
Functional Renormalisation Group

Equations for Supersymmetric Field

Theories

Dissertation

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Physikalisch-Astronomischen Fakultät

der Friedrich-Schiller-Universität Jena

von Dipl.-Phys. Franziska Synatschke-Czerwonka

geboren am 17.07.1982 in Lemgo (NRW)





Gutachter:

1. Prof. Dr. Andreas Wipf, Jena

2. Prof. Dr. Martin Reuter, Mainz

3. Dr. habil. Daniel Litim, Sussex, UK

Tag der Disputation: 11.01.2011

i





Contents

1 Introduction 3

2 Functional renormalisation group 7

2.1 Basics of QFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 �e Renormalisation Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Spontaneous symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Derivation of the �ow equation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Properties of the �ow equation . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Truncations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Spectrally adjusted �ows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Recovering perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Basics of supersymmetry 19

3.1 Supersymmetry algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Superspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Spontaneous breaking of supersymmetry . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Kähler potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Supersymmetric quantummechanics 23

4.1 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 �e supersymmetric �ow equation . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Local potential approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Next-to-leading order approximation . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Beyond next-to-leading order . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Di�erences between theories with and without supersymmetry . . . . . . . . . 36
4.7 Lessons to be learnt from SuSy-QM . . . . . . . . . . . . . . . . . . . . . . . . 38

5 �e two-dimensionalN = 1Wess-Zumino model 39

5.1 �eWess-Zumino model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 �e supersymmetric �ow equations . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 �e local potential approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1



Contents

5.4 Fixed-point analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 �e Gaußian Wess-Zumino model . . . . . . . . . . . . . . . . . . . . . . . . 53

6 �e three-dimensionalN = 1Wess-Zumino model 59

6.1 �eWess-Zumino model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 �e supersymmetric �ow equations at zero temperature . . . . . . . . . . . . . . 61
6.3 Finite-temperature �ow equations . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 �e two-dimensionalN = (2, 2) Wess-Zumino model 75

7.1 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Supersymmetric �ow equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3 �e renormalised mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4 Beyond next-to-leading order . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8 Conclusions and outlook 89

A �e Cli�ord algebra 93

B Technical details for SuSy-QM 95

B.1 Inversion of the propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.2 Flow equations from the bosonic and fermionic part . . . . . . . . . . . . . . . 96

C Flow equations in Minkowski space 97

D Flow equations at �nite temperature 99

E Technical details for theN = (2, 2) Wess-Zumino model 101

E.1 Two dimensional EuclideanN = (2, 2) superspace . . . . . . . . . . . . . . . . . 101
E.2 Flow equation for the momentum-dependent wave-function renormalization . 103
E.3 Determination of the renormalized mass . . . . . . . . . . . . . . . . . . . . . 105

F Diagrammatic description of the �ow equation 107

2



1 Introduction

Quantum �eld theory [1, 2] is an important part of modern fundamental research. Quantum
electrodynamics (QED), developed in the 1940’s and the standard model of elementary particles,
which was developed in the 1970’s, have proven to be very successful. Predictions from QED have
been veri�ed experimentally with very high precision and, up to now, the predictions from the
standard model have been con�rmed by all accelerator experiments.
A fundamental concept of the standard model are symmetries. �ey led to the classi�cation

of the ‘elementary particle zoo’ in the 1960’s. With the help of symmetries the spectrum of
‘elementary’ hadronic particles could be understood as bound states of just a few basic building
blocks, the quarks [3, 4]. Gauge symmetries enforce the existence of gauge bosons, elementary
particles that mediate the forces in the standard model.
Although the standard model has been very successful, there are still open questions. To name

just a few, these are the hierarchy problem, that the standard model has no dark matter candidate
and that it has not been uni�ed with gravity. �ese are some of the reasons why the standard
model is not considered a fundamental theory but rather an e�ective theory of electroweak and
strong interactions. We thus are in need for a theory beyond the standard model. For a review of
such theories see e. g. the article by N. Polonsky [5].
With present knowledge supersymmetry, which combines the spacetime symmetry with

a symmetry between bosons and fermions, is a promising candidate for an extension of the
standard model. Indeed, it is the only known symmetry that allows to combine internal and
external symmetries in a nontrivial way. �erefore it is important to gain deeper insight into
supersymmetric theories.
Supersymmetry (SuSy) has become a research �eld in itself and is now an important ingredient

in most theories that go beyond the standard model. Supersymmetry predicts that for every
elementary particle a superpartner exists. �ese are particles that have the same quantum
numbers as the particles themselves except for the spin. If SuSy is unbroken the superpartners
have the same mass as the original particles. Since these superpartners have not been observed
yet, supersymmetry has to be broken in nature. If supersymmetry is broken the superpartners
can be much heavier than the particles themselves explaining why they have not been found
yet in accelerator experiments so far. Up to now there has been no experimental evidence for
supersymmetry. However the hope is that it will be found in new experiments done at the LHC at
CERN.
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1 Introduction

For the analysis of supersymmetric extensions of the standardmodel simplermodels are studied,
e. g. Wess-Zumino models or supersymmetric sigma models [6, 7, 8]. Wess-Zumino models have
a very simple structure since there are no gauge degrees of freedom but only Yukawa interactions.
Nevertheless they exhibit all generic properties of supersymmetric theories. Two-dimensional
sigma models are very similar to four-dimensional gauge theories which represent an essential
part of the standard model. Of special interest are phase transitions, especially the order of the
phase transition at critical points.
However, all the models mentioned above are in general not analytically solvable and approxi-

mation schemes are needed. Widely used approximation schemes su�er from the problem that
they either break supersymmetry explicitly or, if they preserve supersymmetry, the predictions
for phase transitions and critical exponents are not correct because �uctuations of light degrees
of freedom are not treated properly. For example, the mean �eld approximation, which is a
good approximation for phase transitions in higher dimensions, breaks supersymmetry due to
the di�erent treatment of fermions and bosons [9]. �e loop calculation can be extended in a
supersymmetric way, but it is not possible to obtain results on phase transitions [10, 11].
Non-perturbative results are o�en obtained using lattice calculations where the spacetime

continuum is replaced by a lattice. Although it is a very successful and powerful method,
there are still di�culties in formulating supersymmetry on the lattice. One problem is that
Lorentz-symmetry is explicitly broken by the lattice implying broken supersymmetry as well.
However, in recent years a lot of progress has been made in realising supersymmetry on the lattice,
see e. g. [12, 13, 14, 15, 16].
In order to determine the in�uence of supersymmetry breaking in the lattice calculation on the

results, manifestly supersymmetric approximation schemes are needed and should be compared
to lattice calculations. Such an approach is provided by the functional renormalisation group
equations (FRG) [17, 18]. �ey deal with the physics of scales and allow to understand the physics
at large scales (small momenta) in terms of fundamental interactions at small scales. �is is
of particular interest in elementary particle physics where it is desired to gain a macroscopic
description of atomic nuclei out of the simple laws that govern the fundamental interactions.
�e functional renormalisation group equations have been successfully applied to a wide

variety of phenomena, ranging from critical phenomena and phase transitions to applications in
�nite temperature �eld theory, QCD and quantum gravity, for reviews see [19, 20, 21, 22, 23, 24].
For the description of macroscopic behaviour there exist powerful tools such as statistical

descriptions whereas the microscopic physics is o�en governed by simple laws. In fact, there is a
gap between the microscopic and macroscopic description that has to be bridged. �e functional
renormalisation group allows to integrate out �uctuations in a systematic way. It acts like a
microscope where the resolution can be continuously changed.
With the functional renormalisation group correlation functions can be calculated. �e latter

contain all information about the physical system a�er the �uctuations have been integrated

4



out. �e exact equations are derived as formal identities from the functional integral that de�nes
the theory. �e solution of the �ow equation corresponds to a trajectory in theory space, that
is the space of all action functionals. Di�erent types of these equations have been formulated
[25, 26, 27, 28, 29, 30, 31] but the application to non-perturbative systems is hindered by the
complexity of the functional di�erential equations. An exact equation that provides simple
access to systematic expansions is a formulation based on the e�ective action introduced by C.
Wetterich [17, 18].

Up to now the extension of the FRG to supersymmetric theories, which is the aim of this
thesis, has been pursued only in a very few attempts. In principle, two approaches are possible
for such an extension. On the one hand, we could take care of the symmeries with the aid of
Ward-Takahashi identities as it has also been done in studies of Yang-Mills theories, see e. g.
[18, 22, 32, 33, 34, 35] . On the other hand, we could construct approximations schemes such that
supersymmetry is manifestly preserved during the RG �ow. We will follow the latter approach.
In this thesiswe formulate the�owequations in superspace. �is guarantees that supersymmetry

will not be broken by the regulator or the truncation. �is ansatz has not been pursued in
great detail in earlier studies, in most cases only perturbative results have been obtained. First
steps in extending the FRG to supersymmetry have been accomplished by F. Vian and M.
Bonini [36, 37, 38], B. Geyer and S. Falkenberg [39] as well as by K. Aoki and co-workers [40].
Applications of non-perturbative renormalisation group methods on supersymmetric theories
can be found in the papers by S. Arnone and co-workers [41, 42]. More recently, a general theory
of scalar super�elds which include the Wess-Zumino model with a Polchinsky-type RG has
been formulated by O. Rosten [43, 44]. AWilson e�ective action for Wess-Zumino models by
perturbative iteration of the functional RG has been formulated by H. Sonoda and K. Ulker [45].
�is work is organised as follows: In chapter 2 the basic facts of quantum �eld theory are

collected and the functional renormalisation group equations are derived. Chapter 3 gives a short
introduction to the main concepts of supersymmetry that are used in the subsequent chapters.
In chapter 4 the functional RG is employed for a study of supersymmetric quantum mechanics,
a supersymmetric model which was studied intensively in the literature. A lot of results have
previously been obtained with di�erent methods and we compare these to the ones from the FRG.
We investigate theN = 1Wess-Zumino model in two dimensions in chapter 5. �is model shows
spontaneous supersymmetry breaking and an interesting �xed-point structure. Chapter 6 deals
with the three dimensionalN = 1Wess-Zumino model. Here we discuss the zero temperature
case as well as the behaviour at �nite temperature. Moreover, this model shows spontaneous
supersymmetry breaking, too. In chapter 7 the two-dimensionalN = (2, 2) Wess-Zumino model
is investigated. For the superpotential a non-renormalisation theorem holds and thus guarantees
that the model is �nite. �is allows for a direct comparison with results from lattice simulations.
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1 Introduction

�e compilation of this work is solely due to the author. However, parts of the results have been
obtained in collaboration with colleagues from research groups in Jena, Münster and Southampton.
�e octave program used to calculate the exact values of the energy of the �rst excited state in
chapter 4 has been provided by A. Wipf. �e perturbative calculations of the propagator in chapter 7
have been done by G. Bergner (now University of Münster). �e Python program used to calculate
the momentum-dependent wave-function renormalisation has been developed by T. Fischbacher
(University of Southampton).
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2 Functional renormalisation group

In this chapter we sketch the main aspects of the functional renormalisation group (FRG). As
the FRG is formulated in Euclidean space-time, we will only discuss this case. For the case of a
Minkowskian space-time the reader is referred to the numerous textbooks on QFT, for example
the one by M. E. Peskin and D. V. Schroeder [1], S. Weinberg [2, 46] or J. Zinn-Justin [47]. For an
introduction to critical phenomena and renormalisation group, see the textbook by J. Cardy [48],
for reviews on the FRG see e. g. the paper by J. Berges, N. Tetradis and C. Wetterich [17] or
H. Gies [18].

2.1 Basics of QFT

�e conventions in this chapter follow [1, 18] if not stated otherwise. �e basic objects in quantum
�eld theory are correlation functions as they contain all physical information about the theory.
�e correlators or n-point functions are de�ned as the product of n �elds located at di�erent
points in space-time averaged over the quantum �uctuations, i. e. all possible �eld con�gurations.
In Euclidean �eld theories, the weight of a �eld con�guration is the exponentiated action

〈φ(x1) . . .φ(xn)〉 =N
∫

Dφ e−S[φ] φ(x1) . . .φ(xn) (2.1)

with normalisation constantN . In the following discussion we will concentrate on scalar �elds,
a�erwards we will discuss the generalisation for fermionic �elds.
All n-point correlation functions can be obtained from the generating functional Z[J] with J

being an external source. �e generating functional is de�ned through

Z[J] =
∫

Dφ e−S[φ]+
∫
x Jφ (2.2)

with the shorthand notation
∫
x
Jφ =

∫
ddx J (x)φ(x) for the external source term. Functional

di�erentiation with respect to the external source yields

〈φ(x1) . . .φ(xn)〉 = 1
Z[0]

(
δnZ[J]

δJ (x1) . . .δJ (xn)

)∣∣∣∣
J=0

. (2.3)

With the generating functional Z[J] another important quantity, the generating functionalW[J]
of the connected n-point functions, is de�ned asW[J] = ln(Z[J]).�e Legendre transformation
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2 Functional renormalisation group

ofW[J] yields the e�ective action. It is de�ned as

Γ[ϕ] = sup
J

(∫
x

Jϕ −W[J]
)
. (2.4)

Because of the properties of the Legendre transformation, the e�ective action is always a convex
functional. For a detailed discussion of the e�ective action and its properties see [49]. Its
maximum at J = Jsup gives the vacuum expectation value of the microscopic or classical �eld φ:

0 =
δ

δJ (x)

(∫
Jϕ −W[J]

) ⇒ ϕ =
δW[J]
δJ

=
1

Z[J]
δZ[J]
δJ

= 〈φ〉J . (2.5)

�e macroscopic �eld ϕ is the expectation value of the microscopic �eld φ in the presence of the
source J . �e equations of motion for the macroscopic �eld read

δΓ[ϕ]
δϕ

= −
∫
y

δW[J]
δJ (y)

δJ (y)
δϕ(x)

+
∫
y

δJ (y)
δϕ(x)

ϕ(y) + J (x) = J (x) (2.6)

For constant �elds the e�ective action is an extensive quantity and a�er scaling out the volume,
the e�ective potential is given by [50]

Ve� (ϕ) = V−1
d · Γ[ϕ]. (2.7)

As the e�ective potential is the part of the e�ective action that contains no derivatives, it is a
convex function as well. For a vanishing source, the e�ective action coincides with the vacuum
energy. Ve� (ϕ) therefore is the energy density of the corresponding state. If symmetries are not
spontaneously broken (cf. section 2.3) the vacuum state of the theory is given by the absolute
minimum of the e�ective potential. We will discuss the case of spontaneously broken symmetry
below.
�e e�ective action is the generating functional of the one-particle-irreducible correlation

functions. �is means that the e�ective action contains the complete information about the
quantum �eld theory. For example the vacuum state is given by the minimum of the e�ective
potential, whether symmetries of the Lagrangian are preserved or not depends on the location of
the minima. �e second derivative of the e�ective action gives the inverse propagator and the
poles of the propagator determine the masses of the particles. From higher-order derivatives
of the e�ective action the one-particle-irreducible amplitudes can be calculated which yield the
S-matrix elements.

From the generating functional an equation for the e�ective action can be obtained:

e−Γ[ϕ] =
∫

Dφ e−S[ϕ+φ]+
∫ δΓ[ϕ]

δϕ φ (2.8)

�is equation can only be solved exactly for very special cases, e. g. the Schwinger model.
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2.2 �e Renormalisation Group

A very successful approximation is a vertex expansion which leads to the Dyson-Schwinger
equations [51, 52, 53], which consist of in�nitely many coupled integral equations. �ey are the
equations of motion for the Green functions. For reviews on the Dyson-Schwinger equations see
e. g. the works by R. Alkhofer and L. v. Smekal [54] or C. Fischer [55].

In this work we follow a di�erent approach based on the concept of renormalisation.

2.2 �e Renormalisation Group

�e name renormalisation group (RG) has been invented in the 1950s [56, 57], as there was hope
that all fundamental physics could be expressed through symmetry and group theory rather
than dynamics. At �rst it was applied to the high energy behaviour of renormalised quantum
electrodynamics. K. Wilson realised that it could be put to work for a much larger �eld of
applications, namely the �eld of critical phenomena [25, 26, 58]. Today it is used for a large class of
physical problems such as critical phenomena with long-distance correlations or �uid turbulence.

Wilson’s idea was to start at a microscopic theory at large momentum scale Λ and to integrate
out the �uctuations momentum shell by momentum shell. �is leads to scale-dependent actions
that are connected through continuous RG transformations. �e RG �ow describes how the scale-
dependent couplings change under the RG transformation, see e. g. the review by K. G. Wilson
and J. B. Kogut [27] for a discussion of the renormalisation group and critical phenomena. For a
historical inspired introduction to the RG the reader is referred to Wilson’s Nobel Prize lecture
[59] and the review by M. Fisher [60].

�e renormalisation idea involves a reexpressing of parametersK of the theory through new
parametersK′without changing its physical content. �iswas �rst introduced byKadano� [61, 62].
Such a transformation has the form {K′} =R

({K}) withR depending on the transformation
and the rescaling parameter. At a �xed point of the transformation {K} = {K³} and for R
di�erentiable at the �xed point the transformations can be linearised around the �xed point,

K′
a −K³

a =
∑
b

Tab(Kb −K³
b ), (2.9)

with Tab =
(
∂K′

a/∂Kb

)∣∣∣
K=K³

. �e eigenvalues of T are denoted by λI . �e le� eigenvectors are
denoted by {eI} such that ∑

a

eIaTab = λIeIb. (2.10)

In general, the matrix T does not need to be symmetric and le� and right eigenvectors do not
need to be identical.

�e scaling variables uI ≡ ∑
a e

I
a(Ka −K³

a ) play an important role in the description of critical
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2 Functional renormalisation group

phenomena. �ey transform multiplicatively at the �xed point,

u′I = λIuI . (2.11)

To distinguish between di�erent kinds of �xed points, the notation λI = bθI is introduced, where
b is the rescaling parameter and θI is the renormalisation group eigenvalue. If θI > 0, uI is called a
relevant direction, because repeated renormalisation iterations will drive the system away from the
�xed point. For θI < 0 ui is called irrelevant, as it will tend to zero during the RG transformations.
For θI = 0 uI is calledmarginal and it cannot be decided from the linear approximation whether
uI is driven towards the �xed point or away from it.
For an N-dimensional system near the �xed point which has n relevant eigenvalues there are

N − n irrelevant directions. �ey form an (N − n)-dimensional hypersurface. All points on this
hypersurface are attracted towards the �xed point. �is surface is called critical hypersurface
and the long-distance behaviour of systems whose parameters sit on this surface is controlled
by the �xed point. For the system to end up in this hypersurface, a �ne tuning of the n relevant
directions is required.
All critical models that �ow into the same �xed point make up a universality class, i. e. they

show the same quantitative behaviour near a phase transition. �is behaviour is governed by
the long-range �uctuations and is independent of the details of the speci�c system. Universality
means that near a �xed point the behaviour does not depend on these details.
�e rescaling factor b depends on the RG transformation used and not on the model. A

description of the critical behaviour, in which b does not enter explicitly, is given in terms of the
β-functions. For this, an in�nitesimal transformation with b = 1 + δl and δl Ø 1 is considered.
�is leads to an in�nitesimal transformation of the couplings,

Ka → Ka +
dKa

dl
δl +O(δl2), (2.12)

and the RG transformations can be written in in�nitesimal form as

dKa

dl
= −βa

({K}) (2.13)

with βa the renormalisation group β-function. �e �xed points are the zeros of the β-function and
the matrix T takes the form

Tab = δab −
∂βa
∂Kb

δl. (2.14)

�e renormalisation group eigenvalues are

(1 + δl)θI Þ 1 + θIδl. (2.15)
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2.3 Spontaneous symmetry breaking

�erefore they are given by the eigenvalues of the matrix −∂β/∂Kb at the zero of the β-function.
One form that incorporates the idea of the RG equations is the Callan-Symanzik equation

[63, 64], which is a di�erential equation for the evolution of the n-point correlation functions
under variation of an energy scale parameter.
Other RG equations have been derived by F. J. Wegner and A. Houghton [28] as well as by

J. Polchinski [30]. Here the approach based on the e�ective average action as introduced by
C. Wetterich [65] is followed.

Two �xed points of Ising-like systems1 are of special interest in the following chapters. One of
these is the so-called Gaußian �xed point, which describes a free, non-interacting theory. Its
name is derived from the fact that this �xed point has a Gaußian probability distribution. For a
detailed discussion of this type of �xed point see the textbook by J. Zinn-Justin [47].
In space-times with less than four dimensions also a nontrivial �xed point exists, called the

Wilson-Fischer �xed point [66]. It has been found by an ε-expansion, in which the dimension of
space-time is taken to be a continuous parameter. �e vicinity of four dimensions is explored by
taking the deviation from four dimensions, ε = 4 − d, as an expansion parameter.

2.3 Spontaneous symmetry breaking

Systems that exhibit spontaneous symmetry breaking are systems whose dynamics are invariant
under some symmetry but the ground state is not. �e most prominent example is a ferromagnet
at low temperature. Its Hamiltonian is rotationally invariant. In an external magnetic �eld the
elementary magnets are oriented along the magnetic �eld lines and keep their orientation even
a�er the external �eld is turned o� such that the spherical symmetry of the material is broken. If
the material is heated above a speci�c temperature the orientation of the elementary magnets is
lost and the spherical symmetry is restored.
For a system with spontaneous symmetry breaking, the potential in the Lagrangian does not

have one uniquely determined minimum, instead it has degenerate minima with the same energy.
�e e�ective potential in this case is not strictly convex anymore but is �at between degenerate
minima.
For every continuous global symmetry in d > 2 that is spontaneously broken Goldstone’s

theorem states that there must be a massless particle contained in the theory [67]. If the massless
particles are bosons, they are called Goldstone bosons. For example, pions can be interpreted as
(approximate) Goldstone bosons, see e. g. [46] for a discussion.

A proof of this theorem can be found in [1, 68]. In general, a broken global symmetry leads to
a Goldstone mode with the same quantum numbers as the generator of the symmetry. As we
shall see in the next chapter, this implies that the Goldstone mode for supersymmetry breaking is
fermionic [69].

1�e Ising model is a simple model that is used to describe a ferromagnet.

11



2 Functional renormalisation group

2.4 Derivation of the �ow equation

To compute the e�ective action in the FRG approach the quantum �uctuations are integrated out
in successivemomentum shells [65]. �e e�ective average action generalises the block spin picture
introduced by Kadano� [62] to continuous space [70]. �e aim of this section is to construct
an equation for an interpolating action, the e�ective average action Γk, with a momentum-shell
parameter k. We restrict ourselves to bosonic degrees of freedom, the generalisation to fermionic
or gauge degrees of freedom is straightforward as we shall discuss below.

�e interpolating action has to ful�l the conditions Γk→Λ = Sbare and Γk→0 = Γ and it is
constructed from a scale dependent generating functional

Zk[J] ≡ ∫
Dφ e−S[φ]+

∫
x Jφ−∆Sk[φ] . (2.16)

�e scale-dependent cuto� action is chosen to be

∆Sk[φ] =
1
2

∫
ddq
(2π)d

φ(−q)Rk(q)φ(q). (2.17)

Rk is a regulator function and is required to have the following properties:

• Rk(q) → 0 for k → 0 so thatWk→0[J] =W[J]

• Rk(q) → ∞ for k → Λ so that Γk→Λ = S[ϕ]

• Rk(q) > 0 for q2 → 0 so that Rk serves as an infrared regulator

Typical bosonic regulators are

Rk =
q2

eq2/k2 −1 or Rk =
(
k2 − p2

)
θ
(
k2

p2
− 1

)
. (2.18)

With this scale-dependent cuto� action we introduce a modi�ed Legendre transformation in
order to obtain the scale-dependent e�ective action

Γk[ϕ] = −Wk[J] +
∫
x

Jϕ −∆Sk[ϕ] (2.19)

with the macroscopic �eld ϕ de�ned by

ϕ(x) =
δWk[J]
δJ (x)

= 〈φ(x)〉J . (2.20)
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2.4 Derivation of the �ow equation

Taking the derivative ∂t = k∂k with respect to the ‘RG-time’ t = ln
(
k/Λ), yields

∂tΓk[ϕ] = −∂tWk[J] + ∂t
∫
x

Jϕ − ∂t∆Sk[ϕ] (2.21)

�e source J is scale-independent and we calculate the derivative ofWk[J] in the following:

∂tWk[J] = ∂t lnZk[J] =
1

Zk[J]

∫
Dφ

1
2

∫
q

φ ∂tRkφ e−S[φ]+
∫
x φJ−∆Sk[φ] (2.22)

=
1

2Zk[J]

∫
q

∂tRk

∫
Dφ φφ e−S[φ]+

∫
x φJ−∆Sk[φ] =

1
2Z[J]

∫
q

∂tRk
δ2Z[J]
δJδJ

= e−Wk
1
2

∫
q

∂tRk
δ2 eWk

δJδJ

Where the last term can be computed

δ2 eWk

δJδJ
=

δ
δJ

(
eWk

δWk

δJ

)
= eWk

δWk

δJ
δWk

δJ
+ eWk

δ2Wk

δJδJ
(2.23)

Inserting this back into the equation above yields

∂tWk[J] =e−Wk
1
2

∫
q

∂tRk

(
eWk

δWk

δJ
δWk

δJ
+ eWk

δ2Wk

δJδJ

)
= ∂t∆Sk +

1
2

∫
q

∂tRk
δ2Wk

δJδJ
. (2.24)

With this the e�ective action reads

∂tΓk[ϕ] =
1
2

∫
q

∂tRk
δ2Wk

δJδJ
. (2.25)

Now the term δ2Wk

δJδJ is expressed through the e�ective action. For this we need the functional
derivative of the e�ective action which yields the equation of motion

δΓk[ϕ]
δϕ(x)

= −
∫
y

δWk[J]
δJ (y)

δJ (y)
δϕ(x)

+
∫
y

δJ (y)
δϕ(x)

ϕ(y) + J (x) −
(
Rkϕ

)
(x) = J (x) −

(
Rkϕ

)
(x). (2.26)

Solving the above equation for J (x) and taking a functional derivative yields

δJ (x)
δϕ(y)

=
δΓ[ϕ]

δϕ(x)δϕ(y)
+ Rk(x, y). (2.27)

Together with the identity

δ(q − q′) = δϕ(q)
δϕ(q′) =

δ
δϕ(q′)

δWk[J]
δJ (q)

=
∫
q′′

δ2Wk[J]
δJ (q)δJ (q′′)

δJ (q′′)
δϕ(q′) (2.28)

this leads to

δ(q − q′) =
∫
q′′

δ2Wk[J]
δJ (q)δJ (q′′)

(
δ2Γk[ϕ]

δϕ(q′′)δϕ(q) + Rk

)
(2.29)
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2 Functional renormalisation group

such that

δ2Wk[J]
δJδJ

=
(
δ2Γk[ϕ]
δϕδϕ

+ Rk

)−1

. (2.30)

With this the �ow equation reads

∂tΓk[ϕ] =
1
2

∫
q

∂tRk

(
δ2Γk
δϕδϕ

+ Rk

)−1

=
1
2
Tr

[
∂tRk

(
δ2Γk
δϕδϕ

+ Rk

)−1
]
. (2.31)

In the denominator the regulator Rk serves as an infrared regulator as it suppress the massless
modes whereas the term ∂tRk in the numerator serves as an ultraviolet regulator.

As stated above, the generalisation of equation (2.31) to a number of scalar �elds and to
fermionic �elds is straightforward [71, 72, 73, 74]. In this case the trace is taken not only in
momentum space but over all internal and external indices as well. For fermionic theories it has
to be taken into account that the �rst derivative acts from the le� and the second from the right.
Also, instead of the trace the supertrace has to be taken. �us the �ow equation reads

∂tΓk =
1
2
STr

[(
Γ(2)
k + Rk

)−1
∂tRk

]
with

(
Γ(2)
k

)
ab
=

−→
δ
δϕa

Γk
←−
δ
δϕb

(2.32)

where the indices a,b summarise �eld components, internal and Lorentz indices, as well as
space-time or momentum coordinates.

In a block-matrix notation for the bosonic and fermionic sector the scale-dependent propagator
can be written as

(
Γ(2)
k + Rk

)−1
=

(
GBB GBF

GFB GFF

)
. (2.33)

�e regulator does not mix bosonic and fermionic degrees of freedom. In block-matrix notation
it reads

Rk =

(
RBB
k 0
0 RFF

k

)
. (2.34)

�us, we obtain the following result for the �ow equation:

∂kΓk =
1
2
TrGBB∂kRBB

k −
1
2
TrGFF∂kRFF

k (2.35)
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2.5 Properties of the �ow equation

2.5 Properties of the �ow equation

�e �ow equation has a simple one-loop structure, but in contrast to perturbation theory the fully
dressed propagators enter and not only the bare ones. �e one-loop structure is a consequence of
the cuto� action being quadratic in the �elds [75].

