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Abstract

Four-fermion theories are a class of Quantum Field Theories that describe interactions

between fermions via a fourth power of the field in the Lagrangian. Formulated in three

spacetime dimensions, their purpose is twofold. On the one hand, they serve as low-energy

descriptions of newly discovered materials like graphene. On the other hand, they are

interesting as models for spontaneous symmetry breaking. Four-fermion theories allow

various different realisations of chiral symmetry and the present work investigates the

conditions of their spontaneous breaking.

A broken phase usually appears at strong couplings and requires non-perturbative

methods for its analysis. In this work, four-fermion models are formulated on a discrete

spacetime lattice, which allows computer simulations. Most previous lattice regularisations

did not respect the full chiral symmetry of the corresponding continuum models. Here,

we follow a superior approach using the SLAC derivative. Invented in 1976, it is less

used because it cannot be applied to gauge theories. On the contrary, it allows an exact

implementation of all internal symmetries of four-fermion theories on the lattice and is an

ideal choice for these models.

We first study the well-known Gross-Neveu model (GN), where a second-order phase

transition, related to the breaking of a Z2-symmetry, exists for any number of fermion

flavours Nf. Here, new values for the critical exponents of this transition for Nf = 1,2,4

and 8 are calculated in a finite size scaling analysis. Reasonable agreement with many

previous calculations is found. For Nf = 1 we provide the first values from a lattice field

theory setup. They agree with other analytical estimates, but a discrepancy to results from

Quantum Monte Carlo simulations is present.

The second model studied in this thesis is the Thirring model (Th). Contrary to GN,

it has a continuous chiral symmetry. Most previous works only found a spontaneously

broken phase for a small number of fermion flavours below a critical value N cr
f . Various

approaches to investigate chiral symmetry breaking for Th on the lattice are presented here.

Apart from the conventional auxiliary field formulation, we apply Fierz transformations

to Th and study a larger theory space of coupled four-fermion models. In summary, we

never observe chiral symmetry breaking in our current simulations, not even for a single

fermion flavour. Finally, a new formulation of four-fermion theories is introduced using

dual variables acting as occupation numbers for the lattice points. It allows to identify

regions of strong couplings where lattice artefacts occur. In future work, it may be used to

simulate the irreducible single-flavour four-fermion model that currently suffers a strong

sign problem.
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Zusammenfassung

Vier-Fermion-Theorien sind eine Klasse von Quantenfeldtheorien, die eine Wechselwir-

kung zwischen Fermionen durch eine vierte Potenz des Feldes in der Lagrangedichte

beschreiben. In drei Raumzeitdimensionen haben sie zwei unterschiedliche Nutzen. Einer-

seits können sie zur Beschreibung des Nieder-Energie-Verhaltens neu entdeckter Materia-

lien wie Graphen benutzt werden. Andererseits sind sie interessante Modelle für spontane

Symmetriebrechung. Vier-Fermion-Theorien erlauben verschiedene unterschiedliche Rea-

lisierungen von chiraler Symmetrie und die vorliegende Arbeit untersucht Bedingungen

für deren spontane Brechung.

Eine gebrochene Phase tritt üblicherweise bei starken Kopplungen auf, sodass deren Un-

tersuchung nicht-perturbative Methoden erfordert. In dieser Arbeit werden Vier-Fermion-

Modelle auf einem diskreten Raumzeit-Gitter formuliert, sodass Computersimulationen

möglich sind. Die meisten bisher untersuchten Gitterregularisierungen erfüllten aber nicht

die vollständige chirale Symmetrie des zugehörigen Kontinuumsmodells. Hier benutzen

wir mit der SLAC-Ableitung einen besseren Ansatz. Diese wurde zwar bereits 1976 erfun-

den, wird aber nur selten benutzt, da sie nicht für Eichtheorien angewendet werden kann.

In Gegensatz dazu ist sie für Vier-Fermion-Theorien auf dem Gitter eine ideale Wahl, da

sie eine exakte Umsetzung aller internen Symmetrien erlaubt.

Wir untersuchen hier zunächst das gut erforschte Gross-Neveu-Modell (GN), in dem

es für eine beliebige Anzahl an Fermion-Flavours Nf einen Phasenübergang zweiter Ord-

nung gibt, der zu der Brechung einer Z2-Symmetrie gehört. Neue Werte für die kritischen

Exponenten dieses Übergangs werden hier für Nf = 1,2,4 und 8 durch eine Analyse des

Skalierungsverhaltens bei endlichen Gittergrößen berechnet. Dabei liegt eine akzepta-

ble Übereinstimmung mit bestehenden Rechnungen vor. Für Nf = 1 präsentieren wir

die ersten Werte aus einem Gitterfeldtheorie-Ansatz. Sie stimmen mit anderen analyti-

schen Abschätzungen überein, es gibt allerdings eine Abweichung zu Ergebnissen aus

Quanten-Monte-Carlo-Simulationen.

Das Thirring-Modell (Th) ist das zweite Modell, das in dieser Doktorarbeit untersucht

wird. Im Gegensatz zu GN hat es eine kontinuierliche chirale Symmetrie. Eine spontan

gebrochene Phase wurde in den meisten bestehenden Arbeiten nur für eine kleine Anzahl

an Fermion-Flavours gefunden, solange diese kleiner als eine kritische Zahl N cr
f ist. In der

vorliegenden Arbeit werden zahlreiche Ansätze zur Untersuchung der chiralen Symme-

triebrechung von Th auf dem Gitter vorgestellt. Neben der herkömmlichen Form mit einem

Hilfsfeld wenden wir Fierz-Transformationen auf Th an und untersuchen einen größeren

Theorie-Bereich mit gekoppelten Vier-Fermion-Modellen. Zusammenfassend müssen wir

festhalten, dass wir nie chirale Symmetriebrechung in unseren Simulationen beobachten

konnten, nicht einmal für einen einzelnen Fermion-Flavour. Abschließend führen wir eine
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neue Formulierung von Vier-Fermion-Theorien mit dualen Variablen ein, die die Rolle

von Besetzungszahlen der Gitterpunkte übernehmen. Diese Formulierung erlaubt eine

bessere Identifizierung stark wechselwirkender Kopplungen, bei denen Gitterartefakte

auftreten. In anschließenden Arbeiten könnte diese Formulierung verwendet werden, um

das irreduzible Vier-Fermion-Modell mit einem Flavour zu simulieren, was gegenwärtig

von einem starken Vorzeichenproblem verhindert wird.
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1. Introduction

Symmetry is one of the most important concepts in modern physics. It is closely related

to conserved quantities in nature like the total momentum of a system. Momentum

conservation exists because the laws of physics do not depend on the absolute position

of an experiment and allow to shift it with a symmetry transformation. Hence, models of

theoretical physics are constructed to respect the symmetries of nature which we observe

in experiments. The standard model of particle physics is currently the best theory to

describe the fundamental forces of nature with the exception of gravitation. While its basic

ingredients are local gauge symmetries, where the symmetry transformation can be varied

across the spacetime, global symmetries also play an important role, transforming fields at

all points of the spacetime in the same way. Chiral symmetry is such a global symmetry.

