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Abstract

In this thesis we analyze the spectra of Dirac operators for naive, Wilson and overlap
fermions in external magnetic fields and on two-dimensional lattices. We are especially
interested in the structure of Landau levels present in the energy spectra and their
dependence on the magnetic flux. We investigate both by plotting the squared modulus
of the Dirac operator eigenvalues as a function of the magnetic flux, which reveals a
fractal pattern reminiscent of Hofstadter’s butterfly, known from solid-state physics.
We find that the index theorem for the overlap operator only holds up to a critical value
of the magnetic flux and breaks down for larger fluxes. This upper limit is inherited by
the Wilson operator used as a kernel for the overlap formalism and caused by the mixing
of physical modes with doubler modes located on the real axis in the Wilson spectrum.
As a result, we are limited in the amount of magnetic flux that we can effectively model
with both formalisms. Finally, we examine the existence of a Landau level structure
in the Gross-Neveu model in two dimensions using the overlap formalism. It has been
shown that such a structure exists for QCD in two dimensions, as topological arguments
ensure a separation of the lowest Landau level modes from states with higher energy.
For the Gross-Neveu model, where these topological arguments are not valid anymore,
we observe the Landau level structure to completely wash out when using input data
generated by Monte-Carlo simulations.
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1. Introduction

Already in classical physics, there is a wide variety of interesting phenomena that occur
in background magnetic fields, many of which are among the first problems taught to
aspiring physicists in undergraduate classes or even in school. This list only grows fur-
ther when considering the quantum nature of physical systems at much smaller scales.
Effects such as magnetic catalysis, the quantum Hall effect, or the Meissner effect in su-
perconductivity are just some of the examples that occur in a quantum-field-theoretical
(QFT) picture [1]. The motion of a charged quantum-mechanical particle inside an elec-
tromagnetic field and its quantized cyclotron orbits, called Landau levels, already serve
as a foundation to understand many of these phenomena. Landau levels have been a
point of interest within Quantum Chromodynamics (QCD), the theory of the strong
interaction, in recent years as well [2-4], as they are believed to, for example, govern the
effect of magnetic catalysis [5]. The Gross-Neveu model [6], a simpler theory describing
Dirac fermions, meaning particles with spin %, interacting via a quartic interaction, was
also shown to produce magnetic catalysis [7, 8]. This model shares many fundamental
features with QCD and is used to probe some of the regimes in the QCD phase diagram
that are particularly challenging for standard approaches [9]. In two dimensions it was
shown that the lowest Landau level stays separated from higher Landau levels, even in
the presence of QCD interactions. The aim of this work is to see if these findings also
hold for the Gross-Neveu model.

This thesis is structured as follows: the remainder of this section is used to revisit first
attempts at modeling spin—% particles with relativistic wave equations (Section 1.1) and
to motivate the need for a field theoretic approach. Some mathematical groundwork
for QF'T in the path integral formulation and lattice field theory in particular is laid in
Sect. 1.2. In Chapter 2 we discuss lattice descriptions of fermions. Some mathematical
preliminaries are addressed in Sect. 2.1, where we also introduce Dirac operators. In the
following sections we establish a first (naive) discretization of the free Dirac operator
(Sect. 2.2), deal with the fermion doubling problem (Sect. 2.3) using the Wilson operator,
and analyze the spectra of both lattice operators (Sect. 2.4). Chiral symmetry in the
continuum (Sect. 2.5.1) and on the lattice (Sect. 2.5.2) are discussed to motivate the final
lattice description of fermions we will use; the overlap operator. An implementation
of the overlap operator and a brief analysis of its spectrum follow in Sect. 2.5.3. In
Chapt. 3 we furthermore introduce the background magnetic field into our theory, but
first we discuss the movement of charged particles in electromagnetic fields and the
resulting Landau level structure in Sect. 3.1. What follows are a theoretical view of
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magnetic fields on a torus (Sect. 3.2) and finally the implementation of the results in
Sect. 3.3. In Sect. 3.4 we take another look at the Dirac operator spectra, this time in
the presence of a uniform magnetic field. The Hofstadter butterfly and “butterfly plots”,
a convenient way of visualizing the Landau level structure, are introduced in Chapt. 4.
In Sect. 4.1 we analyze the butterfly plots for the three Dirac operators discussed and
try to dissect discretization artifacts in the overlap butterfly in the following section.
Finally, in Chapt. 5, we take a look at Landau levels in the Gross-Neveu model. We
first need to do some analytical work to arrive at a suitable lattice description using an
auxiliary scalar field o (Sect. 5.1), before we probe the behaviour of the spectra with
a small selection of different o-field configurations. The final analysis of the Landau
levels for realistic configurations is done in Sect. 5.3. In Chapt. 6 we summarize our
conclusions and give a brief outlook.

1.1. The Dirac Equation

In order to move from non-relativistic quantum mechanics to a relativistic quantum the-
ory, efforts where made in the 1920’s to find a relativistic wave equation to replace the
Schrodinger equation. First results were achieved by Klein, Gordon, and Schrédinger
himself, who used the correspondence principle to arrive at a second-order scalar wave
equation; the Klein-Gordon equation. It was later discarded due to containing nega-
tive probability densities, a problem which the Dirac equation, found by Paul Dirac in
1928, also had. The Dirac equation, describing spin-1/2 particles, indeed contains the
same negative energy solutions, but Dirac postulated that all the negative states would
be filled by anti-particles with opposite charge, thus leading to a many-body theory or
quantized field theory.

The (free) Dirac equation follows when postulating a first-order equation for some wave
function ¢ (z), the space-time position x usually being omitted for notational conve-
nience, of the form[10]

i0p) = (—ia*0y, + pm)yY = Hy . (1.1)
Here we used Einstein’s summation convention over the spatial indices £ and natural
units ¢ = A = 1. For this equation to be consistent with relativity, we still need to
demand a few properties. First of all, the coefficients o and 8 have to be hermitian
N x N - matrices in order for the equation to be invariant under spatial rotations and
for H to be hermitian. Thus v itself has to be an N-component object with components
Y¢. Additionally one demands:

e The components 1. have to be solutions of the Klein-Gordon equation and thus
fullfil the energy-momentum relation E? = p? + m?, for relativistic particles with
momentum p and mass m.

e There exists a four-current j* with d,5* = 0 and j° > 0.
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e The equation has to be Lorentz covariant.

The simplest case where these conditions can be fulfilled is N = 4. In this case, ¥ is
called a spinor, bispinor, or Dirac 4-spinor and describes fermions. We will use Greek
indices for its components, e.g. ¥¢ with ¢ = 1,2, 3,4, and call those Dirac indices. One
finally brings the Dirac equation into its covariant form by multiplying (1.1) with 8 and
setting v° = 3,+' = Bat, i = 1,2,3. One arrives at

(iv"0, —m)Yp =0 or (i —m)p=0, (1.2)

where we used Feynman’s slash notation in the second equation, which is defined by
¢ = ~*a, for some covariant vector a. The gamma matrices have to fullfill certain
properties, which can be summarized by the anticommutation relation

{ A" =AM A =2 (1.3)
where n* is the Minkowski metric with signature (+ — ——). This defining property

generates a so-called Clifford algebra, and, depending on the problem, there are several
representations of the y-matrices that can be used.

The single-particle interpretation of the Dirac equation might be historically relevant,
but is in itself lawed due to the aforementioned negative energy solutions. It intrinsically
describes more than one particle and thus we inevitably need a many-body description.
The way to arrive there is via a Lagrangian prescription, similar to classical mechan-
ics, and studying the Dirac equation as a (relativistic) classical field equation, which
ultimately needs to be quantized. Field theories are usually characterized by their La-
grangian, and for the Dirac field it is given by

L= —m)y. (1.4)

It can easily be verified via the corresponding Euler-Lagrange equations that this ex-
pression indeed leads to (1.2) and the corresponding equation of motion for the adjoint
spinor, defined by ¥ = 1T4°. This adjoint spinor is neccessary in order for the Lagrangian
to be invariant under Lorentz transformations. Later we will add more terms to this
Lagrangian, when coupling to an electromagnetic field and enabling self-interactions of
the fermion field.

Quantization of the Dirac field can be achieved either through so-called “canonical quan-
tization” , where classical field variables are replaced by quantum operators, or through
the path integral formalism. The latter will be used throughout this work and will be
discussed in the following sections.
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1.2. Quantum Field Theory on the Lattice

One challenge when working with field theories, is handling the infinite degrees of free-
dom that arise from every point in space having one (or more) DOF(s), and the spaces
we consider being continuous and infinite in volume!. Because of these infinities, regu-
larization is often needed. One typical way of regularizing QFT's is lattice regularization,
where continuous space time is replaced by a discrete lattice, restricted to a finite vol-
ume, and equipped with appropriate boundary conditions?. The original theory can then
be recovered by letting the lattice spacing go to zero (“continuum limit”) and letting
the lattice volume become large (“infinite-volume limit”).

Since we will mostly work in 141 or 240 dimensions, continuous space-time shall be
replaced by a discrete 2D lattice A with lattice spacing a:

A= {(no.m) [0 <m, < Ny~ 1,u=0,1}, (1.5)

where NN, denotes the number of lattice points in the p-th direction and the n, are
written in integer-valued lattice units, as we usually set a = 1. We will often write
Ny = Ny, N; = N, in the 1+4+1-dimensional case for reasons which will become clear
soon and N, Ny, or just N, in 2D. For the n, we will differentiate between temporal
and spatial coordinates, with n;, n, in cases where we have a time dimension and n,, n,
or just ng in the 2D case.

To study QFTs one usually starts with an action S[®] depending on some fields P,
which is given by a space-time integral over the Lagrangian density £ characterising the
theory. The expectation value of an observable O in the path integral formalism is then
given as an average over all possible field configurations, each weighted by a phase e*5®!
depending on the action:

(0) = %/D[@]eis[%[cm | (1.6)

with the partition function Z defined as

7 = /D[(I)]eis[q’] : (1.7)

In the continuum theory the functional integral [ D[®] is an infinite product of integrals
over ®(x) at every point in space-time, and thus difficult to define rigorously. When
going to the lattice, however, this product becomes finite:

/D[@] = H/d@(a:) , (1.8)

TzEA

!Note that either condition is enough to produce infinite DOFs.
20ne has to choose anti-periodic boundary conditions in time for fermionic fields and periodic boundary
conditions in time for bosonic fields, while using periodic boundary conditions in space in both cases.



CHAPTER 1. INTRODUCTION

where integration on the right hand side depends on the type of field ®(z) we are study-
ing.

There is one additional step needed to make the description Euclidian, which we need
for actual computations, and that is to substitute in imaginary time arguments t — 7,
through a so-called Wick rotation. The weight in the path integrals (1.6) and (1.7) then
changes according to

Sy g 95[®] (1.9)
where the subscript in Sg is used to emphasize that we now have an Euclidian action.
This immediately has two advantages. Firstly, it allows for a probabilistic interpretation
of the weight of each field configuration, in the Boltzmann factor® e=5#[®!. Secondly, if
one denotes the length in time direction by g = a/Nr and employs the correct boundary
conditions, the partition function Z becomes

7 / Dld]e~5+1®) — tr[e~PH] | (1.10)

which is the canonical partition function of the system at inverse temperature § = %
This association will become relevant again when we study the spectra of different Dirac
operators. Since we will always work within the Euclidian formalism, the subscript £
will be dropped from now on.

