§ ) (5.43)

The bosonic mass reads
mi = Vi (Ymin) > Vi (Xmin) =0. (5-44)
In the broken phase ymi, = 0 holds. The scalar mass is given by
mi = Z Wi (0)Wy'(0) = 2k°A, |af|. (5.45)

For k — 0 the system flows to its infrared-stable fixed point A; — A4 and a? ~ k™, implying

the scaling behaviour

m2 ~ k2, (5.46)
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Figure 5.6: Renormalised mass at different scales k as a function of the initial condition A Ac‘zf\ at an initial
coupling of Ay = 0.1. Note that the axes on the left and on the right hand side of the plot are scaled
differently.

In the infrared-limit the scalar mass goes to zero for # > —2. Together with the Goldstino from
supersymmetry breaking this leads to the conclusion that the Gaufliian Wess-Zumino model is
massless in both degrees of freedom.

Keep in mind, however, that the limit k — 0 can never be realised in experiment but instead
a cutoff scale is always involved. In lattice simulations this cutoff scale is the lattice volume.
Hence we have shown that the bosonic mass is proportional to the cutoff scale involved in the
measurement. First results from lattice simulations seem to confirm this conjecture [16].

The superscaling relation, together with Z; ~ k™", causes the minimum of the superpotential

to freeze out:

w'(0) = —)_Lkdﬁ = —ka)Ltaf ~ K"K s const. (5.47)

In the supersymmetric phase with W}, (Xmin - Z') = 0 the bosonic and fermionic mass is given by

W" min 'Z_l 2
m; = k<XZ;f <) # 0. (5.48)

W/ (¢) stays positive for a typical flow as k — 0 is approached. As k drops below the mass
scale this leads to a decoupling of the massive modes.

In the LPA considered here we use # = 0 to calculate the masses across the phase transition.
In figure 5.6 we show the mass depending on the relevant direction A,a3 with 1, = 0.1. At

A A% |aie A = 0.045 the phase transition from the phase with unbroken to the phase with broken

57



5 The two-dimensional N = 1 Wess-Zumino model
supersymmetry occurs. At this point both the fermionic and the bosonic mass are zero. In the

broken phase the Goldstino is massless and the bosonic mass remains massive at a non-vanishing

k and goes to zero for k — 0.
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6 The three-dimensional N = 1 Wess-Zumino

model

In this chapter we investigate the three-dimensional N = 1 Wess-Zumino model. Many things in
three dimensions are similar to those discussed in the previous chapter on the N = 1 model in
two dimensions. For this reason, we keep the derivation of the flow equations brief and mention
only the differences to the two-dimensional case.

As the field is no longer dimensionless, the three-dimensional equations can be generalised to
arbitrary dimensions straightforwardly.

As an application we also study the model at finite temperatures. Finite temperature introduces
a supersymmetry breaking due to different statistics of fermions and bosons (cf. section 6.3). The
derivation of the flow equations at finite temperatures is described in detail.

Three-dimensional supersymmetric scalar models at zero and finite temperature have previously
been investigated by M. Moshe and coworkers [130,131]. However they focused on supersymmetric
O(N) models in the limit of large N.

The construction of the superspace is similar to [132] where the N = 1 superfield in three
dimensions is introduced in the context of nonlinear sigma models.

In three-dimensional Euclidean space-time there exist no Majorana fermions. Due to this,
three-dimensional Minkowski-space is considered here. To calculate the flow equations the
integrals in the flow equation to Euclidean space time are Wick-rotated. The convention for the
metric is (#,,) = diag(1,-1-1).

The results presented here are published in [133]. This chapter is organised as follows: After
presenting the model and discussing the flow equations in the local potential approximation
the fixed-point structure is investigated at leading and at next-to-leading order in the derivative
expansion. The zero-temperature phase diagram is discussed as well as the behaviour of the
bosonic mass in the SuSy broken phase. Then we derive the flow equations at finite temperature.
SuSy breaking due to finite temperature is explicitly demonstrated. Also the pressure of a gas of
scalar fields is calculated. We shall show that at finite temperature a broken Z, symmetry, which

is taken as a remnant of SuSy breaking, is always restored at some critical temperature.
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6 The three-dimensional N = 1 Wess-Zumino model

6.1 The Wess-Zumino model

As in the two-dimensional model the system contains a bosonic field, an auxiliary field and a

Majorana fermion. They are combined into a real superfield
_ 1-
D (x,0) = p(x) +0y(x) + EGGF(x). (6.1)

The supersymmetry transformations are generated by the supercharges:

0
0. P =ieQd, Q= _iﬁ -(y*0)a,. (6.2)
For the y matrices a Majorana representation is used:

Y’ = 0,5, y' =io3 and y* = io. (6.3)

With the aid of the symmetry relations for Majorana spinors
Yx =Xy vy X =Xy (6.4)

and the particular Fierz identity 6 = —106 - 1 the transformation laws for the component fields

from equation (6.2) read
8¢ =2y, Oy =(F+idp)e, OF =iedy. (6.5)

The anticommutator of two supercharges yields {Q,, Qf} = 29 d, and the supercovariant

derivatives are 3 P
D= pY: +i(y*0)0,, and D= 5~ i(0y")0,. (6.6)

Moreover, we have
{Don Dﬁ} = _Z(Y)aﬁay . (6-7)

The off-shell Lagrangian is the §0-component of DOD® +2W (®) and reads

Loe = 5909 — L9y + 5B+ EW'($) S W' (@)iy. (68)

By eliminating the auxiliary field with its equation of motion, F = -W'(¢), we obtain the on-shell

Lagrangian density
1 i 1, | N
Lon = 50,$0"$ — Yy = SW2(9) = S W' () iy (6.9)

From this expression it can be read off that W'2(¢) acts as potential for the scalar fields.
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6.2 The supersymmetric flow equations at zero temperature

6.2 The supersymmetric flow equations at zero temperature

Because Majorana fermions in three dimensions exist only in Minkowski space, a formulation of
the Wetterich equation in Minkowski-space is needed. The derivation of such an equation can be
found in appendix C following [134]. Formulations of the flow equation in Minkowski space can

also be found in [135, 136]. The equation reads

i = K2
Ty = 5s&[(r? +Rk) atRk], t =In (F) . (6.10)

I“}(f) is defined as in the previous chapters. The supertrace is taken over Lorentz and internal
indices as well as space-time or momentum coordinates. Here the ‘RG-time’ ¢ is defined as
In (¥ /). This is required in order to make a Lorentz invariant separation into large and small
momenta.

Because the supersymmetric flow equations, including the choice of the regulator, are con-
structed along the lines of the previous chapters the construction will only be sketched here. The
supersymmetric cutoff action is again quadratic in the superfields and contains a function of DD.

With the help of the anticommutation relations, powers of DD can always be decomposed into
1 2n
(EDD) = (-0m), (6.11)
such that the cutoft action takes the form
_ 1 _ -
AS; = / d0dod’x® (rl (k,0) + r, (k,[) EDD) O.

This leads to the same regulator structure that was used in the previous chapters. The conventions

for the Fourier transformation are id, — q,. Then the bosonic and fermionic part of the regulator

wo (T2 (k) ni(kq)
) (k,qz) 1) (k,qz)

The explicit calculation can be found in [133].

read

) and Ry =-r; (k,q") -1, (k,q%) q. (6.12)

6.2.1 The local potential approximation

In the LPA the ansatz for the effective action is

Ty = / d’x Baygba"gb - %Ww + %FZ +FW,(¢) - %Wlf(gb)l/'/w : (6.13)
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6 The three-dimensional N = 1 Wess-Zumino model

Projecting equation (6.10) onto the terms linear in the auxiliary field and integrating with respect
to ¢ yields the flow equation for the superpotential. Performing a Wick rotation of the zeroth

component of the momentum, i.e. g)' — igf, the flow equation takes the form

1 d3q akr1(1 + 7'2) —8kr2(W,;'(¢) + 7'1)

2] @n)? grn+1)?+ (W[ (p) +71)? (6.14)

0 Wi(¢) =

Formally the flow equation is the same in two and three dimensions, only the integration measure

changes.

In the following the simple regulator functions in Euclidean space time,
_ _(Ik|_ 2_ 2
r =0, r,= p 1|6 (k q ) , (6.15)

is chosen for which the momentum integration in (6.14) can be performed analytically. Contrary
to the model in two dimensions, the regulator function (6.15) regularises the flow even if a running
wave-function renormalisation is taken into account. For the superpotential Wy (¢) the flow

equation simplifies to
k> W[(¢)

S+ W) (6.16)

oWk (¢) =

As we are interested in the effective potential for the scalar field V (¢) = lim_, %W’i (¢), we

consider its flow equation:

RWR @) (K- wi(9))

B W), =
R s (e wi(9)2)?

(6.17)

Figure 6.1 shows the flow of W;?(¢) for a cubic superpotential at the ultraviolet cutoff scale,
W, = Ax(3¢® — a4 ¢), and with initial conditions A,A™ =1, a3 A7 = 0.02. With these initial
conditions the RG flow starts in the regime with broken Z, symmetry and for k — 0 ends up in
the regime with restored Z, symmetry. The potential W (¢) becomes flat at the origin as k is
lowered. In three dimensions, however, the function W, (¢) is regular for all values of the field,
in contrast to the situation in two dimensions.

As in two dimensions we first investigate the fixed-point structure. In order to do this, we

introduce dimensionless quantities

0 = k¢, wi() = k2Wi(¢), w,(9) = kW (¢), .... (6.18)

The dimensionless flow equation for the superpotential then reads

’ "
W _ Wi

=— , 6.1
2 sm(1+w?) (6.19)

atwt + 2Wt -
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6.2 The supersymmetric flow equations at zero temperature

0.0008

=00 ——
t=-0.1
0.0007 |- t=-0.3 +rreeeees
TR, ) p—
t=- 20
0.0006 f:
0.0005 } ]

0.0004

WE()

0.0003

0.0002

0.0001

Figure 6.1: RG flow of W;?(¢) with the initial conditions AA\A™ =1, ak A7 = 0.02.

where the prime denotes the derivative with respect to the dimensionless field ¢. Its fixed points
are characterised by d;wy = 0. In contrast to the case in two dimensions, there appears now the
additional term o< pw;(¢), since the field ¢ itself is a dimensionful quantity. In d dimensions the

dimensionless flow equation with the same regulator generalises to

7 — Y} n
27 wy

(d-DI(S) (1+w? (6:20)

aw, + (d —1)w, —(d—z)¢;”t -

As already stated in two dimensions, it follows that the couplings of the terms ¢° and ¢' do
not enter the fixed-point equation but evolve independently. This is due to the fact that in the
supersymmetric theory it is always possible to make a polynomial expansion around ¢ = 0, that
is the minimum of w', even if the bosonic potential V" at the cutoft scale is a double-well potential.
In bosonic O(N) models the expansion point for a double-well potential is the minimum of
the potential which lies at a point ¢ # 0. By this the coupling at lowest order enters in the flow
equations of the higher order couplings for the bosonic theories.

This has some interesting consequences which distinguish the supersymmetric Wess-Zumino
model from purely bosonic theories, as for example O(N) models in three dimensions, see e. g.

(17, 137, 138, 139] for results on these models. These consequences are discussed below.

For the fixed-point analysis, we need the first derivative of equation (6.19),

! 14 "2 "
3w —owi (Wi = 1w}

oWy + = .
ok 2 872 (1 +w)?)?

(6.21)

As in two dimensions, we first consider a polynomial approximation of the flow equation. The
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6 The three-dimensional N = 1 Wess-Zumino model

| o= (=10 (e 1) o= (=)0 (% 1)

2n | +A +hy  tby by tby b, | #A +b,  tbg by  tby,,  tbp
4 | 1.546 2.305 1.952  3.491

6 | 1.590 2.808 6.286 2.013 4.256 9.407

8 | 1.595 2.873 7.150 13.41 2.019 4.329 10.37 14.68

10 | 1.595 2.873 7.155 13.48 1.212 2.018 4.319 10.23 12.64 -35.12

12 | 1.595 2.870 7.118 12.90 -8.895 -183.3 | 2.018 4.313 10.16 11.43 -56.14 -380.4

Table 6.1: Wilson-Fisher fixed point as obtained from the polynomial approximation of w'(¢) with two
different regulators.

expansion of the superpotential reads
wi(@) =A(t) (97 —a’(1)) + Y bau(t) 9™ (6.22)
i=2

This yields the system of coupled differential equations:

b

B3A(E)% 3by(t 1
0.a*(t) = a*(t) (— 752) + 2ﬂ24)t((2) - 1) e
3b,(t) —6A(1)% + m2A(t)
2m? ’
1206, (£)A(¢)% + 2m2b,(t) — 15bs(t) — 80A(t)°
4m?

0iA(t) = (6.23)

atb4(t) =

Determining the fixed point solutions from this system yields an ultraviolet-stable Gauf$ian fixed

point with all couplings equal to zero and a pair of nontrivial maximally infrared-stable fixed

points which are related by a Z, symmetry. They are regarded as one fixed point in the following.

The nontrivial fixed point turns out to be the supersymmetric analogue of the Wilson-Fisher fixed

point in bosonic theories. We find no other solutions to the fixed-point equations.

As the maximally infrared-stable fixed point in two dimensions, the Wilson-Fisher fixed point
has one infrared unstable direction, namely the coupling a?. Compared to the two-dimensional
maximally infrared-stable fixed point, the convergence of the fixed-point couplings with the order
of the truncation is faster in three dimensions. The fixed-point values for the couplings with
increasing truncation are shown in table 6.1. As the unstable direction does not feed back into
the equation for the higher-order couplings they always flow into the Wilson-Fisher fixed-point

without fine tuning.