It is important for the theory of Quantum Chromodynamics (QCD), which describes the

strong interaction between quarks and gluons in the standard model. Chiral symmetry

is necessary to understand physical effects like the small masses of pion particles [GL10].

QCD is studied very successfully with computer simulations using a discretised spacetime

lattice and Monte Carlo algorithms [Par16]. This provides a motivation to investigate the

correct implementation of chiral symmetry in lattice field theories.

Spontaneous breakdown of a symmetry is a concept tightly connected to symmetry

itself. If a symmetry is spontaneously broken, the theoretical model still respects the

symmetry, but the physical ground state violates at least a part of it. The most prominent

example in particle physics is the Higgs-effect, where a spontaneously broken symmetry

induces masses for W and Z bosons. Besides that, spontaneous symmetry breaking is also

well-known in condensed matter physics where systems like magnets can show it. The

easiest example, the Ising model, consists of regularly arranged spins si which can point

either up or down and interact with their direct neighbours. The theoretical description

does not change when we flip all spins si →−si , which is an action of the mathematical

group Z2. No alignment of the spins is present for high temperatures because thermal

fluctuations lead to a random orientation. Measurements of the total magnetisation

(the sum over all spins) would lead to an average close to zero, which does not change

under a Z2 transformation. For low temperatures, all spins tend to align in the same

direction. This breaks the symmetry of the system, and the dominating direction is chosen

spontaneously while the system is cooled down. The alignment of spins leads to a non-

zero magnetisation, which flips its sign with a Z2 transformation. Hence, the state of the

system at low temperatures is no longer invariant and the symmetry is spontaneously

broken. This is an example of a phase transition: depending on an external parameter

like the temperature, the system shows a different behaviour. It can be either in a phase

that respects the symmetry of the mathematical description or in a spontaneously broken

3



1. Introduction

phase. The magnetisation indicates in which phase the system is. It is an example for an

order parameter which is zero in the symmetric phase while it takes non-zero values if

spontaneous symmetry breaking is present. The point where the system changes from one

phase to the other is called a critical point. Astonishingly, many physical systems show

similar macroscopic behaviour at their critical points, although they are microscopically

completely different [Her07]. This important concept is known as universality. Only a

few parameters like symmetries and the spacetime dimension determine the universality

class of a model, allowing to share results on critical behaviour between physically very

different applications. The renormalisation group provides an explanation for the universal

behaviour. Starting from a microscopic model, small-scale fluctuations are integrated

over, leading to an effective theory valid up to some momentum scale. This may change

parameters like the coupling strength and can also introduce new interactions in the

effective theory. Repeating this procedure, one may find fixed points where the effective

theory is no longer changing. These fixed points of the renormalisation group equations

are directly related to critical points. Models with very different microscopic descriptions

can be attracted by the same fixed point, explaining the phenomenon of universality. All

these concepts also exist with respect to chiral symmetry and critical points related to its

spontaneous breaking are the main subject of study in the present work.

Theories of interacting fermions constitute a useful class of toy models that exhibit chiral

symmetry. In particular, this work examines theories with an interaction of a fermion field

raised to the fourth power. Here, a strong interaction of the fermions can lead to chiral

symmetry breaking (χSB), which dynamically generates a mass for the fermions. Hence,

these models can show a phase transition from a phase of massless fermions to a massive

phase. This was the reason for Nambu & Jona-Lasinio [NJ61a; NJ61b] in 1961 to propose a

four-fermion theory, the Nambu–Jona-Lasinio model (NJL) in four spacetime dimensions,

to explain masses of nucleons before the advent of QCD. There is still active research on

variations of this model [VR06].

The history of such four-fermion models reaches back to 1958, when Thirring [Thi58]

proposed the Thirring model (Th) in two spacetime dimensions. This was the first Quan-

tum Field Theory (QFT) of interacting fermions that could be solved analytically. The

third important model is the Gross-Neveu model (GN), which was investigated in two

dimensions by Gross & Neveu [GN74] for yet another purpose. It served as a toy model for

asymptotic freedom, another property of QCD, where the interaction strength between

quarks decreases with increasing energy. David Gross was awarded the Nobel prize of 2004

for his part in this discovery.

The main focus of the present work lies on GN and Th. Despite their original formula-

tions, they are studied here in three spacetime dimensions. Then, GN can be used as a

toy model for asymptotic safety [BGS11], a scenario that is currently discussed as a candi-

date for a quantum theory of gravity. Reviews on this topic are for example [NR06; Per09;

RS12]. Additionally, there are applications outside the particle physics community for
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1. Introduction

three-dimensional incarnations of four-fermion models. Over the last years, new materials

have been discovered where the low-energy spectrum of electronic excitations can be

described by relativistic Dirac fermions as in particle physics [WBB14]. Therefore, they are

called Dirac materials and encompass a wide range of substances like graphene [Cas09],

high-temperature superconductors [BVZ06] and topological insulators [HK10; QZ11]. Es-

pecially the experimental realisation of graphene [Nov04], awarded with the Nobel prize

of 2010, triggered many theoretical investigations to describe its electronic properties

and is a main motivation to study three-dimensional fermionic QFTs. In this context, it

was conjectured that the transition between semi-metallic and anti-ferromagnetic phases

of graphene can be described by the chiral phase transition of GN [Her06]. But also Th

can provide useful information [HS08; AHS10; HAS15]. This model is very similar to

three-dimensional Quantum Electrodynamics (QED3) [MZ03], describing the electronic

properties of graphene [Sem84] or high temperature superconductors [AM96; FTV02]. In

all these examples from condensed matter physics, the properties of a material can be

related to the existence of spontaneous symmetry breaking. For example, it was argued

that mechanical stress applied to a graphene sheet could tune it from a semi-metallic

phase through a phase transition into an isolating phase [HJV09].

Theoretical considerations provide another reason to study four-fermion theories in

three dimensions: here, fermions have mass dimension 1, so that the coupling of a four-

fermion term has dimension -1, and the theory is perturbatively non-renormalisable.

On the other hand, an expansion for a large number of fermion flavours is possible and

allows a renormalisation [RWP89; Cal91]. This requirement of non-perturbative treatment

makes four-fermion theories a good testing ground for calculations with methods that go

beyond perturbation theory, for example by using Dyson-Schwinger-Equations (DSEs),

the Functional Renormalisation Group (FRG), or lattice field theory. These approaches

are often used to study the χSB of these models depending on the coupling strength

and the flavour number Nf. But four-fermion models are also attractive to relatively new

approaches like the conformal bootstrap [FGG73; Pol74; Mac77]. Very precise results for

the critical exponents of the Ising model were obtained with this method [Kos16], but

calculations for four-fermion theories started just recently. The first results for three-

dimensional GN were published in 2017 by Iliesiu et al. [Ili17]. To check the accuracy of all

these methods, precise calculations of critical properties on the lattice, as presented in the

present work, are needed for comparison.