3That is, if the action is real and non-negative. This not being the case results in the so-called sign
problem, which makes computations considerably more difficult.



2. Lattice Fermions

Up until now, the lattice fields ® have been arbitrary. This will change now as we consider
fermionic fields, which will be described by the spinor fields ¢ (x) with Dirac components
o (z), as discussed earlier. The Dirac index « in our 141- or two-dimensional space-time
will only take on the values a = 1,2. As the Lagrangian for fermionic fields depends on
both 1) and ¢ (recall (1.2)), so will the fermion action and the path integrals to calculate
fermionic observables. While in Minkowski space-time 1 and ¢ are related via 1) = 1)1~°,
the adjoint spinor in Euclidian space-time is simply given by 1 = ¢f. The definition
of the Clifford algebra also changes, as in Euclidian space-time one has to find matrices
fulfilling the anti-commutation relation*

{7#7’71/} = 26uu]l27 (21)

where p,v =1, 2.

2.1. Grassmann Numbers and the Fermi Determinant

We now look at the vacuum expectation value of the product of two fermion fields:

(ale)0s(0) = 5 [ DI T T (w)uaty). 2.2)

Because fermions have to obey Fermi statistics, the expectation value should be anti-
symmetric under the interchange of two fermions and thus

(Ya(@)s(y)) = —(Vs(y)talz)) - (2.3)

The same anti-commutation relation has to hold for 1) and products of ¢ and v as well.
To assure this, the fermion fields have to behave as anti-commuting numbers, meaning
that they have to be Grassmann-valued.

Grassmann numbers are the generators 7; of an algebra called Grassmann-algebra and
fulfill the anti-commutation relation

nin; = —n;in;- (2.4)

4Notice that we are now using lowered indices only, as we do not have to differentiate between co- and
contravariant indices in Euclidian space-time.
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From the defining relation (2.4) follow some interesting consequences for calculations
with Grassmann numbers. One can define derivatives and integrals for Grassmann
numbers as well, but for these properties we will refer to literature [11, 12].

One important result, however, is the Matthews-Salam formula. If we define a Grass-
mann algebra with 2N generators n;,7;, © = 1,2, ..., N, the following holds:

N
/ dnndiy . . . dmdﬁlexp<z ﬁiMijnj> = det[M] , (2.5)
ij=1
for some complex N x N-matrix M. The derivation of this identity can be found in
many places in literature, e.g. in [12]. The importance of this result will be immediately
clear, once we take a look at the (Euclidian) fermion action. The Lagrangian given in
(1.4), when translated to Euclidian space-time and coupled to a gauge field A,,(z), reads

L = P(7u(0y + ieA,) +m)y . (2.6)

Thus, the action in 2D becomes

S[p, v, A] = /d%@(ﬁ(@u +ieA,) +m)y, (2.7)
which simply turns into a sum over all lattice points for our discretized space-time:
S0, 0, Al =a® Y > " Du(n) Dag(n|m) dp(m) . (2.8)
n,meN a,B

Here we used the notation with Dirac indices and integer lattice coordinates, i.e. n =
(no,n1), introduced earlier and also used the lattice version D,z(n|m) of the Dirac
operator

D :=~,(0, +ieA,)+m, (2.9)

whose explicit form we will develop later through discretizing the derivative, implement-
ing the gauge field A, via so-called gauge-links, and choosing an appropriate represen-
tation of the Clifford algebra. We now have brought the fermion action into the form
used in the exponent in (2.5), and thus, when setting M = —a?D and absorbing both
the lattice constant and the additional minus sign into the Dirac operator, we arrive at®

7= / Dy, Fle—S5A) / D, B2 = det[D] | (2.10)

where in the second step we suppressed summation in favor of a simpler vector-matrix
notation. This means the partition function for the fermion action, a very important

®Recall the definition of the partition function in (1.7) and the discussion in the beginning of this
section.
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quantity when calculating observables, is just the determinant of the Dirac operator
D, often called fermion determinant. It should be clear now, why the spectra of the
different Dirac operators typically used in computations are of interest, since one can
calculate the fermion determinant as a product over all eigenvalues.

2.2. Naive Fermions

The Dirac operator introduced in the previous section shall now be discretized for lattice
computations. For now, we will set the vector potential A, to zero and focus only on
the derivative and the mass term, so

D=@+m. (2.11)

A straightforward way is to simply use a finite difference operator. In this case we choose
a central difference to get

naive 5m,n 78 5m,an
e (nlm) =Y (Yu)as *“Qa L mBmnlas (2.12)
w

and thus arrive at the naive fermion action when plugging the operator into (2.8)

Suane = 50 (0 IS ). 2y

neA

In both cases fi signifies a step in the u-th direction, with p = 1,2 in our case®. For
2D Euclidian space-time we can choose two Pauli matrices as our representation of the
Clifford algebra, e.g.

01 0 —
Y1 =01 = (1 0) s Yo = 02 = (Z 0) . (214)

For practical applications we transform the multi-indexed object D24¢(n|m) in (2.12)
into a 2-index matrix D,;" through a rolling-up of indices, where we combine lattice and
spinor indices into a single index

a=alA+i, (2.15)

6Generalizing to higher dimensions d is mostly straightforward (changing the prefactor to a¢ and
letting = 1,...d), except one has to take dimensionality into account and whether one wants
to use a reducible or irreducible representation, when choosing the gamma matrices, as there are
differences between even and odd d [13]. As we will only work in even dimensions, these are however
not of concern to us.

"This matrix does get fairly large though, which will ultimately limit feasible lattice sizes.
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with |A| = NoNy, @ = ng +mNy € {0,1,...,]A] — 1}, and where n, € {0,1}%. The
eigenvalues of this matrix can be computed using standard numerical routines. We usu-
ally use the SciPy and NumPy packages.

Another issue that is of importance when implementing lattice fermions, are boundary
conditions. We need periodic boundary conditions in space and anti-periodic boundary
conditions in time, so

Y(n+ iaN,) = {(p)y(n) (2.16)
where
)L it p=0
5(“)_{1, =1

Later, when going to just 2 spatial dimensions, this will further simplify to {(u) = 1.

2.3. The Doubling Problem and Wilson Fermions

To illustrate the doubling problem we take a look at the inverse of the Dirac operator
D,s(n|m) given in (2.12). This inverse governs the behaviour of fermionic expectation
values and one associates its poles with physical particles. In the massless case, which
will interest us the most as we discuss later, the inverse Dirac operator D~!(n|m) reads
as follows?:

D~ Y(njm) = T ZD eipln—ma (2.17)

pEA

with the set of all lattice momenta A and the momentum space propagator®

~ —4 ), Vubu

D (p) = —Ze el (2.18)
>, P
where we define the lattice momenta as
. 1.
= ~sin(p0) (2.19)

and consider p, € (=2, %], with -Z and = identified. In the continuum limit a — 0 we
have p,, — p, for fixed p, # 7, and thus recover the correct continuum operator

- =), VP

8These expressions are again very easily generalized to higher dimensions.

9The exponent is supposed to be read as an Euclidian dot product. As the structure suggests, this is
an inverse Fourier transform on the lattice.

10Tn order to arrive there, one performs a lattice Fourier transform and applies an identity for gamma
matrices. Details can be found in Appendix A.1/A.2.

: (2.20)
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which only has a single pole when p, = 0 for every pu € {1,2}. When all components are
either p, = 0 or p, = 7 in the lattice expression (2.19) however, we also find unwanted
poles of the propagator in (2.18). These, in total 2¢ — 1, so called doublers represent
unphysical degrees of freedom we want to get rid of. The reason for their occurrence
is the use of a symmetric form for the derivative term, however using the right or left
derivative would result in some non-covariant quantities [14]. One possibility to remove
the doublers in the continuum limit is adding the so-called Wilson term to the naive

fermion action.

The effect of the Wilson term can best be seen again in momentum space, where we add
an additional term to the Dirac operator that vanishes for the physical pole, where all
p, are zero, and gives an extra contribution to the mass for all other values of p,'!:

~ 7 . 2r ) Pua
D(p) =ml + - %:vusm(pua) + ]l; Z sin’ (%) . (2.21)

m

Here we introduced the Wilson parameter r € [0, 1] to shift continuously between naive
fermions (r = 0) and Wilson fermions (r = 1). The extra term changes the mass of

doublers to o M
m4 (2.22)
a

where M signifies the number of momentum components with p, = =, causing them to
become heavy and decouple from the theory in the continuum limit a — 0.

In position space the Wilson term is proportional to a discretized version of the Laplacian
and the Wilson Dirac operator D" is given by

2r 1
D) = (25 )bndos = 5 30| (1=t (L] - (229
I

Adding the extra term removes the doublers at the cost of breaking a symmetry the
continuum theory has, namely chiral symmetry. We shall discuss chiral symmetry in
more detail at a later point.

2.4. Spectra of Wilson and Naive Operator

Before adding more terms to the Lagrangian or using more complicated Dirac operators,
it is worthwhile to discuss the spectra of the two Dirac operators we have so far. In the
free case there is an analytic expression for both of these, which serves as a basis to

" The momentum space Dirac operator can be again obtained by another application of (A.1) or
through the lattice Fourier transform detailed in the next section.

10
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compare numerical results. As the calculation is a bit more involved we move it to App.
A.2. The results that we obtain, read as follows:

- (2.24)

2 .

r i

N = - E 1— + -
Y =m+ , u1< cos(pua))

The naive spectrum has the same eigenvalues minus the second term and thus all eigen-
values lie parallel to the imaginary axis at Re(\) = m in the complex plane

; i
/\lawe —m+ —

. (2.25)

With these expressions we can discuss some of the properties of both spectra. For this
we will set m = 0 and a = 1. It is immediately clear that the spectra for both naive and
Wilson operator are bounded, due to the boundedness of the trigonometric functions
appearing in them. We find the bounds

Re(\) =0, m()\) € [-v2,v2], (2.26)
Re(\) € [0,47] Im(\) € [-v2,V2], (2.27)

for naive and Wilson operator respectively'?. It should be noted that the eigenvalues
are always at least doubly degenerate, oftentimes more, due to the periodicity of the
trigonometric functions appearing in them?!s.

Plotting our results, we can take a look at the behaviour of the spectrum when chang-
ing the Wilson parameter r. This is shown in Fig. 2.1. When increasing r, the line of
eigenvalues on the imaginary axis is bended out into an elliptic shape'*. The spectrum
is symmetric about the real axis and about'® Re(A\) = 2r. On the real axis the doubler
modes become massive and get pushed to Re(\) = 2r and Re(A\) = 4r. In the contin-
uum limit the ellipse becomes infinitely large and the doubler modes decouple from the
theory. To give a full picture, we also show the dependence on N, in Fig. A.1 in the
appendix. Increasing NN, in general also increases the number of eigenmodes, and for
anti-periodic boundary conditions in time there exists a nonzero lowest eigenvalue )\,
which decreases for higher Nrp.

12For different masses m these bounds obviously change, The bounds for the imaginary parts turn into
open intervals for finite 14+1-dimensional lattices.

I3If N, is divisible by four, for example, the sin®(p,a)-term can take on the same value a total of four
times over a full period.

4The number of ellipses void of eigenvalues inside the larger structure increases with the space-time
dimension.