The critical exponents for the Wilson-Fisher fixed point are obtained along the same lines

as in two dimensions. The critical exponent for the infrared-unstable direction takes the value
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6.2 The supersymmetric flow equations at zero temperature

2n critical exponents

6 -0.799 -5.92 -20.9
8 -0.767 -4.83 -14.4 -38.2

/'T\ 10 -0.757 -4.35 -11.5 -26.9 -60.8

= 12 -0.756 -4.16 -9.94 -21.4 -43.8 -89.0

=~

X~ 14 -0.756 -4.10 -9.13 -18.3 -35.1 -65.4 -123
16 -0.756 -4.08 -8.72 -16.4 -29.9 -52.9 -91.9 -163
18 -0.756 -4.08 -8.54 -15.2 -26.4 -45.0 -75.0 -124 -209
6 -0.770 -6.02 -22.6

. 8 -0.732 -4.74 -14.8 -41.5

'T 10 -0.723 -4.19 -11.4 -28.0 -66.3

& 12 -0.722 -3.98 -9.67 -21.6 -46.1 -97.4

* 14 -0.722 -3.92 -876 -18.1 -35.9 -69.3 -134

16 -0.723 -3.90 -831 -15.9 -29.9 -54.6 -97.9 -179
18 -0.723 -3.91 -8.11 -14.6 -26.0 -45.6 -78.0 -132 -229

Table 6.2: Critical exponents for the Wilson-Fisher fixed point for different truncations and two different
regulators (k/|q| - 1) 0 (kz/q2 - 1) and (¥/¢ - 1) 6 (kz/qz _ 1)_

vt =3/2. The other critical exponents are listed in table 6.2 for different truncations and two

different regulators

k k? k? k?
r2=<——1)9<—2—1) and r2=<—2—1)9<—2—1). (6.24)
4] q q q
Now we solve the partial differential equation for the fixed point potential. Asin two dimensions
the infrared-stable solution is found if the second derivative of equation (6.19) is considered. For

simplicity of notation again w"(¢) = u is introduced and the fixed-point equation for the second

derivative reads -
u"(u*-1) =2u u2 _ L u'? +4m* (u* +1)*Qu - ou'). (6.25)

u? +
This equation has the asymptotic solution u,, ~ ¢*. Again, the term (u* — 1) arises due to the sign
change in equation (6.21). As in two dimensions, the condition for having a regular solution at
u® = 1 leads to the condition that the right-hand side has to vanish at this point. This leads to a

u’(QDcrit) =4 (i‘pcritﬂ'2 -V n*+ (/)Lz;ritnA) (626)

on the slope at the critical point.

condition

Solving the equation with MATHEMATICA 7 yields an odd and regular solution with the starting

conditions ©#(0) = 0 and u'(0) =24 = £2 - 1.59508. The Taylor expansion of this solution around
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6 The three-dimensional N = 1 Wess-Zumino model

zero corresponds to the polynomial solution discussed above.

From the asymptotic behaviour of the dimensionless potential follows for the asymptotic

behaviour of the dimensionful potential
W' (@ — o) =+ ¢” = Wy (¢ — to0) = +¢7.

The bosonic potential that is derived from this superpotential behaves asymptotically as V' ~ ¢°.
It is therefore justified to call this fixed point the supersymmetric analogue of the Wilson-Fisher
fixed point in three-dimensional O(N) theories.

After we have established the fixed point structure at the order of the LPA now we investigate

the next-to-leading order.

6.2.2 Next-to-leading order

At next-to-leading order the ansatz for the effective action reads

T = / dx (%zk (0,096 — iy + F%) + FW(9) - %w,;'w)w) S (6)

Again, we consider the simplest ansatz at NLO and neglect a field- and momentum dependence
of Z. The anomalous dimension # stays small compared to one. The flow equation of the
superpotential is obtained from a projection on the part linear in the auxiliary field. The flow
equation for the wave-function renormalisation follows from the projection on the parts quadratic

in the auxiliary field. Employing the same regulator as before the flow equations are

KW (¢) kopZ} +372

24m*  K2Z{+ W](9)?°

2 22W(3) 2 (k274 — W 2

akzzz_k—z(kakziuz,i) W@ (K7 §(¢))
4 (k2Z{ + Wi(¢)?)

aka(¢) =— (6.28)

(6.29)
¢=0

As the wave-function renormalisation is independent of the fields, equation (6.29) can be
projected on ¢ = 0. Rescaling the fields with the canonical dimension and the wave-function

renormalisation,

X =2Zik e, w(y) = kP Wi(9), (6.30)
the dimensionless flow equations read

(3 —n)w” _ @2-n(1-w")w"

> = 6.31
242 (1+w0?)" 17 T am (1)} (651

1
0,10 + 210 —5(1 +n)yw =
x=0
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Figure 6.2: Lines of fixed points in the #-y plane (solid curves) and the anomalous dimension as a function
of y = 21 as obtained from equation (6.31) (dotted curve). The Wilson-Fisher fixed point (WE-EP) is given
by the intersection of these curves.

As expected, the structure of the flow equation at leading order and at next-to-leading order are

very similar.

For the discussion of the fixed-point structure, we consider 7 as a free parameter as in the
previous chapter. Again, lines of fixed points emerge as in two dimensions. This is shown in
figure 6.2. The pictures in two and three dimensions are very similar. Indeed, they would be
identical but for a shift if the regulators were the same. However, in three dimensions the lines of
fixed points are shifted to lower # values. For 5 = 0 this results in just two fixed points which are
related by the Z, symmetry. For # # 0 only the couplings change but not the fact that only two

fixed points exist.

As in two dimensions, a superscaling relation between the critical exponent of the infrared-
unstable direction and the anomalous dimension can be derived from a polynomial expansion of

the fixed point equations. The flow equation for the coupling a? reads

2 — —
—ﬂatat + n-3 + W—Saf. (6.32)

did® = ==
=T, 1272 2

From this, we can read off the superscaling relation

Vi = ——. (6.33)

The truncation dependence of the anomalous dimension is smaller than in two dimensions, cf.
table 6.3.
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Figure 6.3: Phase diagram in the plane spanned by the dimensionless couplings specified at the cutoft scale
A as obtained from truncations with n = 1 ((/)2), n=2 (¢4), andn =3 (¢6) in equation (6.22).

2n 4 6 8 10 12 14

Nx 0.187711 0.188258 0.18802 0.187996 0.183001 0.188003

Table 6.3: Dependence of the fixed-point value of the anomalous dimension # on the truncation

6.2.3 Phase diagram and the scaling of the mass

We calculate the phase diagram in the local potential approximation. The qualitative behaviour
stays the same at next-to-leading order, only the quantitative values change. For the phase
diagram shown in figure 6.3 the same picture as in two dimensions emerges. The critical point is
reached by fine-tuning the infrared-unstable direction a? ~ k™. Again, there is a maximal value
for Apa% above which supersymmetry cannot be broken dynamically. Keep in mind, however,
that the values 1, and @2 are not universal quantities and therefore regulator dependent.

In the broken phase, the minimum of the bosonic potential is at ¢ = 0 and therefore a
polynomial expansion around this minimum is justified. This implies that the mass in the broken

regime with W}/ (¢min = 0) = 0 is given by
m* (k) = Wi($min = )W} ($min = 0) = 2K°N20% ~ k', (6.34)

In figure 6.4 the logarithm of the bosonic mass in the broken regime is displayed as a function of
the RG scale k. From a linear fit it follows that m (k) ~ k°2* for k < A which is reasonable close
to the prognosticated scaling behaviour m(k) ~ k'*.

The theory flows into the massless conformal limit because the unstable direction does not feed
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Figure 6.4: Logarithm of the boson mass as a function of the RG scale k. A linear fit to the data points
yields m(k) ~ k%23 for k < A.

back into the other equations and therefore the second derivative of the superpotential always
flows into its infrared-stable fixed point. This is different to the behaviour known from O(N)
models with finite N, where the unstable direction induces the non-vanishing mass and makes
it necessary to fine-tune the ultraviolet parameters. However, in the large-N limit, the vacuum
expectation value of the field, which corresponds to a? here, decouples from the flow equations of

the higher-order couplings at least to low order in the polynomial expansion [137].

6.3 Finite-temperature flow equations

We restrict the discussion of the model at finite temperature to the LPA. This approximation
should be sufficient to capture at least the qualitative features of this model, see e. g. [140].

Supersymmetry at finite temperature has been investigated extensively in the literature, see e. g.
[141, 142, 143]. In contrast to most other symmetries which are broken at low temperature and
restored at finite temperature SuSy is broken at any finite temperature.

The reason for this is that bosons and fermions have different statistics and therefore are treated
differently by the heat bath at finite temperatures. They are no longer related as they are for
unbroken supersymmetry. This is often referred to as soft SuSy breaking. In [141] it is argued that
the breaking due to the interaction with the heat bath is spontaneous and they find a massless
Goldstone fermion associated to the breaking.

In this section the SuSy breaking caused by finite temperature is studied. To discuss a phase
diagram even at finite temperature we use a remnant of SuSy breaking, the restoration of Z,

breaking, which still occurs at finite temperature.
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Figure 6.5: The temperature dependent masses for bosons and fermions

The flow equations in the finite temperature case are obtained from the flow equations at
zero momentum by replacing the time-like momentum integration by a sum over Matsubara

frequencies

N=—o0

Wy, dpo -
p0—>[ v, },n=0,1,... /EHTZ eny (635)

where w, = 27nT denotes the bosonic frequencies and v, = (2n + 1)7T the fermionic ones.

Similar sums have been investigated in previous works on finite-temperature FRG [144, 145, 146].

The derivation of the finite temperature flow equation can be found in appendix D. For the

simple regulator

k k?
7’1:0 and Ty, = (’a’—1>6(1¥—1), (636)

the Matsubara sums can be calculated analytically and the flow equations read

k2 k*-wW> (aT nT nT

rbos m k 2
aka ——@ k(k2+—W];’2)2 (T—(25B+1) T+2(2SB+1)) T, (637)

Kk (K2 -W2)W" 2spmT\2
aererm:__41_<1_ ) , 6.28
Tk 82 (k2 + W}2)? k (6:38)

where the temperature-dependent floor-functions sy and s are given by
k k1

SB—LM—TJ and SF_LM_T+EJ . (639)
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6.3 Finite-temperature flow equations

At finite temperature the flow equations differ from the ones at zero temperature by an additional
temperature-dependent factor. This factorisation in a temperature-dependent and a temperature-

independent part is due to the regulator function [146].

The differences in the flow of the superpotentials arises from the supersymmetry breaking due
to the different boundary conditions for fermions and bosons (cf. section 6.3). In the limit of
T — 0 the temperature-dependent functions reduce to one and both flow equations become the

same again.

SuSy breaking can be observed for example in the different masses for bosons and fermions as
the temperature is increased. We display these masses in figure 6.5. The picture found here is

very similar to the one encountered in non-supersymmetric theories [146].

For T/ > (27)™" the bosonic mass is proportional to the temperature. This is due to the
bosonic #n = 0 Matsubara mode which dominates in this temperature regime. The fermionic
mass reaches zero at T/ = 77" because for fermions there exists no n = 0 Matsubara mode. The
spikes are caused by the 0-function in the regulator which cuts off the n-th Matsubara mode at

T/ k > (2nn)! for bosons and T/ k >n'(2n +1)™" for fermions respectively.

6.3.1 Pressure

In the zero temperature case, the bosonic mass tends to zero in the phase with broken supersym-
metry and restored Z, symmetry. The system should therefore behave as a gas of massless bosons
and obey a Stefan-Boltzmann law in 2 + 1 dimensions. From this it is inferred that the pressure

should be given by

- @T3.

A
P 27

(6.40)

In O(N) symmetric theories at finite temperature the couplings consist of a temperature-
independent and a temperature-dependent part. In contrast to the temperature-independent
part the latter does not need to be renormalised. The temperature-independent part has to be

removed and this is done by a subtraction of this part. The pressure is therefore defined as
~Ap = (Vi - Vflgo)(p:%m : (6.41)

In the supersymmetric theory the subtraction has to be performed on the level of the couplings

as well. From this it follows that the pressure is given by

1 ! !
Ap = 5( Wilroo - Wk|T)gi=¢min' (6.42)
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6 The three-dimensional N = 1 Wess-Zumino model
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Figure 6.6: Double logarithmic plot of the pressure versus the temperature.

A numerical calculation in the phase with restored Z, with the parameters
A=1,a>=-01, Te[10%107] (6.43)
yields

(M) 12 — (Aa®) 0]

> =008 -T2, (6.44)

This is shown in figure 6.6. The power law behaviour is compatible with the one expected from
the Stefan-Boltzman law, whereas there are deviations in the prefactor. Possible reasons for this
are that the k = 0 limit has not sufficiently been reached and therefore the boson is not truly
massless or that self-interactions are present which lead to a deviation from the ideal Bose gas

limit [147, 148].