�e �ow equation is derived from the generating functional which is usually taken as the
starting point to de�ne a quantum �eld theory (QFT). As already stated in section 2.1 the e�ective
action contains all the information about the quantum �eld theory. �erefore it is also possible to
use the �ow equation and initial conditions as the starting point for the �eld theory because the
�ow equation de�nes a trajectory to the full quantum e�ective action.

�is trajectory lies in the so-called theory space, that is the space of all action functionals
spanned by all possible invariant operators of the �elds. �e trajectory is determined by the choice
of the regulator, which is a manifestation of the RG scheme dependence. Note that the trajectory
is a non-universal quantity. As long as the cuto� Λ can be removed, however, the endpoint
is unique and independent of the regulator if no approximations are made. Approximations
introduce a regulator dependence of the infrared observables, but for a good approximation this
dependence is small.

2.6 Truncations

It is in general not possible to solve the �ow equation analytically, and therefore approximations
have to be employed. �e most common ones [17, 18] are listed in this section.

�e vertex expansion is an expansion in the number of �elds which reads

Γk[ϕ] =
∞∑
n=0

1
n!

∫
ddx1 . . .ddxnΓ(n)

k (x1, . . . , xn)ϕ(x1) . . .ϕ(xn). (2.36)

�is approximation yields �ow equations for the vertex functions Γ(n)
k that interpolate between

the bare and the fully dressed vertices.

Another possibility is the operator expansion. �e e�ective action is made up from operators
with increasing mass dimensions. A particular type of this kind of expansion is the derivative
expansion [76, 77], which is an expansion in powers of the momentum. For scalar �eld theories it
reads

Γk[ϕ] =
∫

ddx
(
Vk(ϕ) +

1
2
Zk(ϕ)

(
∂µϕ

)2 +O
(
∂4

))
. (2.37)

Vk denotes the so-called e�ective potential, Zk is the wave-function renormalisation.
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2 Functional renormalisation group

In order to obtain a good approximation already from the �rst terms of the expansion, higher
derivative operators must have only a small in�uence compared to the operators of order one.
For this to be true the anomalous dimension η of the quantum �eld, that is the deviation of the
scaling law from the one expected from dimensional analysis, has to be small.
�e lowest order in the derivative expansion is called the local potential approximation (LPA).

To this order only the potential is taken to be scale-dependent. In addition, at the next-to-leading
order (NLO) a wave function renormalisation is taken into account. From the wave-function
renormalisation the anomalous dimension can be calculated with the relation

η = −∂t lnZk. (2.38)

In this work, mostly a derivative expansion is employed. However, we shall perform an
expansion in terms of super-covariant derivatives in order to preserve supersymmetry (see
section 4.2.2).

2.7 Spectrally adjusted �ows

Spectrally adjusted �ows are used mostly in gauge theories [22, 78, 79]. As we will need it later on
the main ideas are shortly sketched. For a more detailed discussion see e. g. [78]. Any truncation
selects a hypersurface in the space of all actions. A good truncation is one whose trajectory in the
hypersurface is close to the exact RG trajectory projected onto the hypersurface.
�e regulator can be improved with respect to this property if the full second functional

derivative of the e�ective action – evaluated in the presence a background �eld – instead of the
squared momentum is used in the argument. �is leads to an improvement because the spectrum
is not �xed but adjusted during the �ow. By including the full Γ(2)

k the regulator is adjusted to the
�ow of the spectrum.

2.8 Recovering perturbation theory

�e FRG contains all orders of perturbation theory [75, 80, 81]. To see this, the e�ective action is
expanded in a perturbation series

Γk = S +
∑
n

∆Γn−loopk . (2.39)

Considering just the classical action on the right hand side, the �ow equation reads

∂tΓ
one−loop

k =
1
2
Tr

1
S(2)[ϕ] + Rk

∂tRk =
1
2
Tr ∂t ln

(
S(2)[ϕ] + Rk

)
(2.40)
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2.8 Recovering perturbation theory

Integration with respect to k yields

∆Γone−loopk [ϕ] = ∆Γone−loopΛ [ϕ] +
∫ k

Λ

dk′
k′ ∂′tΓone−loopk′ [ϕ] (2.41)

Inserting the above expression leads to

∆Γone−loopk [ϕ] = ∆Γone−loopΛ [ϕ] +
1
2
Tr

[
ln

(
S(2)[ϕ] + Rk

)]
−Tr

[
ln

(
S(2)[ϕ] + RΛ

)]
(2.42)

�e cuto�-dependent terms regularise the expression whereas the k-dependent term is �nite.
Renormalisation implies that the scale-dependent part ∆Γk is independent of the cuto� Λ. In this
scheme it corresponds to adjusting the Λ independence of ∆Γk with k �= Λ (regularisation) and
�xing the Λ independent parts of ∆ΓΛ (renormalisation conditions).

Higher loop orders can be calculated in a similar fashion [75, 80].
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3 Basics of supersymmetry

In the early 1970s supersymmetry (SuSy) was invented by Golfand and Likhtman [82], followed
by Akulov and Volkov [83, 84] and independently in the context of string theory as a symmetry
of two-dimensional world-sheet theory [85, 86, 87, 88]. Later it was realised that SuSy could be a
symmetry of four-dimensional quantum �eld theory and might be important for particle physics.
One reason for introducing supersymmetry is that divergences due to radiative corrections are

less severe in supersymmetric theories because of cancellations between bosonic and fermionic
loops. Supersymmetry provides a dark matter candidate and might solve the hierarchy problem.
Nevertheless SuSy cannot be the full answer since it has to be broken at low energy scales.
Supersymmetry became popular when it was realised by Haag, Łopuszański and Sohnius [89]

that it allows to circumvent the prerequisites of the Coleman-Mandula theorem [90]. �is theorem
states that in a theory with a non-trivial scattering matrix in more than 1 + 1 dimensions the
only possible conserved quantities that transform as tensors under the Lorentz group are the
generators of the Poincaré group and generators of internal symmetries. Haag, Łopuszański and
Sohnius proved [89] that fermionic symmetry operators allow for a uni�cation of space-time and
internal symmetries.
�e main ideas of supersymmetry will be sketched here without going too deep into the

technical details, only general aspects of supersymmetry are presented. �ere are a lot of excellent
textbooks, review articles and lecture notes available, for example the review by M. F. Sohnius
[91], the textbooks by S. Weinberg [92] and P. West [93], the lecture notes by A. Wipf [94, 95] and
A. Bilal [96] or an article by Y. Shadmi [97]. All these articles were used for this chapter, and the
reader is referred to them for a more thorough introduction to supersymmetry. �e technical
details of the speci�c models that are investigated are assembled in the respective chapters.

3.1 Supersymmetry algebra

�e supersymmetry algebra enlarges the Poincaré algebra by generators Qi and Q̄i, called
supercharges, with i = 1 . . .N . �e SuSy generators transform as spinors under the Lorentz group,
obey anticommutation relations among each other and commute with translations. �e SuSy
generators transform bosons into fermions and vice versa:

Q |boson〉 = |fermion〉 and Q |fermion〉 = |boson〉 (3.1)
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3 Basics of supersymmetry

One of the generatorsQ and Q̄ lowers the spin by 1/2 the other raises it by 1/2. �e anticommutator
of two successive SuSy transformations Qi and Q̄i acts as a translation.

�e supersymmetry algebra contains the Poincaré algebra and as each irreducible repre-
sentation of the Poincaré algebra corresponds to a particle, each irreducible representation of
a supersymmetry algebra corresponds to several particles that are related by supersymmetry
transformations. All these particles form a supermultiplet. Successively applying all generators
Q1 to QN on the particle with the largest spin the supermultiplet can be constructed. Without
gravity, the largest spin in a renormalisable quantum �eld theory is one, restricting the number of
supercharges in four dimensions to N ≤ 4. For a theory with gravity we have N ≤ 8 because
gravity cannot consistently couple to spins larger than two.

Because the supercharges commute with the generator of translations, [Q,P2] = 0, all particles
in a supermultiplet have the same mass. �e energy of the particles is always non-negative and if
supersymmetry is unbroken the ground state energy is always zero. A supermultiplet contains
the same number of bosonic and fermionic degrees of freedom. For proofs see e. g. [96].

In the following mostly the N = 1 scalar multiplet in various dimensions is considered. It
contains a bosonic �eld ϕ which can be real or complex depending on the space-time dimension,
a Majorana fermion ψ and an auxiliary �eld F . �e latter is called an auxiliary �eld because it has
algebraic equations of motion. An action that contains the auxiliary �eld is called an o�-shell
action because the supersymmetry algebra closes without taking into account the equations of
motion. An action where the auxiliary �eld is integrated out is called an on-shell action because
the supersymmetry algebra closes only when the equations of motion are used.

3.2 Superspace

Superspace, which was introduced by A. Salam and J. Strathdee [98], is a formalism in which
supersymmetry is inherently manifest. Analogue to three-dimensional Euclidean space which is
extended to four-dimensional Minkowski space for Lorentz invariant theories, Minkowski space
(or Euclidean space) is extended to superspace for supersymmetric theories. In this section only
N = 1 superspace which is generated by one supercharge is discussed. For the formulation of a
superspace with two supercharges see e. g. [93] and appendix E.1.

�e elements of superspace are super�eldswhich combine the components of the supermultiplet.
�ese are �elds Φ(x,θ, θ̄) that depend on the space-time coordinates x and Grassmann variables
θ and θ̄. �erefore in superspace anticommuting coordinates are added to the commuting
coordinates of space-time. In general the SuSy algebra is reducible. In order to reduce the degrees
of freedom in a super�eld, various constraints are applied. One o�en demands that the super�eld
has to be real. �e expansion of the super�eld Φ in θ and θ̄ reads

Φ(x,θ, θ̄) = ϕ(x) + θ̄ψ(x) + ψ̄(x)θ + θ̄θF (x). (3.2)

20



3.3 Spontaneous breaking of supersymmetry

�e SuSy transformations for the component �elds have the structure

δϕ ∼ ψ, δψ ∼ ∂ϕ + F , δF ∼ ∂ψ. (3.3)

�e super�eld has too many degrees of freedom. In order to reduce these, the super�eld has to
obey constraints that are compatible with supersymmetry, i. e. they have to anticommute with
the supercharges. �e supercharges D and D̄ ful�l these requirements so they are used to put
constraints on the super�eld.

In superspace it is straightforward to construct supersymmetric actions. For this it is needed
that the product of super�elds is again a super�eld and that the θ̄θ-component of the super�eld
transforms into a total derivative under SuSy transformations. �erefore the highest component
of any analytic function of super�elds and its super-covariant derivatives yield a function of the
component �elds that changes by a total derivative under SuSy transformations and gives the
Lagrange density.

To obtain the component formulation, the superspace integral has to be performed, that is
the Grassmann coordinates in the action have to be integrated out. Due to the properties of
the Grassmann numbers this projects onto the highest component. From the action of the
supersymmetry generators on the super�eld the supersymmetry transformations of component
�elds can be read o� a�er an expansion in the Grassmann parameters.

Although we mostly use the component formulation in the following, we need the superspace
formulation for the construction of the supersymmetric cuto� action. Following this procedure it
is guaranteed that the regulator does not break supersymmetry. Implementing this ansatz, the
regulator structure necessary to preserve supersymmetry di�ers from the one usually found for
theories with bosons and fermions.

3.3 Spontaneous breaking of supersymmetry

Spontaneous supersymmetry breaking means that the variation of some �eld under SuSy
transformations does not vanish in the ground state. �is implies that the auxiliary �eld acquires
a non-vanishing vacuum expectation value as it is the only Lorentz scalar in the transformation.
Equivalently, supersymmetry breaking implies that the ground state energy becomes non-zero.
�is follows from

Emin ≡ 〈0|E|0〉 = 1
N

N∑
i=1

|Qi|0〉|2 (3.4)

which implies

〈0|E|0〉 �= 0 ⇒ Qi|0〉 �= 0. (3.5)
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3 Basics of supersymmetry

�e ground state energy can also be obtained from the expectation value of the scalar potential

Emin = 〈0|V |0〉. (3.6)

From this we conclude that SuSy is broken if and only if the minimum of the potential is positive.
�is criterion is also valid even if no o�-shell formulation with auxiliary �elds exists for a theory.
From the Goldstone theorem it follows that supersymmetry breaking yields a massless spin 1/2

particle which is called Goldstino [99]. A proof for this can be found e. g. in [100].
�ere are several mechanisms that are discussed for spontaneous breaking of supersymmetry,

for example the O’Raifeartaigh mechanism [101], a scalar model with three multiplets where the
equations of motion for the auxiliary �elds are such that they cannot vanish simultaneously. Other
mechanisms are discussed e. g. in the papers by P. Martin [69], E. Poppitz and S. Trivedi [100]
or E. Witten [102]. For a review on spontaneous SuSy breaking see for example the review by
Y. Shadmi and Y. Shirman [103].

3.4 Kähler potential

In order to properly de�ne the Kähler potential in chapter 7, we give a short introduction to
complex manifolds in this section, following lecture notes by J. v. Holten [104].
On an N dimensional complex manifold there exists a �nite set of local complex coordinate

systems ( z̄ i, z i, (i, i) = 1, . . . ,N) that covers the manifold such that the transition functions
between two sets of coordinate systems are holomorphic. �e metric on the manifold is given
through the line element

ds2 = g iidz̄ idz i. (3.7)

A Kähler manifold is a complex manifold with the condition that the holomorphic and
antiholomorphic curl of the metric vanishes:

g ii,j = g ji,i, g ii,j = g i j,i (3.8)

From this it follows that the metric can be derived from a real function K (z, z̄) through

g ii (z, z̄) =
∂2K
∂z i∂z̄ i

(3.9)

with K (z, z̄) being the Kähler potential.
A supersymmetric theory with a (complex) chiral super�eld, such as theN = 2 Wess-Zumino

model in two dimensions, can be constructed from a real super�eld-valued Kähler potential. �e
Kähler potential also allows for an elegant way to construct (supersymmetric) non-linear sigma
models, see e. g. the textbook by P. West [93].
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4 Supersymmetric quantummechanics

In order to extend the FRG to supersymmetric theories the formalism is �rst applied to
supersymmetric quantum mechanics (SuSy-QM). �is model was initiated by H. Nicolai [105]
in 1976 and later formulated by E. Witten [102] in 1981. Witten suggested this model in order
to understand supersymmetry breaking in a simple non-relativistic system rather than in the
complicated setting of supersymmetric gauge theories. �is model turned out to be interesting in
its own right, see e. g. the articles by A. Wipf [94] and A. Kahre [106] or the report by F. Cooper,
A. Kahre and U. Sukhatme [107].

SuSy-QM can be formulated as a 0 + 1 dimensional �eld theory. As it is the simplest
supersymmetric model that allows for supersymmetry breaking it is well suited to study how the
FRG can be extended to supersymmetric theories. �e techniques developed in this chapter can
easily be generalised to Wess-Zumino models in various dimensions.

It is possible to calculate the energy of the �rst exited state numerically by diagonalising the
Hamiltonian. �is o�ers a benchmark test for the applicability of the FRG to supersymmetric
theories. �e results reported in this chapter are published in [108]. In this paper additionally a
formulation of the �ow equations in superspace can be found which yields the same results as the
formulation in components presented here.

SuSy-QM with broken symmetry has previously been investigated with non-perturbative
renormalisation methods by A. Horikoshi et. al. [109]. �ey found good agreements for the
ground state energy and the �rst excited state in regions where quantum tunnelling is not
important. M. Weyrauch [110] found that an inclusion of a wave-function renormalisation
improves the results in this regime.

Both Horikoshi et. al. and Weyrauch used regulators which break supersymmetry explicitly.
�is makes it di�cult to distinguish between explicit SuSy breaking by the regulator and
spontaneous breaking that is inherent in the theory. For this reason we will always consider a
regulator that preserves supersymmetry. �e chapter focuses on unbroken SuSy.

�is chapter is organised as follows: First the model is presented and the convention for the
notations are described. �e supersymmetric �ow equations are then derived at leading and
next-to-leading order and the �rst excited state is calculated for di�erent regulators. �e chapter
concludes with a discussion of terms beyond next-to-leading order and the di�erences that arise
in a supersymmetric theory compared to a non-supersymmetric one.
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4 Supersymmetric quantum mechanics

4.1 Description of the model

We consider supersymmetric quantum mechanics in the Euclidean formulation. �e real
super�eld written in components reads

Φ(x) = ϕ(x) + θ̄ψ(x) + ψ̄(x)θ + θ̄θF (x). (4.1)

It contains a bosonic �eld ϕ, an auxiliary �eld F and fermions ψ, ψ̄. �e θ and θ̄ are constant
anticommuting spinors. A function of the super�eld has the expansion

W (Φ) =W (ϕ) + (θ̄ψ + ψ̄θ)W ′(ϕ) + θ̄θ(FW ′(ϕ) −W ′′(ϕ)ψ̄ψ) (4.2)

withW (Φ) being polynomial in the super�eld andW (ϕ) the same polynomial of the bosonic
�eld. �e supercharges that generate the supersymmetry transformations δε = ε̄Q − Q̄ε are

Q = i∂θ̄ + θ∂τ and Q̄ = i∂θ + θ̄∂τ , (4.3)

their anticommutator is the generator of time translations

{Q, Q̄} = 2i∂τ = 2H . (4.4)

�e variation of the super�eld reads

δεΦ = ε̄
(
iψ + iθF + θϕ̇ + θθ̄ψ̇

)
−

(
iψ̄ + iθ̄F − θ̄ϕ̇ + θ̄θ ˙̄ψ

)
ε. (4.5)

For the components this implies the transformations

δεϕ = iε̄ψ − iψ̄ε , δεψ = (ϕ̇ − iF )ε̄ , δεψ̄ = ε̄(ϕ̇ + iF ), δεF = −ε̄ψ̇ − ˙̄ψε . (4.6)

�e covariant derivatives are D = i∂θ̄ − θ∂τ and D̄ = i∂θ − θ̄∂τ . �ey obey the anticommutation
relations {D,D} = {D̄, D̄} = 0 and {D, D̄} = −2i∂τ .

�e o�-shell action for supersymmetric quantum mechanics is given by

So�[ϕ,F ,ψ, ψ̄] =
∫

dτdθdθ̄
[
1
4
Φ(D̄D −DD̄)Φ + iW (Φ)

]
(4.7)

=
∫

dτ
[
1
2
ϕ̇2 − iψ̄ψ̇ +

1
2
F2 + iFW ′(ϕ) − iW ′′(ϕ)ψ̄ψ

]
. (4.8)

A�er eliminating the auxiliary �eld F with its equation of motion F = −iW ′(ϕ) this yields the
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4.2 �e supersymmetric �ow equation

action of a supersymmetric anharmonic oscillator:

Son[ϕ,ψ, ψ̄] =
∫

dτ
[
1
2
ϕ̇2 − iψ̄ψ̇ +

1
2
W ′(ϕ)2 − iW ′′(ϕ)ψ̄ψ

]
(4.9)

For the bosonic potential V (ϕ) follows the identity

V (ϕ) =
1
2
W ′(ϕ)2. (4.10)

�e ground state energy is given by the minimum of the e�ective potential. �e energy gap
between the ground state and the �rst excited state is given by the pole of the propagator in
the complex plane or the exponential decay of the correlator respectively. In the truncation
considered in this chapter the wave-function renormalisation is independent of the momentum.
In this case the energy gap is given by the curvature at the minimum of the e�ective potential:

E1 − E0 =

√
d2V (ϕ)
dϕ2

∣∣∣∣∣
ϕ=ϕmin

=
√
W ′(ϕ)W ′′′(ϕ) +W ′′(ϕ)2 (4.11)

�e case with a momentum-dependent wave-function will be discussed in chapter 7.
As we are interested in unbroken supersymmetry in the following, we consider only superpo-

tentials that are of the formW ∼ O(ϕ2n). �is implies a vanishing ground state energy E0 = 0.
In this chapter the choice of the superpotential di�ers from the following ones on the N = 1
Wess-Zumino models where we consider potentials that exhibit spontaneous SuSy breaking. �is
requires potentials of the typeW ∼ O(ϕ2n+1).

4.2 �e supersymmetric �ow equation

In this section we sketch the derivation of the supersymmetric �ow equation. �e regulator
structure and method can be generalised to the supersymmetric models with scalar �elds in
di�erent dimensions that will be considered in the following chapters.

4.2.1 �e supersymmetric cuto� action

In order to preserve supersymmetry throughout the calculations we choose the cuto� action to
be quadratic in the super�elds and the regulator to be a function of covariant derivatives,

∆Sk[Φ] =
1
2

∫
dq
2π

dθdθ̄Φ(−q)Rk

(
D, D̄

)
Φ(q). (4.12)

�e function Rk has to obey the general requirements for a regulator (cf. section 2.4). Using the
anticommutation relations for the covariant derivatives the regulator function can be decomposed
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4 Supersymmetric quantum mechanics

into

Rk

(
D, D̄

)
= ir1(k,q2) +

1
2

(
DD̄ − D̄D

)
r2(k,q2) (4.13)

with a factor ‘i’ chosen for convenience such that the function r1 matches the potential term. In
components the cuto� action reads

∆Sk[ϕ,F , ψ̄,ψ] =
1
2

∫
dq
2π

[
r2(k,q2)

(
q2ϕ2 + 2qψ̄ψ + F2

)
+ 2ir1(k,q2)

(
Fϕ + ψ̄ψ

)]
. (4.14)

In the cuto� action r1(k,q2) plays the role of a momentum-dependent mass. �e term r2(k,q2)
is a modi�cation of the kinetic term, similar to the regulators used for non-supersymmetric
theories. �erefore we choose r2(k,q2) · q2 to be a typical regulator for a bosonic theory such as
the regulators in equation (2.18).
Written as a matrix in the space of the component �elds (ϕ,F ,ψ, ψ̄) the regulator takes the

form

Rk =

(
RB
k 0
0 RF

k

)
with RB

k =

(
q2r2 ir1
ir1 r2

)
and RF

k =

(
0 qr2 + ir1

qr2 − ir1 0

)
. (4.15)

Requiring supersymmetry relates the regulators for bosonic and fermionic �elds and introduces
additional constraints on fermionic and bosonic regulators. Note that, in order to preserve
supersymmetry, the auxiliary �eld has to be regularised (cf. section 4.6). �e regulator structure
constructed here generalises to supersymmetric models with scalar �elds (Wess-Zumino models)
in two to four dimensions. We will discuss these models in the following chapters.
For the components the �ow equation for SuSy-QM is a �ow equation for fermions and bosons

with the special regulator structure given in equation (4.15) that ensures supersymmetry.

4.2.2 �e supercovariant derivative expansion

In order to solve the �ow equation we employ a truncation that is called supercovariant expansion1.
�e �rst term in this expansion contains no covariant derivatives, but an arbitrary function of
the super�eld. �is approximation is called the local potential approximation. It corresponds to
considering a scale-dependent superpotential. �e second term in the expansion contains the
derivatives D and D̄ and has the form

Z(Φ)DD̄Z(Φ) or Z(Φ)D̄DZ(Φ) (4.16)

with Z(Φ) an arbitrary function of the super�eld. �is corresponds to additionally considering a
scale dependent wave-function renormalisation. Because of the anticommutation relation for

1�is terminology changes for supersymmetric theories with more than one supercharge. What remains is an
expansion that corresponds to an expansion in the auxiliary �eld.
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4.3 Local potential approximation

the supercovariant derivatives an arbitrary function g (DD̄) in between the functions Z can be
reduced to a function g (p) ·DD̄. In this way it is possible to construct a momentum-dependent
wave-function renormalisation (cf. chapter 7). �e third term is of the form

Y(Φ)DD̄Y(Φ)DD̄Y(Φ). (4.17)

Again an arbitrary function of DD̄ reduces to a multiplicative function depending on the
momentum.

It is important to keep in mind that this expansion is not an expansion in momenta as it is
normally considered in the derivative expansion. It is rather an expansion in powers of the
auxiliary �eld F : �e local potential approximation contains a term linear in F , the wave function
renormalisation a term proportional to F2 and the third term is proportional to F3. �is fact is
used to project out the di�erent parts of the expansion.

4.3 Local potential approximation

We �rst consider the local potential approximation. In this truncation the e�ective action reads

Γk[ϕ,F , ψ̄,ψ] =
∫

dθdθ̄
∫

dτ
[
1
4
Φ(DD̄ − D̄D)Φ + i ·Wk(Φ)

]
=

∫
dτ

[
1
2
ϕ̇2 − iψ̄ψ̇ +

1
2
F2 + iFW ′

k(ϕ) − iW ′′
k (ϕ)ψ̄ψ

]
.

In the local potential approximation the classical action with a scale-dependent superpotential is
considered. A�er performing the functional derivatives, the �elds are assumed to be constant. In
momentum space the second derivatives read(
Γ(2)
k + Rk

)
(q,q′)

=


q2(1 + r2) +W ′′′

k F + iW (4)
k i(W ′′

k + r1) iW ′′′
k ψ̄ −iW ′′′

k ψ
i(W ′′

k + r1) 1 + r2 0 0
−iW ′′′

k ψ̄ 0 0 q(1 + r2) − i(W ′′
k + r1)

iW ′′′
k ψ 0 q(1 + r2) + i(W ′′

k + r1) 0

 δ(q,q′).

(4.18)

To calculate the right hand side of

∂kΓk =
1
2
STr

{[
Γ(2)
k + Rk

]−1
∂kRk

}
=
1
2
Tr (Gk∂kRk)BB −

1
2
Tr (Gk∂kRk)FF , (4.19)
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4 Supersymmetric quantum mechanics

we need the inverse of the supermatrix2 (4.18). For this the inverse propagator is decomposed
into bosonic and fermionic parts:

Γ(2)
k + Rk ≡ G−1

k = G−1
0,k + ψ̄M1,k +M2,kψ + ψ̄M3,kψ (4.20)

�e propagator itself reads

Gk =G0,k −G0,k(ψ̄M1 +M2ψ)G0,k +G0,k (M1G0,kM2 −M2G0,kM1 −M3)G0,kψ̄ψ . (4.21)

�e explicit form of the matrices and the inversion of the propagator can be found in appendix B.1.
Projecting on the terms linear in the auxiliary �elds3 leads to the following �ow equation4:

∂kW ′
k = −

W ′′′
k

2

∫
dq
2π

∂kr2
[
(1 + r2)2p2 − (W ′′

k + r1) 2
]
+ 2(1 + r2)∂kr1(W ′′

k + r1)[
(1 + r2)2p2 + (W ′′

k + r1)2
]2 . (4.22)

Integrating with respect to ϕ (and dropping the irrelevant constant of integration) �nally yields
the �ow equation for the superpotential

∂kWk(ϕ) =
1
2

∫
dq
2π

(1 + r2)∂kr1 − ∂kr2(W ′′
k (ϕ) + r1)

(1 + r2)2p2 + (W ′′
k (ϕ) + r1)2

. (4.23)

As it is required by supersymmetry the �ow equation for the superpotential coincides with the
one obtained by a projection on the terms proportional to ψ̄ψ. �is projection yields an equation
forW ′′

k (ϕ). Details on the calculation can be found in appendix B.2. �ere the equality of both
equations is explicitly shown.

4.3.1 Discussion of di�erent regulators

In this section we discuss and compare di�erent regulators or regularisation schemes by varying
the regulator.
As supersymmetric quantum mechanics is an ultraviolet �nite theory we can use very simple

regulators. However, these regulators will not be su�cient in the more complicated models as we
shall see in the following chapters.

In the following we will focus on the simplest nontrivial potential given by5

Wcl(ϕ) = eϕ +
m
2
ϕ2 +

g
3
ϕ3 +

a
4
ϕ4. (4.24)

2For the inversion of a supermatrix see e. g. [111].
3�is projection can be achieved in general by a functional derivative with respect to the auxiliary �eld and then
setting the auxiliary �eld and the fermions equal to zero.

4For the explicit calculation see appendix B.2.
5A short remark concerning the dimensions of the couplings: For a numerical treatment the couplings have to be
dimensionless. In this chapter all couplings and the �elds are measured in units of the mass. �is implies that the
mass parameterm is identical to one throughout this chapter.
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4.3 Local potential approximation

�e Callan-Symanzik regulator

Due to the ultraviolet �niteness of SuSy-QM only an infrared regulator is needed. For this reason,
the simplest choice, r2 = 0 and r1 = k, is su�cient. We refer to this as the Callan-Symanzik
regulator in the following as it is very similar to the one used in the Callan-Symanzik equation.
For this regulator equation (4.23) simpli�es to

∂kWk(ϕ) =
1
4
·

1
k +W ′′(ϕ) . (4.25)

We compare the polynomial approximation and the numerical solution of the partial di�erential
equation.