Moreover, cross-checks inside the lattice community are also necessary. In particular,

lattice fermions with chiral symmetry are problematic. Simulations with a naive discreti-

sation of the fermion action have the problem of fermion doubling [BB87], where the

lattice model describes more fermion flavours than the original continuum theory. There

is even the Nielsen-Ninomiya theorem, stating that no fermion discretisation exists that

is local, free of doublers, preserves chiral symmetry, and has the correct continuum limit

[NN81a; NN81b; NN81c]. Regarding four-fermion theories, chiral symmetry is an essen-

5



1. Introduction

tial feature that should be respected by the lattice formulation. Thus, these models can

serve as a testbed for simulations with chiral fermions in general. So far, most of the

older simulations of GN(a) and Th(b) used so-called staggered fermions [KS75] that do not

respect the full chiral symmetry of the continuum models. Additionally, they still have

doublers, which only allows to simulate an even number of continuum flavours. Even

more, the sign problem must be taken into account, one of the most urgent problems in

lattice simulations with fermions [TW05]. Currently, a lot of effort is put into possible

solutions to the sign problem because it prevents simulations of QCD at finite density

[GL16]. Thus, previous lattice results for four-fermion theories must be confronted with

more advanced simulations. Only recently, an investigation of four-fermion theories with

correct lattice implementation of chiral symmetry and absence of the sign problem for any

Nf was done [Han16b; Han17]. In the present work, we use a complementary approach

and use the SLAC derivative [DWY76a; DWY76b], which is not local. It was already invented

in 1976 but is seldom used in lattice field theory because it is not applicable for gauge

theories like QCD and QED3 [KS79]. On the other hand, chiral symmetry is implemented

exactly at any finite lattice spacing, and we know that the SLAC derivative works well for

Yukawa-type models(c). Since four-fermion models possess no gauge symmetries and can

be reformulated with Yukawa-type interactions, the SLAC derivative proved to be very

beneficial in the present context.

Comparing the different non-perturbative methods, the situation for GN is quite clear. It

shows χSB for any value of Nf with a phase transition of second order that can be classified

by critical exponents. They are universal quantities that can be compared well between

distinct approaches. The mostly analytical methods like DSE and FRG approaches are cur-

rently in good agreement, at least for Nf ≥ 2, but only few lattice simulations are available.

The case Nf = 2 is especially important because it corresponds to the physical situation in

graphene. Here, a previous lattice simulation [Kär94] ignored the sign problem they had

to expect, while the sign-problem-free approach with a fermion bag algorithm showed

larger deviations from the analytical calculations [CL13]. For Nf = 1, simulations with

staggered fermions are not possible and Quantum Monte Carlo (QMC) algorithms were

used so far [WCT14; LJY15; HW16]. No good agreement with the analytical calculations

was found in this case. Thus, simulation results from a well-established algorithm without

sign problem and with exactly chiral fermions are needed. In chapter 3, we provide these

new calculations for the critical exponents of GN with Nf = 1,2,4 and 8. They can serve as

reference for future analytical and numerical calculations, but also show that simulations

with SLAC fermions provide reliable results for four-fermion theories.

This reassurance is important because the situation is less clear for Th. It is expected here

that χSB happens only for a small number of fermion flavours because no broken phase is

(a)See [HKK93; FJP96; Kär94; CS07; CL13].
(b)See [DH96; KK96; DHM97; DH99; HL99; CHS07; CL12a].
(c)Previous works using the SLAC derivative: [KLW05; Käs08; Ber08; Ber09; BBP09; Ber10; FSW12; WW12;

Flo12].
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1. Introduction

present in the large-Nf expansion(d). Only Hong & Park [HP94] found χSB for any Nf. The

other works also present quite different results for the critical flavour number N cr
f , below

which χSB can happen. Earlier staggered lattice simulations(e) were roughly consistent

with these findings. Together with an FRG study [GJ10; JG12], all predictions for a finite

critical flavour number of Th were in the range 2 ≤ N cr
f < 7. Considering more details of the

phase transition, less agreement between the numerous works is left. For example, Kondo

[Kon95] found a second-order phase transition, while also an infinite-order transition was

proposed [Ito95; Sug97]. More recent lattice simulations with the correct symmetry do not

show a phase transition at all [Han16b; Han17]. Thus, an alternative investigation with

exactly chiral fermions on the lattice is useful to shed new light on the problem of χSB

in Th. In order to solidify our findings, several different approaches to this problem are

investigated in this work.

All these topics are presented with the following structure: In chapter 2, we collect general

information about four-fermion theories and the simulation setup used in this work. We

begin with definitions of the different models, putting emphasis on the distinction of

reducible and irreducible models. Then, we apply a Hubbard-Stratonovich transformation

(HS) to them, which is necessary to make the Lagrangians bilinear in the fermion fields.

This is required by the rational Hybrid Monte Carlo (rHMC) algorithm we use. We also

introduce Fierz identities and use them to replace the interaction term of Th by a GN

interaction combined with a flavour-mixing term. Further details about the symmetries

of the lattice models as well as chiral symmetry on the lattice and the SLAC derivative are

given. The general simulation setup is summarised and we investigate our models with

respect to a potential sign problem. In particular, the reducible versions of GN and Th are

free of a sign problem for all Nf, whereas this is not the case for the irreducible models.

As a first example of χSB in four-fermion theories, we study GN in chapter 3. We present

key points from the theory of finite size scaling which we employ to measure critical

exponents. Different approaches are compared and evaluated with respect to systematic

errors. New values for the critical exponents of GN with Nf = 1,2,4 and 8 in the reducible

representation are given and constitute one of the main results of this work. This is the first

lattice calculation of critical exponents of GN with exactly chiral fermions in a conventional

lattice field theory approach. A detailed comparison with previous works and a section on

the irreducible version of GN complete this chapter.

Having shown the successful application of the SLAC derivative in GN, the remaining

chapters are devoted to the study of Th and its χSB. In chapter 4, we begin with direct

simulations of the model after HS, where the Lagrangian of Th contains an auxiliary vector

field. In this formulation, no order parameter is accessible and we cannot gain information

about χSB in simulations with exact chiral symmetry. Also in simulations with a mass term,

which explicitly breaks the symmetry, no evidence for χSB could be found.

(d)See [Gom91; HLY94; Ahn94; Ito95; Kon95; Sug97; AP98].
(e)See [KK96; DHM97; DH99; HL99; CHS07].
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1. Introduction

In chapter 5, we combine Th with two other models. Since χSB can be studied well in GN,

a combination with Th is useful and we investigate the larger space of both interactions. A

second attempt is made with a simplified version of NJL that preserves more of the original

symmetry of Th. With both approaches, similar results were obtained. For Nf = 1 no clear

statement on the existence of χSB can be drawn, but it is very likely ruled out for Nf ≥ 2.