6.3.2 High-temperature expansion and dimensional reduction

The model displays some interesting features in the high temperature limit T > k. In this case,

the floor functions vanish and the flow equations reduce to

K-W? 2nT
(K2 + W22 k

k2 n
2 Wi

ak W];bos _ .

and akwferm =0. (6.45)

As suggested in [149] the bosonic flow equation can be rescaled with ¢ = VT ¢ and W; (¢) =
TWi (¢). This yields the two-dimensional flow equation. As expected, the model shows
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6.3 Finite-temperature flow equations
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Figure 6.7: Finite-temperature phase diagram of the N = 1 Wess-Zumino model.
Left panel: 7., phase boundary in the space spanned by temperature T/ A and the value of the couplings
(Aa,a3) at vanishing temperature. Right panel: Slice of the Z, phase-boundary for fixed 14 = 0.8.

dimensional reduction. However, the theory obtained in this limit is not supersymmetric because
the fermions have dropped out of the flow due to the absence of a thermal zero mode.
The fixed-point couplings are rescaled with powers of T/k according to their canonical

dimension and they show the following behaviour for T/k < 1:

T\ T\ 2 1omi
Pa*)r =*P(a*) 1= (z) ,PAr =P A (E) , 2P (b)) 1 =P (bai) 10 (z) . (6.46)

where 2P (a?) 7, 2PAr—o and P (by;) 7= denote the fixed-point values of the couplings of the

two-dimensional theory.

6.3.3 Phase diagram at finite temperature

At finite temperature supersymmetry is necessarily broken due to the different boundary conditions
for bosons and fermions. However, the Z, symmetry remains and is taken as a remnant of
supersymmetry breaking in order to discuss the phase diagram concerning the breaking of this
symmetry. As an order parameter we take again the sign change of a; . Thus the case with
broken Z, symmetry of the ground state and soft supersymmetry breaking due to the boundary
conditions and the case with unbroken Z, symmetry of the ground state have to be distinguished.

Again, a truncation at ¢® is used. The phase diagram is shown in figure 6.7, left panel. It is
spanned by the temperature T measured in units of the cutoff and the couplings (1,43 ) specified
at the cutoff scale at T = 0. As the initial conditions are specified at T = 0, the values in the
phase diagram have to be restricted to temperatures that are small compared to the ultraviolet
scale. In the T' = 0 plane the phase transition line corresponds to the phase diagram in figure 6.3

(right panel) which separates the phase with unbroken supersymmetry from the one with broken
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6 The three-dimensional N = 1 Wess-Zumino model

supersymmetry. For couplings that are chosen such that at T = 0 the system is in a state with
unbroken supersymmetry (and therefore broken Z, symmetry), there is always a phase-transition
temperature at which the Z, symmetry of the ground state is restored.

In the right panel a slice through the phase diagram for a fixed coupling A, = 0.8 is shown. We
observe that the phase-transition temperature increases as the coupling (a3 ) r— grows. On the
other hand, an increase of the zero temperature coupling (a%) - at the cutoff scale corresponds
to an increase in the renormalised zero temperature coupling (a;_,)r—. From this we conclude
that an increase in the renormalised coupling at zero temperature leads to an increase in the
phase-transition temperature. This is to be expected because in a O(1) = Z, theory the minimum
of the bosonic potential (/\*aiﬁo)Tzo sets the scale at T = 0. It therefore plays a role similar to the

finite expectation value of the field in O(N) models [150].
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7 The two-dimensional N = (2,2)

Wess-Zumino model

In this chapter we discuss the application of the FRG to the N = (2,2) Wess-Zumino model in
two dimensions. For this model there exist results from Monte Carlo simulations on the lattice
which can be used for a comparison [151]. In contrast to the previous models we consider here a
momentum-dependent wave-function renormalisation.

To deal with flow equations that have the full momentum dependence, a numerical toolbox
called FlowPy has been developed in cooperation with T. Fischbacher (Uni Southampton). This
toolbox is designed to handle such flow equations.

The N = (2,2) Wess-Zumino model is studied intensively in the literature, see e.g. [120,
151, 152, 153, 154] for lattice simulations. Quantities that are investigated on the lattice are the
renormalised mass or Ward identities. In contrast to the lattice calculations, Ward identities in
the FRG approach are always fulfilled because the formalism is manifestly supersymmetric. Our
focus lies on the renormalised masses instead.

The results presented in this chapter are published in [155]. This chapter is organised as follows:
First the model is presented and the supersymmetric flow equations are derived. The flow equation
for the superpotential yields directly the non-renormalisation theorem. As the superpotential is
not renormalised, all renormalisation is carried by the wave-function renormalisation and the
flow equation for this quantity — with full momentum dependence - is derived. The renormalised

mass is then calculated and compared to the results on the lattice.

7.1 Description of the model

The N = (2,2) Wess-Zumino model in two dimensions is derived by a dimensional reduction
of the N = 1 model in four dimensions which was the original model introduced by Wess and

Zumino [156].

The Lagrange density reads

Lo = 2090¢ + My — %FF + %FW'(g[)) + %F W'(¢), (7.1)

'For a superspace formulation of this model see appendix E.1.
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7 The two-dimensional N = (2,2) Wess-Zumino model

with Dirac fermions ¥ and ¥ and the fermion matrix
M =3+ W' ($)P, + W' (§)P., (72)

with the projectors P. = 1(1 +y4). The model contains complex auxiliary and scalar fields
F :Fl +iF2 and(p :¢1 +i¢)2.

A suitable description is given by complex coordinates
. - . 1 : = 1 .
zZ=x,+ix;, Z=x,-ix;, 0= 5(81 —-id;), 0= 5(81 +10,). (7.3)
The superpotential is denoted by

W($) = u(¢1,¢2) +iv(¢1,¢2). (7.4)

For the y matrices we use the Weyl basis with y! = 0y,y* = —0; and yy = iy'y* = 03.
The complex spinors can be decomposed as y = (y; 1//2)T and ¥ = (¢ ¥) . The action is

invariant under the supersymmetry transformations

i} ) - 1. ) i R } o=
8¢ =yY1& &V, (Sl//l = —5F€1 — a(/)fz, 51//2 = —a¢€1 - §F€2,8F = 2(81//182 - 8281//1),
(7.5)
- _ 1 - - 1. _ _ -
8(p =Yr& t ézl//z, 61//1 = —EFSI + a¢82, 61//2 = a(/)sl — EF€2, OF = 2(81#281 —5181//2).

€1, and &, are four real anticommuting parameters. Therefore the SuSy algebra is formed by four
real supercharges. The algebra can be decomposed into a chiral (left-moving) and anti-chiral

(right-moving) part. This is the reason for the notation N = (2,2).

Starting out from the SuSy transformations the superspace formulation of this model is
constructed in appendix E.1. In this appendix also the most general action with Kahler potential

is discussed.

Integrating out the auxiliary fields yields the on-shell Lagrangian
3N 1 1 ! s 1 -
Lon = 20009 + 5 W (@) W'(§) + §My. (76)
For this model we use the superpotential
1 2 1 3
W(g) = me™+-g¢". (7.7)

The system has two bosonic ground states which lead to a nonzero Witten index [116], therefore

supersymmetry is never spontaneously broken in the N = (2,2) Wess-Zumino model.

A characteristic feature of the )N = 1 Wess-Zumino model in four dimensions survives the
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7.2 Supersymmetric flow equations

dimensional reduction, namely that bosonic and fermionic loop corrections cancel in such
a way that the effective superpotential receives no quantum corrections. This is called the
non-renormalisation theorem [157, 158, 159]. In the two-dimensional model the cancellations
even render the model finite and allow for a direct comparison between the results from the FRG

and from lattice calculations.

7.2 Supersymmetric flow equations

As an ansatz for the effective action we use an expansion in superspace>

Ty =—2/d2x/dyd)7 Zﬁ(aé)chD—z/dzx [/ dy Wk(CD)+/d)7 Wk(cb)]

2

:/ % Z2(p%) (2p2</5¢ + Yipy — %FF) +%FW,; + %P Wi +9 (WP, + W{P_) 1//] . (7.8)

In the following we will use the real and imaginary parts ¢;,¢$,, F;, F, instead of the complex
coordinates.

In contrast to the usual super-covariant derivative expansion used in the previous chapters,
here we only included those combinations of the supercovariant derivatives that merely reduce to
space-time derivatives. As we shall discuss in section 7.2.1 a momentum dependence in Wi (¢) is
irrelevant. An arbitrary Kéhler potential K (®,®) integrated over the whole superspace is not
taken into account here, since we expect only a small influence for the renormalised mass from
this. Another contribution neglected in this truncation comes from the terms of higher than
quadratic order in the auxiliary field and the corresponding supersymmetric partner terms. We
denote them as auxiliary field potential.

For the scale-dependent effective action (7.8) the auxiliary fields obey the equations of motion
F = W;L(ﬁb)/zi and F = W;;(‘P)/Zz. This leads to the on-shell action

on_ [ &P
=)

Supersymmetry is preserved if the mass is shifted by a momentum-dependent infrared

1 |w,[?
2Z;(p?)

1 n - - " v
SZkPP e + HZEPWPY + WP+ WPy | (79)

regulator®, m — m + Z; -r1(k, p*) or the wave-function renormalization is multiplied by a
momentum-dependent regulator function, Z; — Z; - r,(k, p*). Such regulators are the same as

the ones used in the previous chapters. To obtain a regularised path integral, Ry is included in

*see appendix E.1 for conventions in superspace. For the Fourier transformation we use the convention d; — ip;
with the notations p = (p1,p,)T and p = |p| where there is no risk of misunderstandings.

3The regulator function is multiplied with the wave-function renormalization to ensure reparameterisation
invariance of the flow equation.
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7 The two-dimensional N = (2,2) Wess-Zumino model

terms of the cutoff action AS,. In matrix notation the cutoff action reads

2

2
ASy = % / Z Py 72pT gt (7.10)
with ¥ = (¢, ¢2 Fi F, y(-p)" ¥(p)) and

Rk:(Rf 0)withRB=<p2r2']1 rl'o3)andRF:( 0 iy-rz—rl-ﬂ)

0 RIZ 1103 -1, -1 iy-r2+r1-ﬂ 0

(7.11)

Inserting ansatz (7.8) in the flow equation (6.13), the scale-dependent propagator can be calculated
along the lines described in [74]: The fluctuation matrix F,iz) +Ry is decomposed into the propagator
¥ + Ry including the regulator functions and a part AT containing all field dependencies. The
flow equation (6.13) is expanded in the number of fields. See appendix E.2 for the expansion and

the explicit matrices.

7.2.1 Flow equation for the superpotential - The non-renormalisation theorem

As in previous chapters the scale-dependent superpotential is obtained by a projection on the
terms linear in the auxiliary fields. We can either choose the real or imaginary part of the auxiliary
field as they are bound to give the same results due to supersymmetry.

The superpotential W(¢) = u(dy,¢,) +iv(¢h1, ¢,) is a holomorphic function of ¢; and ¢,, and
therefore its real and imaginary part obey the Cauchy-Riemann differential equations

ou ov ou ov
=—, —= (7.12)

I 0¢’ o¢, ¢y
Using these equations all contributions to the flow equations of the superpotential cancel and the

flow equation simply reads
Orur =0, oV =0 = Wy = 8ka =0, (7.13)

such that the superpotential remains unchanged during the RG flow. The Kahler potential does
therefore not influence the flow of the superpotential, as found in [158]. Even the nontrivial
momentum dependence considered here does not change this result.

Terms up to F? can directly influence the flow equation. Here, we only consider a truncation
up to terms quadratic in the auxiliary field such that the non-renormalisation theorem is not fully
proven but only in the truncation considered. Contributions from higher-order operators have to
vanish among themselves. This result is similar to the proofs in four dimensions discussed in [43]
and [160].
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7.2 Supersymmetric flow equations

As the flow vanishes at leading order, the first quantity with a non-vanishing flow is the wave-
function renormalisation which is a term at next-to-leading order in the considered truncation.
It will turn out later that the momentum dependence is important for the renormalised mass

(cf. section 7.3) therefore we have already included it in the ansatz (7.8).

7.2.2 Momentum-dependent flow equation for the wave-function
renormalisation

The flow equation for the wave-function renormalisation can be obtained from a projection onto

the terms quadratic in the auxiliary fields. It is derived in appendix E.2 and reads

d*q h(p —q)h
0zi(p) 5" [ LB LA (o0, (g p)M(p - )v(@) + 0k ()M @)v(p )
+4g2/@h(p—q)akRz(q)u(q)v(p—q) +4g2/ﬁh(q)akRz(q—p)v(q)u(p—q)

42 V(‘J)Zv(p —_ q)z 4772 V(q)zv(p _ q)2 (714)

with the abbreviations (recall that |q| = q)

h(q) = (rz (k, q) + 1) Z,zc (q) , M(q) =m + rl(k,q)Z,% (q) , Ri(q) =1; (k, q) Z,% (q) , (7.15)
u(q) =M(q)* - g°h*(q), v(q) = M(q)* + g°h*(q).

The model is a ultraviolet-finite theory and therefore it is sufficient to use the simple, mass-like

infrared regulator
1 (k, qz) =k and 1, (k, qz) =0. (7.16)

After a shift in the integration variables in the second part of the integral (7.14) the flow equation

simplifies to

d’q kZ; (q) +m

@N(Q)ZN(P _ q) Zk (q> Zl% (|P - q|> Ok (kZ]% (q)) > (7.17)

wZi(p) = —16g2/

with the abbreviation N(q) = (¢*Z{ (q) + (kZ% (q) + m)?) . In order to deal with the partial
differential equation we use a numerical toolbox called FlowPy. See [155] for details on the
numerical setup.

In the next section we determine the renormalised masses from the non-perturbative wave-
function renormalisation with full momentum dependence calculated with FlowPy.

Before turning to the actual calculation, we briefly discuss the errors that arise due to the
numerical calculation of the wave-function renormalisation with FlowPy. For this we consider

a one-loop perturbative calculation. It is possible to calculate the perturbative expression for
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7 The two-dimensional N = (2,2) Wess-Zumino model
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Figure 7.1: Perturbative flow for the parameters A = ¢ /m = 0.3 and m = 1. The solid line is the plot of
equation (7.18).