As a benchmark test for the quality of the approximations E1, the energy of the �rst excited state,
is determined from the curvature of the e�ective potential at its minimum ϕmin. �e e�ective
potential Vk is de�ned as limk→0

1
2
(W ′

k)
2. FromW ′

k→0(ϕmin) = 0 we obtain the energy of the �rst
excited state as

E1 =W ′′
k→0(ϕmin). (4.26)

For a polynomial expansion of the superpotential the ansatz reads

Wk(ϕ) =
∑
n

an(k)
n

ϕn with Wk→Λ =Wcl = eϕ +
m
2
ϕ2 +

g
3
ϕ3 +

a
4
ϕ4. (4.27)

Since onlyW ′′
k (ϕ) enters on the right hand side of the �ow equation, the couplings a0 and a1 will

not determine the �ow of the other couplings. �is generalises toWess-Zuminomodels in various
dimensions as well. As long as the superpotential is convex it can always be expanded around
ϕ = 0. At the cuto� Λ the non-vanishing coupling constants are (a1,a2,a3,a4) = (e,m, g ,a). For
the ansatz given in equation 4.27 the classical superpotential becomes non-convex if g 2 > 3ma.
An expansion around the �elds minimisingW ′′

k (ϕ) would be better adjusted to the �ow as this
has the largest contributions to the �ow. In this case the expansion reads

Wk(ϕ) =
∑
n

ãn(k)
n

(ϕ − ϕ0(k))n, W ′′′
k (ϕ0) = 2ã3 = 0. (4.28)

In general, the �eld ϕ0 minimising the superpotential does not coincide with the �eld ϕmin

minimising the bosonic potential. �e system of coupled ordinary di�erential equations for the
coupling constants can be derived by comparison of coe�cients.

As an even potential remains even during the �ow, all odd couplings obey ã2n+1(k) = 0 for
n > 1. Moreover we have ∂kϕ0(k) = 0, implying that the minimum ofW ′′

k is scale invariant. �e
system of di�erential equations is given in [108] up to order N = 10.
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Figure 4.1: Flow ofW ′2(ϕ) with Callan-Symanzik regulator forW ′
cl = 1 + ϕ + gϕ2 + ϕ3.

Le� panels: g = 0, Right panels: g = 2, First row: polynomial approximation to order ϕ10, Second row:
solution of the partial di�erential equation (4.25).
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n. ϕ4 . . . . . . . . . .

ϕ6 . . . . . . . . . .
ϕ8 . . . . . . . . . .
ϕ10 . . . . . . . . . .

PD
E CS . . . . . . . . . .

exp . . . . . . . . . .
θ . . . . . . . . . .

exact . . . . . . . . . .

Table 4.1: Upper part: Energy of the �rst excited state calculated in di�erent orders of the polynomial
approximation with the Callan-Symanzik regulator for e = m = a = 1. Lower part: Solutions from the
partial di�erential equation (PDE) for the Callan-Symanzik (CS), the exponential (exp) and the θ-regulator.
For comparison, also the exact values from a numerical diagonalisation of the Hamiltonian are given.
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4.3 Local potential approximation

As the superpotential becomes non-convex, ϕmin moves away from the expansion point ϕ0

signalling the breakdown of the polynomial approximation for large couplings. It is known
from non-supersymmetric quantummechanics that for non-convex potentials the polynomial
approximation fails and the full partial di�erential equation has to be solved [109, 112, 113, 114].

We solve the partial di�erential equation with the NDSolve routine of Mathematica. ϕ
is chosen in the range (−200,200), on the boundary the potential is kept at its classical value.
�e �ow ofW ′

k
2 from the polynomial approximation and the solution to the partial di�erential

equation is depicted in �gure 4.1.

In table 4.1 the results for the energy E1 from polynomial approximations to di�erent orders
and the solution of the partial di�erential equation are listed. For convex superpotentials the
results obtained from the former converge rapidly to the ones from the latter. �e results deviate
about 10 from the exact results. For non-convex potentials the results deviate even more. In the
next paragraph two di�erent regulators are investigated. It will turn out that the observed large
deviation is a problem of the LPA in a supersymmetric theory and not of this particular regulator.

Exponential- and θ-regulator

�e Callan-Symanzik regulator serves only as an infrared regulator. �e exponential (le�) and a
θ-regulator, de�ned as

r (exp)1 (q2, k) = k e−q
2/k2 , r (θ)1 (q2, k) =

√
k2 − q2θ(k2 − q2) (4.29)

serve as infrared and ultraviolet regulators. �e corresponding �ow equations read

∂kW
(exp)

k (ϕ) =
1
2k2

∞∫
−∞

dq
2π

(k2 + 2q2)e−q2/k2
q2 + (W ′′

k (ϕ) + ke−q2/k2)2 and

∂kW (θ)
k (ϕ) =

1
4π

k|k2 −W ′′
k
2|

(
π

(
1 − signW ′′

k

)
+ 2 arctan

|k2 −W ′′
k
2|

2kW ′′
k

)
.

(4.30)

�e results in the convex regime do not deviate much from each other (see table 4.1). In
the non-convex regime they do not yield better results than the Callan-Symanzik regulator.
�e ground state energy from the LPA has an error of about 10 for the choice of couplings
(e,m,a) = (1, 1, 1). �is is due to contributions from higher orders in the auxiliary �elds that are
neglected in the LPA. Recall that the e�ective action is expanded in the supercovariant derivatives
and the auxiliary �eld mixes di�erent orders of the momentum. Because of the auxiliary �elds,
wave function renormalisation has contributions to zeroth order of the momentum.
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Figure 4.2:�e e�ective potential Vk calculated with the Callan-Symanzik regulator for a non-convex
classical superpotential. �e polynomial approximation does not reproduce the global structure which
should not deviate much from the classical potential. �e solution of the partial di�erential equation gives
the correct asymptotic behaviour. �e parameters in the classical potential are e =m = a = 1 and g = 2.

4.3.2 �e global structure of the potential

For a convex superpotential at the cuto� scale the polynomial approximation works quite well
near the origin but it breaks down in the non-convex case. In �gure 4.2 the asymptotic behaviour
of the e�ective potential is shown, calculated from the solution of the partial di�erential equation
and from the polynomial approximation. As expected, the polynomial approximation fails to
reproduce the correct asymptotic behaviour whereas the full partial di�erential equation succeeds.

4.4 Next-to-leading order approximation

In this section we investigate how the results of the previous section change if a wave-function
renormalisation is included. A constant wave-function renormalisation is driven by the odd
couplings and is scale invariant for this model. �erefore we have to consider a �eld-dependent
wave-function renormalisation. �e ansatz for the e�ective action in this case reads6

Γk[ϕ,F , ψ̄,ψ] =
∫

dτdθdθ̄
[
1
4
Zk(Φ)(DD̄ − D̄D)Zk(Φ) + iWk(Φ)

]
=

∫
dτ

[
Z′
k(ϕ)

2

2
(
ϕ̇2 − 2iψ̄ψ̇ + F2

)
−Z′

k(ϕ)Z
′′
k(ϕ)

(
iϕ̇ + F

)
ψ̄ψ + iFW ′

k(ϕ) − iW ′′
k (ϕ)ψ̄ψ

]
(4.31)

6In order to include a �eld-dependent wave-function renormalisation such that supersymmetry is preserved, two
functions are necessary on which the supercovariant derivatives act. For this reason Z2

k instead of Zk is considered
in the following. �is is di�erent to the terminology normally used in theories without supersymmetry.
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4.4 Next-to-leading order approximation

where primes denote derivatives with respect ϕ. For Z(Φ) = Φ the truncation in the previous
section is recovered.

ForWess-Zuminomodels with spontaneous supersymmetry breaking a constant wave-function
renormalisation has a nontrivial �ow equation and then it is su�cient to take Zk(Φ) = Zk · Φ.
However, for the supersymmetric quantum mechanics the full ϕ-dependence is needed.

In order to respect reparameterisation invariance of the physical quantities [17] under rescaling
we choose the cuto� action to be

∆Sk =
1
2

∫
dτdθdθ̄ Z′

k(Φ̄)2Φ
[
ir1 +

r2
2
(DD̄ − D̄D)

]
Φ

=
∫

dq Z′
k(ϕ̄)

2

(
1
2
q2r2ϕ2 +

r2
2
F2 + ir1Fϕ + (qr2 − ir1)ψ̄ψ

)
(4.32)

with Φ̄ = (ϕ̄, 0, 0, 0) being a background �eld. �is ansatz of a spectrally adjusted �ow [78, 115] is
inspired by functional optimisation [22]. �e �eld ϕ̄ can be understood as a parameter labelling
the classes of regulators.

�e �ow of Zk can either be read o� from ϕ̇2, F2 or ψ̄ψ̇. �e simplest choice is F2 because there
are no time derivatives involved. However, due to this mixing of powers of the momentum, the
wave-function renormalisation has a strong in�uence on the �ow of the superpotential. �is
explains the large error in the ground state energy found in the LPA compared to the exact result.
It is related to the fact that the F2-term in the o�-shell formulation originates from the kinetic
term but in the process of integrating out the auxiliary �eld enters the de�nition of the e�ective
bosonic potential. Projecting on vanishing ψ̄ψ as well as on constant scalar �eld and considering
the Callan-Symanzik regulator leads to the coupled �ow equations

∂kW ′
k(ϕ) = −W ′′′

k

N
4D2

,

Z′
k(ϕ)∂kZ

′
k(ϕ) =

(
4Z′′

k(ϕ)W
′′′
k (ϕ)

D
−

(
Z′′
k(ϕ)Z

′
k(ϕ)

)′ − 3Z′
k(ϕ)

2W ′′′
k (ϕ)

2

4D2

)
N
4D2

,
(4.33)

with

N = (1 + k∂k)Z′
k

(
ϕ̄
)2 and D =W ′′(ϕ) + kZ′

k

(
ϕ̄
)2 . (4.34)

To solve these equations a value for the background �eld ϕ̄ has to be chosen. A good choice would
be ϕ̄ = ϕmin because E1 is of interest, but this value has to be determined through a self-consistency
calculation. From gauge theory it is known that it su�ces to take ϕ̄ = ϕ, see e. g. [18]. �is
already improves the results tremendously. For this reason we will use this approximation in the
following. �e �ow equation then simpli�es a great deal.
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Figure 4.3:Dependence of the energy on the coupling g for (e,m,a) = (1, 1, 1). �e polynomial
approximation is of order n = 10.
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PDE+WF . . . . . . . . . .
exact . . . . . . . . . .

Table 4.2: Energy of the �rst excited state for the classical superpotential (4.27) with (e,m,a) = (1, 1, 1)
and various values of g calculated from the solution to �ow equations with Callan-Symanzik regulator
with and without wave-function renormalization.

With wave-function renormalisation included the on-shell e�ective bosonic potential is given by

V (ϕ) =
1
2

(
W ′

k→0(ϕ)
Z′
k→0(ϕ)

)2

. (4.35)

�e curvature of this potential with respect to canonically renormalised �uctuations χ = Z(ϕ)
yields the energy gap. �e energy of the �rst excited state reads

E1 =

√
d2V

(
Z−1

(
χ
))

dχ2

∣∣∣∣∣∣
χmin=Z(ϕmin)

= lim
k→0

W ′′
k (ϕ)(

Z′
k(ϕ)

)2
∣∣∣∣∣
ϕ=ϕmin

. (4.36)

Note that there are no additional terms from di�erentiation of the wave-function renormalisation
because W ′(ϕ)|ϕ=ϕmin

= 0. In table 4.2 we list the results with and without wave-function
renormalisation .
�e wave-function renormalisation improves the results for (e,m,a) = (1, 1, 1) considerably.

�is is shown in �gure 4.3.
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4.5 Beyond next-to-leading order
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Figure 4.4: Dependence of the energy on the coupling a, e =m = g = 1. �e polynomial approximation is
of order n = 10

If the classical potential is in the convex regime of the superpotential, i. e. g <
√
3a the results

for the energy gap are independent of the regulator and an accuracy of up to 1 is achieved if the
wave-function renormalisation is included in the truncation. As soon as the superpotential enters
the non-convex regime, the results obtained with the �ow equation deviate strongly from the exact
solutions. We expect that this is due to terms of higher order in the derivative expansion, such
as Φ[DD̄Φ]2 ∼ F3 + . . . (cf. section 4.5). As the expansion in super-covariant derivatives mixes
di�erent orders of momentum, these can in�uence the �ow equations at lower order. However,
as can be seen from a diagrammatic expansion of the �ow equation (cf. appendix F), auxiliary
�eld operators (and their SuSy partners) that come with powers larger than F3 do not directly
contribute to the �ow equation of the superpotential. Because of this it is reasonable to expect a
good convergence at next-to-next-to-leading order.

Up to now we only considered a dependence of the energy of the �rst excited state on the
coupling g . In order to study the dependence on the coupling a we choose the other parameters
to be e =m = g = 1 such that the superpotential at the ultraviolet cuto� is convex. Even for large
couplings a the results with wave-function renormalisation reproduce the exact results up to a 1
accuracy. �is is shown in �gure 4.4.

4.5 Beyond next-to-leading order

A truncation beyond next-to-leading order corresponds to taking into account both a term
cubic in the auxiliary �eld and its supersymmetric partner terms. �is is obtained from
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4 Supersymmetric quantum mechanics

Φ
[
1
2

(
DD̄ − D̄D

)
Φ

]2. To calculate this term in components, we �rst consider

1
2

(
DD̄ − D̄D

)
Φ =

(
F − iϕ̇

)
−
i
2

( ˙̄ψθ − θ̄ψ̇
)
− θ̄θ

(
iḞ + ϕ̈

)
. (4.37)

Taking the square of this expression yields(
1
2

(
DD̄ − D̄D

)
Φ

)2

=
(
F − iϕ̇

)2 − 2i
( ˙̄ψθ − θ̄ψ̇

) (
F − iϕ̇

)
− 2θ̄θ

(
iḞ + ϕ̈

) (
F − iϕ̇

)
+
1
2
θ̄θ ˙̄ψψ̇.

(4.38)

For the θ̄θ component we �nally obtain

Φ
(
DD̄Φ

)2∣∣∣
θ̄θ

=F
(
F − iϕ̇

)2 + 2i
( ˙̄ψψ + ψ̄ψ̇

) (
F − iϕ̇

)
− 2ϕ

(
iḞ + ϕ̈

) (
F − iϕ̇

)
+
1
2
ϕ ˙̄ψψ̇

=F3 − iF2ϕ̇ + ϕ̇2F + 2i
( ˙̄ψψ + ψ̄ψ̇

) (
F − iϕ̇

)
+ 2iϕϕ̇ϕ̈ +

1
2
ϕ ˙̄ψψ̇ (4.39)

In matrix notation the second functional derivatives of this term reads

∆(2)
k (q,q′) =


4q′q2ϕ + 2qq′F −2q′F 2qq′ψ̄ −2qq′ψ

2q′F 3F 2qψ̄ −2qψ
2qq′ψ̄ 2qψ̄ 0 2q′F − 2qF
−2qq′ψ −2qψ̄ −2q′F + 2qF 0

 δ(−q − q′). (4.40)

In expression (4.40) the �elds are constant. Beyond next-to-leading order the auxiliary �eld
enters in the fermionic propagator. �us, the fermionic propagator also in�uences the �ow
equation for the bosonic superpotential which is not the case at next-to-leading order.

4.6 Di�erences between theories with andwithout supersymmetry

Before concluding this chapter, we discuss of the di�erences in the �ow equations of theories with
and without supersymmetry.
In order to illustrate the di�erences, we consider a purely bosonic theory with an auxiliary �eld.

�e auxiliary �eld is introduced similar as in the supersymmetric case. Here the action reads:

S =
∫

ddx
(
1
2
ϕ̇2 −

1
2
F2 +W ′(ϕ)F

)
(4.41)

Note that this is a truncation in terms of the auxiliary �eld F as well as in the scalar �eld ϕ. In the
full e�ective action a potential for the auxiliary �eld has to be taken into account.
�e equation of motion of the auxiliary �eld is F = W ′(ϕ) and the bosonic potential is

de�ned as V (ϕ) = 1
2
W ′(ϕ)2. In this case it is natural to use a regulator for the bosonic �eld
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4.6 Di�erences between theories with and without supersymmetry

Rk(q2) = q2r2(k,q2) and none for the auxiliary �eld. �e �ow equation for the potential is
determined by projecting on constant �elds which yields

∂k
(
1
2
F2 +W ′(ϕ)F

)
=
1
2
Tr

[
q2∂kr2

(r2 + 1)q2 +W ′′(ϕ)2 + FW ′′′(ϕ)
]
. (4.42)

Using the equations of motion for the auxiliary �eld, this gives the well-known �ow equation for
the bosonic potential

∂kVk(ϕ) =
1
2
Tr

[
q2∂kr2

(r2 + 1)q2 +V ′′
k (ϕ)

]
. (4.43)

In the supersymmetric case the auxiliary �eld has to be regularised aswell, or else supersymmetry is
broken. Due to this regularisation, the auxiliary �eld becomes dynamic and the bosonic potential
is not directly accessible. �e quantity that is of interest now is the �ow of the superpotential
from which the e�ective bosonic potential is calculated in the end.
�e truncation in superspace enforces a scale-dependent superpotential. Its �ow equation can

be derived in component formulation through the projection on vanishing auxiliary �eld or it
can be calculated directly in superspace, which yields the same result.
Consider a similar procedure in the purely bosonic theory above. �e results for the potential

V calculated from the truncation

Γk =
∫

1
2
ϕ̇2 +Vk(ϕ) and from Γk =

∫
1
2
ϕ̇2 +

1
2
F2 +W ′

k(ϕ)F (4.44)

di�er. �is is caused by the di�erent truncations because di�erent types of diagrams are resummed.
Additionally, the action

Γk =
∫

1
2
ϕ̇2 −

1
2
F2 + FW ′

k(ϕ) (4.45)

is a di�erent truncation in terms of ϕ than

Γk =
∫

1
2
ϕ̇2 +Vk(ϕ). (4.46)

Because the auxiliary �eld introduces terms at zero momentum, for a consistent derivative
expansion7 a potential for the auxiliary �eld has to be taken into account. Such a potential for the
auxiliary �eld modi�es the relation betweenW ′

k(ϕ) and F and therefore the e�ective potential
Vk(ϕ) calculated from integrating out the auxiliary �elds. A�er integrating out the auxiliary
�elds, the same diagrams as in the description in terms of ϕ can only be obtained if a full auxiliary
�eld potential is included.

7not a supercovariant derivative expansion
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4 Supersymmetric quantum mechanics

In a supersymmetric theory, however, including a potential for the auxiliary �eld introduces
additional terms with derivatives due to the superpartners. �is leads to additional di�erences in
the �ow equations of supersymmetric and non-supersymmetric theories.

4.7 Lessons to be learnt from SuSy-QM

In this chapter we have successfully demonstrated that it is possible to extend the FRG to a
supersymmetric model. �emain ingredient is the choice of a supersymmetric regulator function
quadratic in the super�elds. �is implies that the regulators for fermions and bosons have to
obey certain relations which ensure that supersymmetry is preserved.
In order to solve the �ow equation non-perturbatively we employ an expansion of the e�ective

action in super-covariant derivatives. In this expansion terms without time derivatives appear
even at higher orders of super-covariant derivatives. �is is due to the presence of the auxiliary
�eld and makes it necessary to go to next-to-leading order in order to obtain quantitatively
correct results even for small couplings. �is implies that the higher powers in the auxiliary
�eld, or more general, an auxiliary �eld potential, have a strong in�uence when the coupling
constants become large. �is result is surprising because the anomalous dimension is still small.
In non-supersymmetric theories this is a signal that the next-to-leading order represents already
a quite reasonable truncation.
�e reason for the mixing of di�erent orders of the momentum lies in the nature of supersym-

metry. In the o�-shell formulation of a theory with a scalar multiplet, the auxiliary �eld and
the derivative of the scalar �eld occur on equal footing. �is can easily be seen from the SuSy
transformation of the fermionic �eld ψ which is proportional to ϕ̇ − iF .
�e physical order parameter that was investigated, the energy of the �rst excited state, should

be a universal quantity and therefore not depend on the regulator. We have demonstrated that
this is indeed the case by considering three di�erent regulators.
We will employ the techniques developed in this chapter to study the two-dimensionalN = 1

Wess-Zumino model in the next chapter. SuSy-QM can be derived from the two-dimensional
model by dimensional reduction. Because of this, it is no surprise that the regulator and the
structure of the �ow equation carry over to this two-dimensional model as well.
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5 �e two-dimensionalN = 1Wess-Zumino

model

�is chapter extends and generalises the results obtained within supersymmetric quantum
mechanics to the Wess-Zumino model withN = 1 in two dimensions. �e Wess-Zumino model
is a simple scalar model that exhibits spontaneous supersymmetry breaking. It was again �rst
introduced and examined by E. Witten [116].
Previously it has been investigated with lattice methods. Ran� and Schiller [117] did pioneering

work based on Hamiltonian Monte-Carlo methods. �ey found that this model exhibits a SuSy
phase transition. Beccaria and co-workers [118, 119] investigated the phase diagram and the
ground state energy with similar methods. Catterall and Karamov [120] investigated the phase
diagram as well. A review about supersymmetry on the lattice is given by J. Giedt [121]. �e
investigation of this model with lattice methods represents a great challenge although there exist
formulations of the lattice action that restore supersymmetry in the continuum limit as proposed
by Golterman and Petcher [122]. However, the sign of the Pfa�an changes which is a potential
problem for the Monte Carlo simulations. Nonetheless, recently considerable progress in treating
this model on the lattice has been made [16].
�e FRG does not have this problem as no Pfa�an has to be calculated. �us, it is in principle

possible to derive results that go beyond the present lattice calculations. Nevertheless all quantities
considered in the following are still cuto� dependent. To remove the ultraviolet cuto� and to
work with cuto� independent quantities remains for future work. Such work could be inspired by
recent research on the lattice [16].
�e results reported in this chapter are published in [123, 124] as well as in the proceedings [125].

�is chapter is organised as follows: First the model is presented and the SuSy �ow equations
are derived. �ey are discussed in leading and next-to-leading order, for which the �xed-point
structure is investigated. A model with perturbations to the Gaußian �xed point is then explored.
In the end the phase transition between broken and unbroken supersymmetry is discussed as
well as the behaviour of the mass as the RG scale is lowered to the infrared.
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5 �e two-dimensionalN = 1 Wess-Zumino model

5.1 �eWess-Zumino model

�etwo-dimensionalN = 1Wess-Zuminomodel is a supersymmetricmodelwithone supercharge
andYukawa-like interactions. In an o�-shell formulation the theory has a scalar �eldϕ, aMajorana
spinor �eld ψ and an auxiliary �eld F . �ey are combined into a real super�eld

Φ(x,θ) = ϕ(x) + θ̄γ³ψ(x) +
1
2
(θ̄γ³θ)F (x). (5.1)

with the constant Majorana spinor θ and with γ³ = iγ0γ1. In the following the γ-matrices are
taken to be in the Majorana representation. �e spinors ψ and ψ̄ are related by

ψ̄ = ψTC (5.2)

with C = 1 the charge conjugation matrix (cf. appendix A for details on the Cli�ord algebra).
Majorana spinors in a Majorana representation are real. �e supercharges read

Q = −i
∂
∂θ̄

− /∂θ, Q̄ = −i
∂
∂θ

− θ̄/∂, {Q, Q̄} = 2i/∂ (5.3)

and from δΦ = iε̄[Q,Φ] the SuSy transformations are obtained. In components they read

δϕ = ε̄γ³ψ, δψ = (F + iγ³/∂ϕ)ε, δψ̄ = ε̄(F − i/∂ϕγ³), δF = iε̄/∂ψ. (5.4)

�e superderivatives are

D =
∂
∂θ̄

+ i/∂θ, D̄ = −
∂
∂θ

− iθ̄/∂, {D, D̄} = −2i/∂ (5.5)

and the action is given by

S =
∫

d2x dθ dθ̄
(
1
2
D̄Φγ³DΦ +W (Φ)

)
=
∫

d2x
[
1
2
∂µϕ∂µϕ +

i
2
ψ̄/∂ψ −

1
2
F2 +

1
2
W ′′(ϕ)ψ̄γ³ψ −W ′(ϕ)F

]
. (5.6)

To show the invariance under the above SuSy transformations we need Fierz identities derived
from

ψχ̄ = −
1
2
χ̄ψ −

1
2
γµ(χ̄γµψ) −

1
2
γ³(χ̄γ³ψ) (5.7)

as well as the symmetry relations (cf. appendix A)

ψ̄χ = −χ̄ψ, ψ̄γµχ = −χ̄γµψ and ψ̄γ³χ = χ̄γ³ψ. (5.8)
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5.2 �e supersymmetric �ow equations

�e Euclidean o�-shell action is unstable. However, a�er the auxiliary �elds have been integrated
out, the on-shell action is stable.

5.2 �e supersymmetric �ow equations

For the derivation of the �ow equation we proceed along the lines of supersymmetric quantum
mechanics in the last chapter. �erefore only the di�erences are discussed here. For the products
of covariant derivatives the following relations,(

1
2
D̄γ³D

)2n

=
i
2
D̄/∂D (

∂2
)n−1 and

(
1
2
D̄γ³D

)2n+1

=
1
2
D̄γ³D

(
∂2

)n , (5.9)

hold with ∂2 being the Laplacian. �ese relations are the key feature in the construction of
the supersymmetric cuto� action. �e most general function quadratic in the super�elds that
contains only covariant derivatives is the superspace integral of

1
2
ΦD̄

(/∂r̃1 (k, −∂2) − γ³r2(k, −∂2)
)
DΦ (5.10)

with r1
(
k, −∂2

)
= q2r̃1

(
k, −∂2

)
. Written out in components and in momentum space the cuto�

action takes the form

∆Sk =
1
2

∫
d2q
(2π)2

[
r2

(
k,q2

)
q2ϕ2 + r2

(
k,q2

)
F2 − 2r1

(
k,q2

)
Fϕ + ψ̄

(/qr2 (k,q2) + γ³r1
(
k,q2

))
ψ
]
.

(5.11)
In matrix notation the regulator reads

RB
k =

(
q2r2

(
k,q2

)
−r1

(
k,q2

)
−r1

(
k,q2

)
−r2

(
k,q2

)) and RF
k = /q r2 (k,q2) + γ³r1

(
k,q2

)
. (5.12)

As in the SuSy-QM, r1
(
k,q2

)
is amomentum-dependentmass term and r2

(
k,q2

)
is amomentum-

dependent deformation of the kinetic term.

5.3 �e local potential approximation

To solve the �ow equation we �rst employ the local potential approximation. As an ansatz for the
e�ective action we use

Γk[ϕ,F , ψ̄,ψ] =
∫

d2x
(
1
2
∂µϕ∂µϕ +

i
2
ψ̄/∂ψ −

1
2
F2 +

1
2
W ′′

k (ϕ)ψ̄γ³ψ −W ′
k(ϕ)F

)
, (5.13)

which is the classical action but with a scale-dependent superpotential. In the approximation of

constant �elds it is possible to calculate the scale dependent propagator
(
Γ(2)
k + Rk

)−1
. �e inverse
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5 �e two-dimensionalN = 1 Wess-Zumino model

propagator reads

Γ(2)
k + Rk =

(
A W ′′′

k e1 ⊗ ψ̄γ³
W ′′′

k γ³ψ̄ ⊗ eT1 B

)
with e1 =

(
1
0

)
(5.14)

where the operators on the diagonal are given by

A =

(
q2(1 + r2) − FW ′′′

k + 1
2
W (4)

k ψ̄γ³ψ −W ′′
k − r1

−W ′′
k − r1 −1 − r2

)
, B = i(1 + r2)/q + γ³(r1 +W ′′

k ). (5.15)

Using the above relations, the inverse can be calculated, see [124] for the details. Inserting 5.15
into the �ow equation yields for the �rst derivative of the superpotential

∂kW ′
k = −W ′′′

k

∫
d2q
4π2

(
(1 + r2)(W ′′

k + r1)
(q2(1 + r2)2 + (W ′′

k + r1)2)2
∂kr1 +

q2(1 + r2)2 − (W ′′
k + r1)2

2(q2(1 + r2)2 + (W ′′
k + r1)2)2

∂kr2
)
,

(5.16)

where we have projected on the terms linear in F . Integration with respect to ϕ and dropping an
irrelevant constant leads to the �ow equation of the superpotential:

∂kWk =
1
2

∫
d2q
(2π)2

(r2 + 1)∂kr1 − (r1 +W ′′
k (ϕ))∂kr2

q2(1 + r2)2 + (W ′′
k + r1)2

(5.17)

Again, a projection onto ψ̄γ³ψ results in the same �ow equation for the superpotential.

In contrast to supersymmetric quantum mechanics, potentials with dynamical supersymmetry
breaking are of interest in this chapter, i. e. superpotentials or order O(ϕ2n+1). �erefore the
mass-like regulator r1

(
k,q2

)
does not screen potential zero modes of W ′′(ϕ), whose highest

power is odd as well, but merely shi�s them. We will set it to zero in the following.