15This is only true if N, is even for all p.

11
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Figure 2.1.

Spectrum of Wilson operator when varying the Wilson parameter r. Notice that r» = 0
corresponds to the naive operator and » = 1 to the full Wilson operator. The plots are
done for a 16 x 16 lattice and periodic boundary conditions in both directions.
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2.5. Chiral Symmetry and the Overlap Operator

The Gross-Neveu model [6], that we will work with later, shares a lot of its symmetries
with QCD, and we are thus interested in finding an operator which respects as many of
these symmetries as possible. In our case the most important one will be chiral symmetry,
as its spontaneous breaking has many important implications in particle physics. In this
section we will collect some important results in regard to chiral symmetry, first in the
continuum and then on the lattice, before finally discussing the overlap operator; a
construction that respects the lattice version of chiral symmetry. For a more in-depth
discussion we refer to the chapter on chiral symmetry in [12].

2.5.1. Chiral Symmetry in the Continuum

We start the discussion by briefly going back to 4D Euclidian space-time and by taking
another look at the gamma matrices

{/}/H?’YV} - 26;1,1/]1 ; (228)

with © = 1,2,3,4. From these we can construct a fifth gamma matrix by taking the
product of all other gamma matrices

V5 = V1727374 (2.29)

which acts as the chirality operator. This operator obeys the anti-commutation relation

{21 =0, (2.30)

squares to the identity, i.e. 72 = 1, and has eigenvalues A\ = +1. In the chiral rep-
resentation, which we will mostly work with, 5 is diagonal as well. We can define
projectors Pg, P;, which decompose the field into right- and left-handed components. In
the continuum they read

1 1-
Pp——t p 1T (2.31)
2 2
and project out components according to
Yr=Prt,  Yr=Pr, Uy =VPr,  Yp=0PL. (2:32)

Using the projectors on the Lagrangian from (2.6), we see, after a few lines of algebra,
that the field decouples into right- and left-handed components only in the massless case:

L= D¢p+ YD +m(Y r +Ypiy) - (2.33)
We now take the same Lagrangian and perform a chiral rotation of form
Y =Y, P Y =P (2:34)
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with a real parameter ¢ that has no space-time dependence. As the exponentials and
the v, are acting in Dirac space, they commute with the rest of the terms and we get

L = e’ (7u(0, +1iA,) + m)e* ) (2.35)
= e’V ey, (0, + 1A + mpe* P (2.36)
= L+ mape* P . (2.37)

In the second step we used

) e (i€75)” o (675)271 ' > (675>2n+1 .
1€Y5 __ _ _1\n _ _1\n _ 1€7!
G D ano( V' Zzn:()( D Gnt1) )=

n=0

(2.38)

where (2.30) causes the sign change in the second term. Thus we see that a mass term
breaks chiral symmetry explicitly, which leads us to mostly focus on massless theories.
A simple way chiral symmetry can be characterized more generally for a Dirac operator
D as given in (2.9), is through the anti-commutation relation

{15, D} =0, (2.39)

which is a more concise formulation of the second step we used in showing the invariance
of the Lagrangian. Later when we enable the four-fermion interaction this continuous
chiral symmetry will also be broken by the interaction term; we will however still have
a leftover discrete chiral symmetry.

2.5.2. Chiral Symmetry on the Lattice

When we try to perform a chiral rotation on the Wilson operator DV appearing in
L = ¥ D", we immediately see that chiral symmetry is broken explicitly even for
m = 0 due to the r1 factors in Dirac space, which originate from the Wilson term
(compare with (2.23)). Therefore we cannot investigate phenomena concerning chiral
symmetry with what we have so far. It turns out that this result is a consequence of a
far more general theorem; the Nielsen-Ninomiya theorem [15].

The Nielsen-Ninomiya theorem is a no-go theorem, which has as a direct consequence
that it is not possible to solve the doubling problem in a way that is chirally invariant
and preserves locality of the Dirac operator at the same time. This initially represented a
severe challenge for any attempt at realising chiral symmetry of form (2.39). A solution
to this problem was however found, shortly after the original papers of Nielsen and
Ninomiya, by Ginsparg and Wilson [16], who modified (2.39) with a right-hand side
that vanishes in the naive continuum limit a — 0:

{75, D} = aDvsD . (2.40)

14



CHAPTER 2. LATTICE FERMIONS

Not only does this form of chirality possess the correct continuum limit, it also allows
for chiral symmetry to be defined for finite lattice spacings. A modified chiral rotation
[17]

W = eievs(ﬂ—%D)d) 7 @, - @eif(ﬂ_%D)Vs (2.41)

for an operator obeying (2.40) leaves the (massless) Lagrangian invariant, just as the
transformations (2.34) in the continuum case. Right-and left-handed lattice projectors
with similar properties as their continuum counterparts can be defined too. Using these
on the Lagrangian, we also find the lattice equivalent of the mass term responsible for
breaking chiral symmetry:

m(ELQ/JR ‘I'ER'@Z}L) = m@(]l - gD)%ZJ : (2.42)

The last expression prescribes how to realize a massive operator obeying the Ginsparg-
Wilson equation and will also be later used to implement the four-fermion interaction.
One should add that although continuum and lattice chiral symmetry look quite similar,
they are fundamentally very different. While the continuum expressions are entirely
local, as they only involve the fields at fixed points in spacetime, the lattice operators
discussed so far do not possess this strict locality anymore. When we apply, for example,
the Wilson operator to the fields, all neighboring sites contribute through the derivative
terms. In case of the overlap operator, which we will introduce next, even sites much
further away contribute. This difference will become more pronounced when we later
implement the vector potential A,, as there also will be contributions from the gauge
field at neighboring lattice links, in contrast to the strictly local contributions in the
continuum case.

2.5.3. The Overlap Operator and lts Spectrum

Initially the paper by Ginsparg and Wilson [16] did not have many direct consequences,
as there was, for a long time, no known solution to (2.40). It took almost two decades
until it was noticed that the overlap operator, a fairly new approach to lattice chiral
symmetry at the time, also obeys the Ginsparg-Wilson equation [18]. We will work with
the overlap operator operator as formulated in [19]:

1 )
Do — a(]l + 7551gn[’y5K]) , (2.43)

where K is a ~s-hermitian Dirac operator, i.e. 75K7; = KT, acting as a kernel. The
choice that we will make for the kernel is

K =aDV — (1+3s)1, (2.44)

where s € (—1,1) is a real parameter used to optimise locality and D" is the Wilson
Dirac operator as given in (2.23) with m = 0. For the proof that this kernel is indeed
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~s-hermitian, we refer again to [12]. To implement the sign function one usually utilizes

. —1/2
sign[v5 K] = 5K (v K5 K) & (2.45)

Thus, using 7s-hermiticity, the final overlap operator becomes'®

D = é(n + K(KTK)™/?) . (2.46)

The main numerical challenge in practice is implementing the sign-function, as it can
become quite costly to calculate the inverse square root through the spectral theorem.
One can implement approximation schemes to compute it more efficiently, though this
will not be necessary in our case. Another issue that can arise is the eigenvalues of the
kernel becoming small, which can lead to numerical complications when computing the
inverse square root.

Regarding the locality parameter s it should be noted, that the overlap operator is not
an ultralocal operator anymore, meaning its interaction range is not limited to the near-
est neighboring sites. Thus, there will always be nonzero interaction between fermionic
variables on different lattice sites, no matter how far away from one another they are
[20, 21]. Breaking ultralocality is a direct consequence of obeying the Ginsparg-Wilson
relation, as it was shown in [20], which is the drawback of avoiding the Nielsen-Ninomiya
theorem. One can construct, however, a more general definition of locality, where expo-
nentially decaying contributions to the action of the Dirac operator are allowed for large
distances. If the rate of decay is at least proportional to 1/a, then the action of the
Dirac operator will be completely dominated by contributions within a circle of fixed
diameter in lattice units [22]. This sense of locality then produces a local field theory
in the continuum as well. The overlap operator still possesses this more general form of
locality, and locality can be improved via the parameter s, as was shown in [22].

As we have done with the naive and the Wilson operator, we now want to discuss
the spectrum of the overlap operator. Before we discuss any numerical results, there
is still some work that can be done analytically. Since the overlap operator is both
~s-hermitian!”

1 , 1 .
Vs Dvs = 755(]1 + yssign[ys K|)vs = 5(1 + sign[v5K]7ys) = D', (2.47)

16Tt should be noted, that this is the operator for the massless case, describing chiral fermions.
ITIn this chapter we only discuss the overlap operator, so for now D=D°V.
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Figure 2.2.
Spectrum of the overlap operator for Ny = 8, a = 1 and periodic boundary conditions in
time.

and obeys the Ginsparg-Wilson relation

1 . .
aD~ysD = 5(1 + yssign[y5 K1) 75 (1 + vssign[vs K]) (2.48)
1 ) . .
= — (75 + sign[ys K] + ssign[15 KT + yssignlys K1) (2.49)
1 ) 1 .
= 755 (]l + 7581gn[75K]) + " (]l + 7581gn['y5K])75 (2.50)
=D + Ds, (2.51)

where we used that the sign function is hermitian and squares to unity, we can derive
some properties of the spectrum. Multiplying the above equation with 5 from the left
and the right respectively and using ~s-hermiticity, we arrive at

D'+ D =aD'D =aDD' . (2.52)

Thus, the overlap operator is normal and its eigenvectors vy form an orthonormal basis.
It can further be shown, that the eigenvalues A = x + iy, with x,y € R, obey

1N, 1
Z) 4t = = 2.53
(a: a) Y= (2.53)

meaning they lie on a circle with radius 1/a, centered at 1/a.
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Just vs-hermiticity alone has an additional consequence for the chirality of eigenmodes!®:
vATy50x = 0, unless A € R . (2.54)

As a result only eigenvectors to real eigenvalues can have non-vanishing chirality.

Now we can again compare numerical results, which are shown in Fig. 2.2. We see that
all the eigenvalues indeed lie on the predicted circle. Looking at Fig. 2.2 we can further
see that we again have zero modes within the spectrum, as well as real eigenvalues at
2/a. The spectrum remains symmetric about the real number line too. Even though we
will usually set s = 0, the effect of changing s can be seen in Fig. A.2. Increasing s inside
its possible range moves the real part of eigenvalues along the circle. The fact that we
appear to have exact or near exact zero modes in the massless case, no matter the other
parameters, is not a coincidence and will become relevant later. We now have a working
operator that is free of doublers, possesses chiral symmetry in the continuum limit as
well as a lattice chiral symmetry for finite a, while also producing a local field theory in
the continuum limit. The next step will be to consider a vector potential A, # 0 and
properly implement it on the lattice.

18To show this start with Avyfysv, and invoke y5-hermiticity to show that A = \*.
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3. Magnetic Fields on the Lattice

Implementing a vector potential is not as straightforward as naively adding a vector
potential to the Lagrangian used so far, as we will quickly see. Actually realizing the
vector potential will come in the form of so-called gauge links, and to properly put a
constant magnetic field into effect we have to do some further work. First it is beneficial,
however, to remind ourselves how particles behave in uniform magnetic fields in non-
relativistic and relativistic quantum mechanics.