2
one-loop

limy oo (r1,72) — e0 and limy_(ry,7,) — 0. This yields

(p) analytically from the perturbative flow equation by performing the k-integral using

one-loop — 2 2\ 14 :
wt ) (m?+g?)(m? +|q - p|) mp~/4m? + p?

In figure 7.1 the results of the perturbative flow calculated with FlowPy at different values of the

(7.18)

RG-scale k and the analytic result (7.18) is shown. As can be seen, the numerical error due to
discretisation and interpolation is very small. Therefore the wave-function renormalisation is
considered to be exact in this truncation. We expect the errors caused by the truncation to be

larger than the error introduced by the numerical calculations.

2.3 The renormalised mass

The analytic continuation of the bosonic propagator,

1
P+m2+3(p,m,g)’

Gbos (P) = (719)

has a pole which defines the renormalised mass. Since the bare mass m is a parameter of the
superpotential (7.7) it is not changed during the flow. X is the self-energy. As expected from a
supersymmetric theory, the pole of the fermionic propagator leads to the same renormalised

mass as the bosonic propagator.
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7.3 The renormalised mass

The Fourier transformation of Gyes(p) yields the correlator

d .
Cbos(xl) :/ %Gbos(plao)elplm- (7-20)

The renormalised mass can be obtained from the long-range exponential decay of this quantity

and we denote it as correlator mass mc,,, in the following. We can also define a renormalised mass,

2
prop

this definition because the wave-function renormalisation was independent of the momentum

denoted as propagator mass, through m2, = (Gpos(p)) | p=o- In the previous chapters, we used
such that correlator and propagator mass were the same.

To compare the renormalised masses from the FRG with the results of the lattice simulation [151]
we have to consider the masses of the particles in the on-shell theory. In the infrared limit the

bosonic propagator from the on-shell action (7.9) reads in the present truncation

1
Gros”(P) = ; : (7:21)
PPZe o) + 1/ 23 o (p)
The fermionic propagator reads
GL9(p) = 4 (7.22)

PPZE_o(p?) +m?

Both propagators have the same poles and therefore lead, as expected, to the same renormalised
masses for bosons and fermions.
For a small self-energy X a comparison between equation (7.19) and (7.21) leads to the

approximate relation
Z(p,m,g)

Zl%—)O (p) =1+ p2 _ m2 (723)
For the propagator mass the fields in the on-shell action have to be rescaled with the wave-
function renormalisation such that the kinetic term is of the canonical form. Neglecting the

momentum dependence in the wave-function renormalisation leads to

m

Mprop = m- (7.24)

A numerical calculation can provide Z;(p) only for real p and its analytic continuation cannot

be determined straightforwardly. Instead, the discrete Fourier transformation of GhC(p) with

2 2n(N-1)
aN’>***> gN

smaller than L this should approximate C

} on the interval x € [0,aN = L]is considered. For distances much

NLO
bos

momenta p = {0,
(x) in a well defined way. More precisely, instead of

the exponential decay we obtain the long distance behaviour

L
Came, (x1) o< cosh (mcorr <x1 - 5)) (7.25)
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7 The two-dimensional N = (2,2) Wess-Zumino model

after the integration over the spatial direction. The mass can be determined from a fit to this
function, as it is done in lattice simulations. The details of this procedure can be found in

appendix E.3.
With the analytic result (7.18) for Z> at hand the poles of GNX°(p) can be calculated to

one-loo bos
obtain a perturbative approximation of mcorf. Note that this analytic solution of the perturbative
flow together with equation (7.23) leads to the same result as a one-loop on-shell calculation of
the polarisation X (cf.[133]). Expanding the pole of the propagator (7.19) to first order in the
dimensionless parameter A*> = § ? / m? leads to the one-loop approximation of the renormalised

mass

4
(mEgs; %) = m? (1 B A W)) - (726)

However, keep in mind that this expansion is only valid for small A.

7.3.1 Weak couplings

Let us start with an investigation of the weak coupling sector which is defined as A < 0.3, where
perturbation theory provides an excellent cross-check to establish the correctness of the ansatz

and the errors in the numerical approximation.

The bare mass in the lattice simulations [151] is taken to be m = 15. Note the following
concerning the units of the mass: In the lattice calculation, the mass is measured in units
of the box size, i.e. the physical volume of the lattice simulation. Similarly, everything can
be reformulated in terms of the dimensionless ratio of bare and renormalised mass. For the
numerical treatment of equation (7.17) dimensionless quantities have to be used. Because of the
non-renormalisation theorem the bare quantities in the superpotential enter in the flow equation
only as parameters. Rescaling the dimensionful quantities with the bare mass sets the scale in this
model to m = 1. To get the same units as in the lattice simulations the resulting renormalised

mass is multiplied by 15.

The correlator masses in the weak coupling regime are calculated with the momentum-
dependent wave-function renormalisation from the flow equation (7.17) solved with FlowPy. The
technical details of the determination of the correlator masses are described in appendix E.3. The
results are shown in the second column of table 7.1. The values in the fourth column are taken
from a Monte-Carlo simulation on the lattice [151]. Note that the lattice and perturbative results
agree within the statistical errors. Hence perturbation theory already provides a good cross-check

for the results from the flow equation.

In figure 7.2 the correlator masses from the flow equation, the lattice simulation and the
one-loop result (7.26) for mc., are shown. The masses calculated from the flow equation agree

very well with perturbation theory and with the results from lattice simulations. This can be
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Figure 7.2: Comparison between lattice data taken from [151] and the results for the correlator mass m
with momentum dependence and m

7-3

The renormalised mass
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g/m

FRG
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FRG
corr

without momentum dependence in the weak coupling regime.

Ul g ommw | 0w mpg el
0.02  14.998 14.998 14.999(1) | 0.18 14.815 14.846 14.82(1)
0.04 14.991 14.992 14.993(3) | 0.20 14.773 14.810 14.75(2)
0.06 14.979 14.983 14.977(4) | 0.22 14.674 14.771 14.71(2)
0.08 14.963 14.970 14.963(5) | 0.24 14.674 14.728 14.63(2)
0.10  14.943 14.952 14.935(6) | 0.26 14.619 14.681 14.60(2)
0.12 14.917 14.931 14.905(9) | 0.28 14.559 14.631 14.53(2)
0.14 14.888 14.907 14.871(9) | 0.30 14.496 14.578 14.45(3)
0.16 14.854 14.878 14.83(1)

Table 7.1: Renormalised masses obtained with the flow equation with and without momentum dependence

FRG

FRG
(mgoyy and m

prop
regime.

) as well as lattice data m

lattice
corr

from a continuum extrapolation [151] in the weak coupling
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7 The two-dimensional N = (2,2) Wess-Zumino model

quantified by comparing the correction to the bare mass Amcq,, = m — Moy, This yields

FRG
A mcorr 5

lattice
A M orr

(7.27)

Taking into account the statistical error of the lattice data no significant difference to the FRG
results can be found.

To conclude, in the weak coupling regime the truncation of the flow equation with full
momentum dependence suffices to capture the main aspects of the model. Higher-order
operators, which yield an auxiliary field effective potential, have little influence, as expected.

To investigate the influence of the momentum dependence in the wave-function renormalisation,
the propagator mass (7.24) is calculated. The results are shown in the third column of table 7.1
and in figure 7.2. A comparison between the propagator mass and the correlator mass from the

lattice calculation yields

AmFRG
PP~ 0.75. (7.28)

lattice
A M orr

Already in the weak coupling regime it is necessary to include the momentum dependence in

order to determine the corrections to the renormalised mass with satisfying accuracy.

7.3.2 Intermediate couplings

At intermediate couplings 0.3 < A < 1 perturbation theory is no longer reliable and we have to
use lattice calculations for a comparison instead. For a discussion of difficulties that arise in the
lattice formulation of this model see [15, 151, 161].

For intermediate couplings the nonlocal SLAC discretisation and the Twisted Wilson dis-
cretisation provides the most reliable results, cf. [151] for details. The renormalised masses of
these discretisation are used for a comparison with the results from the FRG. They are shown
in the third and fourth column of table* 7.2 and displayed in figure 7.3 (boxes with error bars)
together with the order A* expanded result (7.26) for m,,, (dashed line). Keep in mind, however,
that perturbation theory is no longer reliable in this regime. The good agreement between the
perturbation theory expanded to order A* and the lattice results is a coincidence. In fact, the
result at O(A?) has to fail for large values of A because otherwise the renormalised masses would
become negative.

The correlator masses determined from the FRG are shown in the second column of table 7.2
and displayed in figure 7.3 (lying crosses). Additionally the perturbative result for the renormalised

mass is shown (solid line). It is determined from the pole of the propagator (7.19) with the

4All lattice results are extrapolated to the continuum.
>C. Wozar, private communication
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7.3 The renormalised mass
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Figure 7.3: Comparison between lattice data taken from [151] and the results for the correlator mass m

with momentum dependence and mgﬁfr’,

regime

A mERG mgﬁg tw. Wilson SLAC imp.

0.35 14.321 14.428  14.23(2)

0.40 14.123 14.259  13.99(3) 14.00(1)
0.45 13.905 14.069  13.62(5)

0.50 13.666 13.861 13.30(6)

0.55 13.411 13.636 12.8(1)

0.60 13.138 13.394 12.2(1) 12.44(6)
0.65 12.854 13.137 11.9(2)

0.70 12.556 12.866 10.4(5)

0.75 12.248 12.583

0.80 11.932 12.290 10.2(3)
0.85 11.609 11.987

0.90 11.280 11.676

0.95 10.948 11.358

1.00 10.613 11.036 8.1(3)°

FRG

corr and

Table 7.2: Masses obtained with the flow equation with and without momentum dependence m
FRG

mprop) as well as lattice data [151] in the regime with intermediate couplings.
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7 The two-dimensional N = (2,2) Wess-Zumino model

perturbative one-loop result for the self-energy [155]:

4g2(m2 _pz)

mp\/Am? + p?

Although the corrections to the bare mass from the wave-function renormalisation with full

Z(p) = artanh (p(4m2 +p2)_1/2> (7.29)

momentum dependence capture some of the quantum effects, they do not account for all the
non-perturbative effects present in this model. To quantify this, these corrections are compared

to the corrections found in lattice calculations. This yields results between

AmFRG FRG

m
—Amlzi’éze =09 for A=035 and —Amlzzriie =065 for A=10. (7.30)
corr corr

The fact that the wave-function renormalisation accounts for less of the quantum corrections as the
coupling grows is due to the growing influence of higher-order operators, especially the auxiliary
field potential. In the present truncation only terms that are at most quadratic in the auxiliary
field are considered and back-reactions from a potential for the auxiliary field are neglected.
As can be seen from a diagrammatic expansion of the flow equation, terms up to order F}
directly modify the flow equation for the wave-function renormalisation®, which is proportional
to F?. As already seen in the previous chapters the influence of higher-order operators grows
with the strength of the couplings. A truncation that goes beyond the momentum-dependent
wave-function renormalisation has to be considered to improve the results in the regime with
intermediate couplings.

The results for the propagator mass are shown in the third column of table 7.2 and in figure 7.3

(triangles). The comparison to the lattice results yields

Attprop AmERS
A ppplttice =075 for A=035 and Aplttice =06 for A=10. (7.31)

The improvement due to the momentum dependence in Z} is not as pronounced as it is in
the weak coupling regime because other operators are more important in this regime than the

momentum dependence.

7.4 Beyond next-to-leading order

The non-renormalisation theorem in the context of the FRG formulation emerges in a very simple
form, namely that the flow equation for the superpotential vanishes identically. To prove this,

all that is needed is that the superpotential is a holomorphic function. As a consequence, the

The argumentation is the same as for the superpotential in appendix F. As the wave-function renormalisation has
two external auxiliary field lines, it is not possible to construct a one-loop contribution from an operator with
more than four auxiliary fields.
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7.4 Beyond next-to-leading order

renormalisation of the mass and the other coupling constants is caused by the wave-function
renormalisation and higher-order operators that are not restricted by the non-renormalisation
theorem. In the weak coupling regime the wave-function renormalisation in the present truncation
— with full momentum dependence - accounts for all the quantum effects calculated with the
lattice.

For intermediate couplings this is no longer the case and only a part of the quantum corrections
are actually captured. In this regime a truncation that includes higher-order operators in the
auxiliary field has to be considered. This is not surprising because the influence of higher-order
operators increases as the coupling grows as we have already seen in the previous chapters (cf.
chapter 4).

Even though we have not done it here, the methods and results of this chapter can easily be
applied to the N = 1 Wess-Zumino model in four dimensions. Especially the non-renormalisation
theorem can be derived in exactly the same way in four dimensions. However, the four dimensional
theory is no longer ultraviolet finite, which means that it is not so easy to compare results with
the ones from lattice calculations such as results presented by C. Chen, E. Dzienkowski and J.
Giedt [162].

The FRG is able to disentangle contributions to the quantum corrections caused by higher-order
operators from contributions due to the (momentum-dependent) wave-function renormalisation.
However, an inclusion of these operators poses a great challenge as a lot of terms are involved.

This ambitious goal is not pursued here further but left as an interesting question for future work.

87



7 The two-dimensional N = (2,2) Wess-Zumino model
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8 Conclusions and outlook

This work aims at an extension of the functional renormalisation group framework to supersym-
metric theories such that it can eventually be used to study supersymmetric extensions of the
standard model.