For the local potential approximation we will use the simple regulator

r1 = 0, r2 =
(
k|q| − 1

)
θ(k2 − p2). (5.18)

Keep in mind, however, that in two dimensions this regulator will not be su�cient for the
next-to-leading approximation, so that we will need a regulator which diverges stronger in the
infrared in the second part of this chapter.

With the choice of the regulator introduced above it is possible to perform the momentum
integrals analytically. �is yields the �ow equation

∂kWk(ϕ) = −
k
4π

W ′′
k (ϕ)

k2 +W ′′
k (ϕ)2

⇒ ∂kW ′
k(ϕ) = −W ′′′

k (ϕ)
k
4π

k2 −W ′′
k (ϕ)

2

(k2 +W ′′
k (ϕ)2)2

. (5.19)
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5.4 Fixed-point analysis

Note that due to the construction, the �ow equation ensures that the superpotential is convex
in the infrared. However, this is not necessarily true for its derivative or the bosonic potential
as can be seen from the equations (5.19). As a consequence the e�ective potential V = 1

2
W ′2

k(ϕ)
calculated from the superpotential is not necessarily convex, especially in the regime with
unbroken supersymmetry. �is can be traced back to the truncation, where a potential for the
auxiliary �eld and supersymmetric partner terms are neglected. In order to obtain the ‘true’
convex e�ective potential, such terms have to be taken into account.
Finally we would like to add that the �ow equation forW ′

k(ϕ) changes its sign forW ′′
k
2(ϕ) = k2.

�is sign change will give constraints on the �xed point solution discussed below.

5.4 Fixed-point analysis

Before we solve the above �ow equation for a given bare superpotential at the ultraviolet cuto� Λ
we investigate the �xed-point structure. It will turn out, however, that the picture obtained from
the LPA will change in next-to-leading order approximations. In two dimensions only part of
the �xed points are accessible in the LPA, that is at η = −∂t ln

(
Z2
k

)
= 0. �is is also known from

bosonic theories in two dimensions [126, 127]. In this respect the supersymmetric model will
behave very similar to the bosonic theories .
Since a �xed-point study requires a scaling form of the �ow equation it is rewritten in terms

of dimensionless quantities wt (φ) =Wk(ϕ)/k and t = ln
(
k/Λ). �e two-dimensional �eld ϕ is

dimensionless. To keep the notation consistent with the following chapters we use φ = ϕ in the
dimensionless �ow equations. �e �ow of the dimensionless potential reads

∂twt (φ) +wt (φ) = −
1
4π

w′′
t (φ)

1 +w′′
t (φ)2

. (5.20)

Fixed points are characterised by the condition ∂tw³(φ) = 0. �e dimensionless equation for the
�rst derivative is

∂tw′
t (φ) +w′

t (φ) = −
1
4π

w′′′
t (φ)

1 +w′′
t (φ)2

+
2
4π

w′′
t (φ)w′′′

t (φ)2

(1 +w′′
t (φ)2)2

. (5.21)

We �rst solve the equation with a polynomial approximation before the solution to the full
nonlinear di�erential equation is considered.

5.4.1 Polynomial approximation

�e �ow equation for w′ can always be expanded around its minimum φ = 0 even if the bosonic
potential is a double-well potential. �e polynomial approximation is justi�ed for small values of
the �eld φ.
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Figure 5.1: Projection of the coe�cients of all �xed points for di�erent truncations on the plane of the
couplings λ and b4.

At the ultraviolet cuto� we chooseWΛ = λ̄Λ(ϕ2 − ā2Λ) and we employ the expansion w′
t (φ) =

λt (φ2 − a2t ) +
∑N

i=2 b2i,tφ
2i. An even potential remains even under the �ow and thus only even

terms have to be considered in the ansatz. �e dimensionless couplings λi,t ,bi,t are related to the
bare, dimensionful ones via λt = λ̄/k and bi,t = b̄i/k. ā is dimensionless, therefore at = āk holds.

�e �ow equations in this approximation are

∂ta2t =
1
2π

−
6λ2t · a2t

π
+ a2t

3b4,t
πλt

,

∂tλt =−
3b4,t
π

+
6λ3t
π

− λt ,

∂tb4,t =−
15b6,t
2π

+
60b4,t · λ2t

π
−
40λ5t
π

− b4,t , (5.22)

. . .

∂tb2n,t =−
(n + 1)(n + 2)

4π
b2n+2,t + f2n (λt ,b4,t , . . . ,b2n,t) .

�e �xed-point equations are obtained by setting the le� hand side equal to zero. �e system
of coupled equations has a triangular form and can be solved iteratively. From the equation
for ∂tλ we can read o� that all �xed-point couplings have to obey a relation between λ and b4.
�is is shown in �gure 5.1. �e system of N equations yields 2N + 1 real �xed points. One is
the Gaußian �xed point with all couplings equal to zero, the other ones come in pairs due to
the underlying Z2 symmetry. �e largest root of the system of equations turns out to be the
infrared stable �xed point. With increasing order of truncation it converges to |λcrit| = 0.982. For
the convergence behaviour see table 5.1 where the coe�cients of the �xed point are shown for
di�erent truncations. All other roots are bounded by |λ³| = |λcrit|.
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Coe�cients at infrared �xed point

2n λ³ b³4 b³6 b³8 b³10 b³12 b³14 b³16
 .
 . .
 . . .
 . . . .
 . . . . .
 . . . . . .
 . . . . . . .
 . . . . . . . .

Table 5.1:�e coe�cients of the infrared-stable �xed-point potential for di�erent truncation orders.

Stability analysis and critical exponents

�e coupling constants at the �xed point and the radius of convergence are regulator dependent,
hence they are not physical quantities. �e critical exponents are, however, universal and classify
the �xed points. �ey are de�ned as the negative eigenvalues θI of the stability matrix at the �xed
point (see section 2.2).

�e �ow equation for a2t reads

∂ta2t =
1
2π

− a2t −
(
a2t
λt

)
∂tλt . (5.23)

At any �xed point the (0, 0)-component of the stability matrix is B0
0 = −1. Due to the triangular

form of the system (5.22) it follows that Bi>1
0 = 0. �erefore a2t is always an eigendirection of

Bi
j with eigenvalue θ0 = 1 independent of the regulator. �e value of this critical exponent

receives corrections at higher orders in the derivative expansion, but it will always remain to be
an eigendirection because couplings of higher order do not contribute to the �ow equation of a2t .
�is implies that the superpotential in the LPA always has at least one infrared-unstable direction.
All other 2N − 1 �xed points turn out to have more than one infrared-unstable direction.

�e critical exponent ν−1W = (θ0) = 1 does not correspond to the scaling exponent in the
correlation length, unlike in the bosonic Ising model. Rather, the critical exponent governs how
the bosonic mass scales with the RG scale. It also plays a role in describing the phase diagram.

For a polynomial approximation to order 2n = 16 the critical exponents are calculated with
two di�erent regulators

r2 =
(
k|q| − 1

)
θ
(
k2

q2
− 1

)
and r2 =

(
k2

q2
− 1

)
θ
(
k2

q2
− 1

)
. (5.24)
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5.4 Fixed-point analysis

�e results are shown in table 5.2. Positive exponents, which belong to infrared-unstable directions,
are highlighted in gray. �e variation in the positive critical exponents is of order 10 or less.
�is con�rms the expected regulator independence. �e �xed points can be labelled by the slope
λ³ of the dimensionless superpotential w′(ϕ2). �e largest slope corresponds to the �xed point
with the most infrared-stable directions. As the slope decreases, the number of infrared-unstable
directions increases. �e Gaußian �xed point with λ³ = 0 has no infrared-stable directions. �us
we conclude that each �xed point de�nes a di�erent non-perturbative renormalisedWess-Zumino
model in the ultraviolet in two dimensions. If these �xed points survive to higher orders, the
number of physical parameters increases for these �xed points.
At a �xed point the relevant directions are infrared repulsive and the �ne tuning of the relevant

direction to the �xed point brings the system to its critical point. For themaximally infrared-stable
�xed point the unstable direction a2t is the only parameter that has to be �ne tuned. In this
respect a2t is similar to the temperature in Ising like systems or to the mass in O(N) models. In
the domain of the maximally infrared-stable �xed point the tuning of a2t distinguishes between
the supersymmetric broken and unbroken phase. In the domain of N relevant directions there
is an N-dimensional hypersurface that separates the supersymmetric and non-supersymmetric
phase. Unlike the Ising-like systems a2t does not in�uence the higher couplings because it can
be expanded around φ = 0. For this reason the remaining couplings are attracted towards the
maximally infrared-stable �xed point. As long as the polynomial approximation is valid the �ow
of w′′ is governed by the maximally infrared-stable �xed point. �is is also the case in higher
dimensions (cf. chapter 6).
�is behaviour remains unchanged if higher orders in the supercovariant derivative expansion

are taken into account because the superpotential (or its derivative) does not couple to higher
orders of the auxiliary �eld.

5.4.2 Solving the nonlinear di�erential equation

To go beyond the approximation of small �elds we have to consider the nonlinear di�erential
equation. �e case of two dimensions is special because the �eld is dimensionless and the term
(d − 2)φw′′(φ) is not present in the le� hand side of the �xed point equation

∂tw′
t (φ) +w′

t (φ) = −
1
4π

w′′′
t (φ)

1 +w′′
t (φ)2

+
2
4π

w′′
t (φ)w′′′

t (φ)2

(1 +w′′
t (φ)2)2

. (5.25)

�e right hand side contains w′′ as highest derivative. Due to this, an infrared-stable solution is
found if the �xed point equation for w′′ is considered. For simplicity of notation u = w′′(φ) is
introduced. �e �xed point equation then reads

(1 − u2)(1 + u2)u′′ = 2u′2 (3 − u2) u − (1 + u2)3 4πu. (5.26)
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Figure 5.2: Le� panel: All types of possible solutions to the �xed-point di�erential equation in local-
potential approximation: (1) γ > γcrit, (2) γ = γcrit, �nite φ range, (3) γ = γcrit, oscillating solution, (4)
γ < γcrit, oscillating solution, (5) solution with just one extremum . Right panel: Comparison between
the numerical solution to the di�erential equation (ODE) and the polynomial approximation (Poly) to
16th order for three di�erent �xed points. �e �xed points FP1, FP2, and FP3 have the initial slope
γ = 0.287, 1.4262 and 1.963. �e �xed point FP3 is the maximally infrared-stable �xed point.

In [124] it is proven that the nonlinear equation has oscillating solutions with |u| ≤ 1 if the starting
slope u′(0) = γ ≤ γcrit. For γ > γcrit there are diverging solutions that are con�ned to a �nite range
of the �eld φ. In �gure 5.2, le� panel, we depict all possible types of solutions. �e oscillating
solution is shown in �gure 5.2, right panel, for three di�erent slopes together with the Taylor
expansion from the polynomial approximation. �e Taylor expansion is a good approximation
for the �rst half of one period.
Now we can make the connection between the �xed points found in the polynomial approx-

imation and from the solution of the di�erential equation. In case of γ ≤ γcrit the solutions to
the polynomial approximation belong to the Taylor expansion of the oscillating solutions. �e
solutions are bounded by γcrit = 2λcrit corresponding to the infrared-stable �xed point. �erefore
there are in�nitely many sine-Gordon type solutions to the �xed point equation.
Due to the factor (1 − u2) in equation (5.26) the le� hand side of equation (5.26) vanishes at

u = 1. For a regular solution this implies that the right hand side has to vanish as well. From
this we �nd a condition for the slope at the critical point, namely that it has to be equal to
u′(φcrit) = ±

√
8π. At φcrit the solution can either continue with the same slope or it can be re�ected

which leads to an oscillating solution. �is is di�erent from the situation in three dimensions,
where a similar condition arises. However, there it determines a unique solution without the
possibility of re�ection (cf. chapter 6).

5.4.3 Fixed points at next-to-leading order

It is known from the �xed-point analysis of two-dimensional bosonic theories [126, 127] that in
the LPA with η = 0 only oscillating solutions and solutions that are de�ned over a �nite φ range
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are accessible. For η �= 0 a term ∼ ηφw′′ enters on the le� hand side of the �ow equation, changing
the picture when the next-to-leading order is taken into account. Now, regular non-periodic
solutions with a polynomial asymptotic behaviour emerge. In this case the approximation for the
e�ective action is

Γk[ϕ,F , ψ̄,ψ] =
∫

d2x
[
Z2
k

(
1
2
∂µϕ∂µϕ +

i
2
ψ̄/∂ψ −

1
2
F2

)
+
1
2
W ′′

k (ϕ)ψ̄γ³ψ −W ′
k(ϕ)F

]
. (5.27)

As cuto� action we choose

∆Sk =
1
2

∫
d2q
(2π)2

Z2
k

[
r2q2ϕ2 + r2F2 − 2r1Fϕ + ψ̄(/qr2 + γ³r1)ψ

]
. (5.28)

With this, the �ow equation for the superpotential is obtained by a projection onto the terms
linear in the auxiliary �eld and by an integration with respect to ϕ.

∂kWk =
1
2

∫
d2q
4π2

[
(1 + r2)Z2

k ∂k(r1Z
2
k)

Z4
k q2(1 + r2)2 + (W ′′

k + r1Z2
k)2

−
(W ′′

k + r1Z2
k)∂k(r2Z

2
k)

Z4
k q2(1 + r2)2 + (W ′′

k + r1Z2
k)2

]
. (5.29)

�e �ow equation of the wave-function renormalisation is obtained by a projection onto the terms
quadratic in the auxiliary �eld. As only a �eld-independent wave-function renormalisation is
considered, the �ow equation for the wave-function renormalisation can additionally be projected
onto ϕ = 0:

∂kZ2
k = −W ′′′

k (ϕ)
2Z2

k

∫
d2p
4π2

(1 + r2)
1(

Z4
k p2(1 + r2)2 + (W ′′

k + r1Z2
k)2

)3× (5.30)[
2Z2

k

(
W ′′

k (ϕ) + r1Z2
k

)
(1 + r2) ∂k(r1Z2

k) +
(
Z4
kp

2(1 + r2)2 −
(
W ′′

k (ϕ) + r1Z2
k

)2) ∂k(r2Z2
k)

]∣∣∣
ϕ=0

Taking into account the running of a wave-function renormalisation the simple regulator we
have used before leads to arti�cial singularities in the infrared. For this reason, we use a di�erent
regulator

r1 = 0 and r2 =
(
k2

p2
− 1

)
θ
(
k2 − p2

)
(5.31)

in the subsequent calculations. A�er the rescalings χ = Zkϕ,Wk(χ) =Wk(ϕ) andW′
k =W ′

kZ
−1
k ,

W′′
k =W ′′

kZ
−2
k , . . . the �ow equations read:

k∂kWk(χ) −
η
2
χW′

k =−
η k2

8πW′′
k

+
(η − 2)k2W′′

k
2 + ηk4

8πW′′
k
3

ln

(
1 +

W′′
k
2

k2

)
, (5.32)

η =
k2

4π

(
W′′′

k

W′′
k
2

)2 [
ηW′′

k
2

W′′
k
2 + k2

−η ln

(
1 +

W′′
k
2

k2

)
+

2W′′
k
4

(W′′
k
2 + k2)2

]∣∣∣∣∣∣
χ=0

.
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In terms of the dimensionless superpotential w(χ) = W(χ)/k, this can be rewritten as

∂twk(χ) −
η
2
χw′

k +wk =−
η

8πw′′
k

+
(η − 2)w′′

k
2 + η

8πw′′
k
3

ln
(
1 +w′′

k
2
)
, (5.33)

η =
1
4π

(
w′′′

k

w′′
k
2

)2 [
ηw′′

k
2

w′′
k
2 + 1

− η ln
(
1 +w′′

k
2
)
+

2w′′
k
4

(w′′
k
2 + 1)2

]∣∣∣∣∣∣
χ=0

. (5.34)

Polynomial approximation

For a polynomial solution we use the expansion

w′
t (χ) = λt (χ2 − a2t ) +

N∑
n=1

b2n,tχ2n. (5.35)

�e limit χ → 0 on the right-hand side of equation (5.34) exists and the equation can be resolved
with respect to η. �is yields

η =
4λ2

λ2 + 2π
. (5.36)

A polynomial approximation of equation (5.33) yields the �ow equation for the coupling a2t :

∂ta2t =
1
8π

(4 − ηt) − ηta2t −
a2t
λt

(
3
(
λ3t − b4,t

)
π

−
(
2λ3t − 3b4,t

)
ηt

4π

)

=
1
2π

(
1 −

η
4

)
−

(
1 −

η
2

)
a2t −

a2t
λt

∂tλt (5.37)

As in the LPA a2t is an eigendirection of the stability matrix and the corresponding critical
exponent is given by

θ0 =
(
1 −

η
2

) ⇒ νW ≡ 1
θ0

=
2

2 − η
. (5.38)

�is relation is called superscaling relation because it relates the anomalous dimension with the
critical exponent. In Ising-like systems the main thermodynamic exponents (α,β,γ,δ) are related
among each other by scaling relations. �ey can be deduced from the exponents ν and η of
correlation functionsby hyperscaling relations, but no other connection between these exponents
exists. In this respect the superscaling relation is speci�c to supersymmetric theories as it provides
a connection between νW and η that does not exist in non-supersymmetric theories.
�e superscaling relation is exact at next-to-leading order, and although it might receive

corrections fromhigher-order derivative operators beyond next-to-leading order it still constitutes
a new relation between η and ν. In fact, quantitative corrections beyond next-to-leading order
are expected to be quite large because the anomalous dimension is large. �e value for the critical
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5.4 Fixed-point analysis

2n       

η . . . . . . .
2 − η/2 . . . . . . .
1/νW . . . . . . .

Table 5.3:Numerical veri�cation of the superscaling relation (5.38): anomalous dimension η and the
critical exponent νW−1 of a2 for increasing orders in a polynomial truncation evaluated for the maximally
infrared-stable �xed point. �ey converge fast with increasing order of the truncation.
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Figure 5.3: Le� panel: Regular potentials for η = 0.1. �e asymptotic behaviour of these potentials is given
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dimension as a function of γ = 2λ obtained from equation (5.36) (dotted curve). Also displayed are the
�xed point solutions obtained from a polynomial approximation of equation (5.33) and (5.34) for di�erent
truncations.

exponent shows a su�ciently fast convergence with the order of the polynomial approximation,
as can be seen from the �rst row in table 5.3. Additionally we give in this table a numerical
veri�cation of the superscaling relation.

�e superscaling relation and its consequences for the infrared �ow of the masses in the regime
with broken supersymmetry will be discussed later.

Fixed points from the nonlinear �ow equation

In the limit of large χ the right hand side of the �xed point equation following from equation (5.33)
is subdominant, implying the asymptotic behaviour

w³ ∼ χ2/η (5.39)

for the superpotential. Such solutions are shown in �gure 5.3 (le� panel) for η = 0.1. For η = 0 the
asymptotic potential grows faster than any polynomial. �is agrees with the results in the previous
section. For η �= 0 a new class of solutions emerge that are regular over the whole φ-range.
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5 �e two-dimensionalN = 1 Wess-Zumino model

�e �xed point equation for the second derivative of the superpotential reads1

u′′
4π

[(
η(3 + u2)

2u4
−

1
u2

)
ln

(
1 + u2

)
+

2
1 + u2

−
3η
2u2

]
= (η − 1)u +

ηχ
2
u′ + u′2

2π

[
1 + 3u2

u(1 + u2)2
−
η(3 + 2u2)
u3(1 + u2)

+
(
η(6 + u2)

2u5
−

1
u3

)
ln

(
1 + u2

)]
. (5.40)

As in the case of the LPA the vanishing of the factor multiplying u′′ at some χcrit yields a condition
on the slope u′ at χcrit. Due to the term 1

2
ηχu′ the slope is no longer independent of χcrit, however.

In order to investigate this equation we �rst consider η as a free parameter in equation (5.40).
�is is similar to the way Neves et. al. [127] investigated the two-dimensional bosonic models.
As initial conditions u(0) = 0 we use and u′(0) = γ = 2λ because we are only interested in odd
solutions for u. Integrating the equation with a generic slope for a given η ends in a singularity
because the factor multiplying u′′ becomes zero at some point. Nevertheless it is possible to �nd
regular solutions by �ne tuning the slope at the origin. For η = 0.1 three solutions are shown in
the le� panel of �gure 5.3.

All regular solutions de�ne lines of �xed points in the η–γ plain. �ese lines are shown in the
right panel of �gure 5.3. �e largest value of η for which a regular solution exists is η = 2/3. For
this η the potential behaves as u ∼ χ. For 0 < η < 2/3 we can read o� from the monotony of the
functions that the factor multiplying u′′ in equation (5.40) has only one root at some χ = χcrit. By
�ne tuning of the starting slope we can achieve that the right hand side vanishes.

�e outermost curve in �gure 5.3 corresponds to solutions u(χ) with no nodes, the next curve
to solutions with one node and the third curve to solutions with two nodes. Solutions with more
nodes can be found for small η and γ. We also display η as a function of γ,

η(γ) =
4γ2

γ2 + 8π
, (5.41)

in �gure 5.3, right panel. Its intersections with the lines of �xed points pick out the solutions that
satisfy the �xed-point equation (5.40) and the equation for the anomalous dimension. �is can
be observed in the polynomial approximation of the �xed-point equation which converges to the
maximally infrared-stable solution with η = 0.4386 and γ = ±1.759.

�e point η = 0 and γ = ±3.529 where all curves meet corresponds to solutions that diverge for
a �nite value of φ. �ese solutions were discussed in the local potential approximation. As the
slope at u = 1 does not depend on φcrit for η = 0, the solution either diverges without any cusps
such that it lies on the outermost curve or it oscillates a number of times and then diverges such
that it lies on one of the inner curves with one node or more.

�e solutions at leading and at next-to-leading order seem to be qualitatively very di�erent.

1Again, we use the abbreviation u = w′′
³.
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5.5 �e Gaußian Wess-Zumino model

�e leading order solutions are either oscillatory, the infrared-stable solution even has cusps, or
they have a compact target space whereas the next-to-leading order solutions allow for solutions
that behave like w ∼ χ2/η for large �elds but exhibit oscillatory behaviour for small �elds.

An important parameter to understand the connection between leading and next-to-leading
order is the anomalous dimension η from which the asymptotic polynomial behaviour originates.
It has been derived from a small �eld expansion around χ = 0, but a �eld-dependent wave-function
renormalisation is expected to behave as Zk(ϕ → ∞) → 1 and correspondingly η(χ → ∞) → 0.
�us it is reasonable to expect that the true asymptotic behaviour of the �xed-point potential is
bound to lie between the one from leading and next-to-leading order, i. e. it will show a stronger
divergence at χ → ∞ than the one predicted by the next-to-leading order results.

Before concluding this section on the �xed points a short discussion of the situation in
two-dimensional bosonic theories is in order. T. Morris [126] as well as R. Neves et. al. [127]
discovered that solutions which have a polynomial asymptotic behaviour can only be found for
non-vanishing anomalous dimensions. Morris demonstrated that at next-to-leading order the
�xed-point solutions, which are classi�ed by their number of nodes, correspond to conformal
�eld theories described by Zamolodchikov [128].

We expect the �xed-point solutions discovered here to correspond to conformal theories as well.
For the two-dimensionalN = 2 Wess-Zumino model it has recently been demonstrated with
lattice simulations that the infrared �xed point of this model describesN = 2 superconformal
minimal models [129].

Having studied the structure of the general �xed-point solutions now we will investigate a
speci�c model.

5.5 �e GaußianWess-Zumino model

In this section we are interested in a quadratic perturbation to the Gaußian �xed point at the
ultraviolet cuto� Λ. We take it to be of the formW ′

Λ = λ̄Λ(ϕ2 − ā2Λ). �is means that we consider
an asymptotically free theory with in�nitely many couplings set to zero at the ultraviolet cuto�
scale. �e ultraviolet cuto� is not removed in the following. Instead the non-universal bare
quantities are used.

�e regulator dependence of the RG trajectories and the large variation in the values of
non-universal quantities for di�erent regulators makes it di�cult to compare the results to lattice
calculations because the lattice regularisation of the same physical systemmight lead to a di�erent
lattice cuto� Λ = π/alat. For this reason we make such a comparison only on a qualitative level.

From a di�erent viewpoint the regulator choice can be interpreted as belonging to the theory
itself, namely that the initial conditions, the perturbation at the cuto� scale and the regulator
determine the RG trajectory at a �nite scale Λ. �e problem of this interpretation is that the
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5 �e two-dimensionalN = 1 Wess-Zumino model
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λ̄Λ = 100, ā2Λ = 0.3.

couplings of in�nitely many operators have to be adjusted when the cuto� scale is changed along
the lines of constant physics. In order to �nd out howmuch these operators actually a�ect the �ow
of the superpotential, we vary the cuto� scale Λ. For a given Λ, the couplings inW ′

Λ = λ̄Λ(ϕ2 − ā2Λ)
are adjusted such that �xed reference couplings aΛ0

and λΛ0
are obtained at a reference scale Λ0,

ignoring higher-order couplings. For large enough Λ, the solutions of the �ow equation show
that the dependence on the ultraviolet cuto� scale of the ground state energy at k = 0 is small.
To calculate the �ow of the superpotential we have to pay attention to the diverging derivatives

in the infrared-stable solutions at ϕcrit of the �xed point equations. For ϕ ∈ [−ϕcrit,ϕcrit] we use
the polynomial approximation and outside of this regime the partial di�erential equation. At
the point ϕcrit both solutions have to be matched which is achieved by taking the polynomial
approximation at ϕcrit as a boundary condition. �e details of the calculation are discussed
in [124]. An example for the �ow of a superpotential with dynamical supersymmetry breaking is
shown in �gure 5.4.
In this truncation the e�ective potential is given by 1

2
W ′2

k→0. As already discussed in the chapter
on supersymmetric quantum mechanics this potential is not guaranteed to be convex. To obtain
a convex potential higher orders in the super-covariant derivative expansion have to be taken
into account.
In the Wess-Zumino models there is a connection between supersymmetry breaking and the

restoration of Z2 symmetry. If supersymmetry is unbroken the bosonic potential is a double-well
potential and the Z2 symmetry is broken. In the phase with broken supersymmetry the bosonic
potential is a single-well potential and the Z2 symmetry is restored.
If the bare potential is chosen in the phase with unbroken supersymmetry the scalar potential
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has two minima with V = 0. �ese minima approach ϕ = 0 during the �ow. At the phase
transition there is just one minimum with ϕ = 0 and V = 0 such that the phase transition for
SuSy breaking and the restoration of the Z2 symmetry coincide. In the next chapter this relation
is used in order to consider supersymmetry breaking at �nite temperature.

5.5.1 Phase diagram

Wewill stay in the LPA to discuss the phase diagram. For a superpotential of orderWk ∼ O(ϕ2n+1)
supersymmetry is broken or unbroken depending on the parameter ā2Λ. As the criterion for
supersymmetry breaking we take a non-vanishing ground state energy of the e�ective potential.
�is can only be the case ifW ′

k(ϕ) is nonzero on the whole ϕ-range. As the minimum ofW ′
k(ϕ)

is located at ϕ = 0 the polynomial approximation can be used to calculate the phase diagram. �e
minimum is given byW ′

k(0) = kλta2t . It freezes out because the coupling λt �ows to its infrared
�xed point λ³ as discussed in the previous section and a2 ∼ ±k−1 depending on the value at the
cuto� scale. �is is a direct consequence of the fact that a2t at the �xed point is governed by the
critical exponent θ0 = 1. �e value of āΛ at the cuto� scale determines whether a system that
is broken at the cuto� scale remains in the broken regime (a2t → +∞) or �ows to the unbroken
phase (a2t → −∞). �e change in the sign is taken as the signal for the phase transition. �e phase
transition line consists of those values (ā2Λ, λ̄Λ) at which the sign change occurs. In �gure 5.5, le�
panel, the phase diagram is shown. �e values have been calculated with a truncation up to ϕ10.
�e convergence is fast as the truncation order is increased.

In the strong coupling limit λ̄Λ → ∞ there is a maximal value for λ̄Λā2Λ above which
supersymmetry can never be broken dynamically. From a numerical solution at a high-order
truncation an estimate for this value is λ̄Λā2Λ|critΛ−1 Þ 0.263. �is is in agreement with qualitative
results from the literature [116, 119].
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5 �e two-dimensionalN = 1 Wess-Zumino model

We have additionally calculated the phase diagram with the regulator

r2 =
(
k2

q2
− 1

)
θ
(
k2

q2
− 1

)
. (5.42)

A comparison between the two regulators is shown in the right panel of �gure 5.5. We observe
a strong dependence of the values of the phase transition on the regulator. �e numerical
values di�er by a factor of approximately two. Due to the regulator dependence a quantitative
comparison between non-universal quantities in the FRG and in the lattice calculation [119],
where just one point in the phase diagram was calculated, is not sensible. More lattice points are
needed to compare dimensionless ratios that are less a�ected by scheme dependencies.