3.1. Particles in Magnetic Fields

In order to calculate the energy levels of a non-relativistic particle in a uniform magnetic
field, we have to solve the time-independent Schrodinger equation®®

H|W) = E|D) (3.1)
for the Hamiltonian in an electromagnetic field

A 1 - 2 A
H = %(p—eA) +ed | (3.2)

where we write the momentum operators as ﬁ = (Ps, Py, D-)" and the electromagnetic

potentials as A = (Am,Ay,AZ)T and ®. We want to realize a uniform magnetic field
in the z-direction, thus, due to B = V x A, we can choose between the following non-
symmetric and symmetric gauges:

~ [-Bj ) 0 L, [-Bj
A={ o |, A=|Bil A= | Bi |, (3.3)
0 0 0

where ® = 0 and B > 0 in all cases. We choose the first gauge? and (3.2) simplifies to

N 1 .. R . R

19Tt is important to keep in mind that we are now talking about quantum mechanical wave functions,
which will be denoted by W.

20We stay with that choice throughout the rest of this work, besides in the derivation of the energy
eigenvalues of the Dirac equation in App. A.3.
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CHAPTER 3. MAGNETIC FIELDS ON THE LATTICE

Making use of the canonical commutation relations
[pi, pj] = 24, 25] = 0, 24, D;] = 63 (3.5)

we see that p, and p, both commute with the Hamiltonian, since neither  nor Z appear.

Therefore we can define w = % and replace p, with its eigenvalue k, to arrive at

~2 2 ~9
~ D 1 .k p
H="Y 4+ Zmw? i - .
o T 3™ (y+ mw) t5 (3.6)
R4 11

The term Iis a 1D harmonic oscillator shifted by ;n—'ij in the y-direction. Since translation
of the harmonic oscillator does not change its energy levels, we know the energy to be
w(n+%), n € Ng. Term Il is, if we do not restrict the spatial extent in z-direction to some
finite distance, simply the kinetic energy of a free particle and p, has the eigenvalues k..
We now know the energies to be

E, = ks L 3.7
n—2m+w(n—|—2). (3.7)
The n-th energy level is called the n-th Landau level. It should be noted that, in the
free case, each Landau level is infinitely degenerate due to the momentum in z-direction.
If we confine the particle to the z-y-plane, however, the degeneracy becomes finite and
proportional to the magnetic field. The degeneracy still stems from the momentum in
x-direction, which is now quantised according to

2mv
k:c = )
L,

where v is a positive integer and L, is the length of the plane in z-direction. We also
want the harmonic oscillator not to extend beyond the plane, which further restricts the
system. We obtain the bounds?!

(3.8)

ka

mw

0<y+

<I,. (3.9)

with L, denoting the length of the plane in y-direction. This results in an upper and
lower bound for the momentum £k,

0<k, <Lmw, (3.10)
and plugging in the quantised momentum as well as w, we finally arrive at
BL.L
0<o< Py (3.11)
27

2IThis is only an approximation since we are obviously dealing with wave functions instead of particles
whose positions we can localize precisely. The wave functions will however be exponentially localized

around y = — X2 making this argument work [23].

mw
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CHAPTER 3. MAGNETIC FIELDS ON THE LATTICE

As we will see soon, the magnetic field follows a similar quantization prescription on the
lattice. We will come back to this after discussing the relativistic particle with spin.

Another interesting fact is that the different Landau levels correspond to circles of grow-
ing size in the p,-p,-plane. This can be seen by looking at p_f, which stays constant
due to conservation of momentum, and using (3.12) to eliminate the momentum in z-
direction. These circles mirror the corkscrew-trajectory we would expect from a classical
charged particle in a uniform magnetic field. It should also be noted that we can expect
the eigenfunctions to factor into a product of harmonic oscillator eigenstates, free motion
in the z-direction and free/particle-in-a-box eigenstates in the z-direction.

Now we consider a relativistic particle with spin described by the Dirac equation??. As
this calculation is a bit more involved we move it to App. A.3. The energies we end up
with are as follows?3

1

where s = i% is the spin of the particle. There are two major differences compared to the
non-relativistic case. We observe that the spin of the particle also contributes. The spin
contribution, most importantly, causes further degeneracy of the Landau levels, since
(n,s = —31) and (n+1, s = 1) produce the same results. This is not the case for the lowest
Landau level (LLL) however, as there we only find one solution for (n = 0,s = — 2. We
will finish the discussion of degeneracy after quantizing the magnetic field in order to fit
our lattice descriptions.

3.2. Uniform Magnetic Field on a Torus

When we are considering a plane with lengths L, and L, in z-and y-direction respec-
tively and employ periodic boundary conditions, it topologically corresponds to a torus,
which we will treat as continuous for now. If we wish to implement a magnetic field
on this torus, we first need to find a suitable vector potential. For a uniform mag-
netic field pointing in the positive z-direction, the choice that we made earlier was
A = (=By,0,0)T. Here it first seems like we are running into problems. Since points on
the boundaries are identified, the potential takes on multiple values at these points, i.e.
it is not well-defined:

A(x,y+L,) =—-B(y+ L,) # —By = A(x,y) . (3.13)

22We briefly go back to the single-particle interpretation of the Dirac equation.
23We are only really interested in the square of the energy, as that is what we will need for the analysis
we do later.
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The solution is, that the potentials do not necessarily have to be well-defined, as they
only need to agree up to a gauge transformation A’ = A 4 Vp(x) and ¢’ = er(®)y)?,
This gauge transformation is what needs to be well defined, so finding p such that

Ay (x,y+ Ly) = Ay(z,y) + 0pp = Opp(x) = —BL, = p(x) = —BLyx , (3.14)
and demanding the exponentials e~ **PLv® to agree for x and = + L, we find that the
magnetic field needs to be quantized according to

_ elijTLynb . (3.15)
More precisely, the magnetic flux ® = BL,L, has to be quantized according to

b = Pgny (3.16)
where &y = 2?” is the magnetic flux quantum and n, € N is the magnetic flux quantum
number.

With this we can finish our earlier discussion on degeneracy, by recognizing that the
bounds in (3.11), from the quantum mechanical treatment of the non-relativistic particle
in a uniform magnetic field, turn into

0<v<ny, (3.17)

meaning that n, is simply the degeneracy N of each Landau level. Recalling that in the
relativistic treatment of the same problem, all Landau levels were twice degenerate due
to spin except for the LLL, we know the continuum degeneracy of each Landau level to
be

Nn = nb(2 - 5n70) . (318)

Another issue arises when we want to discretize the torus because the magnetic flux
of plaquettes, i.e. 2D areas spanning one lattice unit in each direction, on the lattice
boundary in y-direction is different from the magnetic flux through plaquettes in the
bulk. This issue is of the same nature as the problem we ran into when trying to properly
define the vector potential on the torus, and thus also has a similar solution. Since the
vector potential only enters exponentially, we will add a non-vanishing y-component.
Now our gauge choice reads

Ay(x,y) = —DBy, Ay(z,y) = 6yr,-1BxL, . (3.19)

What this achieves is a constant magnetic flux through all plaquettes, except for the one
crossing both boundaries. Using the quantization of the magnetic flux this results in
the same exponential and will not be an issue. We now have a working description of a
uniform magnetic field on the lattice. What remains, is to see how to finally implement
it for the operators discussed previously.

Z4Notice that this is simply a local U(1)-transformation.
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3.3. Implementing the Magnetic Field

In this section we will mostly be concerned with the results we need to implement the
magnetic field for the operators we have studied up until now, and will refer to literature
([14], Section 5.2, [12], Section 2.2%) for a more detailed description. What we want to
achieve, is to implement the vector potential in a way that still produces gauge-invariant
expressions, meaning that they should be invariant under local U(1)-transformations.
We are especially concerned with the derivative terms

Z(T - ’Vu)aﬁ(;m,n—i-ﬂ + (T + ’Y,u)aﬂém,n—ﬂ (320)

In

appearing in all operators we have studied so far?®, as their action on the fields creates
terms bilinear in the fermions and with different space-time arguments. In the continuum
we know these to transform via

()(y) — V(@)GH(2)Gy)v(y) | (3.21)

where G € U(1)*. What we thus need is a term accounting for the gauge variation
between both points in space. On the lattice we similarly need a U € U(1) accounting
for the gauge variation between lattice sites, so the fermion bilinear terms transform
according to

P(n)(n+ @) — P(n)Uppipth(n+ ). (3.22)

On the lattice, the factor that we are looking for is given by?®
Up(n) = Uppsp = ) (3.23)

It should be noted that the U, live on the links between lattice sites and are thus often
called link variables. They are also directed quantities, meaning we can define link
variables in the opposite direction via

Uoy(n) = Uty — ). (3.24)

Thus, we need to equip all derivative terms with factors U, to finally guarantee a gauge-
invariant formulation of the desired uniform magnetic field on the lattice. The (massless)
Wilson operator in two dimensions then reads

2r 1
Do%(n|m) = ;5mn5aﬁ % Z(T_Vu)aﬁUu(n)émerﬂ‘i‘ (r+7u)apU—p(n)Omn—p » (3.25)
m

with the U, defined as above and the gauge choice as given in (3.19).

25They show implementation of gauge links for QCD, where they are elements of SU(3), but the general
procedure is very similar.

26The transformations also do not act in Dirac space so the derivative terms are the only ones affected.

2TTo be more precise, G has to be a representation of an element in the U(1) group.

28This expression agrees with the continuum one to O(a).
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3.4. Spectra of the Dirac Operators

We now examine how the spectra of the Dirac operators change for different magnetic
fluxes. At this point we do not have the support of analytic results anymore, meaning
we will need to rely on cross-checking between different methods to confirm our findings.

We will first plot the spectra for the Wilson and the overlap operator in Fig. 3.1 and
Fig. 3.2 respectively?®. Looking at Fig. 3.1 we see that changing the magnetic flux
does not seem to alter the symmetries of the spectrum. There is however a qualitative
difference in the shape of the spectrum for n, = 1, when compared to the case with
vanishing magnetic flux. The large ellipse turns into a peanut-shape that collapses into
small clusters of eigenvalues, grouped around a smaller elliptic shape. While the shift
in the spectrum is rather smooth in the beginning; it can only be described as chaotic
after a certain threshold of ny.

The overlap spectrum in Fig. 3.2 behaves similarly, as there is also a qualitative change
for ny, = 1. The original shape of the spectrum, however, remains for the overlap opera-
tor. This also shows that applying the magnetic field affects neither vs-hermiticity nor
the Ginsparg-Wilson relation fundamentally. Increasing the magnetic flux increases the
real part of eigenvalues along the circle, on which they form distinct groupings. There
always appear to exist zero modes, a fact that will become relevant later. The threshold
after which the behaviour becomes chaotic also seems similar to the Wilson spectrum;
this will also be discussed in the next section. It is important to add that both spectra
are periodic in ny, with periodicity |A], due to the way it enters exponentially®". The
spectra also repeat in reversed order in ny after n, = |A|/2, therefore we do not get any
additional information from plotting higher values.

We will continue the discussion of Wilson and overlap spectra and their relationship in
more detail at a later point.

29With regards to the Wilson operator, we are especially interested in the spectrum of the kernel that
we plug into the overlap formalism, meaning we set m = —1 corresponding to a locality parameter
s=0.

30For ny = n|A], n € N the magnetic field in (3.15) simply produces a factor i2wn in the exponential.
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Figure 3.1.