In order to preserve supersymmetry we have formulated the flow equations, including the
cutoff action, in superspace. The truncation of the action has been performed in superspace as
well, implying that only functions of superfields and covariant derivatives enter in the ansatz for
the truncated action. If we work in components, it follows from the formulation in superspace
that we have to use the off-shell formulation of the theory which includes an auxiliary field.

The regulator structure that preserves supersymmetry deviates from the one usually used
for non-supersymmetric theories with Yukawa interactions. In a supersymmetric theory the
bosonic and the fermionic regulator are tightly connected in order to keep supersymmetry intact.
Additionally also the auxiliary field has to be regularised which implies that it becomes a dynamic
field. We can no longer use a simple derivative expansion in this setup since this would break
supersymmetry. Instead, an expansion in super-covariant derivatives provides a systematic
expansion scheme. The quantity at leading order in this expansion is the superpotential, the
quantity occurring at next-to-leading order is the wave-function renormalisation. The flow of
both quantities in a component formulation can be read off from a projection on the part linear
or quadratic in the auxiliary field respectively.

In chapter 4 we have first investigated supersymmetric quantum mechanics. A lot of results on
this model are known such that it is an ideal test candidate for a first application of the FRG to
a supersymmetric theory. In this work the case where SuSy is always unbroken is considered.
As a benchmark test the energy of the first excited state is calculated. Without wave-function
renormalisation we find quite a large deviation from the exact results. The results are considerably
improved by including a wave-function renormalisation. This is not surprising because the
supercovariant derivative expansion mixes different orders of momentum. Through the auxiliary
field the wave-function renormalisation modifies directly the flow equation for the superpotential.

Having established in which way the FRG can be extended to supersymmetric field theories we
have investigated the )N = 1 Wess-Zumino model in two dimensions in chapter 5. The approach
presented in the supersymmetric quantum mechanics can easily be generalised to this model. In
this chapter we have concentrated on a superpotential that allows for spontaneous SuSy breaking.

For this model the main focus was on the phase transition between the phase with broken and
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8 Conclusions and outlook

unbroken supersymmetry and on the fixed-point structure. It is known from bosonic theories
that two-dimensional theories show a behaviour quite different from those in higher dimensions
because the bosonic field is dimensionless. As a consequence, an investigation of the fixed-point
structure of the supersymmetric model revealed that in the LPA only a continuum of periodic
fixed points is accessible whereas in the NLO we have found a discrete set of solutions classified
by the number of nodes. The fixed-point structure at NLO survives in three dimensions.

The model exhibits one fixed point with only one infrared-unstable direction. All trajectories
are attracted to this fixed point. All other fixed points have an increasing number of infrared-
unstable directions. The phase transition is driven by the one infrared-unstable direction. By
fine-tuning the unstable direction we can reach the critical point corresponding to the phase
transition. Special to this model is a connection between the critical exponent belonging to the
infrared-unstable direction and the anomalous dimension, called superscaling relation. As a
consequence of the superscaling relation the bosonic mass scales with the RG scale and it vanishes
as the scale is lowered to the infrared.

We find that the phase diagram spanned by the bare coupling (Ax,Aa%) is divided in two
distinct regions namely the one with broken and the one with unbroken supersymmetry. In
accordance with a qualitative argument by Witten [116] we find that there exists a maximal value
for the bare couplings @4 above which supersymmetry breaking is not possible.

We have also calculated the critical exponents and the behaviour of the scalar mass in the
regime with broken SuSy. We have found that the scalar mass is proportional to the RG-scale
and therefore vanishes as the RG-scale is lowered to the infrared. In this respect, our results go
beyond the lattice results. Previously the phase transition value was calculated on the lattice for
just a few values of A whereas critical exponents have never been calculated for this model before.
Our predictions for the scaling of the mass can be verified by lattice simulations. First results in
this direction [16] are very encouraging and seem to confirm the existence of a massless bosonic
phase.

Based on the results from the two-dimensional model we have investigated the three-
dimensional )N = 1 Wess-Zumino model in chapter 6. The flow equations derived in two
dimensions generalise to higher dimensions straightforwardly. Both models have a lot of similari-
ties but also some differences. The most striking one is that in three dimensions we find only
two fixed points: The Gauflian one with all couplings set equal to zero and the supersymmetric
analogue of the Wilson-Fisher fixed point. In this model the SuSy phase transition is also driven
by the infrared-unstable direction of the fixed point. Similar to both models is that even in three
dimensions the superscaling relation holds. In these models this results in a mass which scales to
zero as the RG scale is lowered to the infrared.

Compared to bosonic O(N) models the most prominent difference is that the infrared-unstable
direction does not influence the flow of the infrared-stable direction and therefore no fine-tuning

is required to reach the fixed point for these stable directions. As a consequence, the theory in the
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broken phase is always massless in the infrared. The infrared-unstable direction plays the same
role for the supersymmetry breaking as in two dimensions. Namely it has to be fine-tuned so that
the system reaches the phase transition.

The three-dimensional model is investigated additionally at finite temperatures with the aid of
the Matsubara formalism. The supersymmetry breaking due to different boundary conditions for
fermions and bosons is manifest in the different flow equations for the bosonic and fermionic
couplings. At finite temperatures it is possible to define a pressure which obeys the temperature
dependence of the Stefan-Boltzmann law in three dimensions as expected from a theory with
massless scalar fields.

Even though supersymmetry is explicitly broken at finite temperatures, the Z, symmetry of the
model can either be restored or broken at finite temperature. Whether Z, symmetry is broken
or not depends on the temperature and parameters of the model, i. e. the initial values of the
couplings at the initial RG scale. Since supersymmetry and Z, symmetry are intimately linked, a
study of Z, symmetry can be used to measure the strength of supersymmetry breaking. There
exist two different phases at finite temperatures: One phase with soft supersymmetry breaking
due to the different statistics of bosons and fermions but broken Z, symmetry and one with
restored Z, symmetry.

We have discussed several similarities and differences of scalar O(IN) models and the N =1
Wess-Zumino model at zero and finite temperatures, e.g. the fixed-point structure at zero
temperature and the behaviour at finite temperature. The phase diagram is very similar to the
one in two dimensions, in particular we have found again a maximal value for a% above which
SuSy breaking is not possible.

Chapter 7 deals with the two-dimensional N = (2,2) Wess-Zumino model. The model is finite
and allows to directly compare the results to Monte Carlo simulations on the lattice.

In the local potential approximation the non-renormalisation theorem is found in a very simple
form: The flow equation of the superpotential vanishes identically. The first quantity with a
non-vanishing flow equation is the wave-function renormalisation. It causes a renormalisation of
the mass. The renormalised mass has been calculated to high precision in lattice simulations [151].
In order to calculate the renormalised mass in the FRG with a satisfying accuracy we have had to
include a nontrivial momentum dependence in the wave-function renormalisation even for small
couplings. To solve the flow equation with full momentum dependence we have developed a
numerical toolbox called FlowPy [155]. This allowed us to solve the differential equation with
high numerical precision. With momentum dependence the agreement between lattice results
and FRG calculations is very good in the weak coupling regime.

At intermediate couplings the wave-function renormalisation with full momentum dependence
is not sufficient to capture all quantum effects calculated in the lattice simulations. They are
generated by higher-order operators which are not restricted by the non-renormalisation theorem.

In order to improve the agreement between lattice and FRG calculations we may need to include
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8 Conclusions and outlook

in the truncation a potential for the auxiliary fields and the supersymmetric partner terms, which
are generated by higher-order operators. Taking at least terms to order F? into account should
considerably improve the results since these terms modify the flow equation for the wave-function
renormalisation directly.

It has become clear during our investigations that a potential for the auxiliary field plays an
important role for the flow equations. An auxiliary field potential — with ¢ dependent couplings —
is needed to make the bosonic potential, which is obtained after the auxiliary fields have been
integrated out, convex. Such a potential is obtained from higher orders in the supercovariant
derivative expansion. The investigation of the N = (2,2) Wess-Zumino model showed that
higher orders in the auxiliary field are essential to find the correct values for the renormalised
mass for intermediate couplings. In supersymmetric quantum mechanics we have found that the
energy for the first excited state is not reproduced correctly as soon as the superpotential becomes
non-convex if higher-order operators are neglected. An interesting challenge for future work is to
implement such higher-order terms in the flow equations.

Currently, further investigations on other models based on this work are under way. We work for
example on an extension of the functional renormalisation group to non-linear supersymmetric
sigma models. The strategy is similar to the one by A. Codello and R. Percacci [163] for the bosonic
non-linear sigma model. The problem is to find a supersymmetric background field expansion
so that the flow equations can be calculated. The application of the FRG to supersymmetric
sigma models is the topic of a diploma thesis by M. C. Mastaler [164]. To understand how
additional superfields alter the properties of the flow equations first the attention is focused on
linear supersymmetric sigma models.

In this work, we have demonstrated for scalar theories that the FRG can be extended in a way
that keeps supersymmetry intact. Nevertheless, for a description of supersymmetric extensions
of the standard model, gauge fields have to be treated in the supersymmetric FRG approach. To
this end, we investigate N = 1 super Yang-Mills theory in four dimensions. Some work in this
direction has been done by S. Falkenberg and B. Geyer [39] who formulated the flow equations in
a background field expansion in superspace, using a supersymmetric regulator. However, they
only calculate the running coupling to one-loop order in perturbation theory.

With the investigation of the fixed-point structure and its relation to critical phenomena
in supersymmetric scalar theories we hope that we have made a valuable contribution to the
understanding of the phenomenon of supersymmetry breaking. Still, a lot of work in the

understanding of supersymmetric theories remains to be done.
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A 'The Clifford algebra

This section follows the conventions in the book by Bronstein [165] and an article by de Andrade
and Toppan [166].
Let X be n-dimensional linear space over a field K and B : X x X — K a bilinear form on X.

The inner product u v w is defined as

uvw+wvu=2B(uw) VYuweX (A1)

avu=uva=au VaeK wueX. (A.2)

The Clifford algebra €(X) over K with respect to the bilinear form B(-,-) with multiplication v

satisfies the conditions

1. €(X) contains K and X

2. Let by,..,b, be a basis of X, then the ordered products {1,b;,..,b,,b;, Vb, v...Vv b, },

1y

r=2,.,nformabasisof € fori; <i, <..<i,andi,=1,.n Vk.

In the main part the Clifford algebra of the Minkowski and the Euclidean space is needed. The
bilinear form is the metric and a representation of the Clifford algebra is given by the y matrices.

In order to define Lagrange functions and charge conjugation for spinors three unitary matrices
to.
A, B,C with A =[]y’ and C = BT A are defined. ¢ is the number of time directions (positive sign
i=1

in the metric). The matrices have the following properties:

Ayt At = () ()T (A.3)
By B" = n(y")* (A.4)
et = (MM’ (A.s)

with 77 = £1. B has the property BT = ¢ B with ¢ + 1 and BB* = ¢ - 1 respectively. Further
CT =en'(-): Ve (A.6)

holds
The Dirac conjugation in flat space-time is defined as ¥ = y' 4. Together with B the charge
conjugation is defined as y¢ = Biy*.

93



A The Clifford algebra

A Majorana spinor y satisfies the condition y¢ = y. From y* = BTy = ¢By it follows that the
Majorana condition can only be fulfilled for ¢ = 1.

The Dirac conjugation of a charge conjugated spinor can be written as ¥ = (B'y*)" A4 = ey’ C.
For a Majorana spinor this implies ¥ = y”C. For the charge conjugation matrix itself it follows

from equation (A.6) y¢ = Bly* = C*§" = en'(-)2*DCty". From this the condition
WC)}(VI)XC — rlt(_)%(t—lecy(n)CTxT (A.7)

arises. This leads to the following symmetry relations for Majorana spinors:

vx = nON YR = (N gy
WY”X — _n(t+1)(_)%(Hl)wT(y‘u)T)—(T — ’7(”1)(_)%(”1))_()/#1// (AS)
wyyvx — _ﬂt(_)%(t—l)va(y‘uV)T)—(T — ﬂt(_)%(t—l))—(y‘uvl//

In two-dimensional Euclidean space time the Majorana representation is given by

y1 =101, y, =1i03. (A.9)

The charge conjugation matrix for # = -1 and € = 1 reads C = 1.
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B Technical details for SuSy-QM

B.1 Inversion of the propagator
In this appendix we calculate the inverse propagator
Gk =Gox — Go,k(ll_/Ml + lelf)Go,k + Gox (M1GopMy — MyGog My — M) Goyry . (B.1)

To keep the expressions simple we use the block notation

Aps A
A= 7P TPEY (B.2)
AFB AFF

The non-vanishing blocks that are needed for the inverse propagator have the form

» (1+1)g* +iFWS i(W] +1))
(Go,k)BB = . I >
I(Wk + 1’1) 1+r,
i 0 (L +r)q+i(W] +r)
(GO,k)FF = . 1 >
(1+7)q—i(W +r1) 0
iw? o . 0 iw? -iw® 0
Mipp = —Mpr = »  Mypr =—-M,pp = ,  Mspp = .
0 0 0 0 0 0
(B.3)

To calculate the full propagator Gy we must first calcualte the inverse of Gy .. It is block diagonal

and the inverse reads for constant fields

1 (1+71,) —(W +r1) 1
(Gox)se = — and (Gog)rr = — (G} B.4
0,k ) BB AB —I(W]L’ + 1"1) (1 + rz)qz + lFWIE?’) Ok)FF AF ( o,k)FF ( )
with the factors
Ap=(1+1)2q +(Wy +r)? and Ap=Ap+i(1+r,)FW. (B.5)
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B Technical details for SuSy-QM

B.2 Flow equations from the bosonic and fermionic part

Since the regulator Ry is block-diagonal only the diagonal blocks of the dressed propagator enter
the flow equation (4.19). These blocks can be calculated with the help of (B.1). Inserting the

regulator yields

Str (Gx 9xRy) =/ dr <H0(¢,F) +H1(¢,F)1/_/1//> (B.6)

with the functions

dg 92 ((1+72)°q = (WY +11)%) +2(1+15) 0k (W) +11)

Hy(¢,F) = —F (3)/ N
o(¢,F) iFW, o e (B)
d "
Hi(¢.F) =i/ﬁ (AW —2W2 (W) 1)) %
0k (1 +72)°q" = (W) +71)%) +2(1 +12)0kr (W] +717)
X
AAr
+i/ 991 4y 20l tr)'q —(W;L’+r1)2)2‘2(1 +1) (Wi +1)
21 ApAZ
(B.8)

To project onto the flow for the superpotential, the flow equation is differentiated with respect to

F and afterwards F = ¢ = ¢ = 0 is set. This yields

i 8Ty

W= 35k

Wy / dgq 9ra((1+72)°q" = (W +71)) +2(1 +72)0kri (W] +11)
2 27 A2 .