As the ground state energy and the fermionic mass are order parameters for the phase transition
from broken to unbroken supersymmetry, they should exhibit a scaling behaviour near the phase
transition. However, in the considered truncation such a scaling behaviour cannot be found. �e
auxiliary �eld is nonzero in the broken phase, therefore its expectation value yields a �eld valued
order parameter. We expect �uctuations of the auxiliary �eld to play an important role near the
critical point. �e �uctuations might establish a scaling behaviour. To describe these �uctuations,
a potential for the auxiliary �eld must be included. Such terms come from higher orders in the
super-covariant derivative expansion and therefore the quantitative description of the critical
regime is a hard challenge to tackle in the framework of the �ow equations.

5.5.2 Scaling of the mass term

As in supersymmetric quantummechanics the curvature at theminimum of the e�ective potential
is de�ned as the bosonic mass in the infrared limit k → 0. For renormalised �elds χ = Zkϕ the
bosonic potential takes the form

Vk

(
χ
)
=

(
W ′

k

(
χ · Z−1

k

))2
2Z2

k

. (5.43)

�e bosonic mass reads

m2
k = V ′′

k

(
χmin

)
, V ′

k

(
χmin

)
= 0. (5.44)

In the broken phase χmin = 0 holds. �e scalar mass is given by

m2
k = Z−4

k W ′
k(0)W

′′′
k (0) = 2k2λt

∣∣a2t ∣∣ . (5.45)

For k → 0 the system �ows to its infrared-stable �xed point λt → λ³ and a2t ∼ k−1/νW , implying
the scaling behaviour

m2
k ∼ k1+η/2. (5.46)
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In the infrared-limit the scalar mass goes to zero for η > −2. Together with the Goldstino from
supersymmetry breaking this leads to the conclusion that the Gaußian Wess-Zumino model is
massless in both degrees of freedom.
Keep in mind, however, that the limit k → 0 can never be realised in experiment but instead

a cuto� scale is always involved. In lattice simulations this cuto� scale is the lattice volume.
Hence we have shown that the bosonic mass is proportional to the cuto� scale involved in the
measurement. First results from lattice simulations seem to con�rm this conjecture [16].
�e superscaling relation, together with Zk ∼ k−η/2, causes the minimum of the superpotential

to freeze out:

W ′(0) = −λ̄kā2k = −kZkλta2t ∼ k1−η/2k−1/νW → const. (5.47)

In the supersymmetric phase withW ′
k

(
χmin · Z−1

k

)
= 0 the bosonic and fermionic mass is given by

m2
k =

W ′′
k

(
χmin · Z−1

k

)2
Z4
k

�= 0. (5.48)

W ′′
k (ϕ) stays positive for a typical �ow as k → 0 is approached. As k drops below the mass

scale this leads to a decoupling of the massive modes.
In the LPA considered here we use η = 0 to calculate the masses across the phase transition.

In �gure 5.6 we show the mass depending on the relevant direction λ̄Λā2Λ with λ̄Λ = 0.1. At
λ̄Λā2Λ|critΛ−1 Þ 0.045 the phase transition from the phase with unbroken to the phase with broken
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5 �e two-dimensionalN = 1 Wess-Zumino model

supersymmetry occurs. At this point both the fermionic and the bosonic mass are zero. In the
broken phase the Goldstino is massless and the bosonic mass remains massive at a non-vanishing
k and goes to zero for k → 0.
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6 �e three-dimensionalN = 1Wess-Zumino

model

In this chapter we investigate the three-dimensionalN = 1 Wess-Zumino model. Many things in
three dimensions are similar to those discussed in the previous chapter on theN = 1 model in
two dimensions. For this reason, we keep the derivation of the �ow equations brief and mention
only the di�erences to the two-dimensional case.
As the �eld is no longer dimensionless, the three-dimensional equations can be generalised to

arbitrary dimensions straightforwardly.
As an application we also study the model at �nite temperatures. Finite temperature introduces

a supersymmetry breaking due to di�erent statistics of fermions and bosons (cf. section 6.3). �e
derivation of the �ow equations at �nite temperatures is described in detail.
�ree-dimensional supersymmetric scalarmodels at zero and�nite temperature have previously

been investigated byM.Moshe and coworkers [130, 131]. However they focused on supersymmetric
O(N) models in the limit of large N .
�e construction of the superspace is similar to [132] where the N = 1 super�eld in three

dimensions is introduced in the context of nonlinear sigma models.
In three-dimensional Euclidean space-time there exist no Majorana fermions. Due to this,

three-dimensional Minkowski-space is considered here. To calculate the �ow equations the
integrals in the �ow equation to Euclidean space time are Wick-rotated. �e convention for the
metric is (ηµν) = diag(1,−1 − 1).
�e results presented here are published in [133]. �is chapter is organised as follows: A�er

presenting the model and discussing the �ow equations in the local potential approximation
the �xed-point structure is investigated at leading and at next-to-leading order in the derivative
expansion. �e zero-temperature phase diagram is discussed as well as the behaviour of the
bosonic mass in the SuSy broken phase. �en we derive the �ow equations at �nite temperature.
SuSy breaking due to �nite temperature is explicitly demonstrated. Also the pressure of a gas of
scalar �elds is calculated. We shall show that at �nite temperature a broken Z2 symmetry, which
is taken as a remnant of SuSy breaking, is always restored at some critical temperature.
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6 �e three-dimensionalN = 1 Wess-Zumino model

6.1 �eWess-Zumino model

As in the two-dimensional model the system contains a bosonic �eld, an auxiliary �eld and a
Majorana fermion. �ey are combined into a real super�eld

Φ(x,θ) = ϕ(x) + θ̄ψ(x) +
1
2
θ̄θF (x). (6.1)

�e supersymmetry transformations are generated by the supercharges:

δεΦ = iε̄QΦ, Q = −i
∂
∂θ̄

− (γµθ)∂µ . (6.2)

For the γ matrices a Majorana representation is used:

γ0 = σ2, γ1 = iσ3 and γ2 = iσ1. (6.3)

With the aid of the symmetry relations for Majorana spinors

ψ̄χ = χ̄ψ, ψ̄γµχ = −χ̄γµψ (6.4)

and the particular Fierz identity θθ̄ = −1
2
θ̄θ ·1 the transformation laws for the component �elds

from equation (6.2) read

δϕ = ε̄ψ, δψ = (F + i/∂ϕ)ε, δF = iε̄/∂ψ . (6.5)

�e anticommutator of two supercharges yields
{
Qα, Q̄β

}
= 2(γµ)αβ∂µ and the supercovariant

derivatives are
D =

∂
∂θ̄

+ i(γµθ)∂µ, and D̄ = −
∂
∂θ

− i(θ̄γµ)∂µ. (6.6)

Moreover, we have {Dα, D̄β} = −2(γ)αβ∂µ . (6.7)

�e o�-shell Lagrangian is the θ̄θ-component of D̄ΦDΦ +2W (Φ) and reads

Lo� =
1
2
∂µϕ∂µϕ −

i
2
ψ̄/∂ψ +

1
2
F2 + FW ′(ϕ) − 1

2
W ′′(ϕ)ψ̄ψ. (6.8)

By eliminating the auxiliary �eld with its equation of motion, F = −W ′(ϕ), we obtain the on-shell
Lagrangian density

Lon =
1
2
∂µϕ∂µϕ −

i
2
ψ̄/∂ψ −

1
2
W ′2(ϕ) − 1

2
W ′′(ϕ)ψ̄ψ. (6.9)

From this expression it can be read o� thatW ′2(ϕ) acts as potential for the scalar �elds.
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6.2 �e supersymmetric �ow equations at zero temperature

6.2 �e supersymmetric �ow equations at zero temperature

Because Majorana fermions in three dimensions exist only in Minkowski space, a formulation of
the Wetterich equation in Minkowski-space is needed. �e derivation of such an equation can be
found in appendix C following [134]. Formulations of the �ow equation in Minkowski space can
also be found in [135, 136]. �e equation reads

∂tΓk =
i
2
STr

[(
Γ(2)
k + Rk

)−1
∂tRk

]
, t = ln

(
k2

Λ2

)
. (6.10)

Γ(2)
k is de�ned as in the previous chapters. �e supertrace is taken over Lorentz and internal

indices as well as space-time or momentum coordinates. Here the ‘RG-time’ t is de�ned as
ln

(
k2/Λ2

)
. �is is required in order to make a Lorentz invariant separation into large and small

momenta.

Because the supersymmetric �ow equations, including the choice of the regulator, are con-
structed along the lines of the previous chapters the construction will only be sketched here. �e
supersymmetric cuto� action is again quadratic in the super�elds and contains a function of DD̄.
With the help of the anticommutation relations, powers of DD̄ can always be decomposed into(

1
2
DD̄

)2n

= (−�n) , (6.11)

such that the cuto� action takes the form

∆Sk =
∫

dθ̄dθd3xΦ
(
r1 (k,�) + r2 (k,�)

1
2
DD̄

)
Φ.

�is leads to the same regulator structure that was used in the previous chapters. �e conventions
for the Fourier transformation are i∂µ → qµ. �en the bosonic and fermionic part of the regulator
read

RB
k =

(
q2r2

(
k,q2

)
r1

(
k,q2

)
r1

(
k,q2

)
r2

(
k,q2

)) and RF
k = −r1

(
k,q2

)
− r2

(
k,q2

) /q . (6.12)

�e explicit calculation can be found in [133].

6.2.1 �e local potential approximation

In the LPA the ansatz for the e�ective action is

Γk =
∫

d3x
[
1
2
∂µϕ∂µϕ −

i
2
ψ̄/∂ψ +

1
2
F2 + FW ′

k(ϕ) −
1
2
W ′′

k (ϕ)ψ̄ψ
]
. (6.13)
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6 �e three-dimensionalN = 1 Wess-Zumino model

Projecting equation (6.10) onto the terms linear in the auxiliary �eld and integrating with respect
to ϕ yields the �ow equation for the superpotential. Performing a Wick rotation of the zeroth
component of the momentum, i. e. qM0 → iqE0 , the �ow equation takes the form

∂kWk(ϕ) =
1
2

∫
d3q
(2π)3

∂kr1(1 + r2) − ∂kr2(W ′′
k (ϕ) + r1)

q2(r2 + 1)2 + (W ′′
k (ϕ) + r1)2

. (6.14)

Formally the �ow equation is the same in two and three dimensions, only the integration measure
changes.

In the following the simple regulator functions in Euclidean space time,

r1 = 0, r2 =
(∣∣∣∣kq

∣∣∣∣ − 1
)
θ
(
k2 − q2

)
, (6.15)

is chosen for which the momentum integration in (6.14) can be performed analytically. Contrary
to the model in two dimensions, the regulator function (6.15) regularises the �ow even if a running
wave-function renormalisation is taken into account. For the superpotential Wk(ϕ) the �ow
equation simpli�es to

∂kWk(ϕ) = −
k2

8π2

W ′′
k (ϕ)

k2 +W ′′
k (ϕ)2

. (6.16)

As we are interested in the e�ective potential for the scalar �eld V (ϕ) = limk→0
1
2
W ′2

k(ϕ), we
consider its �ow equation:

∂kW ′
k = −

k2W (3)
k (ϕ)

(
k2 −W ′′

k (ϕ)
2
)

8π2
(
k2 +W ′′

k (ϕ)2
)2 . (6.17)

Figure 6.1 shows the �ow of W ′2
k (ϕ) for a cubic superpotential at the ultraviolet cuto� scale,

W ′
Λ = λΛ( 13ϕ

3 − a2Λϕ), and with initial conditions λΛΛ−1 = 1, a2ΛΛ−1/2 = 0.02. With these initial
conditions the RG �ow starts in the regime with broken Z2 symmetry and for k → 0 ends up in
the regime with restored Z2 symmetry. �e potentialWk(ϕ) becomes �at at the origin as k is
lowered. In three dimensions, however, the functionW ′′

k→0(ϕ) is regular for all values of the �eld,
in contrast to the situation in two dimensions.
As in two dimensions we �rst investigate the �xed-point structure. In order to do this, we

introduce dimensionless quantities

φ = k−1/2ϕ, wt (φ) = k−2Wk(ϕ), w′
t (φ) = k−3/2W ′

k(ϕ), . . . . (6.18)

�e dimensionless �ow equation for the superpotential then reads

∂twt + 2wt −
φw′

t

2
= −

w′′
t

8π2(1 +w′′2
t )

, (6.19)
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Figure 6.1: RG �ow ofW ′2
k (ϕ) with the initial conditions λΛΛ−1 = 1, a2ΛΛ

−1/2 = 0.02.

where the prime denotes the derivative with respect to the dimensionless �eld φ. Its �xed points
are characterised by ∂tw³ = 0. In contrast to the case in two dimensions, there appears now the
additional term ∝φw′

t (φ), since the �eld ϕ itself is a dimensionful quantity. In d dimensions the
dimensionless �ow equation with the same regulator generalises to

∂twt + (d − 1)wt − (d − 2)
φw′

t

2
= −

2−dπ−d/2
(d − 1)Γ(d/2) w′′

t

(1 +w′′2
t )

. (6.20)

As already stated in two dimensions, it follows that the couplings of the terms φ0 and φ1 do
not enter the �xed-point equation but evolve independently. �is is due to the fact that in the
supersymmetric theory it is always possible to make a polynomial expansion around φ = 0, that
is the minimum of w′, even if the bosonic potential V at the cuto� scale is a double-well potential.
In bosonic O(N) models the expansion point for a double-well potential is the minimum of
the potential which lies at a point φ �= 0. By this the coupling at lowest order enters in the �ow
equations of the higher order couplings for the bosonic theories.
�is has some interesting consequences which distinguish the supersymmetric Wess-Zumino

model from purely bosonic theories, as for example O(N) models in three dimensions, see e. g.
[17, 137, 138, 139] for results on these models. �ese consequences are discussed below.

For the �xed-point analysis, we need the �rst derivative of equation (6.19),

∂tw′
k +

3w′
k −φw′′

k

2
=

(w′′2
k − 1)w′′′

k

8π2(1 +w′′2
k )2

. (6.21)

As in two dimensions, we �rst consider a polynomial approximation of the �ow equation. �e
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r2 =
(
k/q − 1

)
θ
(
k2/q2 − 1

)
r2 =

(
k2/q2 − 1

)
θ
(
k2/q2 − 1

)
2n ±λ ±b4 ±b6 ±b8 ±b10 ±b12 ±λ ±b4 ±b6 ±b8 ±b10 ±b12
 . . . .
 . . . . . .
 . . . . . . . .
 . . . . . . . . . -.
 . . . . -. -. . . . . -. -.

Table 6.1:Wilson-Fisher �xed point as obtained from the polynomial approximation of w′(φ) with two
di�erent regulators.

expansion of the superpotential reads

w′
k(φ) = λ(t)

(
φ2 − a2(t)

)
+

n∑
i=2

b2i (t) φ2i . (6.22)

�is yields the system of coupled di�erential equations:

∂ta2(t) = a2(t)
(
−
3λ(t)2

π2
+

3b4(t)
2π2λ(t)

− 1
)
+

1
4π2

,

∂tλ(t) = −
3b4(t) − 6λ(t)3 + π2λ(t)

2π2
, (6.23)

∂tb4(t) =
120b4(t)λ(t)2 + 2π2b4(t) − 15b6(t) − 80λ(t)5

4π2

. . .

Determining the �xed point solutions from this system yields an ultraviolet-stable Gaußian �xed
point with all couplings equal to zero and a pair of nontrivial maximally infrared-stable �xed
points which are related by a Z2 symmetry. �ey are regarded as one �xed point in the following.
�e nontrivial �xed point turns out to be the supersymmetric analogue of theWilson-Fisher �xed
point in bosonic theories. We �nd no other solutions to the �xed-point equations.

As the maximally infrared-stable �xed point in two dimensions, the Wilson-Fisher �xed point
has one infrared unstable direction, namely the coupling a2t . Compared to the two-dimensional
maximally infrared-stable �xed point, the convergence of the �xed-point couplings with the order
of the truncation is faster in three dimensions. �e �xed-point values for the couplings with
increasing truncation are shown in table 6.1. As the unstable direction does not feed back into
the equation for the higher-order couplings they always �ow into the Wilson-Fisher �xed-point
without �ne tuning.

�e critical exponents for the Wilson-Fisher �xed point are obtained along the same lines
as in two dimensions. �e critical exponent for the infrared-unstable direction takes the value
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n critical exponents

( k /| q| −
1)  -. -. -.

 -. -. -. -.
 -. -. -. -. -.
 -. -. -. -. -. -.
 -. -. -. -. -. -. -
 -. - . -. -. -. -. -. -
 -. - . -. -. -. -. -. - -

( k
2 /q2 −

1)  -. -. -.
 -. -. -. -.
 -. -. -. -. -.
 -. -. -. -. -. -.
 -. -. -. -. -. -. -
 -. -. -. -. -. -. -. -
 -. -. -. -. -. -. -. - -

Table 6.2: Critical exponents for the Wilson-Fisher �xed point for di�erent truncations and two di�erent
regulators

(
k/|q| − 1

)
θ
(
k2/q2 − 1

)
and

(
k2/q2 − 1

)
θ
(
k2/q2 − 1

)
.

ν−1 = 3/2. �e other critical exponents are listed in table 6.2 for di�erent truncations and two
di�erent regulators

r2 =
(
k|q| − 1

)
θ
(
k2

q2
− 1

)
and r2 =

(
k2

q2
− 1

)
θ
(
k2

q2
− 1

)
. (6.24)

Nowwe solve the partial di�erential equation for the �xed point potential. As in two dimensions
the infrared-stable solution is found if the second derivative of equation (6.19) is considered. For
simplicity of notation again w′′(φ) = u is introduced and the �xed-point equation for the second
derivative reads

u′′(u2 − 1) = 2u
u2 − 3
u2 + 1

u′2 + 4π2(u2 + 1)2(2u −φu′). (6.25)

�is equation has the asymptotic solution uas ∼ φ2. Again, the term (u2 −1) arises due to the sign
change in equation (6.21). As in two dimensions, the condition for having a regular solution at
u2 = 1 leads to the condition that the right-hand side has to vanish at this point. �is leads to a
condition

u′(φcrit) = 4
(∓φcritπ2 −

√
π2 +φ2

critπ4

)
(6.26)

on the slope at the critical point.

Solving the equation withMathematica 7 yields an odd and regular solution with the starting
conditions u(0) = 0 and u′(0) = 2λ = ±2 · 1.59508. �e Taylor expansion of this solution around

65



6 �e three-dimensionalN = 1 Wess-Zumino model

zero corresponds to the polynomial solution discussed above.

From the asymptotic behaviour of the dimensionless potential follows for the asymptotic
behaviour of the dimensionful potential

w′′(φ → ±∞) Þ ±φ2 ⇒W ′′
³(ϕ → ±∞) Þ ±ϕ2.

�e bosonic potential that is derived from this superpotential behaves asymptotically as V ∼ ϕ6.
It is therefore justi�ed to call this �xed point the supersymmetric analogue of the Wilson-Fisher
�xed point in three-dimensional O(N) theories.

A�er we have established the �xed point structure at the order of the LPA now we investigate
the next-to-leading order.

6.2.2 Next-to-leading order

At next-to-leading order the ansatz for the e�ective action reads

Γk =
∫

d3x
(
1
2
Z2
k

(
∂µϕ∂µϕ − iψ̄/∂ψ + F2

)
+ FW ′

k(ϕ) −
1
2
W ′′

k (ϕ)ψ̄ψ
)
. (6.27)

Again, we consider the simplest ansatz at NLO and neglect a �eld- and momentum dependence
of Zk. �e anomalous dimension η stays small compared to one. �e �ow equation of the
superpotential is obtained from a projection on the part linear in the auxiliary �eld. �e �ow
equation for the wave-function renormalisation follows from the projection on the parts quadratic
in the auxiliary �eld. Employing the same regulator as before the �ow equations are

∂kWk(ϕ) = −
k2W ′′

k (ϕ)
24π2

k∂kZ2
k + 3Z2

k

k2Z4
k +W

′′
k (ϕ)2

, (6.28)

∂kZ2
k = −

k2

4π2
(k∂kZ2

k + 2Z2
k)
Z2
kW

(3)
k (ϕ)2

(
k2Z4

k −W
′′
k (ϕ)

2
)(

k2Z4
k +W

′′
k (ϕ)2

)3
∣∣∣∣∣
ϕ=0

. (6.29)

As the wave-function renormalisation is independent of the �elds, equation (6.29) can be
projected on ϕ = 0. Rescaling the �elds with the canonical dimension and the wave-function
renormalisation,

χ = Zkk−
1/2ϕ, w(χ) = k−2Wk(ϕ), (6.30)

the dimensionless �ow equations read

∂tw + 2w −
1
2
(1 + η)χ w′ = −

(3 − η)w′′
24π2(1 +w′′2) , η =

(2−η)(1−w′′2)w′′′2
4π2(1+w′′2)3

∣∣∣∣
χ=0

. (6.31)
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Figure 6.2: Lines of �xed points in the η-γ plane (solid curves) and the anomalous dimension as a function
of γ = 2λ as obtained from equation (6.31) (dotted curve). �eWilson-Fisher �xed point (WF-FP) is given
by the intersection of these curves.

As expected, the structure of the �ow equation at leading order and at next-to-leading order are
very similar.

For the discussion of the �xed-point structure, we consider η as a free parameter as in the
previous chapter. Again, lines of �xed points emerge as in two dimensions. �is is shown in
�gure 6.2. �e pictures in two and three dimensions are very similar. Indeed, they would be
identical but for a shi� if the regulators were the same. However, in three dimensions the lines of
�xed points are shi�ed to lower η values. For η = 0 this results in just two �xed points which are
related by the Z2 symmetry. For η �= 0 only the couplings change but not the fact that only two
�xed points exist.

As in two dimensions, a superscaling relation between the critical exponent of the infrared-
unstable direction and the anomalous dimension can be derived from a polynomial expansion of
the �xed point equations. �e �ow equation for the coupling a2t reads

∂ta2t = −
a2t
λt
∂tλt +

η − 3
12π2

+
η − 3
2

a2t . (6.32)

From this, we can read o� the superscaling relation

ν−1W =
3 − η
2

. (6.33)

�e truncation dependence of the anomalous dimension is smaller than in two dimensions, cf.
table 6.3.

67



6 �e three-dimensionalN = 1 Wess-Zumino model

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  2  4  6  8  10  12

(l
a2 ) L

l L

broken SuSy

unbroken SuSy

f 2

f 4

f 6

Figure 6.3: Phase diagram in the plane spanned by the dimensionless couplings speci�ed at the cuto� scale
Λ as obtained from truncations with n = 1 (ϕ2), n = 2 (ϕ4), and n = 3 (ϕ6) in equation (6.22).

2n      

η³ . . . . . .

Table 6.3: Dependence of the �xed-point value of the anomalous dimension η on the truncation

6.2.3 Phase diagram and the scaling of the mass

We calculate the phase diagram in the local potential approximation. �e qualitative behaviour
stays the same at next-to-leading order, only the quantitative values change. For the phase
diagram shown in �gure 6.3 the same picture as in two dimensions emerges. �e critical point is
reached by �ne-tuning the infrared-unstable direction a2t ∼ k−3/2. Again, there is a maximal value
for λ̄Λā2Λ above which supersymmetry cannot be broken dynamically. Keep in mind, however,
that the values λ̄Λ and ā2Λ are not universal quantities and therefore regulator dependent.
In the broken phase, the minimum of the bosonic potential is at ϕ = 0 and therefore a

polynomial expansion around this minimum is justi�ed. �is implies that the mass in the broken
regime withW ′′

k (ϕmin = 0) = 0 is given by

m2(k) =W ′
k(ϕmin = 0)W ′′′

k (ϕmin = 0) = 2k2λ2a2 ∼ k1/2. (6.34)

In �gure 6.4 the logarithm of the bosonic mass in the broken regime is displayed as a function of
the RG scale k. From a linear �t it follows thatm(k) ∼ k0.23 for k Ø Λ which is reasonable close
to the prognosticated scaling behaviourm(k) ∼ k1/4.
�e theory �ows into the massless conformal limit because the unstable direction does not feed
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Figure 6.4: Logarithm of the boson mass as a function of the RG scale k. A linear �t to the data points
yieldsm(k) ∼ k0.23 for k Ø Λ.

back into the other equations and therefore the second derivative of the superpotential always
�ows into its infrared-stable �xed point. �is is di�erent to the behaviour known from O(N)
models with �nite N , where the unstable direction induces the non-vanishing mass and makes
it necessary to �ne-tune the ultraviolet parameters. However, in the large-N limit, the vacuum
expectation value of the �eld, which corresponds to a2t here, decouples from the �ow equations of
the higher-order couplings at least to low order in the polynomial expansion [137].

6.3 Finite-temperature �ow equations

We restrict the discussion of the model at �nite temperature to the LPA. �is approximation
should be su�cient to capture at least the qualitative features of this model, see e. g. [140].
Supersymmetry at �nite temperature has been investigated extensively in the literature, see e. g.

[141, 142, 143]. In contrast to most other symmetries which are broken at low temperature and
restored at �nite temperature SuSy is broken at any �nite temperature.
�e reason for this is that bosons and fermions have di�erent statistics and therefore are treated

di�erently by the heat bath at �nite temperatures. �ey are no longer related as they are for
unbroken supersymmetry. �is is o�en referred to as so� SuSy breaking. In [141] it is argued that
the breaking due to the interaction with the heat bath is spontaneous and they �nd a massless
Goldstone fermion associated to the breaking.
In this section the SuSy breaking caused by �nite temperature is studied. To discuss a phase

diagram even at �nite temperature we use a remnant of SuSy breaking, the restoration of Z2

breaking, which still occurs at �nite temperature.
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Figure 6.5:�e temperature dependent masses for bosons and fermions

�e �ow equations in the �nite temperature case are obtained from the �ow equations at
zero momentum by replacing the time-like momentum integration by a sum over Matsubara
frequencies

p0 −→
{
ωn

νn

}
, n = 0,1, . . .

∫
dp0
2π

. . . −→ T
∞∑

n=−∞

. . . , (6.35)

where ωn = 2πnT denotes the bosonic frequencies and νn = (2n + 1)πT the fermionic ones.
Similar sums have been investigated in previous works on �nite-temperature FRG [144, 145, 146].

�e derivation of the �nite temperature �ow equation can be found in appendix D. For the
simple regulator

r1 = 0 and r2 =
(∣∣∣∣kq

∣∣∣∣ − 1
)
θ
(
k2

p2
− 1

)
, (6.36)

the Matsubara sums can be calculated analytically and the �ow equations read

∂kW ′
k
bos =−

k2

8π2
W ′′′

k

k2 −W ′′2
k

(k2 +W ′′2
k )2

(
πT
k

− (2sB + 1)2
πT
k

+ 2(2sB + 1)
)
πT
k

, (6.37)

∂kW ′
k
ferm =−

k2

8π2

(k2 −W ′′2
k )W ′′′

k

(k2 +W ′′2
k )2

(
1 −

(
1 −

2sFπT
k

)2)
, (6.38)

where the temperature-dependent �oor-functions sB and sF are given by

sB =
⌊

k
2πT

⌋
and sF =

⌊
k

2πT
+
1
2

⌋
. (6.39)
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6.3 Finite-temperature �ow equations

At �nite temperature the �ow equations di�er from the ones at zero temperature by an additional
temperature-dependent factor. �is factorisation in a temperature-dependent and a temperature-
independent part is due to the regulator function [146].

�e di�erences in the �ow of the superpotentials arises from the supersymmetry breaking due
to the di�erent boundary conditions for fermions and bosons (cf. section 6.3). In the limit of
T → 0 the temperature-dependent functions reduce to one and both �ow equations become the
same again.

SuSy breaking can be observed for example in the di�erent masses for bosons and fermions as
the temperature is increased. We display these masses in �gure 6.5. �e picture found here is
very similar to the one encountered in non-supersymmetric theories [146].

For T/k > (2π)−1 the bosonic mass is proportional to the temperature. �is is due to the
bosonic n = 0 Matsubara mode which dominates in this temperature regime. �e fermionic
mass reaches zero at T/k = π−1 because for fermions there exists no n = 0 Matsubara mode. �e
spikes are caused by the θ-function in the regulator which cuts o� the n-th Matsubara mode at
T/k > (2πn)−1 for bosons and T/k > π−1(2n + 1)−1 for fermions respectively.

6.3.1 Pressure

In the zero temperature case, the bosonic mass tends to zero in the phase with broken supersym-
metry and restored Z2 symmetry. �e system should therefore behave as a gas of massless bosons
and obey a Stefan-Boltzmann law in 2 + 1 dimensions. From this it is inferred that the pressure
should be given by

∆p =
ζ (3)
2π

T3. (6.40)

In O(N) symmetric theories at �nite temperature the couplings consist of a temperature-
independent and a temperature-dependent part. In contrast to the temperature-independent
part the latter does not need to be renormalised. �e temperature-independent part has to be
removed and this is done by a subtraction of this part. �e pressure is therefore de�ned as

−∆p =
(
V e�
T −V e�

T=0

)
ϕ=ϕmin

. (6.41)

In the supersymmetric theory the subtraction has to be performed on the level of the couplings
as well. From this it follows that the pressure is given by

∆p =
1
2
(W ′

k|T=0 − W ′
k|T )2ϕ=ϕmin

. (6.42)
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Figure 6.6: Double logarithmic plot of the pressure versus the temperature.