Spectrum of the Wilson operator for changing magnetic field strength, or rather different
magnetic flux per unit lattice volume, as the field strength is characterised by n;. We set
m = —1, corresponding to the overlap kernel for s = 0 and the lattice size is 12 x 12.
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Figure 3.2.

Spectrum of the overlap operator with s

0 for changing magnetic field strength, or

different magnetic flux per unit lattice volume, characterised by n;. The lattice size is
12 x 12. Notice that the shape of the spectrum is indeed circular and only looks elliptic
due to the differently scaled axes.
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4. The Hofstadter Butterfly and
Landau Levels for Free Fermions

We shall now turn towards the main object of this analysis; the Hofstadter butterfly.
This fractal structure, first observed in the energy spectrum of a Bloch electron in an
external magnetic field [24], and shown in its original form in Fig. 4.1, also shows
up in QCD with a background magnetic field®' and similarly in the description of free
fermions in a magnetic field, which we are studying. An explanation for the occurrence
of the fractal structure is given in the original paper by Hofstadter. At the heart of
the problem is, that the electron has two competing characteristic frequencies in the
cyclotron frequency w = eB/m and the frequency of an electron in a state with maximal
crystal momentum, which is equal to 27/a*m. The ratio of these frequencies

a’eB
2T

o (4.1)
is what defines the nature of the energy spectrum. For rational « it turns into a finite
set of energy bands, separated by finite gaps, while for irrational « it turns into an
uncountable but measure-zero set of points. On the lattice « is given by

ny

= . 4.2
Y (4.2)

«

Therefore it is always rational for finite volume, and we only get to see the full butterfly
fractal in the infinite volume limit [2].

It should also be noted that the original butterfly in solid-state physics and the one
in QFT differ in nature, as the latter disappears in the continuum limit ¢ — 0 and
thus is merely a lattice artifact. There are however aspects that remain even after the
continuum limit, and correspond to concepts in continuum physics [2]. We shall first
discuss the “butterfly plots” for the Dirac operators introduced earlier and especially
focus on the structure of Landau levels, using the results of the previous chapter.

31Technically it is only a remnant structure as the full fractal only emerges in the infinite-volume limit
for free QCD [2].
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Figure 4.1.
Hofstadter’s original butterfly [24].

4.1. Butterfly Plots for Different Dirac Operators

What we will refer to as “butterfly plots” appears for lattice fermions in two spatial
dimensions, when one plots the magnetic field strength eB /27, or «, over the squared
modulus |A|? of the eigenvalues of lattice Dirac operators. Here we have to make a
distinction right away, because the Hofstadter butterfly in its original structure appears
only in the case of charged bosons in a background magnetic field, which is however re-
lated to the fermionic case through a simple transformation [2]. For completeness’ sake,
both spectra can be seen in Fig. A.3. There is however still a difference, as we will plot
the squared modulus of the (non-real) eigenvalues and not the eigenvalues themselves
in the fermionic case. This way we can better compare visually with the continuum
results®? and also have the added benefit of being able to use Hermitian operators?,
for which better numerical routines exist. This comes at the cost of some ambiguity in
nomenclature. Following the discussion in Sect. 77 we also need to only plot up to half
of the maximum value of allowed magnetic field strengths.

The butterfly plots for naive, Wilson, and overlap operator are shown in Fig. 4.2 along-
side closeups in the low-a region. The coloring of different Landau levels corresponds to
the continuum degeneracy (3.18) derived in the previous chapter. For Dirac operators
with doublers this degeneracy has to be multiplied with the number of doublers. The

32Recall that |A|? is linear in B due to (3.12).
33Except for the Wilson operator as it is not normal.
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solid lines represent the continuum solution for comparison, as the squared eigenvalues
A2 for the massless Dirac operator in 2D read®!

A\ =2Bn . (4.3)

We can see that for the naive operator there are clear gaps between the LLL and the
higher Landau levels, while the gaps in between the higher Landau levels are less pro-
nounced. For the Wilson operator the LLL only stays separated for low a and the same
holds for the gaps between higher Landau levels. In case of the overlap operator there
is a reasonable separation between the first three Landau Levels for values of a < 0.25
and a very clear separation of the LLL for values up to a =~ 0.28. For higher magnetic
field strengths the picture changes dramatically and the otherwise seemingly recursive
structure breaks. As this only happens in a specific region of the overlap butterfly, the
question has to be raised whether this is a feature of the overlap operator, or merely an
artifact of the numerical methods used. This will be discussed in the next section.

In the closeups we can see that for low « the numerical results are in very good agree-
ment with continuum results. The Wilson and overlap spectra stay especially close to
the continuum curves; even for higher a. Agreement for the LLL is best in case of the
naive and the overlap operator, the latter seemingly matching the continuum results
perfectly. That the agreement is worse for higher magnetic fluxes in all cases should
not be of much concern, as o approaches zero in the continuum limit and thus only the
low-«v region plays a physical role [2].

It is noteworthy, how well the continuum degeneracy is reflected in the Landau levels of
the lattice spectra. Important to note as well is that the overlap spectrum is the only
one containing zero modes throughout the whole range of «, that, up to a =~ 0.28, also
completely make up the LLL. This is not a coincidence as we will see in the next section.

4.2. The Index Theorem and Analysis of Overlap
Butterfly Artifacts

In the continuum, the massless overlap operator fulfills the Atiyah-Singer index theorem
[25], which relates its number of zero modes with left-and right handed chirality n_,n,
to the topological charge Q.ont; a property of the gauge fields [26]:

Qcont =N_—N4 . (44)
In the 2D continuum theory the topological charge is given by the magnetic flux [4]
1 eBL,L
cont — d2 con = 5 d2 F =— 4.5
Qs = [ Poteni() = 5 [ EFia(e) = 23 (1.5

34Compare with (3.12).
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Figure 4.2.

Butterfly plots with closeups for low magnetic flux n;, corresponding to low values of the
Hofstadter parameter a. The plots are shown for naive (top), Wilson (middle) and overlap
operator (bottom) on 16 x 16 lattices. Details regarding coloring can be found in the main
text.
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with the field strength tensor component Fi5 = 01 Ay — O, A; appearing in the charge
densitiy Geont(z) = %F 12. On a torus the topological charge is thus given by

Qeont =N —ny =ny, (4.6)

according to the quantization condition for the magnetic flux in (3.15).

On the lattice, problems with both sides of (4.4) can occur as the there are several
different ways to define the topological charge Qq (for a review of different methods we
refer to [27]). Additionally, the number of zero modes can be affected by discretization
artifacts, as already seen in the butterfly plots, through which continuum zero modes can
acquire nonzero absolute value on the lattice. For the overlap operator, the Ginsparg-
Wilson relation guarantees that the zero modes remain exact®®, and one can define the
index theorem on the lattice via [12]

a
Qiatt = §tr[fy5D] =n_—ny =1, (4.7)

where we introduced the index I3¢. Similar to (4.5) one can also define a topological
charge Qa1 on the lattice by summing a charge density g.(n) over all lattice points:

Qlatt = Z Qrare(n) - (4.8)

neA
A possible definition was given in [28]:
1
() = 5 -axe(Un(n)) (19)
T
with the plaquettes
Ura(n) = Uy (n)Usy(n 4+ DU (n 4+ 2)Us (n) . (4.10)

Using earlier definitions for the gauge field (3.19) and gauge links U, (3.23) it is straight-
forward to show that in the case of a constant magnetic field the topological charge
density reduces to g = #Zy, giving us consistent definitions for both lattice and
continuum in

Qlatt = Qcont =nNnp = I. (411)

What still remains, is that this geometric definition of g4 is not unique and it is entirely
possible that different definitions will also give different results for the topological charge,
only agreeing with our definition in some parameter regime. Further discussion about
this can be found, for example, in [26], and similar results also appear in the literature.

35This holds for any operator obeying the Ginsparg-Wilson relation [26].
36When it comes to computing the index, we will always use the trace over v5D.
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Figure 4.3.

Left: Sketch of the topological phase diagram for the overlap operator on a two-
dimensional lattice, slightly adapted from [29]. They also use a field theoretic definition
of the topological charge @, @ corresponding to ny in our setup, but for SU(2) gauge
fields. Right: Topological phases of the 2D overlap operator for our setup. The coloring
is essentially a measure of how well (4.11) is fulfilled, yellow indicating perfect agreement
and the dark blue indicating large deviation.

In [28] the index theorem was analyzed for Wilson fermions in a lattice version of the
Schwinger model and it was claimed that it holds up to ¢ < 0.22, which was found
empirically. They further claim that for larger ¢ the index theorem is spoiled because
the different definitions of the topological charge density diverge.

Even stronger results can be found in [29], where the overlap operator in topologically
nontrivial background gauge fields is classified into different topological phases as a func-
tion of the mass parameter m = (1+s) of the kernel appearing in the overlap formalism
(2.44)37. Their sketch for a two-dimensional lattice is shown in Fig. 4.3 alongside a
similar plot for our setup.

Because of the simpler setup in our case, we have a more intuitive way of controlling
np
N, We

the external field A, with the magnetic flux parameter n, appearing in a = +
can observe directly some of the claims made in [29]. There is a clear symmetry about
m = 2, and in the low-« region we indeed see two trivial phases (m < 0, m > 4) and two
non-trivial phases in between®®. The proper phase, where the index theorem is intact,
corresponds exactly to a locality parameter |s| < 1 for n, = 0 and shrinks for higher

37This is equivalent to choosing K = aD", where D" now has mass —m. The Wilson mass parameter
m enters the kernel with a negative sign.

38That the index is I = —ny in the improper phase is difficult to see the way results are presented. It
is however the case.
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magnetic flux. Also predicted in [29] is that going to rougher gauge configurations, cor-
responding to higher « in our case, there would be chaotic behaviour, while the reflection
symmetry remains intact. This is also what we observe in our setup. The numerical
value where the chaotic behaviour sets in, is with®® g, ~ 0.28 slightly higher than the
Giatr < 0.22 determined for Wilson fermions in [28]. This is probably because they work
within an interacting theory. A similar reduction of this critical point can be observed
for the Wilson operator with QCD interactions in [4]. Here the index theorem breaking
down causes the gap between the LLL and the first Landau level to close already at
a =~ 0.22 instead of a = 0.30 for the free operator.

What should be clear by now, is that the deviation of LLL modes in the overlap but-
terfly (Fig. 4.2, bottom) from the continuum results for a 2 0.28 indeed seems to be a
property of the overlap operator. It is caused by a topological phase transition and the
(naive) index theorem, as stated in (4.11), subsequently breaking down.

That this is not the full picture however, can be seen in Fig. 4.4%°, where, as a function
of o, we plot the absolute value of the index*', the squared modulus of the smallest
eigenvalue of the Wilson kernel (m = —1), and the norm of the Ginsparg-Wilson relation.
There are two regions where the index shows non-monotonic behaviour (0.28 < o <
0.33 and 0.38 < a < 0.43), while the behaviour is linear otherwise, although with
different slopes. The center and bottom plots show that these regions coincide with
small eigenvalues in the Wilson spectrum and larger deviations from the Ginsparg-
Wilson relation, a necessary condition for the index theorem to hold. What this suggests
is that in these regions we are probably dealing with numerical problems as well, as small
eigenvalues of the Wilson kernel tend to render the algorithms used unstable.