F=0

(B.9)

Alternatively the flow equation can be obtained by projecting on the coefficient of yy. This

way we obtain

n 1
aka = EHI(P’ (/5) (B.IO)
F=0
The two projection formulas (B.9) and (B.10) indeed give rise to identical flows, since
82H0 (¢) F) .
MT o = 1H1(¢’F)|F=0 . (B.ll)
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C Flow equations in Minkowski space

In this section we derive the Wetterich equation in Minkowski space. For the sake of simplicity
only a real scalar field is considered in this appendix. The generalisation to other fields, such as
fermion or gauge fields, is straightforward. The generating functional in Minkowski-space is
given by

Z[J] = / Dg elSlel+U.9) ) (C.1)

where ] denotes the external source and (J,¢) = f d?x J(x)¢(x). The generating functional W

for the connected two-point functions, the so-called Schwinger functional, reads’
WI[J] =iln Z[j]. (C.2)

From this we obtain

O i =18 gy L DB g
STWUJ_%fmZU]_ [ D eG+09)

=—¢ =—(9). (C3)
The effective action is the Legendre transform of the Schwinger functional,

where ¢ is the classical field. Using 5% W{[J] = —¢ we obtain the equation of motion for the field ¢:

M:_/ ’ 6W[I161<y>_/ d IO
0¢ d y(S](y) 8¢ (x) d’y o(y) —J(x) =-J(x). (C.s)

o (x)
The scale-dependent generating functional is defined as

ZilJ] = e Wil] eiASk[(%] Z[J] :/ QD(P ei(S[<p]+[X<p]+Ask[<p]) (C.6)

with
Asw—l/ﬂ(—m()() )
KIPL =5 (271)4('0 q) R q)P\q) - 7

Next, the scale dependent effective action is defined as

Culg] = -WelJ] - / dhx T — AS[4). (C8)

"The generating functional W should not be confused with the superpotential.
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C Flow equations in Minkowski space

In order to properly formulate the flow equations in Minkowski space we have to take k* = p, p*
as flow parameter. Therefore the derivative with respect to ‘RG time’ ¢ = In (¥°/a2) is defined to be
0; = 2k*0j2. Taking the derivative of Tx[¢] with respect to t yields

o/ Ti[¢] = -0, Wi[J] - at/ d'xJ¢ - 0:ASk[4], (C.9)

where we use that the source is independent of k. The derivative of Wy can be written as

1 dq Z[J]
=1 1 Z =
o WilJ] =i0;In Z[]] 2717 (27-[)11( t k) 58]
Using the definition of the Schwinger functional, Z[]] = e, yields
) 1 ddq efiWk
— iWr —
o:Wil]] =e 5 (Zﬂ)d( ¢ k) 5707 (Ca0)
Now the integrand is rewritten by making use of
ek § L, A OW Wi oWy oWy W W
5707 8¢ (=) — 8 (- )—( 1)— (_1)6]8] : (Ca1)
then equation (C.10) can be rewritten as follows:
1 ddq SWi W, .8*W, i dig 8w,
ath[]] (2 )d t k( 6] 8] _16]6]> = — Sk_— (Zﬂ)deW. (C.12)
————
-4 ¢
With this relation the variation of the effective action equation (C.9) takes the form
i ddq 62 Wk
T R . .
0Tk [¢] = 2 )d( +Ry) 570] (C13)
We can rewrite % in terms of the effective action:
X VY 8 (W) 82T,
5906 ~ o6 * 8¢ ( 5707 ) o <6¢8¢> * R") (€19
Making use of
N 0¢(q) & dWil[J] dlq 8*Wi[J] 8]
Sa — - = =_ —, Ca
@=9)=5500) 36 o) Qm)d 6J8] 8¢ (C15)
we obtain the Wetterich equation in Minkowski space:
82T -
o:Tk[¢] = Tr 0:Ry (8¢8¢ ) . (C.16)

98



D Flow equations at finite temperature

In order to preserve supersymmetry in the RG flow for vanishing temperature we must choose a
regulator function which regularises the theory in the time-like and the space-like directions
in the same way. In order to make apparent how soft SUSY-breaking due to finite temperature

emerges, we use the same regulator for the finite-temperature and zero-temperature studies, i. e.

rz:(%—l)@(%j—l) r =0. (D.1)

In the LPA, we obtain the finite-temperature flow equations straightforwardly from the zero-
temperature flow equations by replacing p, by the Matsubara modes v, and w, of fermionic
and bosonic fields respectively and replacing the integration over p, by a summation over the

Matsubara modes. The contribution of the bosons to the RG flow then reads:

2 K — W"26k2_ 2 .2
aka=——W,L” TZ/dPS( (O~ p; w"), (D.2)

WP

where p; denotes the momenta in space-like directions. Along the lines of e. g. [167] we use

Poisson’s sum formula,

Y f =Y [ daf(q exp-2riq). (D)

Nn=—o0 f=—c0

in order to obtain

2p, (K2 = W/)O(K* - p* — 2mqT)?) _,.
aka:__Wl’c” TZ/ /dPS( k) ( ps ( nq ))e—qu(_" (D4)
e_

4 [K2 + WP]/p? + (2nqT)?

To computate of the three-dimensional integral, we substitute g’ = 27Tq and introduce spherical

coordinates p! =r cos9sing, p? =rsin9sing, g = r cos Y. The angular integrations yields

dr kK*-wW;* 2Tsin(¢7/ T)
W, ———W’"T Wi D.
Wy == Wi 2/ T WE ¢ (D)

Finally the integration over r leads to

(kZ _ WIZZ)W]L” 2T2 ~ 1 —cos (ek/T>

82 (k2 + W}?)2 = £

kW, = - (D.6)
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D Flow equations at finite temperature

Since we made use of Poisson’s resummation formula to rewrite the sum over the thermal modes,

the flow equation can be split into a zero-temperature and a finite-temperature contribution:

_ ke
WHZ _ k2 Wm o 1 COS /T W//Z _ k2 WW
aleiz( k ) k (k2+4T22 ( ))Z( k ) k

k* + gos(T) ) .
87T2(k2+W];’2)2 22 87T2(k2 +W]:2)2( &b ( ))

(D.7)
The contribution of the fermions to the RG flow of the model can be obtained along the lines of

¢=1

the derivation of the bosonic contribution and reads:

_ ke
WHZ _ k2 Wm oo 1 COS /T WHZ _ k2 Wm
s - R ( ))_u w;

2+4T2 -)¢ = (k2+ ermT)'
8m2(k2 + W)?)2 Z;( ) 2 s s wy -+ gD

(D.8)

Introducing the dimensionless temperature T = T/ k, we can rewrite the functions gps(7) and

Zterm(T') in terms of polylogarithms:
oo (T) =3 KT [ = 3L (¢77) = 3Liy (¢77)] (D.9)
Stem(T) == K12 [+ 6Ly (~e717) + 6Lix ()] (D.1o)

Using the identity [168]

1

Li, (-z) + Li, (—%) =2Li,(-1) - % In*(z) = <73 In*(z), (D.11)

the function gpes(T) simplifies further to
Sbos(T) = T2 [7T2 +In? (—exp (1/T))] =nT (nT — (2sg + 1)*aT + (2s5 + 1)2k> -k*, (D.12)
where we used that

ln(exp(i/T+in)):%—in(253+1), sp < <sp+1 = sB:L k J (D.13)

Similarly, exploiting the relation

1n(exp(i/T))=iT—Zir[sF, Sp— SLS5F+% = sF:L k IJ, (D.14)

leads to the result

271T) (Das)

T) = -k (1 - spr
gferm( ) k ( SF k

for the fermions. As expected, the functions gyos(T) and gferm (T') exhibit the same behavior as
the threshold functions discussed in Ref. [146].
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E Technical details for the N = (2,2)

Wess-Zumino model

E.1 Two dimensional Euclidean N = (2,2) superspace

A detailed discussion of the underlying supersymmetry algebra and a construction of the
superspace can be found e.g. in [93]. The superspace formulation is constructed out of the

supersymmetry transformations. The transformations are

_ ) i} 1__ ) i} S 1. i _ =
8(/) =Y1& &V, 61//1 = —EFsl —8¢£2, 81/12 = —8¢£1 - EF&'z, OF = 2(81//182 —Ezawl),
(E.1)
S 1. B .
8¢) = Y& +EV, (Sl//l = —EFel +a¢€2, 61//2 = a¢€1 — 51’782, OF = 2(81//281 —8181//2).

We construct the superfield from its lowest component ¢ = ®(z,2,0,0) by acting with the

exponential function on this component [169]:

4
@ =exp(-0)¢ = >~ (-0.)"9 (E2)

n=0 "

This implies for the chiral superfield:

0:¢ =Yn€1 + &1y

82 =01, + &0y, = —F& ) — 0ére; + 0Pé e, (E.3)
853¢ =—0F&¢& —00¢pé& e + 58(/)2162 = —331/71825181 +30y1&16,8

ngb =- 3361/71825181 +300y,8,8¢; = 638¢52£251£1

and the chiral superfield reads

i _ 1 _ _ = | o
D =¢ — (Y11 + 1y) + E(—F(Xﬂh —ddara; + A ay) — 5(—381//1062061061 +30y1&10201)
1 -
+ 5(688(/)562&25(1061)
i} } 1 | 1o 1= 1 o
:¢ - 1//1(xl - 0(11//1 - EFOCIOCI - anﬁazal + EagbOﬁOQ + 581/110(20(10(1 - 581//10(10(20(1

1-
+ Zaa¢d2a2d1a1 (E4)
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E Technical details for the N = (2,2) Wess-Zumino model

The supercharges are

0 1 - - 0 1. 0 1 1
Ql__BT'cl-l-E“za’ Ql‘aTcl_E“Za’ Qz——aT_Cz‘i‘zOha, Q2_8a2 5

which reproduce the supersymmetry transformations:

0D =(EQ + Qe)® = (£,Q; + Qi1 +&,Q; + Que2) D

:él <l//1 + %FOCI — %é(po(z - %31/_/10620(1 — %awldz(xl — iéa(pdz(xz(xl
+13(/5062 — l0(2(5(131//1 + létplazal - léF(delal — 138(/50626(2061 + 1381//10(26(15(2“1)
2 2 2 4 4 4
i} | 1. . 1= 1 o 1= .
+ (l[/l + EFOQ + §a¢062 — 5811/10620(1 + 581/110510(2 — Zaa(bazagal

1 1 1 1 1_- 1._-
—Edzagb - 581[/10_62061 + 50_620_6181//1 + ZaFdzdlal - L—laagbo'czo'clocz + Zaalj/ldzazalal) &1

1 1 1- 1 1 1. -
+ & (Ea(pocl + 581”10_61061 - Zaaqbazdlal + E(Xla¢ - 50610_61awl + Zaagbaldlaz)

L30&1 — Lapidan — 2090aadi @ — ~ad + &y + ~@9da (E.6)
+ -5 ¢a1_§ 1//1“10‘1—1 gb(xzcxlcxl—iocl ¢+E¢x1 1//10c1+z—10c1 para, | & .

The covariant derivatives read

5 1 - 9 1 1 1.
Di=—2 —20d D=2 149 Dy=-—2 —-a9 D= +-a0 (E
1= 755 "% Di=gm4add Do=—orm-omd, Do=or-+omd, (E7)

and the chiral superfield fulfils the constraint

1 1 1- 1 1 1_-
D,® :§a¢“1 + 581/115510(1 - Zaa(/)(xz&l(xl - E(Xla¢ + 505165181//1 - Zaa¢“1ala2 =0 (ES)
- 1- 1-_ - _ . 1_ - 1. -_ |
D, O =- 58([)0_61 - 581//1()(10(1 - Zaagbazalal + 50518¢ - 50‘18‘//1“1 - Z“laa¢“2al =0 (E9)

The antichiral field can be constructed in complete analogy
_ S ow 1 ]
® = exp(-0,)¢ = Z ﬁ(—as)'%p (E.10)

n=0 °
which yields
8s¢_) =& + &1,
6§¢ :811-/282 + 5261//2 = _F‘§282 - é¢5182 + a¢éz81 (E.ll)
6§¢ == 61:15282 - é6(;55182 + 85((_55281 = _381/_/281é282 + 331102515‘282
63‘/5 =- 3861/7281é282 + 3381//2515282 = 698(])51815282.
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E.2 Flow equation for the momentum-dependent wave-function renormalization

The superfield reads

- _ I e Z 1 o S
O = ¢ - (1//20(2 + (le[/z) + E(—F(Xgaz — agboclocz + 8¢a2a1) — 5(—381//2061062062 + 381//2061062062)
1, - -
+ $(688¢d1a1d2(x2)
o ) 1. 1. 1. 1., 1.
= (p - l//zOCz - 0(21//2 - EF(Xzolz - Ea(poclocz + Ea(boczocl + 581/120(10(20(2 - 581/120(10(20(2
1-_-
+ Zaa¢d1a1d2a2. (E.12)
The kinetic term is given by
—2/ dzdz Pad?ad®, d*a=a0,, d*a@=a,a, (E.13)
and the potential term by
—2/ dz dz d&;da; W(D) — 2/ dz dz da,da, W (D). (E.14)
The most general supersymmetric action for a number of fields @, ®’ with i = 1,...,7 is given by
—/ dzdz PPa & K(P'D') -2 (/ dz dz da,de; W (@) +h. c.) (E.15)

where K (Cbi, d)i) is a Kéhler potential. The N = (2,2) model is obtained for i = 1 where K, W
and W are arbitrary functions of the field.