A numerical calculation in the phase with restored Z2 with the parameters

λ = 1, a2 = −0.1, T ∈ [10−4, 10−2] (6.43)

yields [
(λa2)T=0 − (λa2)T �=0]2

2
= 0.08 ·T2.91. (6.44)

�is is shown in �gure 6.6. �e power law behaviour is compatible with the one expected from
the Stefan-Boltzman law, whereas there are deviations in the prefactor. Possible reasons for this
are that the k = 0 limit has not su�ciently been reached and therefore the boson is not truly
massless or that self-interactions are present which lead to a deviation from the ideal Bose gas
limit [147, 148].

6.3.2 High-temperature expansion and dimensional reduction

�emodel displays some interesting features in the high temperature limit T Ù k. In this case,
the �oor functions vanish and the �ow equations reduce to

∂kW ′
k
bos = −

k2

8π2
W ′′′

k

k2 −W ′′2
k

(k2 +W ′′2
k )2

2πT
k

and ∂kW ′
k
ferm = 0 . (6.45)

As suggested in [149] the bosonic �ow equation can be rescaled with ϕ =
√
Tϕ̃ andWk

(
ϕ
)
=

TW̃k

(
ϕ̃
)
. �is yields the two-dimensional �ow equation. As expected, the model shows
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Figure 6.7: Finite-temperature phase diagram of theN = 1 Wess-Zumino model.
Le� panel: Z2 phase boundary in the space spanned by temperature T/Λ and the value of the couplings(
λΛ,a2Λ

)
at vanishing temperature. Right panel: Slice of the Z2 phase-boundary for �xed λΛ = 0.8.

dimensional reduction. However, the theory obtained in this limit is not supersymmetric because
the fermions have dropped out of the �ow due to the absence of a thermal zero mode.
�e �xed-point couplings are rescaled with powers of T/k according to their canonical

dimension and they show the following behaviour for T/k Ø 1:

3D(a2)T = 2D(a2)T=0
(
T
k

)1/2
, 3DλT = 2DλT=0

(
T
k

)−1/2
, 3D(b2i)T = 2D(b2i)T=0

(
T
k

)1/2−i
. (6.46)

where 2D(a2)T=0, 2DλT=0 and 2D(b2i)T=0 denote the �xed-point values of the couplings of the
two-dimensional theory.

6.3.3 Phase diagram at �nite temperature

At�nite temperature supersymmetry is necessarily brokendue to thedi�erent boundary conditions
for bosons and fermions. However, the Z2 symmetry remains and is taken as a remnant of
supersymmetry breaking in order to discuss the phase diagram concerning the breaking of this
symmetry. As an order parameter we take again the sign change of a2k→0. �us the case with
broken Z2 symmetry of the ground state and so� supersymmetry breaking due to the boundary
conditions and the case with unbroken Z2 symmetry of the ground state have to be distinguished.
Again, a truncation at ϕ8 is used. �e phase diagram is shown in �gure 6.7, le� panel. It is

spanned by the temperature T measured in units of the cuto� and the couplings (λΛ,a2Λ) speci�ed
at the cuto� scale at T = 0. As the initial conditions are speci�ed at T = 0, the values in the
phase diagram have to be restricted to temperatures that are small compared to the ultraviolet
scale. In the T = 0 plane the phase transition line corresponds to the phase diagram in �gure 6.3
(right panel) which separates the phase with unbroken supersymmetry from the one with broken
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6 �e three-dimensionalN = 1 Wess-Zumino model

supersymmetry. For couplings that are chosen such that at T = 0 the system is in a state with
unbroken supersymmetry (and therefore broken Z2 symmetry), there is always a phase-transition
temperature at which the Z2 symmetry of the ground state is restored.
In the right panel a slice through the phase diagram for a �xed coupling λΛ = 0.8 is shown. We

observe that the phase-transition temperature increases as the coupling (a2Λ)T=0 grows. On the
other hand, an increase of the zero temperature coupling (a2Λ)T=0 at the cuto� scale corresponds
to an increase in the renormalised zero temperature coupling (a2k→0)T=0. From this we conclude
that an increase in the renormalised coupling at zero temperature leads to an increase in the
phase-transition temperature. �is is to be expected because in aO(1) Þ Z2 theory the minimum
of the bosonic potential (λ³a2k→0)T=0 sets the scale at T = 0. It therefore plays a role similar to the
�nite expectation value of the �eld in O(N) models [150].
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7 �e two-dimensionalN = (2, 2)
Wess-Zuminomodel

In this chapter we discuss the application of the FRG to theN = (2, 2) Wess-Zumino model in
two dimensions. For this model there exist results fromMonte Carlo simulations on the lattice
which can be used for a comparison [151]. In contrast to the previous models we consider here a
momentum-dependent wave-function renormalisation.
To deal with �ow equations that have the full momentum dependence, a numerical toolbox

called FlowPy has been developed in cooperation with T. Fischbacher (Uni Southampton). �is
toolbox is designed to handle such �ow equations.
�e N = (2, 2) Wess-Zumino model is studied intensively in the literature, see e. g. [120,

151, 152, 153, 154] for lattice simulations. Quantities that are investigated on the lattice are the
renormalised mass or Ward identities. In contrast to the lattice calculations, Ward identities in
the FRG approach are always ful�lled because the formalism is manifestly supersymmetric. Our
focus lies on the renormalised masses instead.
�e results presented in this chapter are published in [155]. �is chapter is organised as follows:

First themodel is presented and the supersymmetric �ow equations are derived. �e �ow equation
for the superpotential yields directly the non-renormalisation theorem. As the superpotential is
not renormalised, all renormalisation is carried by the wave-function renormalisation and the
�ow equation for this quantity – with full momentum dependence – is derived. �e renormalised
mass is then calculated and compared to the results on the lattice.

7.1 Description of the model

�eN = (2, 2) Wess-Zumino model in two dimensions is derived by a dimensional reduction
of theN = 1 model in four dimensions which was the original model introduced by Wess and
Zumino [156].

�e Lagrange density reads1

Lo� = 2∂̄ϕ̄∂ϕ + ψ̄Mψ −
1
2
F̄F +

1
2
FW ′(ϕ) + 1

2
F̄ W̄ ′(ϕ̄), (7.1)

1For a superspace formulation of this model see appendix E.1.
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7 �e two-dimensionalN = (2, 2) Wess-Zumino model

with Dirac fermions ψ and ψ̄ and the fermion matrix

M = /∂ +W ′′(ϕ)P+ + W̄ ′′(ϕ̄)P−, (7.2)

with the projectors P± = 1
2

(
1 ± γ³

)
. �e model contains complex auxiliary and scalar �elds

F = F1 + iF2 and ϕ = ϕ1 + iϕ2.

A suitable description is given by complex coordinates

z = x1 + ix2, z̄ = x1 − ix2, ∂ =
1
2
(∂1 − i∂2), ∂̄ =

1
2
(∂1 + i∂2). (7.3)

�e superpotential is denoted by

W (ϕ) = u(ϕ1,ϕ2) + iv(ϕ1,ϕ2). (7.4)

For the γ matrices we use the Weyl basis with γ1 = σ1,γ2 = −σ2 and γ³ = iγ1γ2 = σ3.

�e complex spinors can be decomposed as ψ =
(
ψ1 ψ2

)T and ψ̄ =
(
ψ̄1 ψ̄2

)
. �e action is

invariant under the supersymmetry transformations

δϕ = ψ̄1ε1 + ε̄1ψ1, δψ̄1 = −
1
2
Fε̄1 − ∂ϕε̄2, δψ̄2 = −∂̄ϕ̄ε̄1 −

1
2
F̄ ε̄2,δF = 2(∂ψ̄1ε2 − ε̄2∂̄ψ1),

δϕ̄ = ψ̄2ε2 + ε̄2ψ2, δψ1 = −
1
2
Fε1 + ∂̄ϕε2, δψ2 = ∂ϕ̄ε1 −

1
2
F̄ε2, δF̄ = 2(∂ψ̄2ε1 − ε̄1∂̄ψ2).

(7.5)

ε1,2 and ε̄1,2 are four real anticommuting parameters. �erefore the SuSy algebra is formed by four
real supercharges. �e algebra can be decomposed into a chiral (le�-moving) and anti-chiral
(right-moving) part. �is is the reason for the notationN = (2, 2).

Starting out from the SuSy transformations the superspace formulation of this model is
constructed in appendix E.1. In this appendix also the most general action with Kähler potential
is discussed.

Integrating out the auxiliary �elds yields the on-shell Lagrangian

Lon = 2∂̄ϕ̄∂ϕ +
1
2
W ′(ϕ)W̄ ′(ϕ̄) + ψ̄Mψ. (7.6)

For this model we use the superpotential

W (ϕ) =
1
2
mϕ2 +

1
3
gϕ3. (7.7)

�e system has two bosonic ground states which lead to a nonzero Witten index [116], therefore
supersymmetry is never spontaneously broken in theN = (2, 2) Wess-Zumino model.

A characteristic feature of the N = 1 Wess-Zumino model in four dimensions survives the
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7.2 Supersymmetric �ow equations

dimensional reduction, namely that bosonic and fermionic loop corrections cancel in such
a way that the e�ective superpotential receives no quantum corrections. �is is called the
non-renormalisation theorem [157, 158, 159]. In the two-dimensional model the cancellations
even render the model �nite and allow for a direct comparison between the results from the FRG
and from lattice calculations.

7.2 Supersymmetric �ow equations

As an ansatz for the e�ective action we use an expansion in superspace2

Γk =− 2
∫

d2x
∫

dy d ȳ Z2
k(∂∂̄)Φ̄Φ − 2

∫
d2x

[∫
dy Wk(Φ) +

∫
d ȳ W̄k(Φ̄)

]
=
∫

d2p
4π2

[
Z2
k(p

2)
(
2p2ϕ̄ϕ + ψ̄i/pψ −

1
2
F̄F

)
+
1
2
FW ′

k +
1
2
F̄ W̄ ′

k + ψ̄
(
W ′′

kP+ + W̄ ′′
kP−

)
ψ
]
. (7.8)

In the following we will use the real and imaginary parts ϕ1,ϕ2,F1,F2 instead of the complex
coordinates.

In contrast to the usual super-covariant derivative expansion used in the previous chapters,
here we only included those combinations of the supercovariant derivatives that merely reduce to
space-time derivatives. As we shall discuss in section 7.2.1 a momentum dependence inWk(ϕ) is
irrelevant. An arbitrary Kähler potential K

(
Φ̄,Φ

)
integrated over the whole superspace is not

taken into account here, since we expect only a small in�uence for the renormalised mass from
this. Another contribution neglected in this truncation comes from the terms of higher than
quadratic order in the auxiliary �eld and the corresponding supersymmetric partner terms. We
denote them as auxiliary �eld potential.

For the scale-dependent e�ective action (7.8) the auxiliary �elds obey the equations of motion
F = W̄ ′

k(ϕ)/Z2
k
and F̄ =W ′

k(ϕ)/Z2
k
. �is leads to the on-shell action

Γonk =
∫

d2p
4π2

[
1
2
Z2
k(p

2)p2ϕϕ̄ +
1
2

|W ′
k|2

Z2
k(p2)

+ iZ2
k(p

2)ψ̄/pψ + ψ̄(W ′′
kP+ + W̄ ′′

kP−)ψ

]
. (7.9)

Supersymmetry is preserved if the mass is shi�ed by a momentum-dependent infrared
regulator3, m → m + Z2

k · r1(k, p
2) or the wave-function renormalization is multiplied by a

momentum-dependent regulator function, Z2
k → Z2

k · r2(k, p
2). Such regulators are the same as

the ones used in the previous chapters. To obtain a regularised path integral, Rk is included in

2see appendix E.1 for conventions in superspace. For the Fourier transformation we use the convention ∂ j → ip j
with the notations p = (p1, p2)T and p = |p| where there is no risk of misunderstandings.

3�e regulator function is multiplied with the wave-function renormalization to ensure reparameterisation
invariance of the �ow equation.

77



7 �e two-dimensionalN = (2, 2) Wess-Zumino model

terms of the cuto� action ∆Sk. In matrix notation the cuto� action reads

∆Sk =
1
2

∫
d2p
4π2

Ψ̄ Z2
kR

T
k Ψ

T (7.10)

with Ψ = (ϕ1 ϕ2 F1 F2 ψ(−p)T ψ̄(p)) and

Rk =

(
RB
k 0
0 RF

k

)
with RB

k =

(
p2r2 ·1 r1 · σ3
r1 · σ3 −r2 ·1

)
and RF

k =

(
0 i/p · r2 − r1 ·1

i/p · r2 + r1 ·1 0

)
.

(7.11)

Inserting ansatz (7.8) in the �ow equation (6.13), the scale-dependent propagator can be calculated
along the lines described in [74]: �e�uctuationmatrix Γ(2)

k +Rk is decomposed into the propagator
Γ(2)
0 + Rk including the regulator functions and a part ∆Γk containing all �eld dependencies. �e

�ow equation (6.13) is expanded in the number of �elds. See appendix E.2 for the expansion and
the explicit matrices.

7.2.1 Flow equation for the superpotential –�e non-renormalisation theorem

As in previous chapters the scale-dependent superpotential is obtained by a projection on the
terms linear in the auxiliary �elds. We can either choose the real or imaginary part of the auxiliary
�eld as they are bound to give the same results due to supersymmetry.
�e superpotentialW (ϕ) = u(ϕ1,ϕ2) + iv(ϕ1,ϕ2) is a holomorphic function of ϕ1 and ϕ2, and

therefore its real and imaginary part obey the Cauchy-Riemann di�erential equations

∂u
∂ϕ1

=
∂v
∂ϕ2

,
∂u
∂ϕ2

= −
∂v
∂ϕ1

. (7.12)

Using these equations all contributions to the �ow equations of the superpotential cancel and the
�ow equation simply reads

∂kuk = 0, ∂kvk = 0 ⇒ ∂kWk = ∂kW̄k = 0, (7.13)

such that the superpotential remains unchanged during the RG �ow. �e Kähler potential does
therefore not in�uence the �ow of the superpotential, as found in [158]. Even the nontrivial
momentum dependence considered here does not change this result.
Terms up to F3 can directly in�uence the �ow equation. Here, we only consider a truncation

up to terms quadratic in the auxiliary �eld such that the non-renormalisation theorem is not fully
proven but only in the truncation considered. Contributions from higher-order operators have to
vanish among themselves. �is result is similar to the proofs in four dimensions discussed in [43]
and [160].
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7.2 Supersymmetric �ow equations

As the �ow vanishes at leading order, the �rst quantity with a non-vanishing �ow is the wave-
function renormalisation which is a term at next-to-leading order in the considered truncation.
It will turn out later that the momentum dependence is important for the renormalised mass
(cf. section 7.3) therefore we have already included it in the ansatz (7.8).

7.2.2 Momentum-dependent �ow equation for the wave-function
renormalisation

�e �ow equation for the wave-function renormalisation can be obtained from a projection onto
the terms quadratic in the auxiliary �elds. It is derived in appendix E.2 and reads

∂kZ2
k(p) = −8g 2

∫
d2q
4π2

h(p − q)h(q)
v(q)2v(p − q)2

[
∂kR1(q − p)M (p − q)v(q) + ∂kR1(q)M (q)v(p − q)

]
+ 4g 2

∫
d2q
4π2

h(p − q)∂kR2(q)u(q)v(p − q)
v(q)2v(p − q)2

+ 4g 2
∫

d2q
4π2

h(q)∂kR2(q − p)v(q)u(p − q)
v(q)2v(p − q)2

(7.14)

with the abbreviations (recall that |q| = q)

h(q) =
(
r2

(
k,q

)
+ 1

)
Z2
k

(
q
)
, M (q) =m + r1(k,q)Z2

k

(
q
)
, Ri (q) = ri

(
k,q

)
Z2
k

(
q
)
, (7.15)

u(q) =M (q)2 − q2h2(q), v(q) = M (q)2 + q2h2(q).

�e model is a ultraviolet-�nite theory and therefore it is su�cient to use the simple, mass-like
infrared regulator

r1
(
k,q2

)
= k and r2

(
k,q2

)
= 0. (7.16)

A�er a shi� in the integration variables in the second part of the integral (7.14) the �ow equation
simpli�es to

∂kZ2
k(p) = −16g 2

∫
d2q
4π2

kZ2
k

(
q
)
+m

N (q)2N (p − q)
Z2
k

(
q
)
Z2
k

(|p − q|) ∂k (
kZ2

k

(
q
))

, (7.17)

with the abbreviation N (q) =
(
q2Z4

k

(
q
)
+ (kZ2

k

(
q
)
+m)2

)
. In order to deal with the partial

di�erential equation we use a numerical toolbox called FlowPy. See [155] for details on the
numerical setup.
In the next section we determine the renormalised masses from the non-perturbative wave-

function renormalisation with full momentum dependence calculated with FlowPy.
Before turning to the actual calculation, we brie�y discuss the errors that arise due to the

numerical calculation of the wave-function renormalisation with FlowPy. For this we consider
a one-loop perturbative calculation. It is possible to calculate the perturbative expression for
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Figure 7.1: Perturbative �ow for the parameters λ = g/m = 0.3 and m = 1 . �e solid line is the plot of
equation (7.18).

Z2
one−loop(p) analytically from the perturbative �ow equation by performing the k-integral using

limk→∞(r1, r2) → ∞and limk→0(r1, r2) → 0. �is yields

Z2
one−loop =1 +

g 2

π2

∫
d2q

(m2 + q2)(m2 + |q − p|2) = 1 + 4g 2
artanh

(
p(4m2 + p2)−1/2)

πp
√
4m2 + p2

. (7.18)

In �gure 7.1 the results of the perturbative �ow calculated with FlowPy at di�erent values of the
RG-scale k and the analytic result (7.18) is shown. As can be seen, the numerical error due to
discretisation and interpolation is very small. �erefore the wave-function renormalisation is
considered to be exact in this truncation. We expect the errors caused by the truncation to be
larger than the error introduced by the numerical calculations.

7.3 �e renormalised mass

�e analytic continuation of the bosonic propagator,

Gbos(p) =
1

p2 +m2 +Σ(p,m, g )
, (7.19)

has a pole which de�nes the renormalised mass. Since the bare mass m is a parameter of the
superpotential (7.7) it is not changed during the �ow. Σ is the self-energy. As expected from a
supersymmetric theory, the pole of the fermionic propagator leads to the same renormalised
mass as the bosonic propagator.
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7.3 �e renormalised mass

�e Fourier transformation of Gbos(p) yields the correlator

Cbos(x1) =
∫

dp1
2π

Gbos(p1, 0)eip1x1 . (7.20)

�e renormalised mass can be obtained from the long-range exponential decay of this quantity
and we denote it as correlatormassmcorr in the following. We can also de�ne a renormalised mass,
denoted as propagator mass, throughm2

prop = (Gbos(p))−1|p=0. In the previous chapters, we used
this de�nition because the wave-function renormalisation was independent of the momentum
such that correlator and propagator mass were the same.
To compare the renormalisedmasses from the FRGwith the results of the lattice simulation [151]

we have to consider the masses of the particles in the on-shell theory. In the infrared limit the
bosonic propagator from the on-shell action (7.9) reads in the present truncation

GNLO
bos (p) =

1

p2Z2
k→0(p2) +m2/Z2

k→0(p
2)
. (7.21)

�e fermionic propagator reads

GNLO
ferm (p) =

/p
p2Z4

k→0(p2) +m2
. (7.22)

Both propagators have the same poles and therefore lead, as expected, to the same renormalised
masses for bosons and fermions.
For a small self-energy Σ a comparison between equation (7.19) and (7.21) leads to the

approximate relation

Z2
k→0(p) = 1 +

Σ(p,m, g )
p2 −m2

. (7.23)

For the propagator mass the �elds in the on-shell action have to be rescaled with the wave-
function renormalisation such that the kinetic term is of the canonical form. Neglecting the
momentum dependence in the wave-function renormalisation leads to

mprop =
m

Z2
k→0(p = 0)

. (7.24)

A numerical calculation can provide Z2
k(p) only for real p and its analytic continuation cannot

be determined straightforwardly. Instead, the discrete Fourier transformation of GNLO
bos (p) with

momenta p =
{
0, 2π

aN
, . . . , 2π(N−1)

aN

}
on the interval x ∈ [0,aN = L]is considered. For distances much

smaller than L this should approximate CNLO
bos (x) in a well de�ned way. More precisely, instead of

the exponential decay we obtain the long distance behaviour

Ca,mcor
(x1) ∝cosh

(
mcorr

(
x1 −

L
2

))
(7.25)
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7 �e two-dimensionalN = (2, 2) Wess-Zumino model

a�er the integration over the spatial direction. �e mass can be determined from a �t to this
function, as it is done in lattice simulations. �e details of this procedure can be found in
appendix E.3.

With the analytic result (7.18) for Z2
one−loop at hand the poles of GNLO

bos (p) can be calculated to
obtain a perturbative approximation ofmcorr. Note that this analytic solution of the perturbative
�ow together with equation (7.23) leads to the same result as a one-loop on-shell calculation of
the polarisation Σ (cf.[133]). Expanding the pole of the propagator (7.19) to �rst order in the
dimensionless parameter λ2 = g 2/m2 leads to the one-loop approximation of the renormalised
mass

(mone−loop
corr )2 =m2

(
1 −

4√
27

λ2 +O
(
λ4

))
. (7.26)

However, keep in mind that this expansion is only valid for small λ.

7.3.1 Weak couplings

Let us start with an investigation of the weak coupling sector which is de�ned as λ < 0.3, where
perturbation theory provides an excellent cross-check to establish the correctness of the ansatz
and the errors in the numerical approximation.

�e bare mass in the lattice simulations [151] is taken to be m = 15. Note the following
concerning the units of the mass: In the lattice calculation, the mass is measured in units
of the box size, i. e. the physical volume of the lattice simulation. Similarly, everything can
be reformulated in terms of the dimensionless ratio of bare and renormalised mass. For the
numerical treatment of equation (7.17) dimensionless quantities have to be used. Because of the
non-renormalisation theorem the bare quantities in the superpotential enter in the �ow equation
only as parameters. Rescaling the dimensionful quantities with the bare mass sets the scale in this
model to m = 1. To get the same units as in the lattice simulations the resulting renormalised
mass is multiplied by 15.

�e correlator masses in the weak coupling regime are calculated with the momentum-
dependent wave-function renormalisation from the �ow equation (7.17) solved with FlowPy. �e
technical details of the determination of the correlator masses are described in appendix E.3. �e
results are shown in the second column of table 7.1. �e values in the fourth column are taken
from a Monte-Carlo simulation on the lattice [151]. Note that the lattice and perturbative results
agree within the statistical errors. Hence perturbation theory already provides a good cross-check
for the results from the �ow equation.

In �gure 7.2 the correlator masses from the �ow equation, the lattice simulation and the
one-loop result (7.26) formcorr are shown. �e masses calculated from the �ow equation agree
very well with perturbation theory and with the results from lattice simulations. �is can be
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Figure 7.2: Comparison between lattice data taken from [151] and the results for the correlator massmFRG
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withmomentum dependence andmFRG
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λ mFRG
corr mFRG

prop mlattice
corr λ mFRG

corr mFRG
prop mlattice

corr

. . . .() . . . .()
. . . .() . . . .()
. . . .() . . . .()
. . . .() . . . .()
. . . .() . . . .()
. . . .() . . . .()
. . . .() . . . .()
. . . .()

Table 7.1: Renormalised masses obtained with the �ow equation with and without momentum dependence
(mFRG

corr andmFRG
prop) as well as lattice datamlattice

corr from a continuum extrapolation [151] in the weak coupling
regime.
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quanti�ed by comparing the correction to the bare mass ∆mcorr =m −mcorr. �is yields

∆mFRG
corr

∆mlattice
corr

Þ 0.95. (7.27)

Taking into account the statistical error of the lattice data no signi�cant di�erence to the FRG
results can be found.
To conclude, in the weak coupling regime the truncation of the �ow equation with full

momentum dependence su�ces to capture the main aspects of the model. Higher-order
operators, which yield an auxiliary �eld e�ective potential, have little in�uence, as expected.
To investigate the in�uenceof themomentumdependence in thewave-function renormalisation,

the propagator mass (7.24) is calculated. �e results are shown in the third column of table 7.1
and in �gure 7.2. A comparison between the propagator mass and the correlator mass from the
lattice calculation yields

∆mFRG
prop

∆mlattice
corr

Þ 0.75. (7.28)

Already in the weak coupling regime it is necessary to include the momentum dependence in
order to determine the corrections to the renormalised mass with satisfying accuracy.

7.3.2 Intermediate couplings

At intermediate couplings 0.3 ≤ λ ≤ 1 perturbation theory is no longer reliable and we have to
use lattice calculations for a comparison instead. For a discussion of di�culties that arise in the
lattice formulation of this model see [15, 151, 161].
For intermediate couplings the nonlocal SLAC discretisation and the Twisted Wilson dis-

cretisation provides the most reliable results, cf. [151] for details. �e renormalised masses of
these discretisation are used for a comparison with the results from the FRG. �ey are shown
in the third and fourth column of table4 7.2 and displayed in �gure 7.3 (boxes with error bars)
together with the order λ2 expanded result (7.26) formcorr (dashed line). Keep in mind, however,
that perturbation theory is no longer reliable in this regime. �e good agreement between the
perturbation theory expanded to order λ2 and the lattice results is a coincidence. In fact, the
result at O(λ2) has to fail for large values of λ because otherwise the renormalised masses would
become negative.
�e correlator masses determined from the FRG are shown in the second column of table 7.2

and displayed in �gure 7.3 (lying crosses). Additionally the perturbative result for the renormalised
mass is shown (solid line). It is determined from the pole of the propagator (7.19) with the

4All lattice results are extrapolated to the continuum.
5C. Wozar, private communication
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. . . .()
. . . .() .()
. . . .()
. . . .()
. . . .()
. . . .() .()
. . . .()
. . . .()
. . .
. . . .()
. . .
. . .
. . .
. . . .()5

Table 7.2:Masses obtained with the �ow equation with and without momentum dependencemFRG
corr and

mFRG
prop) as well as lattice data [151] in the regime with intermediate couplings.
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7 �e two-dimensionalN = (2, 2) Wess-Zumino model

perturbative one-loop result for the self-energy [155]:

Σ(p) =
4g 2(m2 − p2)
πp

√
4m2 + p2

artanh
(
p(4m2 + p2)−1/2) (7.29)

Although the corrections to the bare mass from the wave-function renormalisation with full
momentum dependence capture some of the quantum e�ects, they do not account for all the
non-perturbative e�ects present in this model. To quantify this, these corrections are compared
to the corrections found in lattice calculations. �is yields results between

∆mFRG
corr

∆mlattice
corr

Þ 0.9 for λ = 0.35 and
∆mFRG

corr

∆mlattice
corr

Þ 0.65 for λ = 1.0. (7.30)

�e fact that thewave-function renormalisation accounts for less of the quantum corrections as the
coupling grows is due to the growing in�uence of higher-order operators, especially the auxiliary
�eld potential. In the present truncation only terms that are at most quadratic in the auxiliary
�eld are considered and back-reactions from a potential for the auxiliary �eld are neglected.
As can be seen from a diagrammatic expansion of the �ow equation, terms up to order F4

i

directly modify the �ow equation for the wave-function renormalisation6, which is proportional
to F2

i . As already seen in the previous chapters the in�uence of higher-order operators grows
with the strength of the couplings. A truncation that goes beyond the momentum-dependent
wave-function renormalisation has to be considered to improve the results in the regime with
intermediate couplings.
�e results for the propagator mass are shown in the third column of table 7.2 and in �gure 7.3

(triangles). �e comparison to the lattice results yields

∆mFRG
prop

∆mlattice
corr

Þ 0.75 for λ = 0.35 and
∆mFRG

prop

∆mlattice
corr

Þ 0.6 for λ = 1.0. (7.31)

�e improvement due to the momentum dependence in Z2
k is not as pronounced as it is in

the weak coupling regime because other operators are more important in this regime than the
momentum dependence.