Finally, we present two reformulations of Th in chapter 6, where equivalent models

with different degrees of freedom are investigated to overcome the problems encountered

in the previous chapters. The first section presents simulations with Lagrangians that

are equivalent to Th by the Fierz transformations introduced in chapter 2. In this setup,

direct access to an order parameter for χSB is possible, but the models show very strong

sign problems. Thus, the main result of this part is that Fierz identities can relate models

with strong sign problem to equivalent formulations that are free of it. Finally, we give a

description of four-fermion theories with dual variables. They carry the meaning of an

occupation number and we present evidence that a transition to an unphysical phase

occurs on the lattice when it is fully occupied by fermions. The attempt to overcome the

sign problem of the models after Fierz transformation with the dual variables formulation

was not yet successful. Only for a special case, we will point out a way to simulations

without sign problem. Nevertheless, the combination of both approaches in this chapter

with conventional simulations as in chapter 4 provided the foundations for our treatment

of Th in [WSW17]. An overall conclusion is given in chapter 7.

The compilation of this thesis is solely due to the author. However, a large part of the work

presented here was done in collaboration with Andreas Wipf and Björn Wellegehausen.

Parts of the content of chapter 4, chapter 5 and section 6.1 were published in conference

proceedings [SWW15; SWW16]. The work of chapter 6 built the basis for our publication

[WSW17]. Except for section 6.2, all simulations were performed with a program mainly

written by Björn Wellegehausen with contributions of Galstian Pour [Gal14] during his

diploma thesis prior to the present work. The necessary computing power was mainly

provided by the Theoretisch-Physikalisches Institut with nodes of the Omega cluster at the

University of Jena. Also local compute servers in the institute and the quadler cluster of

the group of Prof. Brügmann were utilised. All Nf = 8 simulations of GN were executed

by Björn Wellegehausen on the LOEWE cluster at the University of Frankfurt. Hence, this

work was indirectly supported by the Helmholtz International Center for FAIR within the

LOEWE initiative of the State of Hesse.
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2. General Properties and

Simulation Setup

In this work we consider QFTs in a three-dimensional, Euclidean spacetime, where the

interaction is given by a fourth power of the fermion field ψ. Putting special emphasis

on symmetries, we will introduce our notation and define our main four-fermion models

in section 2.1 via their Lagrangians L [ψ̄,ψ]. In the continuum, the latter are related to

Euclidean actions S[ψ̄,ψ] via integration over the spacetime. From an action, we can derive

the partition sum as a path integral over the fields by

Z =
∫

Dψ̄Dψe−S[ψ̄,ψ]. (2.1)

It can be used to calculate thermodynamic quantities and vacuum expectation values of

observables O with

〈O〉 = 1

Z

∫
Dψ̄Dψe−S[ψ̄,ψ] O [ψ̄,ψ]. (2.2)

A well-established method to calculate the path integrals in these expressions are Monte

Carlo simulations, where the spacetime is approximated by a lattice Λ of discrete, equally

spaced points. Introductory textbooks on this area of research are for example [GL10;

MM97; Rot05; Smi02]. We usually work with dimensionless quantities in the action ob-

tained by an appropriate rescaling so that the spacing between adjacent points is a = 1.

Consequently, the lattice volume V equals the total number of lattice sites. On the lattice,

the measure of the path integral is a well-defined, finite product
∫

Dψ= ∫ ∏
x∈Λ

(
dψ(x)

)
and the Euclidean action is given by a summation over all lattice points:

S[ψ̄,ψ] = ∑
x∈Λ

L [ψ̄(x),ψ(x)]. (2.3)

In order to implement the action of a lattice model in a computer program, most al-

gorithms require it to contain only second powers of the fermion fields, which allows an

analytical integration over the fermions. A convenient transformation to turn four-fermion

models into a bilinear form is presented in section 2.2 together with identities that will be

used to transform different kinds of four-fermion interactions into each other. Afterwards,

we give general information about algorithms and our simulation setup in section 2.3. This

section also contains a discussion of chiral symmetry on the lattice and our approach to

it. Finally, we consider the sign problem. Conventional simulation algorithms require

the action to be real because e−S ≥ 0 is used in a probability distribution to generate new

configurations for the fields. If this assumption is not valid, the theory is said to suffer

a sign problem. Details on this and an investigation of the relevant actions are given in

section 2.4.
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2. General Properties and Simulation Setup

2.1. Four-Fermion Theories and Their Symmetries

In this section, we will define the four-fermion models treated in this work and classify

them by their symmetries. As usual, the kinetic term of fermionic QFTs includes Dirac

matrices γµ, where µ = 1,2,3 labels the d = 3 Euclidean spacetime dimensions. The γµ

satisfy the Euclidean Clifford algebra {γµ,γν} = 2δµν1 and all three can be chosen Hermitian.

Usually, QFTs use irreducible representations of this algebra, which are two-dimensional

in three spacetime dimensions [WS86](a). On the contrary, four-fermion theories are often

discussed using a reducible representation with four-component spinors. These spinor

indices are labelled with i , j = 1, . . . ,dγ, where dγ = 2 or 4 for irreducible and reducible

representations respectively. We will begin the discussion of symmetries and the definition

of our models in the reducible formulation in section 2.1.1. Only this formulation allows

the definition of chiral symmetry, which is the main subject of our study. Afterwards, we

decompose these models in section 2.1.2 into an irreducible formulation again putting

special emphasis on symmetries.

2.1.1. Reducible Models

We begin with definitions of reducible four-fermion models that employ a four-dimensional

representation of the Clifford algebra, denoted by γµ. Any of the usual representations

of four-dimensional QFTs can be used. The reducible models are commonly studied in

the literature, motivated by the applications in condensed matter systems mentioned in

chapter 1. The corresponding four-component spinors are denoted by ψa(x) with flavour

index a running over Nf values. Only for a representation of dimension four, a non-trivial

matrix γ5 := γ1γ2γ3γ4 exists(b) that is necessary to define chiral symmetry because it can

be used to construct projection operators on left- and right-handed spinors [GL10]. This

handedness is called chirality and a chiral tranformation

ψ→ eiθγ5 ψ, ψ̄→ ψ̄eiθγ5 , (2.4)

with a real parameter θ is closely linked to the projections. It defines a chiral symmetry

of the action, which is invariant under (2.4), as long as the theory contains no terms like

a bare mass that mix left- and right-handed spinors. Thus, the limit m → 0 is commonly

referred to as the chiral limit.

The general setup is the same with a reducible representation in three spacetime dimen-

sions, but more transformations like (2.4) can be defined. Here, only the first three matrices

are needed for the kinetic term, leaving both γ4 and γ5 free to define chiral symmetries.

Additionally, also γ45 := iγ4γ5 can be used to generate a chiral symmetry. This matrix is

Hermitian because we take all other matrices to be Hermitian. In the following, we will

(a)In contrast to four spacetime dimensions, two inequivalent irreducible representations of the Clifford
algebra exist.

(b)Similar definitions are possible for any representation of even dimension.
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2. General Properties and Simulation Setup

determine the largest possible symmetry group and Lagrangians that are invariant under

it. Afterwards, models with less symmetry are presented.