To which extent both effects contribute to the deviations in the butterfly seems to be
very hard to determine, but for the first region of non-monotonic behaviour in the index
we can find answers by going back to the Wilson spectrum. In [30] the index theorem
was extended to the Wilson operator through

Qlatt — R_ - R+ ; (412)

where Ry denotes the number of real eigenvalues with positive/negative matrix element
vATTsvy in the physical branch of the spectrum. Here we use I's = 6,75 explicitly,
which was usually just implied before. A schematic picture of the different branches
is shown in Fig. 4.5. Although we defined the index theorem for the physical branch,
it also holds in the same manner on the doubler branch A* in our case. For the other

39For @ = 1, giase and « take on the same numerical value but still differ in dimensionality.

40T his figure was created using code provided by M. Mandl and J. Lenz, which we will also use for the
remaining analysis.

4“1 For the sake of clarity we plot the absolute value, as the index becomes negative for some higher ny.
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Figure 4.4.

Absolute value of the index I, minimum of the squared modulus of Wilson kernel eigen-
values with mass parameter m = 1, and matrix norm of the Ginsparg-Wilson equation for
the overlap operator as a function of o. The index is computed with (4.7) and the lattice
size is 16 x 16. The upper plot is essentially a slice of the topological phase diagram in
Fig. 4.3 for m = 1.
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Figure 4.5.
Schematic picture of the different branches of the Wilson spectrum lying on the real number
line, analogous to [30]. We will call A the physical branch, and A*, B doubler branches.
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The evolution of the real part of real Wilson modes, as a function of « (or rather ny, in
this case) is shown on the left. We consider every eigenmode with Im()\) < 10713 to be
real. The eigenmodes are colored according to their chirality, as left-handed modes are
colored blue and right-handed ones yellow. On the right we show a comparison between
the geometric definition of the topological charge Q.+ = np and topological charge as
defined through (4.13).

doubler branch B we have R® — RZ = —2Q4;, meaning there are in total*?
R + R = 4| Qo (4.13)

real eigenmodes. The matrix element vy T'sv, tells us the chirality of a given eigenmode,
which we know from (2.54) to only be nonzero for eigenvectors with real A. If we now
change the topological charge?? through variation of o, we can see exactly why the index
theorem breaks down and also why the overlap operator inherits these properties (see
Fig. 4.6). As we increase «, physical modes and doubler modes move closer and closer
together and finally mix at o ~ 0.30. The index theorem for the Wilson operator as

42This does not follow directly. One also needs to invoke the vanishing theorem, which states that there
are either right- or left-handed zero-modes [30].
43The field theoretic definition of the topological charge is still Qa1 = np, as before.

35



CHAPTER 4. THE HOFSTADTER BUTTERFLY AND LANDAU LEVELS FOR
FREE FERMIONS

defined in (4.12) breaks exactly at that point, as it is impossible to separate the physical
branch and the doubler branch. Interestingly enough, the total number of real eigen-
modes also decreases; as can be seen on the right of Fig. 4.6. This happens because
some of the real modes “collide” and acquire imaginary parts. We have already seen
something similar for n, = 47 and higher in Fig. 3.1.

A comparison of Fig. 4.6 and Fig. 4.3 also shows very nicely what exactly the overlap for-
malism does, as the topological phase diagram of the overlap operator and the movement
of real eigenvalues in the Wilson spectrum look very much alike. Through the overlap
formalism, the near zero-modes in the physical branch of the Wilson spectrum become
exact zero modes and the doubler branches get pushed to a single point at (0, %) The
locality parameter s, or the Wilson mass parameter m = (1 + s), simply shifts the real
part of each mode, as we have already remarked in chapter 3. As the physical branch
and the doubler branch mix in the Wilson spectrum, the overlap formalism breaks as
well because it becomes impossible to separate physical and doubler modes. That is
why, in theory, the overlap operator should also inherit the critical value at which the
index theorem breaks from the Wilson operator. Because this is not the case we can
say that the deviation from the overlap index theorem for 0.28 < a < 0.30 is caused by
numerical instabilities, as the physical modes cross the origin slightly before they mix
with the doubler branch**.

Another observation that was made during this analysis, was the mechanism through
which the topological charge changes with the variation of n,. Here we can confirm the
findings in [28] by continuously interpolating between each integer n,. The change in
topological charge happens through two pairs of complex eigenvalues moving down to
the real line at Re(A\) = 1 and Re(\) = 3 (for m = 0 in (A.16)), colliding there, and
shooting off in opposite directions towards positions A, B and A*. These movements in
the complex plane always occur very quickly around precise values of ny,.

Overall we conclude that the index theorem as stated in (4.11) only holds up to a critical
value of a ~ 0.28 and we will thus limit our focus to a below this value. For a small
region up to a ~ 0.30 we can attribute the index theorem breaking down to numerical
instabilities, which possibly could be fixed by employing numerical methods better suited
to deal with small eigenvalues. For higher values of o however, it is caused by physical
modes and doubler modes mixing in the Wilson spectrum, which is inherited by the
overlap formalism. A different definition of the topological charge would be needed to
salvage the index theorem in this region, but it is unfortunately not clear at this point
how one would go about it. We are thus limited in the range of magnetic flux n; that
Wilson and overlap formalism can effectively model.

44Remember that we usually set m = —1.
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5. Landau Levels in the Gross-Neveu
Model

So far we have been entirely working within a “free” fermionic theory, meaning that
there are no self-interactions of the fermionic fields. This changes now as we will discuss
the Gross-Neveu model in 2D, describing fermions interacting via quartic interactions in
the same background magnetic field as before. In the continuum the Lagrangian reads

= i)(P +ied +m)y —l— (QWJ) (5.1)

where g is a coupling constant®. This model was originally introduced as a toy model
for QCD, as they share many fundamental features [6]. Landau levels in QCD have been
studied, for example, in the context of magnetic catalysis [3], and the LLL approximation
is a widely used approach for low-energy models. In [4] it has been shown that the LLL
stays separated from the higher Landau levels even in the presence of QCD interactions
due to the index theorem. Our aim is to determine whether or not we also see this in
the Gross-Neveu model. Before we get there, we will first have to rewrite the theory in
a way that makes computations more feasible.

5.1. Implementing the Gross-Neveu Model

We start with the action and partition function

Sy = / (MD@/H— (V) ) Z = / Dy Dipe™ 5" | (5.2)
where the Dirac operator D is given by
D=@+iehA+m, (5.3)

and then perform a so-called Hubbard-Stratonovich transformation to reduce the quartic
fermion term to a quadratic one. To achieve this one introduces a bosonic auxiliary field
o(x) and uses the Gaussian integral identity

oL - [poon( bt i),

45We work with just one flavor and the chemical potential y is set to zero.
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Here we included a constant prefactor of (1/mg2)V, with the space-time volume V, into
the integral measure. This turns the action and the partition function into

_ 1 _
S, = / d*z (ww + ﬁﬁ), Z = / Dy DyDoe % | (5.5)
g
with the Dirac operator now reading

D=@+ieA+m+o(z). (5.6)

Before we turn towards the lattice version of this Dirac operator, we should discuss a
few properties of the o-fields. Similar to the mass term, the sigma field also breaks the
continuous chiral symmetry

b =Ty, Y Y =g (5.7)
explicitly. However, for m = 0, there remains a discrete Zs-symmetry

b — P =5, O = Py (5.8)

Thus, the (massless) Gross-Neveu model can still be used to study QCD effects such
as spontaneous chiral symmetry breaking; meaning the expectation value (1)) being
nonzero, even though the Lagrangian possesses chiral symmetry. The expectation value
of the o-field is of special importance for this matter, as it is proportional to (1)) and
can be interpreted as the order parameter for spontaneous symmetry breaking. Through
variation of the partition function in (5.5) with respect to o, it can be shown that

(Vi) = — (o) . (5.9)

We shall now implement the lattice version DN of (5.6). We have discussed different
discretizations of the derivative term in Chapt. 2, know how to implement the elec-
tromagnetic potential through gauge links from Chapt. 3, and through (2.42), we even
know how to implement a massive operator obeying the Ginsparg-Wilson relation:

Dm:D+m<]1—gD). (5.10)

We can exploit (5.10) to add the o- field as an inhomogeneous mass term o(x) to the
fermions living on each lattice site. As the Dirac operator we choose the overlap operator
to arrive at

DN = D 4 o(n) (11 - gD"”> : (5.11)

where the space-time position x is again denoted by the lattice coordinate n.
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5.2. Butterfly Plots and Dirac Operator Spectrum in
the Gross-Neveu Model

In an attempt to develop some understanding for the way the spectrum of the Dirac
operator and the butterfly plot change for different o-fields, we will use the following
configurations:

e A single nonzero mass for some n,, € |Al:

mg, if n=n,,
o(n) = :
0, else

Here we want to see how the magnitude of the sigma field at any single lattice site
changes the butterfly plots.

e A Gaussian noise distribution centered at zero, meaning the o(n), n € A, are
samples of a Gaussian distribution defined by the probability density

o) = (222,

where we employ the slightly unusual notation M for the standard deviation to
avoid confusion with the o-field, and to emphasize its role as a magnitude as well.
This configuration corresponds to field fluctuations around the massless and free
case.

e A 2D sine function with angular frequency w:
o(n) = A(sin(wz) + sin(wy)) ,

where A is a constant and we suppress the n-dependence of spatial coordinates z, y
for the sake of readability?®. This is to see - following the discussion about the cause
for the butterfly structure in the beginning of the previous chapter - whether the
butterfly structure changes if one introduces a third, possibly irrational, frequency.

The butterfly plots for the single nonzero mass are shown in Fig. 5.1. We choose the
point (0,0) to have nonzero mass, but changing the lattice site only produces slight
fluctuations within the spectrum. In the butterfly plots we can observe extra lines in
the structure of each Landau level, which are caused by degenerate eigenvalues on the
overlap circle splitting up with increasing mass. These lines also close the gaps between
Landau levels. The two lines rapidly moving away from the rest of the butterfly are
caused by a similar scattering process as the one observed earlier in the Wilson spec-
trum, where two pairs of complex eigenvalues close to Re(\) = 2 move to the real axis,

46The actual expressions are unfortunately quite ugly.
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on which they scatter in opposite directions*”. The pair of eigenvalues scattering towards
higher Re()), splitting up further with increasing n;, corresponds exactly to the lines
moving away. With the four-fermion interaction enabled we also see the circular shape
of the overlap operator being broken.
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Figure 5.1.

Butterfly plots for a o-field configuration with a single nonzero mass mg at the lattice site
(0,0). The mass is being varied in accordance with the legends. The lattice size is 16 x 16,
and the coloring of the Landau levels is done the same way as in the previous chapter.
Notice that part of the spectrum is cut off in the plot on the bottom right.

47This happens roughly around mg = 2.
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What we can conclude, is that even adding a non-zero mass mg at a single lattice site
causes the gaps between Landau levels to disappear for high enough values of mg. One
would have difficulties to decide to which Landau level the lines between the LLL and
the first Landau level belong already in the plot for mo = 4 without the coloring present.
Knowing the behaviour of a single massive lattice site we can use the highest |A|* appear-
ing in the spectrum to rule out configurations that very likely do not have a separated
LLL, as adding masses to additional lattice sites seems to only wash out the Landau
level structure even more.