7.4 Beyond next-to-leading order

�e non-renormalisation theorem in the context of the FRG formulation emerges in a very simple
form, namely that the �ow equation for the superpotential vanishes identically. To prove this,
all that is needed is that the superpotential is a holomorphic function. As a consequence, the
6�e argumentation is the same as for the superpotential in appendix F. As the wave-function renormalisation has
two external auxiliary �eld lines, it is not possible to construct a one-loop contribution from an operator with
more than four auxiliary �elds.
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7.4 Beyond next-to-leading order

renormalisation of the mass and the other coupling constants is caused by the wave-function
renormalisation and higher-order operators that are not restricted by the non-renormalisation
theorem. In theweak coupling regime thewave-function renormalisation in the present truncation
– with full momentum dependence – accounts for all the quantum e�ects calculated with the
lattice.
For intermediate couplings this is no longer the case and only a part of the quantum corrections

are actually captured. In this regime a truncation that includes higher-order operators in the
auxiliary �eld has to be considered. �is is not surprising because the in�uence of higher-order
operators increases as the coupling grows as we have already seen in the previous chapters (cf.
chapter 4).
Even though we have not done it here, the methods and results of this chapter can easily be

applied to theN = 1Wess-Zuminomodel in four dimensions. Especially the non-renormalisation
theoremcanbe derived in exactly the sameway in four dimensions. However, the four dimensional
theory is no longer ultraviolet �nite, which means that it is not so easy to compare results with
the ones from lattice calculations such as results presented by C. Chen, E. Dzienkowski and J.
Giedt [162].

�e FRG is able to disentangle contributions to the quantum corrections caused by higher-order
operators from contributions due to the (momentum-dependent) wave-function renormalisation.
However, an inclusion of these operators poses a great challenge as a lot of terms are involved.
�is ambitious goal is not pursued here further but le� as an interesting question for future work.
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8 Conclusions and outlook

�is work aims at an extension of the functional renormalisation group framework to supersym-
metric theories such that it can eventually be used to study supersymmetric extensions of the
standard model.
In order to preserve supersymmetry we have formulated the �ow equations, including the

cuto� action, in superspace. �e truncation of the action has been performed in superspace as
well, implying that only functions of super�elds and covariant derivatives enter in the ansatz for
the truncated action. If we work in components, it follows from the formulation in superspace
that we have to use the o�-shell formulation of the theory which includes an auxiliary �eld.
�e regulator structure that preserves supersymmetry deviates from the one usually used

for non-supersymmetric theories with Yukawa interactions. In a supersymmetric theory the
bosonic and the fermionic regulator are tightly connected in order to keep supersymmetry intact.
Additionally also the auxiliary �eld has to be regularised which implies that it becomes a dynamic
�eld. We can no longer use a simple derivative expansion in this setup since this would break
supersymmetry. Instead, an expansion in super-covariant derivatives provides a systematic
expansion scheme. �e quantity at leading order in this expansion is the superpotential, the
quantity occurring at next-to-leading order is the wave-function renormalisation. �e �ow of
both quantities in a component formulation can be read o� from a projection on the part linear
or quadratic in the auxiliary �eld respectively.
In chapter 4 we have �rst investigated supersymmetric quantum mechanics. A lot of results on

this model are known such that it is an ideal test candidate for a �rst application of the FRG to
a supersymmetric theory. In this work the case where SuSy is always unbroken is considered.
As a benchmark test the energy of the �rst excited state is calculated. Without wave-function
renormalisation we �nd quite a large deviation from the exact results. �e results are considerably
improved by including a wave-function renormalisation. �is is not surprising because the
supercovariant derivative expansion mixes di�erent orders of momentum. �rough the auxiliary
�eld the wave-function renormalisation modi�es directly the �ow equation for the superpotential.
Having established in which way the FRG can be extended to supersymmetric �eld theories we

have investigated theN = 1 Wess-Zumino model in two dimensions in chapter 5. �e approach
presented in the supersymmetric quantum mechanics can easily be generalised to this model. In
this chapter we have concentrated on a superpotential that allows for spontaneous SuSy breaking.
For this model the main focus was on the phase transition between the phase with broken and
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unbroken supersymmetry and on the �xed-point structure. It is known from bosonic theories
that two-dimensional theories show a behaviour quite di�erent from those in higher dimensions
because the bosonic �eld is dimensionless. As a consequence, an investigation of the �xed-point
structure of the supersymmetric model revealed that in the LPA only a continuum of periodic
�xed points is accessible whereas in the NLO we have found a discrete set of solutions classi�ed
by the number of nodes. �e �xed-point structure at NLO survives in three dimensions.
�e model exhibits one �xed point with only one infrared-unstable direction. All trajectories

are attracted to this �xed point. All other �xed points have an increasing number of infrared-
unstable directions. �e phase transition is driven by the one infrared-unstable direction. By
�ne-tuning the unstable direction we can reach the critical point corresponding to the phase
transition. Special to this model is a connection between the critical exponent belonging to the
infrared-unstable direction and the anomalous dimension, called superscaling relation. As a
consequence of the superscaling relation the bosonic mass scales with the RG scale and it vanishes
as the scale is lowered to the infrared.
We �nd that the phase diagram spanned by the bare coupling (λ̄Λ, λ̄Λā2Λ) is divided in two

distinct regions namely the one with broken and the one with unbroken supersymmetry. In
accordance with a qualitative argument by Witten [116] we �nd that there exists a maximal value
for the bare couplings ā2Λ above which supersymmetry breaking is not possible.
We have also calculated the critical exponents and the behaviour of the scalar mass in the

regime with broken SuSy. We have found that the scalar mass is proportional to the RG-scale
and therefore vanishes as the RG-scale is lowered to the infrared. In this respect, our results go
beyond the lattice results. Previously the phase transition value was calculated on the lattice for
just a few values of λ whereas critical exponents have never been calculated for this model before.
Our predictions for the scaling of the mass can be veri�ed by lattice simulations. First results in
this direction [16] are very encouraging and seem to con�rm the existence of a massless bosonic
phase.
Based on the results from the two-dimensional model we have investigated the three-

dimensional N = 1 Wess-Zumino model in chapter 6. �e �ow equations derived in two
dimensions generalise to higher dimensions straightforwardly. Both models have a lot of similari-
ties but also some di�erences. �e most striking one is that in three dimensions we �nd only
two �xed points: �e Gaußian one with all couplings set equal to zero and the supersymmetric
analogue of the Wilson-Fisher �xed point. In this model the SuSy phase transition is also driven
by the infrared-unstable direction of the �xed point. Similar to both models is that even in three
dimensions the superscaling relation holds. In these models this results in a mass which scales to
zero as the RG scale is lowered to the infrared.
Compared to bosonicO(N) models the most prominent di�erence is that the infrared-unstable

direction does not in�uence the �ow of the infrared-stable direction and therefore no �ne-tuning
is required to reach the �xed point for these stable directions. As a consequence, the theory in the
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broken phase is always massless in the infrared. �e infrared-unstable direction plays the same
role for the supersymmetry breaking as in two dimensions. Namely it has to be �ne-tuned so that
the system reaches the phase transition.
�e three-dimensional model is investigated additionally at �nite temperatures with the aid of

the Matsubara formalism. �e supersymmetry breaking due to di�erent boundary conditions for
fermions and bosons is manifest in the di�erent �ow equations for the bosonic and fermionic
couplings. At �nite temperatures it is possible to de�ne a pressure which obeys the temperature
dependence of the Stefan-Boltzmann law in three dimensions as expected from a theory with
massless scalar �elds.
Even though supersymmetry is explicitly broken at �nite temperatures, the Z2 symmetry of the

model can either be restored or broken at �nite temperature. Whether Z2 symmetry is broken
or not depends on the temperature and parameters of the model, i. e. the initial values of the
couplings at the initial RG scale. Since supersymmetry and Z2 symmetry are intimately linked, a
study of Z2 symmetry can be used to measure the strength of supersymmetry breaking. �ere
exist two di�erent phases at �nite temperatures: One phase with so� supersymmetry breaking
due to the di�erent statistics of bosons and fermions but broken Z2 symmetry and one with
restored Z2 symmetry.
We have discussed several similarities and di�erences of scalar O(N) models and theN = 1

Wess-Zumino model at zero and �nite temperatures, e. g. the �xed-point structure at zero
temperature and the behaviour at �nite temperature. �e phase diagram is very similar to the
one in two dimensions, in particular we have found again a maximal value for a2Λ above which
SuSy breaking is not possible.
Chapter 7 deals with the two-dimensionalN = (2, 2) Wess-Zumino model. �e model is �nite

and allows to directly compare the results to Monte Carlo simulations on the lattice.
In the local potential approximation the non-renormalisation theorem is found in a very simple

form: �e �ow equation of the superpotential vanishes identically. �e �rst quantity with a
non-vanishing �ow equation is the wave-function renormalisation. It causes a renormalisation of
the mass. �e renormalised mass has been calculated to high precision in lattice simulations [151].
In order to calculate the renormalised mass in the FRG with a satisfying accuracy we have had to
include a nontrivial momentum dependence in the wave-function renormalisation even for small
couplings. To solve the �ow equation with full momentum dependence we have developed a
numerical toolbox called FlowPy [155]. �is allowed us to solve the di�erential equation with
high numerical precision. With momentum dependence the agreement between lattice results
and FRG calculations is very good in the weak coupling regime.
At intermediate couplings the wave-function renormalisation with full momentum dependence

is not su�cient to capture all quantum e�ects calculated in the lattice simulations. �ey are
generated by higher-order operators which are not restricted by the non-renormalisation theorem.
In order to improve the agreement between lattice and FRG calculations we may need to include
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in the truncation a potential for the auxiliary �elds and the supersymmetric partner terms, which
are generated by higher-order operators. Taking at least terms to order F3 into account should
considerably improve the results since these termsmodify the �ow equation for the wave-function
renormalisation directly.
It has become clear during our investigations that a potential for the auxiliary �eld plays an

important role for the �ow equations. An auxiliary �eld potential – with ϕ dependent couplings –
is needed to make the bosonic potential, which is obtained a�er the auxiliary �elds have been
integrated out, convex. Such a potential is obtained from higher orders in the supercovariant
derivative expansion. �e investigation of the N = (2, 2) Wess-Zumino model showed that
higher orders in the auxiliary �eld are essential to �nd the correct values for the renormalised
mass for intermediate couplings. In supersymmetric quantum mechanics we have found that the
energy for the �rst excited state is not reproduced correctly as soon as the superpotential becomes
non-convex if higher-order operators are neglected. An interesting challenge for future work is to
implement such higher-order terms in the �ow equations.
Currently, further investigations on othermodels based on this work are underway. Wework for

example on an extension of the functional renormalisation group to non-linear supersymmetric
sigmamodels. �e strategy is similar to the one by A. Codello and R. Percacci [163] for the bosonic
non-linear sigma model. �e problem is to �nd a supersymmetric background �eld expansion
so that the �ow equations can be calculated. �e application of the FRG to supersymmetric
sigma models is the topic of a diploma thesis by M. C. Mastaler [164]. To understand how
additional super�elds alter the properties of the �ow equations �rst the attention is focused on
linear supersymmetric sigma models.
In this work, we have demonstrated for scalar theories that the FRG can be extended in a way

that keeps supersymmetry intact. Nevertheless, for a description of supersymmetric extensions
of the standard model, gauge �elds have to be treated in the supersymmetric FRG approach. To
this end, we investigateN = 1 super Yang-Mills theory in four dimensions. Some work in this
direction has been done by S. Falkenberg and B. Geyer [39] who formulated the �ow equations in
a background �eld expansion in superspace, using a supersymmetric regulator. However, they
only calculate the running coupling to one-loop order in perturbation theory.
With the investigation of the �xed-point structure and its relation to critical phenomena

in supersymmetric scalar theories we hope that we have made a valuable contribution to the
understanding of the phenomenon of supersymmetry breaking. Still, a lot of work in the
understanding of supersymmetric theories remains to be done.
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A �eCli�ord algebra

�is section follows the conventions in the book by Bronstein [165] and an article by de Andrade
and Toppan [166].
Let X be n-dimensional linear space over a �eld K and B : X × X → K a bilinear form on X .

�e inner product u ∨w is de�ned as

u ∨w +w ∨ u = 2B(u,w) ∀u,w ∈ X (A.1)

α ∨ u = u ∨ α = αu ∀α ∈ K u ∈ X . (A.2)

�e Cli�ord algebra C(X) over K with respect to the bilinear form B(·, ·) with multiplication ∨
satis�es the conditions

1. C(X) contains K and X

2. Let b1, ...,bn be a basis of X , then the ordered products {1,b1, ...,bn,bi1 ∨ bi2 ∨ . . . ∨ bir },
r = 2, ...,n form a basis of C for i1 < i2 < ... < ir and ik = 1, ...n ∀k.

In the main part the Cli�ord algebra of the Minkowski and the Euclidean space is needed. �e
bilinear form is the metric and a representation of the Cli�ord algebra is given by the γ matrices.
In order to de�ne Lagrange functions and charge conjugation for spinors three unitary matrices

A,B,C withA =
t∏
i=1

γi and C =BTA are de�ned. t is the number of time directions (positive sign

in the metric). �e matrices have the following properties:

AγµA† = (−)t+1(γµ)† (A.3)

BγµB† = η(γµ)³ (A.4)

CγµC† = η(−)t+1(γµ)T (A.5)

with η = ±1. B has the propertyBT = εBwith ε ± 1 andBB³ = ε ·1 respectively. Further

CT = εηt (−)
t
2 (t−1)C. (A.6)

holds
�e Dirac conjugation in �at space-time is de�ned as ψ = ψ†A. Together with B the charge

conjugation is de�ned as ψc =B†ψ³.
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A �e Cli�ord algebra

AMajorana spinor χ satis�es the condition χc = χ. From χ³ =BTχ = εBχ it follows that the
Majorana condition can only be ful�lled for ε = 1.
�e Dirac conjugation of a charge conjugated spinor can be written as ψc = (B†ψ³)†A = εψTC.

For a Majorana spinor this implies χ = χTC. For the charge conjugation matrix itself it follows
from equation (A.6) ψc =B†ψ³ = C³ψT = εηt (−) t

2 (t−1)C†ψT . From this the condition

ψcγ(n)χc = ηt (−)
t
2 (t−1ψTCγ(n)C†χT (A.7)

arises. �is leads to the following symmetry relations for Majorana spinors:

ψχ = ηt (−)
t
2 (t−1)ψTχT = −ηt (−)

t
2 (t−1)χψ

ψγµχ = −η(t+1) (−)
t
2 (t+1)ψT (γµ)TχT = η(t+1) (−)

t
2 (t+1)χγµψ (A.8)

ψγµνχ = −ηt (−)
t
2 (t−1)ψT (γµν)TχT = ηt (−)

t
2 (t−1)χγµνψ

In two-dimensional Euclidean space time the Majorana representation is given by

γ1 = iσ1, γ2 = iσ3. (A.9)

�e charge conjugation matrix for η = −1 and ε = 1 reads C = 1.
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B Technical details for SuSy-QM

B.1 Inversion of the propagator

In this appendix we calculate the inverse propagator

Gk =G0,k −G0,k(ψ̄M1 +M2ψ)G0,k +G0,k (M1G0,kM2 −M2G0,kM1 −M3)G0,kψ̄ψ . (B.1)

To keep the expressions simple we use the block notation

A =

(
ABB ABF

AFB AFF

)
. (B.2)

�e non-vanishing blocks that are needed for the inverse propagator have the form

(G−1
0,k)BB =

(
(1 + r2)q2 + iFW (3)

k i(W ′′
k + r1)

i(W ′′
k + r1) 1 + r2

)
,

(G−1
0,k)FF =

(
0 (1 + r2)q + i(W ′′

k + r1)
(1 + r2)q − i(W ′′

k + r1) 0

)
,

M1FB = −M1BF =

(
iW (3)

k 0
0 0

)
, M2BF = −MT

2FB =

(
0 iW (3)

k

0 0

)
, M3BB =

(
−iW (4)

k 0
0 0

)
.

(B.3)
To calculate the full propagatorGk wemust �rst calcualte the inverse ofG−1

0,k. It is block diagonal
and the inverse reads for constant �elds

(G0,k)BB =
1
∆B

(
(1 + r2) −i(W ′′

k + r1)
−i(W ′′

k + r1) (1 + r2)q2 + iFW (3)
k

)
and (G0,k)FF =

1
∆F

(G−1
0,k)FF (B.4)

with the factors

∆F = (1 + r2)2q2 + (W ′′
k + r1)2 and ∆B = ∆F + i(1 + r2)FW (3)

k . (B.5)
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B Technical details for SuSy-QM

B.2 Flow equations from the bosonic and fermionic part

Since the regulator Rk is block-diagonal only the diagonal blocks of the dressed propagator enter
the �ow equation (4.19). �ese blocks can be calculated with the help of (B.1). Inserting the
regulator yields

Str (Gk ∂kRk) =
∫

dτ
(
H0(ϕ,F ) +H1(ϕ,F )ψ̄ψ

)
(B.6)

with the functions

H0(ϕ,F ) = −iFW (3)
k

∫
dq
2π

∂kr2((1 + r2)2q2 − (W ′′
k + r1) 2) + 2(1 + r2)∂kr1(W ′′

k + r1)
∆B∆F

(B.7)

H1(ϕ,F ) = i
∫

dq
2π

(
∆FW (4)

k − 2(W (3)
k )2(W ′′

k + r1)
)
×

×
∂kr2((1 + r2)2q2 − (W ′′

k + r1)2) + 2(1 + r2)∂kr1(W ′′
k + r1)

∆2
B∆F

+ i
∫

dq
2π

(1 + r2)(W (3)
k )2

∂kr1((1 + r2)2q2 − (W ′′
k + r1)2) − 2(1 + r2)q2∂kr2(W ′′

k + r1)
∆B∆2

F

.

(B.8)

To project onto the �ow for the superpotential, the �ow equation is di�erentiated with respect to
F and a�erwards F = ψ = ψ̄ = 0 is set. �is yields

∂kW ′
k = −

i
2
δΓk
δF

∣∣∣∣
F=0

= −
W (3)

k

2

∫
dq
2π

∂kr2((1 + r2)2q2 − (W ′′
k + r1)2) + 2(1 + r2)∂kr1(W ′′

k + r1)
∆2

B

.

(B.9)

Alternatively the �ow equation can be obtained by projecting on the coe�cient of ψ̄ψ. �is
way we obtain

∂kW ′′
k =

1
2
H1(F ,ϕ)

∣∣∣∣
F=0

. (B.10)

�e two projection formulas (B.9) and (B.10) indeed give rise to identical �ows, since

δ2H0(ϕ,F )
δϕδF

∣∣∣∣
F=0

= iH1(ϕ,F )|F=0 . (B.11)
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C Flow equations inMinkowski space

In this section we derive the Wetterich equation in Minkowski space. For the sake of simplicity
only a real scalar �eld is considered in this appendix. �e generalisation to other �elds, such as
fermion or gauge �elds, is straightforward. �e generating functional in Minkowski-space is
given by

Z[J] =
∫

Dφ ei(S[φ]+(J ,φ)) , (C.1)

where J denotes the external source and (J ,φ) ≡ ∫
ddx J (x)φ(x). �e generating functionalW

for the connected two-point functions, the so-called Schwinger functional, reads1

W[J] = i lnZ[ j] . (C.2)

From this we obtain

δ
δJ

W[J] = i
δ
δJ

lnZ[J] = −
∫
Dϕ ei(S+

∫
Jϕ) ϕ∫

Dϕ ei(S+(J ,φ))
= −ϕ = −〈φ〉. (C.3)

�e e�ective action is the Legendre transform of the Schwinger functional,

Γ[ϕ] = −W[J] − (J ,ϕ) , (C.4)

where ϕ is the classical �eld. Using δ
δJW[J] = −ϕ we obtain the equation of motion for the �eld ϕ:

δΓ[ϕ]
δϕ

= −
∫

dd y
δW[J]
δJ (y)

δJ (y)
δϕ(x)

−
∫

dd y
δJ (y)
δϕ(x)

ϕ(y) − J (x) = −J (x) . (C.5)

�e scale-dependent generating functional is de�ned as

Zk[J] = e−iWk[J] = ei∆Sk[
δ
δJ ] Z[J] =

∫
Dφ ei(S[φ]+

∫
x φJ+∆Sk[φ]) (C.6)

with
∆Sk[ϕ] =

1
2

∫
d4q
(2π)4

φ(−q)Rk(q)φ(q) . (C.7)

Next, the scale dependent e�ective action is de�ned as

Γk[ϕ] = −Wk[J] −
∫

d4x Jϕ −∆Sk[ϕ] . (C.8)

1�e generating functionalW should not be confused with the superpotential.
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C Flow equations in Minkowski space

In order to properly formulate the �ow equations in Minkowski space we have to take k2 = pµpµ

as �ow parameter. �erefore the derivative with respect to ‘RG time’ t = ln
(
k2/Λ2

)
is de�ned to be

∂t = 2k2∂k2 . Taking the derivative of Γk[ϕ] with respect to t yields

∂tΓk[ϕ] = −∂tWk[J] − ∂t
∫

d4xJϕ − ∂t∆Sk[ϕ] , (C.9)

where we use that the source is independent of k. �e derivative ofWk can be written as

∂tWk[J] = i∂t lnZ[J] =
1

2Z[J]

∫
ddq
(2π)d

(∂tRk)
δ2Z[J]
δJδJ

.

Using the de�nition of the Schwinger functional, Z[J] = e−iWk , yields

∂tWk[J] = eiWk
1
2

∫
ddq
(2π)d

(∂tRk)
δ2 e−iWk

δJδJ
. (C.10)

Now the integrand is rewritten by making use of

δ2 e−iWk

δJδJ
=

δ
δJ

e−iWk (−i)
δWk

δJ
= e−iWk (−i)

δWk

δJ
(−i)

δWk

δJ
+ e−iWk (−i)

δ2Wk

δJδJ
, (C.11)

then equation (C.10) can be rewritten as follows:

∂tWk[J] =
1
2

∫
ddq
(2π)d

∂tRk

(
−
δWk

δJ︸︷︷︸
−ϕ

δWk

δJ︸︷︷︸
−ϕ

−i
δ2Wk

δJδJ

)
= −∆Sk −

i
2

∫
ddq
(2π)d

Rk
δ2Wk

δJδJ
. (C.12)

With this relation the variation of the e�ective action equation (C.9) takes the form

∂tΓk[ϕ] =
i
2

∫
ddq
(2π)d

(∂tRk)
δ2Wk

δJδJ
. (C.13)

We can rewrite δ2Wk[J]
δJδJ in terms of the e�ective action:

δ2Γk
δϕδϕ

= −
δJ
δϕ

− Rk ⇒ δJ
δϕ

= −
(
δ2Wk

δJδJ

)−1

= −
(
δ2Γk
δϕδϕ

+ Rk

)
. (C.14)

Making use of

δ(q − q′) = δϕ(q)
δϕ(q′) = −

δ
δϕ

δWk[J]
δJ

= −
∫

ddq
(2π)d

δ2Wk[J]
δJδJ

δJ
δϕ

, (C.15)

we obtain the Wetterich equation in Minkowski space:

∂tΓk[ϕ] =
i
2
Tr

[
∂tRk

(
δ2Γk
δϕδϕ

+ Rk

)−1
]
. (C.16)
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D Flow equations at �nite temperature

In order to preserve supersymmetry in the RG �ow for vanishing temperature we must choose a
regulator function which regularises the theory in the time-like and the space-like directions
in the same way. In order to make apparent how so� SUSY-breaking due to �nite temperature
emerges, we use the same regulator for the �nite-temperature and zero-temperature studies, i. e.

r2 =
(

k|p| − 1
)
θ
(
p2

k2
− 1

)
, r1 = 0 . (D.1)

In the LPA, we obtain the �nite-temperature �ow equations straightforwardly from the zero-
temperature �ow equations by replacing p0 by the Matsubara modes νn and ωn of fermionic
and bosonic �elds respectively and replacing the integration over p0 by a summation over the
Matsubara modes. �e contribution of the bosons to the RG �ow then reads:

∂kW ′
k =−

1
2
W ′′′

k ·T
∞∑

n=−∞

∫
d2ps
4π2

(k2 −W ′′
k
2)θ(k2 − p2s −ω2

n)
[k2 +W ′′

k
2]2

√
p2s +ω2

n

, (D.2)

where ps denotes the momenta in space-like directions. Along the lines of e. g. [167] we use
Poisson’s sum formula,

∞∑
n=−∞

f (n) =
∞∑

ℓ=−∞

∫ ∞

−∞

dq f (q) exp(−2πiℓq) , (D.3)

in order to obtain

∂kW ′
k = −

1
2
W ′′′

k ·T
∞∑

ℓ=−∞

∫ ∞

−∞

dq
∫

d2ps
4π2

(k2 −W ′′
k
2)θ(k2 − p2s − (2πqT)2)

[k2 +W ′′
k
2]2

√
p2s + (2πqT)2

e−2πiqℓ . (D.4)

To computate of the three-dimensional integral, we substitute q′ = 2πTq and introduce spherical
coordinates p1s = r cosϑ sinφ, p2s = r sinϑ sinφ, q′ = r cosϑ.�e angular integrations yields

∂kW ′
k = −

1
2
W ′′′

k T
∞∑

ℓ=−∞

∫ k

0

dr
4π2T

k2 −W ′′
k
2

[k2 +W ′′
k
2]2

2T sin
(ℓr/T)
ℓ

. (D.5)

Finally the integration over r leads to

∂kW ′
k = −

(k2 −W ′′
k
2)W ′′′

k

8π2(k2 +W ′′
k
2)2

2T2
∞∑

ℓ=−∞

1 − cos
(
ℓk/T)

ℓ2
. (D.6)
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D Flow equations at �nite temperature

Since we made use of Poisson’s resummation formula to rewrite the sum over the thermal modes,
the �ow equation can be split into a zero-temperature and a �nite-temperature contribution:

∂kW ′
k =

(W ′′
k
2 − k2)W ′′′

k

8π2(k2 +W ′′
k
2)2

(
k2 + 4T2

∞∑
ℓ=1

1 − cos
(
kℓ/T)

ℓ2

)
=

(W ′′
k
2 − k2)W ′′′

k

8π2(k2 +W ′′
k
2)2

(
k2 + gbos(T)

)
.

(D.7)
�e contribution of the fermions to the RG �ow of the model can be obtained along the lines of
the derivation of the bosonic contribution and reads:

∂kW ′
k =

(W ′′
k
2 − k2)W ′′′

k

8π2(k2 +W ′′
k
2)2

(
k2 + 4T2

∞∑
ℓ=1

(−)ℓ
1 − cos

(
kℓ/T)

ℓ2

)
=

(W ′′
k
2 − k2)W ′′′

k

8π2(k2 +W ′′
k
2)2

(
k2 + gferm(T)

)
.

(D.8)

Introducing the dimensionless temperature T̃ = T/k, we can rewrite the functions gbos(T) and
gferm(T) in terms of polylogarithms:

gbos
(
T̃
)
=
2
3
k2T̃2

[
π2 − 3Li2

(
e−i/T̃) − 3Li2

(
e−i/T̃)] , (D.9)

gferm(T̃) = −
2
6
k2T̃2

[
π2 + 6Li2

(
−e−i/T̃) + 6Li2

(
−e−i/T̃)] . (D.10)

Using the identity [168]

Li2 (−z) + Li2
(
−
1
z

)
= 2Li2(−1) −

1
2
ln2(z) = −

π2

6
−
1
2
ln2(z) , (D.11)

the function gbos(T) simpli�es further to

gbos(T̃) = T̃2
[
π2 + ln2

(
−exp

(i/T̃))]
= πT

(
πT − (2sB + 1)2πT + (2sB + 1)2k

)
− k2 , (D.12)

where we used that

ln
(
exp

(i/T̃ + iπ
))

=
i
T̃

− iπ (2sB + 1), sB ≤
1

2πT̃
≤ sB + 1 ⇒ sB =

⌊
k

2πT

⌋
. (D.13)

Similarly, exploiting the relation

ln
(
exp

(i/T̃))
=

i
T̃

− 2iπ sF , sF −
1
2
≤

1
2πT̃

≤ sF +
1
2

⇒ sF =
⌊

k
2πT

+
1
2

⌋
, (D.14)

leads to the result

gferm(T) = −k2
(
1 − sF

2πT
k

)2

(D.15)

for the fermions. As expected, the functions gbos(T) and gferm(T) exhibit the same behavior as
the threshold functions discussed in Ref. [146].
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E Technical details for theN = (2, 2)
Wess-Zuminomodel

E.1 Two dimensional EuclideanN = (2, 2) superspace

A detailed discussion of the underlying supersymmetry algebra and a construction of the
superspace can be found e. g. in [93]. �e superspace formulation is constructed out of the
supersymmetry transformations. �e transformations are

δϕ = ψ̄1ε1 + ε̄1ψ1, δψ̄1 = −
1
2
Fε̄1 − ∂ϕε̄2, δψ̄2 = −∂̄ϕ̄ε̄1 −

1
2
F̄ ε̄2,δF = 2(∂ψ̄1ε2 − ε̄2∂̄ψ1),

δϕ̄ = ψ̄2ε2 + ε̄2ψ2, δψ1 = −
1
2
Fε1 + ∂̄ϕε2, δψ2 = ∂ϕ̄ε1 −

1
2
F̄ε2, δF̄ = 2(∂ψ̄2ε1 − ε̄1∂̄ψ2).