Maximal Chiral Symmetry

A single-flavour theory of massless free fermions in three dimensions is invariant under

transformations with all matrices given above, together with phase shifts generated by the

identity. Since γµ commutes with 1 and γ45, the single-flavour kinetic term ψ̄γµ∂
µψ := ψ̄/∂ψ

is invariant under the vector transformations

ψ→ψ′ = eiα1ψ ψ̄→ ψ̄′ = ψ̄e−iα1 (2.5a)

ψ→ψ′ = eiβγ45 ψ ψ̄→ ψ̄′ = ψ̄e−iβγ45 . (2.5b)

This definition follows the conventions of Gies & Janssen [GJ10]. Additionally, γµ anti-

commutes with γ4 and γ5. Therefore, the Lagrangian of massless free fermions is invariant

under so-called axial transformations for ψ̄ without minus sign in the exponent, similar to

the four-dimensional case (2.4):

ψ→ψ′ = eiϕγ4 ψ ψ̄→ ψ̄′ = ψ̄eiϕγ4 (2.5c)

ψ→ψ′ = eiθγ5 ψ ψ̄→ ψ̄′ = ψ̄eiθγ5 . (2.5d)

Since the generating matrices Γ ∈ {
1,γ4,γ5,γ45

}
are Hermitian, their exponential eiφΓ is

unitary. We have four real parameters α,β,ϕ,θ, leading to the symmetry group U (2) for

massless free fermions with a single flavour. Considering Nf fermion flavours, we can com-

bine each of the transformations (2.5) with an independent flavour rotation by a unitary

matrix ψ→Uψ and ψ̄→ ψ̄U †, with U ∈U (Nf) acting on the flavour indices. Together, the

full symmetry group of massless free fermions in three dimensions is U (2Nf)
(c). Including

a mass term explicitly breaks the chiral symmetries related to γ4 and γ5. The remaining

matrices 1 and γ45 generate two independent U (1) symmetries, leading to the multi-flavour

breaking pattern

U (2Nf) →U (Nf)×U (Nf). (2.6)

So far, we only used the (anti-)commutation properties of γµ with the symmetry genera-

tors Γ. Obviously, also a current jµ = ψ̄aγµψa does not change under the transformations

(2.5). Consequently, the reducible Lagrangian with a current-current interaction

LTh,red = ψ̄a (/∂+m)ψa +
g 2

Th

2Nf

(
ψ̄aγµψa

)2 (2.7)

also shares the full symmetry and breaking pattern (2.6) for m = 0. This defines Th. Its two-

dimensional version was introduced by Thirring [Thi58] as the first analytically solvable

field theory of interacting fermions. The main parameters of this model are the number

(c)With a different convention regarding signs and the i in the exponents, one may arrive at the non-compact
group U (Nf, Nf).
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2. General Properties and Simulation Setup

of fermion flavours Nf, the coupling strength g 2
Th and a bare mass m. A summation over

repeated flavour indices is always implied unless otherwise stated and the square in the

interaction is outside the sum. We will see in section 2.2.2 that (2.7) can be rewritten with a

vector field Vµ. This highlights the similarity to QED3, which has a field Aµ, although this is

a dynamical gauge field and not an auxiliary vector field as in Th.

The matrix γ45 also shares the (anti-)commutation properties with the generators Γ,

making also ψ̄γ45ψ invariant under (2.5). Hence the third model besides free fermions and

Th with maximal chiral symmetry for m = 0 is

LG45,red = ψ̄a (/∂+m)ψa −
g 2

G45

2Nf

(
ψ̄aγ45ψa

)2 , (2.8)

which we will call the γ45-model (G45). In addition, there are combinations of flavour-

mixing interactions respecting the full symmetry [GJ10]. They are related to Th and G45-

interactions by Fierz identities similar to the ones we will introduce in section 2.2.1.

Reduced Continuous Chiral Symmetry

A second model of historic importance will here be called NJL. Its four-dimensional version

for a single flavour was suggested by Nambu & Jona-Lasinio [NJ61a] in order to describe

mesons and nucleons as bound states of the bare fermions with dynamically generated

mass, analogously to the BCS theory of superconductivity [BCS57a; BCS57b]. It is given by

LNJL,red = ψ̄a (/∂+m)ψa −
g 2

NJL

2Nf

[(
ψ̄aψa

)2 − (
ψ̄aγ5ψa

)2
]

. (2.9)

The same idea was published around the same time by Vaks & Larkin [VL61]. Additionally,

the Lagrangian (2.9) was also considered by Gross & Neveu [GN74]. It is therefore also

called Gross-Neveu model in some publications (e.g. [CS07]).

Later on, in section 5.2, we will study a modification of (2.9) coupled with Th. This

combination is interesting because (2.9) with m = 0 preserves three of the four symmetries

generated by the matrices in Γ. This holds also for the joint model of (2.9) together

with (2.7). Only the γ4-symmetry (2.5c) is not compatible, while the transformation with

γ5 in (2.5d) leads to a U (1)-symmetry, similar to the vector transformations (2.5a) and

(2.5b). They cannot be linked with each other to form a larger group. Including flavour

rotations we get three factors of U (Nf). A mass term breaks the symmetry corresponding

to the transformation with γ5 via

U (Nf)×U (Nf)×U (Nf) →U (Nf)×U (Nf). (2.10)

Discrete Chiral Symmetry

The simplest example of a four-fermion theory is GN, which has a scalar-scalar interaction.

The Lagrangian density in Euclidean spacetime is given by

LGN,red = ψ̄a (/∂+m)ψa −
g 2

GN

2Nf

(
ψ̄aψa

)2 . (2.11)
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2. General Properties and Simulation Setup

The two-dimensional version of (2.11) was first introduced by Gross & Neveu [GN74] as

a toy model to study dynamical symmetry breaking in asymptotically free field theories.

In three dimensions, it serves as a model for electronic properties of Dirac materials like

graphene as mentioned in chapter 1. Compared to NJL, it shows an even smaller subset

of the maximal chiral symmetry. A full discussion of the symmetries of massless GN with

Lagrangian (2.11) can be found in the work of Gehring et al. [GGJ15] including a physical

explanation concerning graphene. Here, a short derivation of the main result is presented.