We now move on to the Gaussian noise configuration centered around zero and with
standard deviation M. The relevant plots are visible in Fig. 5.2. To make the interpre-
tation of results easier we chose a single noise configuration with a standard deviation
of 1 and scaled it with some magnitude M. The scaled version then has a standard de-
viation of M, which we used to characterize the configuration as it is a good measure of
its roughness*®. The main qualitative results are the following:

e The noise configuration smears out the fractal structure even for fairly low M.
e The LLL is smeared out more slowly than the other Landau levels.

e There is a range of M for which the separation between the higher Landau levels
vanishes, while a gap between the LLL and the first Landau level persists.

e There is an M for which even the gap between the LLL and the first Landau level
vanishes.

The second and third point are what remains of the topological protection we see for
the LLL in QCD [3, 4]. With the fermion self-interaction switched on the index theorem
breaks down because the Dirac operator does not fulfill the Ginsparg-Wilson relation
anymore. Thus, one in general really cannot expect to still observe the LLL gap. That
we even see a parameter region where the LLL stays separated is noteworthy. Whether
the classification into Landau levels makes sense for realistic configurations will be a
question of how rough these configurations are.

Before we finally use realistic configurations, we show the butterfly plots for the 2D
sine configurations of form (5.2) and with irrational angular frequencies in Fig. 5.4. The
butterfly structure changes drastically; splitting the Landau levels into further sub-levels
or washing out the butterfly structure entirely. This seems to only be interesting for
aesthetic reasons however, as the configurations are quite exceptional and probably do
not contribute to the ensemble significantly.

48Obviously the likelihood of drawing random configurations that are just scaled versions of each other
is abysmally small, however even if we let the configurations vary we get the same qualitative results
we are after.
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Figure 5.2.
Butterfly plots for a randomly chosen Gaussian noise configuration centered at zero, and

with the different standard deviations M as detailed in the legends. The coloring of the
Landau levels is done in the same way as before and the lattice size is 16 x 16. We show

the noise configuration with M = 1 in the bottom right.
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Figure 5.3.

Dirac operator spectrum for varying magnetic flux nj, where o is the Gaussian noise
configuration as shown in Fig. 5.2. The values of n; plotted correspond to 0 < o < 0.273
on a 16 x 16 lattice.
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Butterfly plots for a Gross-Neveu theory with 2D sine functions as o-fields. The angular
frequencies are w = 1/e?,1/v/2,€2, and A = 1 throughout. The coloring is done in the
standard way, and the lattice size is 16 x 16.
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5.3. Landau Levels for Realistic Configurations

What we will call “realistic” configurations are those that have a small action, and thus
a large contribution to the path integral. The configurations we will use were computed
using Monte Carlo simulations of the Gross-Neveu model in 241 dimensions?. For a
general description of the Monte Carlo method for lattice field theory and the underlying
Metropolis algorithm used to find configurations with a small action, we refer to the liter-
ature [12]. For details regarding the rational Hybrid Monte Carlo algorithm, the specific
algorithm that was used, read [31]. The generated configurations are 2+1-dimensional
o-fields, for Ny = 8 and Npr = 2,4, 8, corresponding to different temperatures, as well as
magnetic fluxes n, = 0, 1,4%°. For each of the nine different parameter combinations we
consider an ensemble of 10000 field configurations. We can use time each slice, meaning
n; = const. in a given configuration, as input for our model in two spatial dimensions.
What we also consider are time-averaged configurations where we average over all time
slices to reduce field fluctuations®. We label configurations according to “Np_ng_i_n,”,
where 7 is the number of the configuration and n; € 0,1... Ny — 1 the lattice time coor-
dinate. In case of time-averaged data we replace the last index by _fa. As an example,
2.0.3541_1 is the time slice n; = 1 of the 3541th configuration in the ensemble with
N7 = 2 and no magnetic flux, while 2_.0_.3541_ta would mean the 3541th configuration
in the same ensemble but time-averaged over all n,.

It should be noted, that here n; denotes the magnetic flux the configurations were gen-
erated at, not the magnetic flux being varied with the Hofstadter parameter o on the
y-axis of the butterfly plots. In theory, one should use a configuration with a matching
ny for each value of «, which would come at a huge computational cost. It would also
come with a lot of ambiguity as one would need to choose a configuration for each value
of a, which would complicate interpretation of the results. We will instead compare
results for the three values of n, matching the low-a region and try to see whether they
produce differences that warrant adjustments for different regions of a.

The butterfly plots for typical realistic o-fields are shown in Fig. 5.5 where we look at
configurations with Ny = 2 and n, = 0,1,4. Similar figures for typical configurations
n, = 0 and Ny = 2,4,8, as well as time-averaged configurations, are moved to the
appendix (Fig. A.4, Fig. A.5 because they show essentially the same picture; the fluctu-
ations of realistic o-fields are, in most cases, clearly strong enough to completely wash
out the butterfly as well as the Landau level structure. For very low « the first Landau

For the extra dimension we will just combine our existing notation for 14+1D and 2D and use
Nr, Ny, Ny, n¢, ng,ny or, since the configurations were all generated on Np x 82 lattices, N, =
Ny = N;.

%0The chemical potential j is still set to zero.

51'We always average over all n; of a given configuration, for example averaging over all 8 time slices
for Ny = 8.
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levels visually overlap even for typical time-averaged configurations.

Following the discussion of the previous section, we developed a rough scheme to find
cases where the LLL might still be separated, through comparison of the largest |\|?
and average |\|? for each configuration. For each parameter combination the configura-
tion with the lowest respective values were selected. For the time-averaged cases with
N7 = 4,8 such configurations could be found, however they seem to be exceptional
rather than typical. These are shown in Fig. A.6 in the appendix. The effects of chang-
ing n, and Np can not really be seen in the plots for typical configurations; here we
need to consider the whole ensemble to arrive at conclusions. What can be seen, is that
time-averaging decreases the effect of Landau levels washing out. This is not surprising
as large fluctuations causing the “runaway” modes, like we saw in the plots for a single
nonzero mass in the previous section, obviously become more smeared out with each
additional time slice averaged over.

To conclude the analysis of typical configurations, we can say that exceptional configu-
rations, where there is still a separation between LLL and first Landau level, have been
found in the time-averaged case for Ny = 4,8. The overall picture however is that the
Landau level structure does not survive the fairly rough o-field configurations and we
therefore do not expect to see it in the ensemble.

Testing this hypothesis requires the whole ensemble for each set of parameters, meaning
the whole set of Ny -10000/10000 configurations, without and with time-averaging re-
spectively. For each configuration we plot the butterfly and divide the z-axis into evenly
sized bins®2. For each o-field configuration and each value of a we sum over the eigen-
values landing inside each bin to arrive at a histogram representing the whole ensemble.
For Ny = 2,8 and n, = 0,4 these histograms are shown in Fig. 5.6. We can see that for
Np = 2 the first few bins remain prominent, however, especially for the lower values of
«, we know the Landau levels to overlap there as the LLL and some of the higher Lan-
dau levels all fall within the range of the first bin. That the first bin solely corresponds
to the LLL would thus be a wrong assumption. This is also why we see the number
of counts in the first bin decrease for higher «, which, knowing that the degeneracy of
each Landau level increases with «, might be surprising at first. The second promi-
nent feature is the high number of counts for the bin at |[A|?> = 4, especially for higher
magnetic flux. Looking back at Fig. 5.3 we can see that this is because eigenvalues get
pushed to the right of the overlap circle, towards Re(A) = 2, for higher magnetic flux.
In between these features there seems to be a rather uniform distribution with a slight
gradient towards higher [A|2. In case of Ny = 8 this gradient is steeper and the peak
at |[A\|> = 4 is more prominent while the peak at the first bin decreases. This time it
rises linearly in o though, which can be observed in the 3D plot and is what we would

92The y-axis is already discretized so no binning is needed there.
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Figure 5.5.
Butterfly plots for typical realistic configurations corresponding to low temperatures.
Np = 8 throughout and the magnetic flux the configuration was produced at is being
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each plot.
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expect as the degeneracy increases linearly in « as well. This is evidence for less overlap
between the LLL and higher Landau levels, which we would again expect because the
time-averaged configurations are a lot smoother. We also see a dark triangular region
between the two peaks, which somewhat resembles the structure of the washed out LLL
in Fig. A.5. However it is also clear that the LLL and the first Landau level will still
overlap in the intermediate regions. The effect of using configurations with different n,
could not clearly be seen when comparing, for example, the histograms for Ny = 2 and
ny = 0,4. This is why they are not shown here. To separate the effects of increasing Np
and n;, we need different methods.

In Fig. 5.7 we show an attempt at isolating the effects of ny, Ny and time-averaging®?.
We will call the eigenvalues belonging to the LLL and the first Landau level, according
to continuum degeneracy, Apr; and Aqstpp, respectively. Further we define

Agapl” = max(|Apprl?) - (5.12)

We can see, that with increasing Ny the LLL widens as |Ayqp|? grows. This effect seems
to be amplified for the time-averaged data sets. Changing n; we first see a small decrease
in [Agqp|? in the time-averaged case, which afterwards seems to grow with n,. Here we
are however limited by a lack of data points. In the non-time-averaged case there is a
tendency for the same ordering in ny, but there are exceptions because the overall effect
is very small and barely visible with the large fluctuations of the o-fields. Also all ny
are in the low-a range; perhaps configurations created at higher magnetic flux would
produce a different picture. When it comes to the size of the LLL gaps, we define the

cumulative gap .
0% = 5 2 Do min(A, ) sl (5.13)

where N% is the number of data sets used, and the sum over n is over all configurations.
This method comes at a loss of visual clarity but allows for a more direct comparison
between the different parameters. What we see is similar to the observations about the
position of the LLL gap in the butterfly plot. The cumulative gap increases for higher
N7 and more time-averaging steps. For the magnetic flux there is again no clear picture
due to a lack of data points and the small spread of values of n,,.

Finishing the analysis we conclude that for realistic configurations of the o-fields in
a Gross-Neveu theory, the Landau level structure of the energy spectrum washes out
completely. Contrary to the results in the literature for QCD [3, 4], we do not see a
separation between the LLL and the first Landau level. The reason for this is that the
index theorem, which protects the LLL separation in QCD, does not hold for the Gross-
Neveu theory anymore, and that realistic configurations are rough enough to close the

53Tt was checked as well if using different time slices would yield different results, but the differences
where negligible, as one would expect.
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Figure 5.6.
Histograms of the Gross-Neveu butterfly for realistic configurations with Ny = 2,8 and

ny = 0,4. In both cases 10000 configurations were considered and in the case without
time-averaging the first time slice, i.e. ny = 0, was used. On top we show histograms with
a lower bin count of 111 and smaller range of |\|?. Below we show 3D histograms with a
higher bin count of 999 and a larger range of |A|>-values. The coloring of the bottom plots
is done with the same color scheme as above and values can be read off the z-axis.
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Analysis of the gap between the LLL and the first Landau level for different parameter
combinations. The first 1000 configurations in each data set with parameters Np and ny
were considered. For data sets that are not time-averaged, we always use the first time
slice, meaning n; = 0. In the two upper plots we show ]/\gap]2 as defined in the main text,
once for different extents in time direction N7 and n, = 0 (top left) and once for different
magnetic fluxes n, and Ny = 8 (top right). On the bottom we show the cumulative gap
36X, which is the sum, over all a, of the mean gap size in a given data set. The gap
size itself is simply the difference between first Landau level mode with smallest squared
modulus and the LLL mode with largest squared modulus. The subscript “free” denotes
the free theory, meaning vanishing self-interaction of the fermion fields.

gaps between Landau levels present in the free theory. We would expect the Landau level
structure to reappear for more time-averaging steps and higher N, but, even averaging
over eight time slices, configurations with a LLL gap remained an exception. When
it comes to modeling with configurations created at the “wrong” magnetic flux n,, i.e.
feeding a configuration created at ny = 1 into the Dirac operator D%V in a magnetic
field with n? = 10, it did not seem to produce significant differences, at least for low ng.
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6. Summary and Outlook

This thesis investigated the behaviour of lattice Dirac operator spectra in uniform mag-
netic fields and discussed the existence of Landau levels in the 2D Gross-Neveu model
using the overlap formalism. Three different lattice formulations of free fermions were
discussed (Chapt. 2), and their spectra in a uniform magnetic field were investigated
(Chapt. 3). The main observation was that the movement of eigenvalues in the complex
plane for the Wilson and the overlap operator is rather predictable in the magnetic flux,
up until a critical point where chaotic behaviour sets in in both cases.