(E.1)

We construct the super�eld from its lowest component ϕ = Φ(z, z̄, 0, 0) by acting with the
exponential function on this component [169]:

Φ = exp(−δε)ϕ =
4∑

n=0

1
n!
(−δε)nϕ (E.2)

�is implies for the chiral super�eld:

δεϕ =ψ̄1ε1 + ε̄1ψ1

δ2εϕ =δψ̄1ε1 + ε̄1δψ1 = −Fε̄1ε1 − ∂ϕε̄2ε1 + ∂̄ϕε̄1ε2 (E.3)

δ3εϕ =− δFε̄1ε1 − ∂δϕε̄2ε1 + ∂̄δϕε̄1ε2 = −3∂̄ψ̄1ε2ε̄1ε1 + 3∂ψ1ε̄1ε̄2ε1

δ4εϕ =− 3∂̄δψ̄1ε2ε̄1ε1 + 3∂δψ1ε̄1ε̄2ε1 = 6∂̄∂ϕε̄2ε2ε̄1ε1

and the chiral super�eld reads

Φ =ϕ − (ψ̄1α1 + ᾱ1ψ1) +
1
2
(−Fᾱ1α1 − ∂ϕᾱ2α1 + ∂̄ϕᾱ1α2) −

1
3!
(−3∂̄ψ̄1α2ᾱ1α1 + 3∂ψ1ᾱ1ᾱ2α1)

+
1
4!
(6∂̄∂ϕᾱ2α2ᾱ1α1)

=ϕ − ψ̄1α1 − ᾱ1ψ1 −
1
2
Fᾱ1α1 −

1
2
∂ϕᾱ2α1 +

1
2
∂̄ϕᾱ1α2 +

1
2
∂̄ψ̄1α2ᾱ1α1 −

1
2
∂ψ1ᾱ1ᾱ2α1

+
1
4
∂̄∂ϕᾱ2α2ᾱ1α1 (E.4)
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E Technical details for theN = (2, 2) Wess-Zumino model

�e supercharges are

Q1 = −
∂
∂ᾱ1

+
1
2
α2∂̄, Q̄1 =

∂
∂α1

−
1
2
ᾱ2∂, Q2 = −

∂
∂ᾱ2

+
1
2
α1∂, Q̄2 =

∂
∂α2

−
1
2
ᾱ1∂̄, (E.5)

which reproduce the supersymmetry transformations:

δΦ =(ε̄Q + Q̄ε)Φ = (ε̄1Q1 + Q̄1ε1 + ε̄2Q2 + Q̄2ε2)Φ

=ε̄1
(
ψ1 +

1
2
Fα1 −

1
2
∂̄ϕα2 −

1
2
∂̄ψ̄1α2α1 −

1
2
∂ψ1ᾱ2α1 −

1
4
∂̄∂ϕᾱ2α2α1

+
1
2
∂̄ϕα2 −

1
2
α2ᾱ1∂̄ψ1 +

1
2
∂̄ψ̄1α2α1 −

1
4
∂̄Fα2ᾱ1α1 −

1
4
∂̄∂ϕα2ᾱ2α1 +

1
4
∂̄∂ψ1α2ᾱ1ᾱ2α1

)
+

(
ψ̄1 +

1
2
Fᾱ1 +

1
2
∂ϕᾱ2 −

1
2
∂̄ψ̄1α2ᾱ1 +

1
2
∂ψ1ᾱ1ᾱ2 −

1
4
∂̄∂ϕᾱ2α2ᾱ1

−
1
2
ᾱ2∂ϕ −

1
2
∂ψ̄1ᾱ2α1 +

1
2
ᾱ2ᾱ1∂ψ1 +

1
4
∂Fᾱ2ᾱ1α1 −

1
4
∂∂̄ϕᾱ2ᾱ1α2 +

1
4
∂∂̄ψ̄1ᾱ2α2ᾱ1α1

)
ε1

+ ε̄2
(
1
2
∂ϕα1 +

1
2
∂ψ1ᾱ1α1 −

1
4
∂̄∂ϕα2ᾱ1α1 +

1
2
α1∂ϕ −

1
2
α1ᾱ1∂ψ1 +

1
4
∂∂̄ϕα1ᾱ1α2

)
+

(
−
1
2
∂̄ϕᾱ1 −

1
2
∂̄ψ̄1ᾱ1α1 −

1
4
∂̄∂ϕᾱ2ᾱ1α1 −

1
2
ᾱ1∂̄ϕ +

1
2
ᾱ1∂̄ψ̄1α1 +

1
4
ᾱ1∂̄∂ϕᾱ2α1

)
ε2 (E.6)

�e covariant derivatives read

D1 = −
∂
∂ᾱ1

−
1
2
α2∂̄, D̄1 =

∂
∂α1

+
1
2
ᾱ2∂, D2 = −

∂
∂ᾱ2

−
1
2
α1∂, D̄2 =

∂
∂α2

+
1
2
ᾱ1∂̄, (E.7)

and the chiral super�eld ful�ls the constraint

D2Φ =
1
2
∂ϕα1 +

1
2
∂ψ1ᾱ1α1 −

1
4
∂̄∂ϕα2ᾱ1α1 −

1
2
α1∂ϕ +

1
2
α1ᾱ1∂ψ1 −

1
4
∂∂̄ϕα1ᾱ1α2 = 0 (E.8)

D̄2Φ =−
1
2
∂̄ϕᾱ1 −

1
2
∂̄ψ̄1ᾱ1α1 −

1
4
∂̄∂ϕᾱ2ᾱ1α1 +

1
2
ᾱ1∂̄ϕ −

1
2
ᾱ1∂̄ψ̄1α1 −

1
4
ᾱ1∂̄∂ϕᾱ2α1 = 0 (E.9)

�e antichiral �eld can be constructed in complete analogy

Φ̄ = exp(−δε)ϕ̄ =
4∑

n=0

1
n!
(−δε)nϕ̄ (E.10)

which yields

δεϕ̄ =ψ̄2ε2 + ε̄2ψ2

δ2εϕ =δψ̄2ε2 + ε̄2δψ2 = −F̄ ε̄2ε2 − ∂̄ϕ̄ε̄1ε2 + ∂ϕ̄ε̄2ε1 (E.11)

δ3εϕ =− δF̄ ε̄2ε2 − ∂̄δϕ̄ε̄1ε2 + ∂δϕ̄ε̄2ε1 = −3∂ψ̄2ε1ε̄2ε2 + 3∂̄ψ2ε̄1ε̄2ε2

δ4εϕ =− 3∂δψ̄2ε1ε̄2ε2 + 3∂̄δψ2ε̄1ε̄2ε2 = 6∂̄∂ϕ̄ε̄1ε1ε̄2ε2.

102



E.2 Flow equation for the momentum-dependent wave-function renormalization

�e super�eld reads

Φ̄ = ϕ̄ − (ψ̄2α2 + ᾱ2ψ2) +
1
2
(−F̄ ᾱ2α2 − ∂̄ϕ̄ᾱ1α2 + ∂ϕ̄ᾱ2α1) −

1
3!
(−3∂ψ̄2α1ᾱ2α2 + 3∂̄ψ2ᾱ1ᾱ2α2)

+
1
4!
(6∂̄∂ϕ̄ᾱ1α1ᾱ2α2)

= ϕ̄ − ψ̄2α2 − ᾱ2ψ2 −
1
2
F̄ ᾱ2α2 −

1
2
∂̄ϕ̄ᾱ1α2 +

1
2
∂ϕ̄ᾱ2α1 +

1
2
∂ψ̄2α1ᾱ2α2 −

1
2
∂̄ψ2ᾱ1ᾱ2α2

+
1
4
∂̄∂ϕ̄ᾱ1α1ᾱ2α2. (E.12)

�e kinetic term is given by

−2
∫

dz dz̄ d2α d2ᾱ Φ̄Φ, d2α = α1α2, d2ᾱ = ᾱ2ᾱ1 (E.13)

and the potential term by

−2
∫

dz dz̄ dᾱ1dα1W (Φ) − 2
∫

dz dz̄ dᾱ2dα2W̄ (Φ̄). (E.14)

�e most general supersymmetric action for a number of �elds Φi, Φ̄i with i = 1, . . . ,n is given by

−
∫

dz dz̄ d2α d2ᾱ K (Φ̄iΦi) − 2
(∫

dz dz̄ dᾱ1dα1W (Φi) + h.c.
)

(E.15)

where K
(
Φ̄i,Φi

)
is a Kähler potential. �eN = (2, 2) model is obtained for i = 1 where K ,W

and W̄ are arbitrary functions of the �eld.

E.2 Flow equation for the momentum-dependent wave-function

renormalization

To obtain the �ow equations for the wave-function renormalisation the second derivative of the
e�ective action is decomposed into a �eld-independent part Γ(2)

0 +Rk and a �eld-dependent part
∆Γ(2)

k . In the following we drop the momentum dependence of the regulators for simplicity of
notation:

(Γ(2)
0 + Rk)(q,q′) + ∆Γk(q,q′) =

(
A0 0
0 B0

)
δ(q − q′) +

(
∆A ∆C
∆D ∆B

)
(E.16)

Recall that h = (1 + r2)Z2
k(q), M = (r1Z2

k(q) +m). With this, the blocks read

A0 =

(
q2h ·1 M · σ3
M · σ3 −h ·1

)
, B0 = i/qh +M1 (E.17)
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E Technical details for theN = (2, 2) Wess-Zumino model

and

∆A = 2g


F1 −F2 ϕ1 −ϕ2

−F2 −F1 −ϕ2 −ϕ1

ϕ1 −ϕ2 0 0
−ϕ2 −ϕ1 0 0


(
q + q′) , ∆C = 2g


ψ̄1 iψ̄2

ψ̄1 −iψ̄2

0 0
0 0


(
q + q′)

∆D = 2g

(
ψ1 iψ1 0 0
ψ2 −iψ2 0 0

) (
q + q′) , ∆B = 2g

(
ϕ1 + iϕ2 0

0 ϕ1 − iϕ2

) (
q + q′) .

(E.18)

�e �ow equation can then be expanded [74] in

∂tΓk =
1
2
∂̃t STr

(
(Γ(2)

0 + Rk)−1∆Γ
)
−
1
4
∂̃t STr

(
(Γ(2)

0 + Rk)−1∆Γ
)2

+ . . . (E.19)

with ∂̃t acting only on the regulator. STr denotes a trace in �eld space as well as an integration in
momentum space. �e wave-function renormalisation is a term proportional to F2

i and can be
obtained from the second term in this expansion. To calculate this we de�ne the abbreviations

M (q,q′) ≡∫
q′′ (Γ

(2)
0 + Rk)−1(q)δ(q + q′′)∆Γ(q′′,q′) = (Γ(2)

0 + Rk)−1(q)∆Γ(−q,q′). (E.20)

�en the second term in the expansion reads

∂̃t Str
∫
q,q′ M (q,q′)M (q′,q) (E.21)

= Str
∫
q,q′ (Γ

(2)
0 + Rk)−1(q)∂tRk(Γ(2)

0 + Rk)−1(q)∆Γ(−q,q′)(Γ(2)
0 + Rk)−1(q′)∆Γ(−q′,q)

+ Str
∫
q,q′ (Γ

(2)
0 + Rk)−1(q)∆Γ(−q,q′)(Γ(2)

0 + Rk)−1(q′)∂tRk(q′)(Γ(2)
0 + Rk)−1(q′)∆Γ(−q′,q)

where Str denotes a trace in �eld space. �e functional derivative is taken with respect to Fi (p)
and Fi (−p) and all �elds are set to zero in order to project on the wave-function renormalisation
Zk(p2). �is yields

∂kZ2
k(p) = −8g 2

∫
d2q
4π2

h(p − q)h(q)
v(q)2v(p − q)2

[
∂kR1(q − p)M (p − q)v(q) + ∂kR1(q)M (q)v(p − q)

]
+ 4g 2

∫
d2q
4π2

h(p − q)∂kR2(q)u(q)v(p − q)
v(q)2v(p − q)2

+ 4g 2
∫

d2q
4π2

h(q)∂kR2(q − p)v(q)u(p − q)
v(q)2v(p − q)2

(E.22)
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Figure E.1: Le� panel: mlocal
corr with λ = 0.6 for discretizations N = 200 and N = 600 and di�erent box sizes

L = 15,25, 35 and 45. Right panel: mglobal
corr with λ = 0.6 for discretizations N = 200 and N = 600 and

di�erent box sizes L = 15,25, 35 and 45.

with the abbreviations

h(q) =
(
r2

(
k,q

)
+ 1

)
Z2
k

(
q
)
, M (q) =m + r1(k,q)Z2

k

(
q
)
, Ri (q) = ri

(
k,q

)
Z2
k

(
q
)
, (E.23)

u(q) =M (q)2 − q2h2(q), v(q) = M (q)2 + q2h2(q)

E.3 Determination of the renormalized mass

�e numerical calculations of Z2
k in the main text use a grid of N = 60 points in the direction of

p2, distributed equidistantly on a logarithmic scale. �e result for Zk→0(p) is interpolated with
splines to calculate the propagator GNLO

bos (p). A discrete Fourier transformation of GNLO
bos (p) yields

the correlator C (x1) on the interval x1 ∈ [0,L] with n = 10 001 intermediate points. In the main
text we use L = 15. From its large distance behaviour

Ca,mcor
(x1) ∝cosh

(
mcorr

(
x1 −

L
2

))
(E.24)
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E Technical details for theN = (2, 2) Wess-Zumino model

the correlator massmcorr is determined by a least square �t. �e �t range is constrained to the
interval [x1,skip, . . . ,L − x1,skip] where the contributions of excited states are negligible. �e value
of x1,skip is determined such thatmcorr(x1,skip) shows a plateau. Either the �t is made on the whole
range [x1,skip, . . . ,L − x1,skip] – this quantity is calledmglobal

corr – or just inside a small interval of size
0.2 starting from x1,skip – this quantity is calledmlocal

corr .
In the le� panel of �gure E.1mlocal

corr is shown for two di�erent discretisations of Z2
k(p

2), N = 200
in the upper and N = 600 in the lower panel. In the right panel the same is shown for mglobal

corr .
From these plots we can read o� that for x1,skip not too large there is a clear plateau which is stable
if the box size is increased. But for very large x1,skip the local mass oscillates. As this oscillation is
reduced when the discretisation is increased it is due to �uctuations in the spline interpolation of
Z2
k. At small values of the correlator the numerical errors are more important for the masses. As

the �uctuations become visible for large box sizes, in these cases the global mass �t is of no use
because it averages over the local mass and is strongly in�uenced by the oscillations. For this
reason we take the plateau ofmlocal

corr as the value of the renormalised mass.
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F Diagrammatic description of the �ow

equation

In this section we introduce the diagrammatic representation of �ow equations. �e �ow equation
can be rewritten as

∂tΓk =
1
2
STr ∂̃t ln

(
Γ(2)
k + Rk

)
�e superpotential is obtained by a projection on the terms linear in the auxiliary �elds. �e

�ow equation can be written as

∂tW ′
k(ϕ) =

1
2
STr

(
1
P
(ϕ)

∂P(ϕ)
∂F

)∣∣∣∣
F=0,ψ̄=ψ=0

.

For the diagrammatic notation we use the following symbols:

1/P,
auxiliary �eld line,
1/2 ∂̃t

�e �ow equation for the superpotential reads in diagrammatic notation:

∂tW ′
k=

Now it is straightforward to see why only terms that are at most proportional to F3 can directly
in�uence the �ow of the superpotential: Terms proportional to Fn (n ≤ 3) in the ansatz for the
e�ective action correspond to vertices with n external auxiliary �eld lines. To contribute to the
�ow equation of the superpotential all but one auxiliary �eld lines have to be contracted. For
n > 3 this is not possible due to the one-loop structure of the �ow equation.

In a polynomial approximation of the superpotential,

W ′(ϕ) = N∑
i=1

aiϕi

the coupling ai can be represented as

107



F Diagrammatic description of the �ow equation

j! · a j :

In the LPA the polynomially expanded �ow equation evaluated at vanishing ϕ is represented as

∂̃t =

∂̃t = + + cyclic permutations

∂̃t = + + + cyclic permutations

. . .
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Zusammenfassung

Eine der wichtigsten Errungenscha�en der theoretischen Physik des 20. Jahrhunderts ist das
Standardmodell der Elementarteilchenphysik. Dieses Modell erlaubt, die Vielfalt der in Beschle-
unigerexperimenten beobachteten Elementarteilchen zu klassi�zieren und ihre Eigenscha�en
und Wechselwirkungen zu beschreiben. Bis zu einer Energieskala von einigen 100 GeV sind
die Vorhersagen des Standardmodells hervorragend bestätigt worden. Die Klassi�kation der
Elementarteilchen beruht auf der Ausnutzung von Symmetrien. Aus diesem Grund ist es
naheliegend, sich für eine Erweiterung des Standardmodells, die für die Beschreibung der Physik
bei größeren Energieskalen notwenig ist, ebenfalls auf (neue) Symmetrien zu stützen. Einen
vielversprechenden Kandidaten bietet die Supersymmetrie, welche Bosonen und Fermionen, also
Teilchen mit ganz- und halbzahligem Spin verknüp�.

Die vorliegende Arbeit beschä�igt sich mit der Anwendung der funktionalen Renormierungs-
gruppe (FRG) auf supersymmetrische�eorien. DazuwerdenSkalarfeldtheorien in verschiedenen
Dimensionen untersucht.

Um supersymmetrische Flussgleichungen zu erhalten, muss die Cuto�wirkung die Supersym-
metrie respektieren. Dies wird erreicht, indem die Cuto�wirkung im Superraum formuliert wird.
Um die Ein-Loop-Struktur zu erhalten, wird sie als Funktion quadratisch in den Superfeldern
gewählt. Der Regulator ist eine Funktion der superkovarianten Ableitungen. Auch die Trunk-
ierung muss so gewählt werden, dass sie die Supersymmetrie respektiert. Dies wird dadurch
erreicht, dass die Wirkung ebenfalls im Superraum trunkiert wird. Für eine solche Trunkierung
bietet sich eine Entwicklung in Superfeldern und superkovarianten Ableitungen an.

Auf Ebene der Komponenten entspricht eine solche Entwicklung gerade einer Entwicklung in
Potenzen des Hilfsfeldes mit entsprechenden supersymmetrischen Partnertermen. Dies hat zur
Folge, dass, im Vergleich zu einer reinen Ableitungsentwicklung, verschiedene Impulsordnungen
gemischt werden und z. B. die Wellenfunktionsrenormierung einen viel größeren Ein�uss hat als
in einer nichtsupersymmetrischen�eorie. Bei größeren Kopplungen gewinnen auch die höheren
Ordnungen des Hilfsfeldes einen immer größeren Ein�uss auf die quantitativen Ergebnisse.

Supersymmetrie führt außerdem zu einer engen Ver�echtung von bosonischen und fermion-
ischen Regulatoren und erzwingt eine Regulatorstruktur, welche von der aus �eorien mit
Yukawa-Wechselwirkungen ohne Supersymmetrie benutzten abweicht. Insbesondere erzwingt
die Supersymmetrie eine Regularisierung des Hilfsfeldes.



Da in jeder Ordnung der Trunkierung höhere Potenzen des Hilfsfeldes eingeführt werden, kann
der Fluss für die interessierenden Größen sehr einfach durch Projektion auf die entsprechenden
Potenzen des Hilfsfeldes abgeleitet werden, da diese keine Impulspotenzen enthalten.
Den Anfang der Arbeit bildet die Untersuchung einer 0 + 1 dimensionalen Feldtheorie, der

supersymmetrischen Quantenmechanik, welche als eindimensionales Wess-Zumino Modell
interpretiert werden kann. Es wird der Fall der ungebrochenen Supersymmetrie betrachtet. An
diesemModell wird die Konstruktion einer supersymmetrischen Cuto�wirkung demonstriert
und die erforderliche Regulatorstruktur abgeleitet. Die erste angeregte Energie lässt sich
durch Diagonalisierung der Hamiltonfunktion berechnen, was zuverlässige Vergleichswerte
liefert. Ein Vergleich mit den Ergebnissen aus der FRG-Rechnung zeigt, dass schon für kleine
Kopplungen dieWellenfunktionsrenormierung berücksichtigt werden muss, um eine quantitative
Übereinstimmung mit den Ergebnissen aus der Diagonalisierung zu erreichen. Werden die
Kopplungen so groß, dass das Superpotential an der Cuto�scala nicht mehr konvex ist, bricht
die Näherung zusammen. In diesem Parameterbereich ist eine höhere Trunkierung notwendig,
was die Hinzunahme von höheren Potenzen im Hilfsfeld und deren supersymmetrischen
Partnertermen entspricht.
Die an diesem Modell gewonnenen Ergebnisse werden anschließend auf das N = 1 Wess-

Zumino Modell erweitert und angewendet. Interessant ist dieses Modell, weil es spontane
Supersymmetriebrechung zeigt. Diese geht für die betrachteten Wess-Zumino Modelle einher
mit einer Wiederherstellung der Z2-Symmetrie.
Die Supersymmetriebrechung kann im Kontext von kritischen Phänomenen verstanden

werden, da die Phasengrenze zwischen supersymmetrisch gebrochener und ungebrochener
Phase durch Feintuning der infrarotinstabilen Richtungen auf einen kritischen Punkt erreicht
wird. Mit Hilfe der FRG wird die Fixpunktstruktur und die kritischen Exponenten des Modells
untersucht. Das Modell hat unendliche viele Fixpunkte. Einer dieser Fixpunkte hat nur eine
infrarotinstabile Richtung und ist ein Attraktor für alle Trajektorien der Flussgleichung. Der zu
diesem Fixpunkt gehörige kritische Punkt bestimmt den Phasenübergang zwischen gebrochener
und ungebrochener Supersymmetrie.
Für den kritischen Exponenten, der zu der einen, infrarotinstabilen Richtung gehört, ergibt

sich ein direkter Zusammenhang zur anomalen Dimension, beide sind durch eine Skalenrelation
verknüp�. Diese heißt Superskalenrelation, da sie nur in diesen supersymmetrischen�eorien
und nicht in bosonischen Ising-Modellen au�ritt. Diese Relation führt dazu, dass das Minimum
des dimensionsbeha�eten Potentials ausfriert, dass das Minimum also im Limes k → 0 gegen
einen konstanten Wert konvergiert. Außerdem bewirkt die Skalenrelation, dass die Masse des
Skalarfeldes durch die RG-Skala bestimmt wird. Im Limes k → 0 wird das Skalarfeld masselos.
Da das zweidimensionale Skalarfeld dimensionslos ist, stellt die die dimensionslose Flussglei-

chung einen Sonderfall dar. Insbesondere hat dies zur Folge, dass bei einer Fixpunktanalyse
im Rahmen der niedrigsten Ordnung der superkovarianten Ableitungsentwicklung (LPA) nur



ein Kontinuum von oszillierenden oder divergenten Lösungen zugänglich ist. Erst in der
nächsten Ordnung (NLO), in der eine Wellenfunktionsrenormierung berücksichtigt wird, treten
Fixpunktlösungen auf, die sich für große Felder polynomial im Außenbereich verhalten.
In den betrachteten Approximationen LPA undNLO ist das aus dem (konvexen) Superpotential

nach Ausintegration des Hilfsfeldes berechnete Potential für das Skalarfeld in der Phase mit
ungebrochener Supersymmetrie nicht konvex. Dies ist eine Konsequenz daraus, dass in einer
supersymmetrischen Entwicklung verschiedene Impulspotenzen gemischt werden und deswegen
in der Formulierung ohne Hilfsfelder nicht alle Beiträge mit verschwindendem Impuls zur
Flussgleichung des Skalarfeldpotentials berücksichtigt werden. Um ein konvexes Potential für
das Skalarfeld zu erhalten, muss ein Potential für die Hilfsfelder berücksichtigt werden. Dies gilt
auch für die Modelle in höheren Dimensionen.
Formal sehr ähnlich zum zweidimensionalen Modell ist dasN = 1Wess-Zumino Modell in

drei Dimensionen. Aber ein wesentlicher Unterschied ist, dass das Skalarfeld in drei Dimensionen
dimensionsbeha�et ist. Dies führt dazu, dass auch schon in der LPA Fixpunktlösungen gefunden
werden, die sich für große Felder polynomial verhalten. Im dreidimensionalen Modell gibt es,
neben dem trivialen Gaußschen Fixpunkt, nur einen weiteren nichttrivialen Fixpunkt. Dieser
besitzt eine Richtung, die infrarotinstabil ist. Das Fixpunktpotential für das Skalarfeld, das sich
nach Ausintegration des Hilfsfeldes ergibt, hat im Außenbereich ein Verhalten wie ϕ6, es ist
also gerechtfertigt, diesen Fixpunkt als das supersymmetrische Analogon des Wilson-Fischer
Fixpunktes in dreidimensionalen, isingartigen�eorien zu betrachten.
Auch im dreidimensionalen Modell gibt es eine Skalenrelation zwischen dem kritischen

Exponenten der instabilen Richtung und der anomalen Dimension, die der Relation in zwei
Dimensionen formal ähnlich ist. Auch im dreidimensionalen Modell bewirkt sie ein Ausfrieren
des dimensionsbeha�eten Potentials. Sie hat ebenfalls zur Konsequenz, dass die Masse des
Skalarfeldes auch in drei Dimensionen durch die RG-Skala bestimmt wird und das Skalarfeld im
Infrarotlimesmasseloswird. DasModellwurde außerdembei endlichenTemperaturenuntersucht.
Für ein Gas aus masselosen Skalarfeldern ist zu erwarten, dass es dem Stefan-Boltzmann Gesetz
in 2 + 1 Dimensionen genügt. Dies konnte für das gegebene Modell im wesentlichen bestätigt
werden. Desweiteren konnte das Phasendiagramm, bezogen auf die Wiederherstellung der
Z2-Symmetrie, für endliche Temperaturen berechnet werden. Für jeden Parameterwert, bei dem
die Z2-Symmetrie gebrochen ist, gibt es eine kritische Temperatur, bei der die Symmetrie wieder
hergestellt wird.
Den Abschluss der Arbeit bildet die Untersuchung des zweidimensionalenN = (2, 2) Wess-

Zumino Modells. Dieses Modell wird aus der Dimensionsreduktion des vierdimensionalen
N = 1 Modells gewonnen. Es hat viele Eigenscha�en des vierdimensionalen Modells, so kann
z. B. keine Supersymmetriebrechung au�reten und das holomorphe Superpotential unterliegt
einem Nichtrenormierungstheorem, d. h. die nackten Größen im Superpotential werden nicht
renormiert.



Die physikalische Masse wird renormiert, bedingt unter anderem durch die Wellenfunk-
tionsrenormierung. Die renormierte Masse kann über die Berechnung der Wellenfunktion-
srenormierung mit Hilfe der FRG bestimmt werden. Diese Werte lassen sich mit Resultaten aus
Monte-Carlo Simulationen vergleichen. Dieser Vergleich ist direkt möglich, da das Modell in
zwei Dimensionen dank des Nichtrenormierungstheorems endlich ist.
Für kleine Kopplungen im Bereich, in dem auch Störungstheorie gültig ist, ist die Überein-

stimmung zwischen FRG und Monte-Carlo Rechnung sehr gut, wenn in der FRG-Rechnung
eine Impulsabhängigkeit der Wellenfunktionsrenormierung berücksichtigt wird. Ohne Im-
pulsabhängigkeit gibt es deutliche Abweichungen zu den Gitterresultaten. Im Bereich mittlerer
Kopplungsstärken wird die Übereinstimmung deutlich schlechter, in diesem Bereich gewinnen
Operatoren höherer Ordnung in der superkovarianten Entwicklung an Bedeutung. Um in diesem
Bereich eine Übereinstimmung mit den Gitterresultaten zu erzielen, muss die Trunkierung des
Ansatzes für die Wirkung erweitert werden.
Diese Ergebnisse zeigen, dass die Wellenfunktionsrenormierung alleine – auch mit Im-

pulsabhängigkeit – außerhalb des Bereiches, in dem Störungstheorie gültig ist, nicht ausreicht,
um die vollen Quantene�ekte, die zur Renormierung der physikalischen Masse führen, zu
berücksichtigen.
Abschließend lässt sich sagen, dass die funktionale Renormierungsgruppe so erweitert werden

kann, dass sie auf supersymmetrische �eorien anwendbar ist und für diese �eorien quanti-
tative Aussagen liefert. Allerdings erzwingt die Erhaltung der Supersymmetrie eine Mischung
verschiedener Impulspotenzen in der trunkierten Wirkung. Dies führt dazu, dass dass insbeson-
dere im Bereich größerer Kopplungsstärken höhere Ordnungen in der Trunkierung benötigt
werden. Es müssen also höhere Potenzen des Hilfsfeldes mit ihren supersymmetrischen Partnern
berücksichtigt werden.
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