We note, that (ψ̄aψa)2 is still invariant under the vector transformations (2.5a) and (2.5b),

but no longer under general axial transformations. Together with the flavour rotations, we

can form a group of U (Nf)×U (Nf). A closer look at the axial transformation (2.5d) leads to

(
ψ̄aψa

)2 →
(
ψ̄a e2iθγ5 ψa

)2 = (
ψ̄a

[
cos(2θ)1+ isin(2θ)γ5

]
ψ

)2 , (2.12)

which is invariant for θ = nπ/2 with n ∈Z. Thus, we have a transformationψ→ (
iγ5

)n
ψ and

ψ̄→ ψ̄
(
iγ5

)n . The additional phase in and the cases with an even n can also be generated

by (2.5a), but we find an independent discrete Z2-symmetry, which is usually written as

ψ→ γ5ψ, ψ̄→−ψ̄γ5. (2.13)

It can be explicitly broken by a mass term. The transformation (2.5c) with γ4 does not

lead to another independent symmetry of the form (2.13) because this transformation is

equivalent to a combination of (2.13) with (2.5b) and fixed β= π/2. Concluding, GN has a

symmetry with a possible breaking pattern

U (Nf)×U (Nf)×Z2 →U (Nf)×U (Nf) (2.14)

and is the last of the four main models (Th and G45 with maximal chiral symmetry, NJL

with a reduced continuous symmetry and GN with a discrete chiral symmetry) that we

will need throughout this work. More general forms of four-fermion models are possible

and we will encounter some in section 2.2.1, where flavour-mixing interactions appear.

Beforehand, we will have a short look at further symmetry transformations of these models.

Parity and Mass Terms

Apart from the chiral symmetry discussed above, a short look at the parity symmetry is

necessary to discuss our results for Th in section 4.2. A definition of time reversal and

charge conjugation symmetries is also possible [Gom91], but not required here. Parity can

be defined [GGJ15] by flipping the sign of a single spatial coordinate like x = (x1, x2, x3) →
x ′ = (x1,−x2, x3), together with

ψ(x) → iγ2γ5ψ(x ′), ψ̄(x) → ψ̄(x ′) iγ2γ5. (2.15)

This choice is not unique because a similar definition with γ4 is also possible [Gom91;

GJ10]. The usual mass term mψ̄ψ included in the Lagrangians above conserves parity. Also
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2. General Properties and Simulation Setup

im4ψ̄γ4ψ and im5ψ̄γ5ψ are possible parity-invariant mass terms and physically equivalent

[Han16a; Han16b]. In contrast to this, a mass term including γ45 breaks the parity of the

reducible models.

Spontaneous Symmetry Breaking

Even the symmetries of the massless models can be broken with the pattern (2.6) for Th

and G45, (2.10) for NJL or (2.14) for GN because this breaking can happen spontaneously.

A strong fermion interaction can form a non-vanishing chiral condensate

〈
ψ̄ψ

〉 6= 0 (2.16)

that also breaks the chiral symmetries related to γ4 and γ5. It acts like a mass term and

the fermions are said to acquire a dynamical mass. The chiral condensate is an order

parameter for χSB, since it is non-zero in the broken phase, while it vanishes, when the

symmetry is intact. Thus, it is of main importance for the rest of this work to show where

χSB happens. Analogously to the parity-breaking mass term, we can define a parity-odd

condensate
〈
ψ̄γ45ψ

〉
, which is invariant under the full chiral symmetry of Th and G45, but

induces spontaneous breaking of parity.

2.1.2. Irreducible Models

To derive Lagrangians in the irreducible representation from the reducible models in

section 2.1.1 we choose a convenient representation of the dγ = 4-dimensional Clifford

algebra, where γµ is block-diagonal:

γµ =σ3 ⊗σµ =
(
σµ 0

0 −σµ

)
, γ4 =σ1 ⊗ 12 =

(
0 12

12 0

)

⇒ γ5 =−σ2 ⊗ 12 =
(

0 i12

−i12 0

)
, γ45 =σ3 ⊗ 12 =

(
12 0

0 −12

)
.

(2.17)

Here, σµ and −σµ form two inequivalent irreducible representations for d = 3. Details

can be found for example in the work of Pisarski [Pis91]. As suggested by the symbol σµ,

a possible choice for an irreducible representation are the Pauli matrices. Keeping in

mind that other possibilities exist, we will use σµ in general to refer to an irreducible

representation of the Clifford algebra.

Splitting the four-component spinors into two two-component spinors χa,r numbered

by r = 1,2 with

ψa =
(
χa,1

χa,2

)
and ψ̄a =

(
χ̄a,1

−χ̄a,2

)
where a = 1, . . . , Nf, (2.18)

we introduced a minus sign in the second component of ψ̄ to compensate the sign in
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2. General Properties and Simulation Setup

the second block of γµ. In this way, we get the usual kinetic term(d) χ̄/∂χ= χ̄σµ∂µχ for all

components, but the sign of a mass term is different for r = 2:

Nf∑
a=1

[
ψ̄aγ

µ∂µψa +mψ̄aψa
]= Nf∑

a=1

[
χ̄a,1σ

µ∂µχa,1 + χ̄a,2σ
µ∂µχa,2 +mχ̄a,1χa,1 −mχ̄a,2χa,2

]
=

Nf∑
a=1

2∑
r=1

[
χ̄a,rσ

µ∂µχa,r − (−1)r mχ̄a,rχa,r
]

. (2.19)

Here, we can introduce the irreducible flavour index α= 2a+r −2 = 1, . . . , Nf,irr using Greek

letters from the beginning of the alphabet as an abbreviation for the tuple (a,r ). We denote

the corresponding two-component spinors by χα(x) and consider a variable number of

Nf,irr := 2Nf fermion flavours. In the following, we use (−1)r = (−1)α in the Lagrangians,

where a summation over α in expressions like χ̄α(−1)αχα is implied.

Lagrangians

After this derivation for free fermions, we can continue with our reducible four-fermion

theories defined in section 2.1.1. NJL is not included here and will only be used in the

reducible representation.

Th: Like the kinetic term, the decomposition (2.18) cancels the sign in the γµ of the

interaction and we obtain a Lagrangian identical to (2.7) with ψ replaced by χ up to

the sign in the mass term. It is given by

LTh,irr = χ̄α
(

/∂− (−1)αm
)
χα+

g 2
Th

2Nf,irr

(
χ̄αγµχα

)2 . (2.20)

G45: Due to the fact that γ45 = diag(12,−12) in our choice for the γ-matrices, the inter-

action in Lagrangian (2.8) reduces to the form of the reducible GN in (2.11) with ψ

replaced by χ and can therefore be called irreducible Gross-Neveu model. It is given

by

LG45,irr = χ̄α
(

/∂− (−1)αm
)
χα−

g 2
G45

2Nf,irr

(
χ̄αχα

)2 . (2.21)

GN: Like a mass term, the reduction leads to different signs in the interaction of half of

the irreducible flavours and we do not recover the form of the reducible GN. Instead

we have

LGN,irr = χ̄α
(

/∂− (−1)αm
)
χα−

g 2
GN

2Nf,irr

(
(−1)α−1χ̄αχα

)2
. (2.22)

This result can also be found in the work of Gehring et al. [GGJ15], where in addition a

projection onto four-component Weyl-spinors is given. Only in this form the action

of massless GN decomposes into two independent parts for left- and right-handed

spinors.

(d)We will use the notation /∂ for both reducible and irreducible representation. It is a 2×2-matrix in spinor
space when surrounded by spinors χ̄,χ and a 4×4-matrix when spinors ψ̄,ψ are used.
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2. General Properties and Simulation Setup

To be more general, we allow an odd number of flavours for the irreducible models, so that

α= 1, . . . , Nf,irr with Nf,irr ∈N. In these cases, there is no corresponding reducible model(e).