This chaotic behaviour is visible in artifacts in the butterfly plots in Chapt. 4 as well,
which also aligns with the respective formulations of the Atiyah-Singer index theorem
breaking down. A topological phase diagram of the overlap operator in terms of the mass
parameter used for the Wilson kernel, shows two trivial phases: a proper phase where
the index theorem is intact and an improper phase where index and topological charge
agree up to a sign. Similar behaviour has been observed in the literature for different
setups, for example in the Schwinger model. The mechanism responsible for the system
to gain/lose topological charge has been observed and detailed for the Wilson spectrum,
and also agrees with previous results in the literature.

An additional observation was that the points at which the respective index theorems
break down, or the chaotic behaviour in the spectra sets in, slightly varies from the Wil-
son operator to the overlap operator. The reason for both of these phenomena as well
as their occurrence at different magnetic fluxes, was found in the movement of the real
Wilson eigenmodes in the complex plane. These modes can be classified into physical
modes and doubler modes, the latter representing nonphysical degrees of freedom. For
increasing magnetic fluxes these modes move closer together in the complex plane before
mixing at the critical magnetic flux determined earlier. Before mixing the real modes
also cross the origin of the complex plane, resulting in small eigenvalues which cause
numerical instabilities in the overlap formalism. As a result of this entire discussion,
interpretation of lattice results above this critical value becomes very challenging as it
is not clear how to separate physical from non-physical degrees of freedom. We are thus
limited in the range of magnetic fluxes we can effectively model with the Wilson and the
overlap formalism. Additional work could be done to try to salvage the index theorem
through an alternative definition of the topological charge. It could also be interesting to
further study the movement of eigenvalues in the complex plane for Wilson and overlap
operators, as it would certainly aid in finding such a definition.
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CHAPTER 6. SUMMARY AND OUTLOOK

Finally we examined the existence of Landau levels in the Gross-Neveu model (Sect. 5).
As the topological arguments protecting the separation of the LLL from higher Landau
levels in QCD do not hold for this theory anymore, it is not guaranteed at all that such
a structure should persist. For smooth o-field configurations as well as noise configura-
tions, there exists a parameter region where the LLL gap is still intact. No matter the
configuration however, there exists a magnitude where the whole Landau level struc-
ture is completely washed out. This point tends to be crossed in the large majority of
cases for realistic o-field configurations, and while there exist exceptional configurations
with a LLL gap when we average over all time-slices, we do not observe the Landau
level structure in the ensemble. It would be interesting to know to what extent this
would affect LLL approximations for the Gross-Neveu model. Another consequence of
the washing-out of Landau levels could pertain to magnetic catalysis in the Gross-Neveu
model, where the Landau levels are believed to be responsible for phase transitions in
the chiral condensate. Here it would need to be examine, whether or not dimensional
reduction is affected as well, before drawing further conclusions.
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A. Appendix

A.1. Identity for gamma matrices

For ¢,k, € R and (Euclidian) gamma matrices +,, the following holds:

-1l = K
(141 m) = Lt (A1)
m

DI

which can easily be seen by multiplying both sides with (1 + ¢ Vb

A.2. Eigenvalues of the Wilson operator

Here we derive the eigenvalues of the Wilson operator in 1+1 dimensions analytically.
We start by performing a lattice Fourier transform of form

Dp,q) = > UmDumU}, (A1)
n,meA
where the U, = \/—lme*ip'”“ are unitary and we use vector-matrix notation in Dirac

space. The lattice momenta p, ¢ are given according to®

2w 1 27
=—\ko+ = =—%k A2
Do aN0(0+2)’ D1 aN, b (A.2)
with k, = ——]\;“ +1,..., —ﬁ]\; assuming N, to be even and the additional factor % in

time-direction ensures anti-periodic boundary conditions. Now we plug in the Wilson

54 For two-dimensional space-time the lattice momenta become Dp = azT’rku, otherwise one can proceed
"
exactly in the same manner.
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operator given in (2.23) for D,,, and arrive at

9)= Y UpnDunlU}, (A.3)
n,meA
Ciam zqua —e —iqua 6iqua + e—iqua 2
e (S S ey (X))
neA \—f—" B N———r—

=zsin(qua =Lcos(qua
— I (a) ~arin(ae) a0os(a)

(A.4)

= (p—q)D(p) (A.5)

where D(p) was defined as

D(p) = (m + QG—T) 1+- Zwsm (pua) — 1° Y cos(pua (A.6)

0

s}

and used an identity for lattice Fourier transforms

Ze_mn(p_q) = [Al6(p — @) = |Al0p,410ps g0 (A7)

neA

As we can see, D(p, q) is in block-diagoal form with 2 x 2 blocks D(p), as it is diagonal
in momentum space. For notational convenience we now write

D(p)=1S+V, (A.8)
with

S=m+ 2 Z(l — cos(pya)) , V= gz:%sin(pua) . (A.9)

We can now compute the eigenvalues A via

det(1(S—A) + V) =0 (A.10)

& (S —A)?det(1 —9) =0, (A.11)

where we used another abbreviation y = % and the fact that the determinant is a

homogeneous function. We can take care of the remaining determinant with the trace-
log formula

det(1 — ¢) = exp (— Z %tr(ﬁ”)) (A.12)

— exp (i[it (1) - (- ¢)D (A.13)
= exp (— o_o %v%) =1-12%. (A.14)
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In the third step we used the identities ¢2 = v? and tr(7y,) = 0 for every x. In the fourth
step we used that the infinite sum is exactly the power series for In(1 — v?). Recalling
the definition for v we now arrive at

(S=A?-V?=0, (A.15)

meaning we have eigenvalues of form Ay =S 4+ v/ V2, which gives

(A.16)

2 .
r i

Ar=mA+ > (1- + 2
L =m+ " Ml( cos(pua)) "

A.3. Energy eigenvalues of the Dirac equation in a
uniform magnetic field

We are interested in the energies for the Dirac equation in a uniform magnetic field,
namely the energies to solutions of°

(i —ed —m)yp =0, (A.2)

with A, = (¢, A) = (0,0, Bz,0)T. We work in Minkowski space and use the Dirac
representation of the Clifford algebra:

0 __ ]l 0 i 0 O'i
7= (0 -1 ) Y= _O_i 0 ) (AB)

where o, i = 1,2, 3 are the Pauli matrices

oy = (g) (1)) o= ((Z) _OZ> o= ((1) _01> . (A4)

The matrix v° in this representation then reads

7P = iyl

(1 0 0 —ioto?o?
—\0 =1/ \icglo?s3 0
0 1

where we made use of —ic'o?0® = 1. With that it is easy to see that

{7’} =0. (A.6)

%We choose a slightly different gauge here than in Sect. 4.1, but this does not affect the squared
energies.
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Before delving into (A.2) we also quickly prove an identity that will be of use later

(Nl BN bl
5 T3

4 =7 a, =" au0, = ( Ja,ay

_ {7
2

In the third step we used that [y*,~"] is anti-symmetric in p and v, while a,a, is
symmetric, resulting in a vanishing product. In the last step we use the defining identity
for the Clifford algebra. With our choice of the vector potential (A.2) turns into

(id — eBxy* —m)y = 0. (A.8)

aua, = n"a,a, = a,d" = a*. (A7)

We use the ansatz

. as

X2
and after dividing by the phase we get

E—m i0'0; — eBxo?\ (x1\ _
(—iai&- + eBxo? —FE—m ) (XQ =0 (A.10)

From the second component we get

(—i0'0; + eBxo?*)x,

= A1l
X2 E+m ( )
and eliminating y» yields
(E* —m?)x1 = (—i0"0; + eBxo?)*xy
= ((0'ps)* + (eB&o®)* + eB(ic’0'p; + o' pido?)) xa - (A.12)
W—/ . ~— S ~ /
=p21 (eB#)21 =2eBipol+eBo3

The equality of the last term can be shown in a few lines, using identities for the product
of Pauli matrices and the canonical commutation relations. We divide everything by 2m

and rewrite the equation as before in Sect. 4.1, (3.6), introducing again w = <2.
(E? —m?) - A Y SRR A PO
= | =+ 2 4= — | |1+ — . A13
om T \[2m Tam 2™ \F T eB) | T a0 (4.13)

Noticing that solutions y; = (x1, x?)? will also be eigenvectors of o3 we can replace it
by its eigenvalues +1 and divide by the components of x; to combine everything into a
single equation. We are now in the same situation as before, where we can immediately
write down the energies, recognizing the 1D harmonic oscillator and the free movement

in y- and z-direction
(E? —m?) 1 k*  eB
— = = =+ —. A.14
2m “\"*2) T om T om (A.14)
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We finally arrive at

2 2

Notice that we have two positive and two negative energy solutions for fixed k, and n,
due to the two different spin configurations. These correspond to positrons and electrons
with spin-up/spin-down respectively, meaning we have a solution containing clearly more
than a single particle.

11
E? = k§+m2+263(n+—i—) : (A.15)

A.4. Figures
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Figure A.1l.

Spectrum of the naive operator for varying lattice sizes, leaving Ny /Ng = 16, N, /N, = 16
fixed and changing the other according to the x-axis. Since the real part of the spectrum
vanishes for all N, and the imaginary part is symmetric about the real axis, we only plot
Im(\) > 0. In the upper half the spectrum is shown for anti-periodic boundary conditions
in time, corresponding to 14+1 dimensional space-time, while we show periodic ones on the
bottom, which correspond to 2D space-time.
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Overlap spectrum for different locality parameters s on a 12 x 12 lattice with periodic

boundary conditions in time.
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Figure A.3.

Complete butterfly plots for both the bosonic (top) and the fermonic theory (bottom).
The lattice size is 16 x 16. The additional lines in the outer arms of the top half in the
fermionic spectrum are very likely just numerical artifacts, as they theoretically should
not appear.
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Butterfly plots for typical realistic configurations with vanishing magnetic flux n,. The
temperature is being varied, as Ny = 2,4, 8 from top to bottom. The configurations are
shown on the right of each plot.
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Butterfly plots for typical time-averaged realistic configurations with vanishing magnetic
flux np. The temperature is being varied, as Ny = 2,4,8 from top to bottom. The
configurations are shown on the right of each plot.
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