E.2 Flow equation for the momentum-dependent wave-function

renormalization

To obtain the flow equations for the wave-function renormalisation the second derivative of the
effective action is decomposed into a field-independent part I{” + Ry and a field-dependent part
AF,(CZ). In the following we drop the momentum dependence of the regulators for simplicity of

notation:

A, 0 AA AC
r'® 4R .d) +AT(q,q) =|"° S(g-4g) + E.16
(T, K (q:q) x(q.9) (0 B, qa-9) AD AB (E.16)

Recall that h = (1 +1,)Z7(q), M = (r1Z;(q) + m). With this, the blocks read

4y o <q2h-1 M o3

, By =igh+ M1 Ea
Mo, —h-ﬂ) 0o =14 (E.1y)
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E Technical details for the N = (2,2) Wess-Zumino model

and
( Fl _FZ ¢1 _¢2 1/_’1 ll/_jz
“F, -F, —¢, - i
AA =2g ¢2 ¢1 (ﬁ)bz ;bl <q+q,)’ AC =2g 121 1 (q+q’)
1 —P2
6 ~¢ 0 0 0 o (E.18)
] 0 0 ] 0
ADZZg V/l l?ﬂl (q+q,),AB=2g ¢1+l¢2 ' (q+q'>-
Yy, -1y, 0 0 0 ¢1 - l¢2
The flow equation can then be expanded [74] in
1= 1- 2
0T =50, STx ((r52> + Rk)’lAl“> - 19 STr (<r52> + Rk)’lAF) b (E.19)

with 9, acting only on the regulator. STr denotes a trace in field space as well as an integration in
momentum space. The wave-function renormalisation is a term proportional to F? and can be

obtained from the second term in this expansion. To calculate this we define the abbreviations
M(q.q) = / (5" + Re) ™ (@)0(q + )AL (q",q) = (T + R) ™ (AT (~q.q).  (E-20)
4
Then the second term in the expansion reads

0, Str M(q,.9)M(q,q) (E.21)

q

=str [ (T +R) ™ ()9 R (T + R) (@) AT (—q,4) (TP + Ry) ™ (q) AT (~q, q)
a9

+Str [ (T +Rp) (@Al (-q,4) (T5” + Re) ()3, Re(q) (T + Ro) ™ (q) AT (-4, q)
9

where Str denotes a trace in field space. The functional derivative is taken with respect to F;(p)
and F;(—p) and all fields are set to zero in order to project on the wave-function renormalisation
Zi(p*). This yields
d*q h(p-q)h(q)
72 =_8o2 ( L M 117 —p)M(p - M -
ok Zi(p) = -8¢ / v (@ (p—q) [0kRi(q - p)M(p —q)v(q) + xR (@) M(q)v(p - q)]

, [ dqhip-9oR@u@v(p-q) /@h(q)akaq—p)v(q)u(p—q)
+ag / poo V(@ (p—q) HE | V(@ (p—q)

(E.22)
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E.3 Determination of the renormalized mass
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Figure E.1: Left panel: m'°% with A = 0.6 for discretizations N = 200 and N = 600 and different box sizes

L = 15,25,35 and 45. Right panel: m%ﬁ?al with A = 0.6 for discretizations N = 200 and N = 600 and

different box sizes L = 15,25, 35 and 45.

with the abbreviations

h(q) = (rz (k,q) + 1) Z,% (q) , M(q) =m+ rl(k,q)Zi (q) , Ri(q) =1; (k,q) Z,2( (q) ,  (E.23)
u(q) =M(q)* - °h*(q), v(q) = M(q)* +°h*(q)

E.3 Determination of the renormalized mass

The numerical calculations of Z7 in the main text use a grid of N = 60 points in the direction of

p?, distributed equidistantly on a logarithmic scale. The result for Z;_,(p) is interpolated with

splines to calculate the propagator GN-C(p). A discrete Fourier transformation of Gh-°(p) yields

the correlator C(x;) on the interval x; € [0, L] with n = 10001 intermediate points. In the main

text we use L = 15. From its large distance behaviour

L
Came, (x1) o< cosh (mcorr <x1 - 5)) (E.24)
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E Technical details for the N = (2,2) Wess-Zumino model

the correlator mass m,,, is determined by a least square fit. The fit range is constrained to the
interval [x1kips-..» L — X1,5kip] Where the contributions of excited states are negligible. The value

of x1 kip is determined such that mcor (x1,51ip) Shows a plateau. Either the fit is made on the whole

1

. . lob o . .
range [Xiskips --.»L — X1,5ip] — this quantity is called mgy," - or just inside a small interval of size

local
corr *

0.2 starting from x4, — this quantity is called m

In the left panel of figure E.1 m'°% is shown for two different discretisations of ZZ(p?), N = 200

corr

in the upper and N = 600 in the lower panel. In the right panel the same is shown for m%},ﬁ?al.

From these plots we can read off that for x; ;, not too large there is a clear plateau which is stable
if the box size is increased. But for very large x4, the local mass oscillates. As this oscillation is
reduced when the discretisation is increased it is due to fluctuations in the spline interpolation of
Z2. At small values of the correlator the numerical errors are more important for the masses. As
the fluctuations become visible for large box sizes, in these cases the global mass fit is of no use

because it averages over the local mass and is strongly influenced by the oscillations. For this

local

ocal as the value of the renormalised mass.

reason we take the plateau of m
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F Diagrammatic description of the flow

equation

In this section we introduce the diagrammatic representation of flow equations. The flow equation

can be rewritten as .
AT = 5 STrdy In (T + Re)

The superpotential is obtained by a projection on the terms linear in the auxiliary fields. The

flow equation can be written as

§(¢)—8F

A Wi() = 3 STr (1 op (¢))

F=0,y=y=0
For the diagrammatic notation we use the following symbols:

= 1/p,
——- auxiliary field line,
X 1 / 2 ét

The flow equation for the superpotential reads in diagrammatic notation:

Q)

Now it is straightforward to see why only terms that are at most proportional to F? can directly
influence the flow of the superpotential: Terms proportional to F” (n < 3) in the ansatz for the
effective action correspond to vertices with » external auxiliary field lines. To contribute to the
flow equation of the superpotential all but one auxiliary field lines have to be contracted. For
n > 3 this is not possible due to the one-loop structure of the flow equation.
In a polynomial approximation of the superpotential,
N .
W(¢) =) a

i=1

the coupling a; can be represented as
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F Diagrammatic description of the flow equation

jleaj: ---

In the LPA the polynomially expanded flow equation evaluated at vanishing ¢ is represented as

~ N

e J — - +--- "+ cyclic permutations
’ "
/7 %
/
/
« R e . .
o Jp = ——- + L "+ cyclic permutations

/i o
% %
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Zusammenfassung

Eine der wichtigsten Errungenschaften der theoretischen Physik des 20. Jahrhunderts ist das
Standardmodell der Elementarteilchenphysik. Dieses Modell erlaubt, die Vielfalt der in Beschle-
unigerexperimenten beobachteten Elementarteilchen zu klassifizieren und ihre Eigenschaften
und Wechselwirkungen zu beschreiben. Bis zu einer Energieskala von einigen 100 GeV sind
die Vorhersagen des Standardmodells hervorragend bestdtigt worden. Die Klassifikation der
Elementarteilchen beruht auf der Ausnutzung von Symmetrien. Aus diesem Grund ist es
naheliegend, sich fiir eine Erweiterung des Standardmodells, die fiir die Beschreibung der Physik
bei grofieren Energieskalen notwenig ist, ebenfalls auf (neue) Symmetrien zu stiitzen. Einen
vielversprechenden Kandidaten bietet die Supersymmetrie, welche Bosonen und Fermionen, also

Teilchen mit ganz- und halbzahligem Spin verkniipft.

Die vorliegende Arbeit beschiftigt sich mit der Anwendung der funktionalen Renormierungs-
gruppe (FRG) auf supersymmetrische Theorien. Dazu werden Skalarfeldtheorien in verschiedenen

Dimensionen untersucht.

Um supersymmetrische Flussgleichungen zu erhalten, muss die Cutoftwirkung die Supersym-
metrie respektieren. Dies wird erreicht, indem die Cutoffwirkung im Superraum formuliert wird.
Um die Ein-Loop-Struktur zu erhalten, wird sie als Funktion quadratisch in den Superfeldern
gewidhlt. Der Regulator ist eine Funktion der superkovarianten Ableitungen. Auch die Trunk-
ierung muss so gewdhlt werden, dass sie die Supersymmetrie respektiert. Dies wird dadurch
erreicht, dass die Wirkung ebenfalls im Superraum trunkiert wird. Fiir eine solche Trunkierung

bietet sich eine Entwicklung in Superfeldern und superkovarianten Ableitungen an.

Auf Ebene der Komponenten entspricht eine solche Entwicklung gerade einer Entwicklung in
Potenzen des Hilfsfeldes mit entsprechenden supersymmetrischen Partnertermen. Dies hat zur
Folge, dass, im Vergleich zu einer reinen Ableitungsentwicklung, verschiedene Impulsordnungen
gemischt werden und z. B. die Wellenfunktionsrenormierung einen viel groflieren Einfluss hat als
in einer nichtsupersymmetrischen Theorie. Bei grofieren Kopplungen gewinnen auch die héheren
Ordnungen des Hilfsfeldes einen immer grofieren Einfluss auf die quantitativen Ergebnisse.

Supersymmetrie fithrt auflerdem zu einer engen Verflechtung von bosonischen und fermion-
ischen Regulatoren und erzwingt eine Regulatorstruktur, welche von der aus Theorien mit
Yukawa-Wechselwirkungen ohne Supersymmetrie benutzten abweicht. Insbesondere erzwingt

die Supersymmetrie eine Regularisierung des Hilfsfeldes.



Dainjeder Ordnung der Trunkierung hohere Potenzen des Hilfsfeldes eingefiihrt werden, kann
der Fluss fiir die interessierenden Grof8en sehr einfach durch Projektion auf die entsprechenden
Potenzen des Hilfsfeldes abgeleitet werden, da diese keine Impulspotenzen enthalten.

Den Anfang der Arbeit bildet die Untersuchung einer 0 + 1 dimensionalen Feldtheorie, der
supersymmetrischen Quantenmechanik, welche als eindimensionales Wess-Zumino Modell
interpretiert werden kann. Es wird der Fall der ungebrochenen Supersymmetrie betrachtet. An
diesem Modell wird die Konstruktion einer supersymmetrischen Cutoffwirkung demonstriert
und die erforderliche Regulatorstruktur abgeleitet. Die erste angeregte Energie lasst sich
durch Diagonalisierung der Hamiltonfunktion berechnen, was zuverldssige Vergleichswerte
liefert. Ein Vergleich mit den Ergebnissen aus der FRG-Rechnung zeigt, dass schon fiir kleine
Kopplungen die Wellenfunktionsrenormierung berticksichtigt werden muss, um eine quantitative
Ubereinstimmung mit den Ergebnissen aus der Diagonalisierung zu erreichen. Werden die
Kopplungen so grof3, dass das Superpotential an der Cutoffscala nicht mehr konvex ist, bricht
die Ndherung zusammen. In diesem Parameterbereich ist eine hohere Trunkierung notwendig,
was die Hinzunahme von hoheren Potenzen im Hilfsfeld und deren supersymmetrischen
Partnertermen entspricht.

Die an diesem Modell gewonnenen Ergebnisse werden anschliefend auf das )N = 1 Wess-
Zumino Modell erweitert und angewendet. Interessant ist dieses Modell, weil es spontane
Supersymmetriebrechung zeigt. Diese geht fiir die betrachteten Wess-Zumino Modelle einher
mit einer Wiederherstellung der Z,-Symmetrie.

Die Supersymmetriebrechung kann im Kontext von kritischen Phanomenen verstanden
werden, da die Phasengrenze zwischen supersymmetrisch gebrochener und ungebrochener
Phase durch Feintuning der infrarotinstabilen Richtungen auf einen kritischen Punkt erreicht
wird. Mit Hilfe der FRG wird die Fixpunktstruktur und die kritischen Exponenten des Modells
untersucht. Das Modell hat unendliche viele Fixpunkte. Einer dieser Fixpunkte hat nur eine
infrarotinstabile Richtung und ist ein Attraktor fiir alle Trajektorien der Flussgleichung. Der zu
diesem Fixpunkt gehorige kritische Punkt bestimmt den Phasentibergang zwischen gebrochener
und ungebrochener Supersymmetrie.