“Chiral” Symmetries

Now, we investigate the symmetries in the irreducible representation. To transform our chi-

ral generators Γ given below equation (2.5), we use representation (2.17) of the γ-matrices.

We can deduce from it that the transformations (2.5a) and (2.5b) with 1 and γ45 can be

combined to give phase shifts for single two-component spinors, while (2.5c) and (2.5d)

are rotations between different irreducible flavours. The U (2Nf) group of the reducible

Th and G45 with Nf flavours is present in the corresponding irreducible model as rota-

tions of the Nf,irr = 2Nf irreducible flavours with group U (Nf,irr). Strictly speaking, the

irreducible variants only have a flavour symmetry since no matrix like γ5 exists that allows

the definition of chirality.

Similarly, the symmetry group of U (Nf,irr/2)×U (Nf,irr/2) of the reducible GN can be seen

directly in the Lagrangian of the irreducible version (2.22), where the flavours with an

additional minus sign transform independently of the other half, because the generators 1

and γ45 are diagonal in the representation (2.17) used for the reduction. The Z2 transfor-

mation with γ5 is an exchange of two corresponding flavours with different r , e.g. χa,1 and

χa,2. Here, it is important to note that G45 can be seen as the irreducible version of GN.

Hence, its critical behaviour is expected to be similar or identical to the one of GN [GGJ15],

although G45 shares its symmetry group with Th and not GN. Simulations of both models

are compared in section 3.4. A special case is the model with Nf,irr = 1. Obviously, GN and

G45 coincide for this special case, and we will see in section 2.2.1 that also Th becomes

equivalent to these models. They only have a U (1)-symmetry since no flavour rotations

are possible.

Parity

We can also define parity in the irreducible representation, as before associated to a flip

x = (x1, x2, x3) → x ′ = (x1,−x2, x3). Then, a possible parity transformation of the spinors is

given by

χ(x) → iσ2χ(x ′), χ̄(x) → χ̄(x ′) iσ2, (2.23)

but this is not equivalent to the reducible parity (2.15). An explicit calculation shows that

(2.15) equals a transformation (2.23) together with an exchange of irreducible flavours

[HP94; Ahn94]

χa,1(x) → iσ2χa,2(x ′), χa,2(x) → iσ2χa,1(x ′), (2.24)

where a = 1, . . . , Nf as in (2.18). This is only well-defined for an even number of Nf,irr, while

an irreducible parity transformation (2.23) is always possible and exists even in the Nf,irr = 1

model.

(e)One could think of these models as having half a reducible flavour. For example Nf,irr = 5 would correspond
to Nf = 2.5.
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Mass Terms and Condensates

Going to the irreducible representation, the parity-invariant mass term as well as the chiral

condensate have a minus sign for flavours with r = 2 as in (2.19). Hence, for Nf,irr = 2 the

statement equivalent to (2.16) is

〈
χ̄1χ1

〉−〈
χ̄2χ2

〉 6= 0. (2.25)

Such a condensate or mass term is invariant under the extended parity with flavour ex-

change (2.24), but not under the irreducible parity (2.23). The opposite is true if we

introduce a simple mass term mirr χ̄χ in the irreducible representation. It can be derived

from the γ45 mass term in the reducible representation. Similarly, the reducible parity-odd

condensate
〈
ψ̄γ45ψ

〉
becomes

∑
α

〈
χ̄αχα

〉
for irreducible flavours and corresponds to the

naive definition of the chiral condensate in the irreducible representation. Contrary to

(2.25), it can be extended easily to odd Nf,irr.

2.2. Rewriting the Lagrangians

In this section we introduce and apply two transformations that are often used in the

context of four-fermion theories. We begin with Fierz identities in section 2.2.1, which

relate the different four-fermion terms with each other. This allows to rewrite the La-

grangians of four-fermion models in terms of different interactions while the physics stays

the same. Another exact relation can be obtained with the HS presented in section 2.2.2.

It can be used to introduce auxiliary scalar fields replacing the four-fermion interaction

by a Yukawa-type of interaction between fermions and bosons. This transformation is

necessary for conventional lattice simulations because the resulting action is quadratic in

the spinor fields and allows an analytical integration over the fermions.

2.2.1. Fierz Identities

The γ-matrices of a dγ-dimensional representation of the Clifford algebra can be used to

construct a complete basis of all dγ×dγ-matrices [WS86]. Due to this fact, the different

interaction terms of four-fermion theories are not all independent. The completeness

relation allows the deduction of so-called Fierz identities. All relevant identities for three-

dimensional four-fermion theories with both reducible and irreducible representations

are given for example by Janssen [Jan12]. Also Ahn et al. [Ahn94] and Ahn & Park [AP98]

used a Fierz identity to analytically study Th.

Here, we only work with Fierz identities in the irreducible representation, where calcu-

lations are much easier. We want to use them to reformulate the interaction term of Th,

where no order parameter for χSB is accessible in our simulations of chapter 4. Since GN

provides direct access to χSB (see chapter 3), a reformulated Lagrangian with a GN-like
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interaction can be beneficial. There are several ways to achieve this. Using abbreviations

of the form |χ̄βχα|2 = (χ̄βχα)(χ̄αχβ), we consider the following:

(
χ̄ασµχα

)2 =−(
χ̄αχα

)2 −2
∣∣χ̄βχα∣∣2 , (2.26a)(

χ̄ασµχα
)2 = 3

(
χ̄αχα

)2 +2
∣∣χ̄βσνχα∣∣2 . (2.26b)

A derivation of these identities and a more general form are given in appendix A. For

Nf,irr = 1, both identities reduce to

(
χ̄σµχ

)2 =−3
(
χ̄χ

)2 , (2.27)

which shows the equivalence of irreducible GN and Th with g 2
GN = 3g 2

Th. For Nf,irr ≥ 2, the

equations in (2.26) show that Th can be replaced by GN only if we introduce additional

flavour-mixing interactions. From (2.20) we get the resulting Lagrangians

LFM = χ̄α (/∂+m)χα−
g 2

Th

2Nf,irr

(
χ̄αχα

)2 − g 2
Th

Nf,irr

∣∣χ̄βχα∣∣2 , (2.28a)

LFVM = χ̄α (/∂+m)χα+
3g 2

Th

2Nf,irr

(
χ̄αχα

)2 + g 2
Th

Nf,irr

∣∣χ̄βσνχα∣∣2 . (2.28b)

χ̄βχα and χ̄βσνχα are a matrix in flavour space and a vector of matrices in the inter-

nal space respectively. In the following we will refer to the corresponding model with

Lagrangian (2.28a) as the Fierz matrix formulation (FM) and call (2.28b) the Fierz vector-

matrix formulation (FVM). A numerical investigation of these models is presented in

section 6.1.