Fiir den kritischen Exponenten, der zu der einen, infrarotinstabilen Richtung gehort, ergibt
sich ein direkter Zusammenhang zur anomalen Dimension, beide sind durch eine Skalenrelation
verkniipft. Diese heif8t Superskalenrelation, da sie nur in diesen supersymmetrischen Theorien
und nicht in bosonischen Ising-Modellen auftritt. Diese Relation fiihrt dazu, dass das Minimum
des dimensionsbehafteten Potentials ausfriert, dass das Minimum also im Limes k — 0 gegen
einen konstanten Wert konvergiert. Auflerdem bewirkt die Skalenrelation, dass die Masse des
Skalarfeldes durch die RG-Skala bestimmt wird. Im Limes k — 0 wird das Skalarfeld masselos.

Da das zweidimensionale Skalarfeld dimensionslos ist, stellt die die dimensionslose Flussglei-
chung einen Sonderfall dar. Insbesondere hat dies zur Folge, dass bei einer Fixpunktanalyse

im Rahmen der niedrigsten Ordnung der superkovarianten Ableitungsentwicklung (LPA) nur



ein Kontinuum von oszillierenden oder divergenten Losungen zuginglich ist. Erst in der
nédchsten Ordnung (NLO), in der eine Wellenfunktionsrenormierung beriicksichtigt wird, treten
Fixpunktldésungen auf, die sich fiir grofie Felder polynomial im Auflenbereich verhalten.

In den betrachteten Approximationen LPA und NLO ist das aus dem (konvexen) Superpotential
nach Ausintegration des Hilfsfeldes berechnete Potential fiir das Skalarfeld in der Phase mit
ungebrochener Supersymmetrie nicht konvex. Dies ist eine Konsequenz daraus, dass in einer
supersymmetrischen Entwicklung verschiedene Impulspotenzen gemischt werden und deswegen
in der Formulierung ohne Hilfsfelder nicht alle Beitrage mit verschwindendem Impuls zur
Flussgleichung des Skalarfeldpotentials beriicksichtigt werden. Um ein konvexes Potential fiir
das Skalarfeld zu erhalten, muss ein Potential fiir die Hilfsfelder beriicksichtigt werden. Dies gilt
auch fiir die Modelle in hoheren Dimensionen.

Formal sehr dhnlich zum zweidimensionalen Modell ist das N = 1 Wess-Zumino Modell in
drei Dimensionen. Aber ein wesentlicher Unterschied ist, dass das Skalarfeld in drei Dimensionen
dimensionsbehaftet ist. Dies fiihrt dazu, dass auch schon in der LPA Fixpunktlésungen gefunden
werden, die sich fiir grofle Felder polynomial verhalten. Im dreidimensionalen Modell gibt es,
neben dem trivialen Gaufschen Fixpunkt, nur einen weiteren nichttrivialen Fixpunkt. Dieser
besitzt eine Richtung, die infrarotinstabil ist. Das Fixpunktpotential fiir das Skalarfeld, das sich
nach Ausintegration des Hilfsfeldes ergibt, hat im Auflenbereich ein Verhalten wie ¢°, es ist
also gerechtfertigt, diesen Fixpunkt als das supersymmetrische Analogon des Wilson-Fischer
Fixpunktes in dreidimensionalen, isingartigen Theorien zu betrachten.

Auch im dreidimensionalen Modell gibt es eine Skalenrelation zwischen dem kritischen
Exponenten der instabilen Richtung und der anomalen Dimension, die der Relation in zwei
Dimensionen formal dhnlich ist. Auch im dreidimensionalen Modell bewirkt sie ein Ausfrieren
des dimensionsbehafteten Potentials. Sie hat ebenfalls zur Konsequenz, dass die Masse des
Skalarfeldes auch in drei Dimensionen durch die RG-Skala bestimmt wird und das Skalarfeld im
Infrarotlimes masselos wird. Das Modell wurde auf3erdem bei endlichen Temperaturen untersucht.
Fiir ein Gas aus masselosen Skalarfeldern ist zu erwarten, dass es dem Stefan-Boltzmann Gesetz
in 2 + 1 Dimensionen geniigt. Dies konnte fiir das gegebene Modell im wesentlichen bestitigt
werden. Desweiteren konnte das Phasendiagramm, bezogen auf die Wiederherstellung der
Z,-Symmetrie, fiir endliche Temperaturen berechnet werden. Fiir jeden Parameterwert, bei dem
die Z,-Symmetrie gebrochen ist, gibt es eine kritische Temperatur, bei der die Symmetrie wieder
hergestellt wird.

Den Abschluss der Arbeit bildet die Untersuchung des zweidimensionalen N = (2,2) Wess-
Zumino Modells. Dieses Modell wird aus der Dimensionsreduktion des vierdimensionalen
N =1 Modells gewonnen. Es hat viele Eigenschaften des vierdimensionalen Modells, so kann
z. B. keine Supersymmetriebrechung auftreten und das holomorphe Superpotential unterliegt
einem Nichtrenormierungstheorem, d. h. die nackten Grof3en im Superpotential werden nicht

renormiert.



Die physikalische Masse wird renormiert, bedingt unter anderem durch die Wellenfunk-
tionsrenormierung. Die renormierte Masse kann iiber die Berechnung der Wellenfunktion-
srenormierung mit Hilfe der FRG bestimmt werden. Diese Werte lassen sich mit Resultaten aus
Monte-Carlo Simulationen vergleichen. Dieser Vergleich ist direkt moglich, da das Modell in
zwei Dimensionen dank des Nichtrenormierungstheorems endlich ist.

Fiir kleine Kopplungen im Bereich, in dem auch Stérungstheorie giiltig ist, ist die Uberein-
stimmung zwischen FRG und Monte-Carlo Rechnung sehr gut, wenn in der FRG-Rechnung
eine Impulsabhangigkeit der Wellenfunktionsrenormierung beriicksichtigt wird. Ohne Im-
pulsabhingigkeit gibt es deutliche Abweichungen zu den Gitterresultaten. Im Bereich mittlerer
Kopplungsstirken wird die Ubereinstimmung deutlich schlechter, in diesem Bereich gewinnen
Operatoren hoherer Ordnung in der superkovarianten Entwicklung an Bedeutung. Um in diesem
Bereich eine Ubereinstimmung mit den Gitterresultaten zu erzielen, muss die Trunkierung des
Ansatzes fiir die Wirkung erweitert werden.

Diese Ergebnisse zeigen, dass die Wellenfunktionsrenormierung alleine - auch mit Im-
pulsabhingigkeit — auflerhalb des Bereiches, in dem Stérungstheorie giiltig ist, nicht ausreicht,
um die vollen Quanteneffekte, die zur Renormierung der physikalischen Masse fithren, zu
beriicksichtigen.

Abschlieflend lasst sich sagen, dass die funktionale Renormierungsgruppe so erweitert werden
kann, dass sie auf supersymmetrische Theorien anwendbar ist und fiir diese Theorien quanti-
tative Aussagen liefert. Allerdings erzwingt die Erhaltung der Supersymmetrie eine Mischung
verschiedener Impulspotenzen in der trunkierten Wirkung. Dies fithrt dazu, dass dass insbeson-
dere im Bereich grofierer Kopplungsstarken hohere Ordnungen in der Trunkierung benétigt
werden. Es miissen also hohere Potenzen des Hilfsfeldes mit ihren supersymmetrischen Partnern

beriicksichtigt werden.



Danksagung

An erster Stelle gilt mein Dank Prof. Dr. Andreas Wipf fiir die gute Betreuung und Zusammenarbeit
sowie die Moglichkeit, dieses interessante und fruchtbare Thema zu bearbeiten. Er hat mir stets
wichtige Impulse und viele Freiraume in meiner Forschung gegeben.

An zweiter Stelle danke ich Prof. Dr. Holger Gies fiir die fachliche Unterstiitzung, die Beant-
wortung meiner vielen Fragen sowie die sehr ausfiihrlichen Einfithrungen in die Funktionale
Renormierungsgruppe. Dies hat wesentlich dazu beigetragen, dieses Thema erfolgreich bearbeiten
zu konnen.

Desweiteren gilt mein Dank Dr. Jens Braun fiir sein immer offenes Biiro, die vielen wertvollen
Anregungen, Hinweise und Diskussionen bei kleineren und gréfieren Fragen und Problemen.
Bedanken mochte ich mich bei ihm auch fiir das griindliche und gewissenhafte Korrekturlesen
dieser Arbeit.

Danken mochte ich Dr. Thomas Fischbacher fiir die erfolgreiche Zusammenarbeitam N = (2,2)
Wess-Zumino Modell. Ohne die Unterstiitzung bei der numerischen Losung der auftretenden
Differentialgleichung wiren die Ergebnisse, die in dieser Arbeit dargestellt sind, nicht moglich
gewesen.

Dr. Georg Bergner danke ich fiir die vielen Diskussionen iiber die supersymmetrischen
Flussgleichungen sowie den kritischen Kommentaren und Anmerkungen zu dieser Arbeit.

Fir das Gelingen dieser Arbeit wichtig waren auch die Diskussionen mit den Mitgliedern
der Arbeitsgruppe Quantenfeldtheorie, hier sind insbesondere zu erwdhnen Christian Wozar,
Dr. Tobias Késtner sowie Dr. Ulrich Theis. Auch fiir das Korrekturlesen sei ihnen gedankt.

Weiterhin mochte ich mich bei Dr. Daniel Litim fiir Diskussionen tiber den Zusammenhang
zwischen Flussgleichungen mit und ohne Supersymmetrie bedanken.

Auch denen, die die Arbeit Korrektur gelesen haben, méchte ich fiir ihre kritischen Kommentare
danken, die geholfen haben, Argumentationsstrukturen klarer zu fassen und Fehler zu beseitigen.
Hier sei Dr. Philipp Hofter von Loewenfeld, Lukas Janssen, Dr. Felix Karbstein und Marco Schéfer
sehr gedankt.

Zu Dank verpflichtet bin ich Dr. Hendrik Hoeth fiir die Hilfe bei der typographischen Gestaltung
der Dissertation und dafiir, dass er mir hilfreiche BKTEX-Pakete zur Verfiigung gestellt hat.

Der Studienstiftung des deutschen Volkes danke ich fiir die weitreichende finanzielle Unter-
stiitzung wihrend meiner Promotionsphase und dem DFG Graduiertenkolleg GRK 1523/1 fiir die
Bereitstellung von Reisemitteln.

Mein grofiter Dank gilt meinem Ehemann Sven Marten fiir seine Unterstiitzung in dieser

gerade am Ende der Dissertation nicht immer einfachen Zeit.






Ehrenwortliche Erklirung

Ich erkléare hiermit ehrenwortlich, dass ich die vorliegende Arbeit selbstandig, ohne unzuldssige
Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel und Literatur angefertigt
habe. Die aus anderen Quellen direkt oder indirekt {ibernommenen Daten und Konzepte sind
unter Angabe der Quelle gekennzeichnet. Ergebnisse, die in Zusammenarbeit mit den Mitgliedern
des Lehrstuhles fiir Quantenfeldtheorie in Jena und anderen Kooperationen entstanden sind,
sind in der Arbeit entsprechend benannt.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit
nicht beteiligt. Insbesondere habe ich hierfiir nicht die entgeltliche Hilfe von Vermittlungs-
bzw. Beratungsdiensten (Promotionsberater und andere Personen) in Anspruch genommen.
Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen fiir Arbeiten erhalten, die
im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder dhnlicher Form einer
anderen Priifungsbehorde vorgelegt.

Die geltende Promotionsordnung der Physikalisch- Astronomischen Fakultét ist mir bekannt.

Ich versichere ehrenwortlich, dass ich nach bestem Wissen die reine Wahrheit gesagt und

nichts verschwiegen habe.

Jena, January 16, 2011

Franziska Synatschke-Czerwonka









Publikationen

2007 Franziska Synatschke, Andreas Wipf, Christian Wozar
Spectral Sums of the Dirac Wilson Operator and their relation to the Polyakov loop
Phys. Rev. D75(2007) 114003, hep-lat/0703018

2008 Franziska Synatschke, Andreas Wipf, Kurt Langfeld
Relation between chiral symmetry breaking and confinement in YM-theories
Phys. Rev. D77 (2008) 114018, arXiv:0803.0271 [hep-lat]

Franziska Synatschke, Georg Bergner, Holger Gies, Andreas Wipf
Flow Equation for Supsymmetric Quantum Mechanics
JHEPo03 (2009) 028, arXiv:0809.4396 [hep-th]

2009 Holger Gies, Franziska Synatschke, Andreas Wipf
Supersymmetry breaking as a quantum phase transition
Phys. Rev. D80 (2009) 101701(R), arXiv:0906.5492 [hep-th]

Franziska Synatschke, Holger Gies, Andreas Wipf
Phase Diagram and Fixed-Point Structure of two-dimensional N = 1 Wess-Zumino
Models

Phys. Rev. D80 (2009) 085007, arXiv:0907.4229 [hep-th]

Franziska Synatschke, Holger Gies, Andreas Wipf
The Phase Diagram for Wess-Zumino Models
Proceedings for SUSY o9, Boston, MA, arXiv:0909.4189 [hep-th]

2010 Franziska Synatschke, Jens Braun, Andreas Wipf
N =1 Wess Zumino Model in d = 3 at zero and finite temperature
Phys. Rev. D81(2010) 125001, arXiv:1001.2399 [hep-th]

Franziska Synatschke, Thomas Fischbacher, Georg Bergner

The two dimensional N = (2,2) Wess-Zumino Model in the Functional Renormalization
Group Approach

Phys. Rev. D82 (2010) 085003, arXiv:1006.1823 [hep-th]