2.2.2. Hubbard-Stratonovich Transformations

All previously mentioned Lagrangians can be transformed to versions bilinear (instead

of quartic) in the fermion fields by introducing auxiliary bosonic fields. This technique

goes back at least to Hubbard [Hub59] and is usually called HS. Without it, Monte Carlo

simulations with standard algorithms would not be possible. They require the fermions to

be integrated out, which can only be done analytically when the action is bilinear in the

fermion fields. See section 2.3 for further details on the algorithmic setup.

The transformation employs Gaussian integrals similarly to the well-known identities

for real numbers p and q and α> 0,

eαp2 = 1p
4πα

∫ ∞

−∞
dq e−

1
4αq2±pq and e−αp2 = 1p

4πα

∫ ∞

−∞
dq e−

1
4αq2±ipq , (2.29)

to introduce integrals over bosonic fields. As q2 replaces p2 in (2.29), the four-fermion

term is replaced by a square of the new bosonic field, together with a Yukawa-type term

analogous to pq . Regardless of the sign in the exponent on the left-hand side, the square of

the bosonic field comes with a minus. For an originally negative exponent an additional i
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appears in front of the Yukawa term. The sign of the latter is arbitrary. For convenience, we

always take the sign such that the term is positive in the new Lagrangian. The parameter α

occurs on the right-hand side in the denominator of the exponent. Therefore, all numerical

results and plots in this work use an inverse coupling

λX = Nf

g 2
X

> 0, (2.30)

where the strong coupling limit is found forλX → 0. We will now present the transformation

for GN because it has the smallest number of degrees of freedom. The resulting Lagrangians

for the other models are given afterwards. A distinction between reducible and irreducible

models is not necessary since the transformations work analogously.

Transformation for GN

For GN with Lagrangian (2.11) we have an integral analogously to (2.29) for each lattice

site, so that the full transformation is given by

exp

[∑
x

g 2
GN

2Nf

(
ψ̄aψa

)2

]
=

(
Nf

2πg 2
GN

)V
2 ∫

Dσexp

[
−∑

x

(
Nf

2g 2
GN

σ2 + ψ̄aσψa

)]
. (2.31)

Note, that the exponent on the left-hand side is positive due to the additional minus sign in

the definition of the partition sum (2.1). Hence, the transformation leads to a real exponent

on the right-hand side. The new auxiliary field σ enters the Lagrangian

LGN,HS = ψ̄a (/∂+m +σ)ψa + 1

2
λGNσ

2 (2.32)

in the same way as a mass term. It has to transform non-trivially with σ→−σ under the

Z2-symmetry to keep the new Lagrangian invariant. Similarly to the mass term, it does not

change under parity transformations.

Transformation of the Other Main Models

For more involved Lagrangians, HS can induce multiple auxiliary fields which we will in

general summarise by ϕ. For example, the current-current structure of the four-fermion

term in Th requires the introduction of a scalar field for each spacetime dimension, equiv-

alent to a vector field Vµ with Nϕ = 3 components. In comparison with (2.31), we have

an integral for each x and for each of the Nϕ independent field components. Then, the

factor in front of the integral has the exponent V Nϕ/2. With these preliminaries, we give the

resulting reducible Lagrangians for our main models.

Th: As mentioned before, HS introduces an auxiliary three-component vector field Vµ

and we get

LTh,HS = ψ̄a (/∂+m + i /V )ψa + 1

2
λThVµV µ. (2.33)

The interaction in (2.7) comes with the sign opposite to GN, so that we now have an

i in the Lagrangian. It is still invariant under all chiral transformations (2.5) and no
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transformation of the vector field is required. On the contrary, the 2-component of

the auxiliary field must change its sign under a parity transformation.

G45: Here, the transformation can be applied in the same way as for GN. We call the

new scalar field ρ and get an interaction with the fermions through ψ̄aργ45ψa . The

Lagrangian after the transformation reads

LG45,HS = ψ̄a
(

/∂+m +ργ45
)
ψa + 1

2
λG45ρ

2. (2.34)

Similarly to Th and in contrast to GN, the Lagrangian is invariant under the full chiral

symmetry (2.5) without transforming the auxiliary field. Under parity, the scalar field

transforms as ρ→−ρ because ψ̄γ45ψ switches its sign.

NJL: For the Lagrangian (2.9), we can perform two transformations separately introducing

fieldsσ and τ. Since the term withγ5 comes with the opposite sign, it has an additional

i after the transformation, so that the result reads

LNJL,HS = ψ̄a
(

/∂+m +σ+ iτγ5
)
ψa + 1

2
λNJL

(
σ2 +τ2) . (2.35)

In this form, the intact U (1)-symmetry from (2.5d) is evident because the scalar fields

transform with

σ+ iγ5τ→ e−2iθγ5
(
σ+ iγ5τ

) ⇔
(
σ

τ

)
→

(
cos2θ sin2θ

−sin2θ cos2θ

)(
σ

τ

)
. (2.36)

Thus, they also transform non-trivially under the U (1) (or the equivalent O(2) on the

right-hand side) leaving the bosonic action invariant.

Transformation of Lagrangians After Fierz Transformation

Having completed the main four-fermion models of the present work, we now go on

to perform HS on the reformulated versions of Th that we obtained in section 2.2.1 by

Fierz transformations. The Lagrangians (2.28) include flavour-mixing terms, for which

Hermitian matrix fields can be introduced. A short note on that was given by Janssen [Jan12]

and a more detailed calculation of the necessary integrals can be found in appendix B.

Here we present the resulting Lagrangians for both formulations we will investigate.

FM: Applying the transformations to the Lagrangian (2.28a) separately for each interaction

term leads to

LFM,HS = χ̄α
[(

/∂+m +φ)
δαβ+Tαβ

]
χβ+

1

2
λThφ

2 + 1

4
λThTβαTαβ, (2.37a)

with a Hermitian Nf,irr ×Nf,irr-matrix T and a GN-like scalar field φ.

FVM: For the Lagrangian (2.28b), we have to introduce a vector of Hermitian matrix fields

T µ

αβ
with flavour and spacetime indices in addition to the GN-scalar φ. Both fields
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come with an additional i due to the positive sign of the interaction in the original

Lagrangian. We have

LFVM,HS = χ̄α
[(

/∂+m + iφ
)
δαβ+ iT µ

αβ
σµ

]
χβ+

1

6
λThφ

2 + 1

4
λThT µ

αβ
Tβα,µ. (2.37b)

Note, that these Lagrangians contain more degrees of freedom than necessary. For example,

the field φ in (2.37a) and the trace of T can be exchanged by each other. Performing a shift

of the diagonal elements Tαα→ Tαα+φ (no summation), we can eliminateφ by performing

the resulting Gaussian path integral. This leads to

LFM = χ̄α
[
(/∂+m)δαβ+Tαβ

]
χβ+

1

4
λThTβαTαβ−

λTh

4(2+Nf,irr)
(Tαα)2

≡ χ̄ [(/∂+m)+T ]χ+ 1

4
λTh tr

(
T 2)− λTh

4(2+Nf,irr)
(trT )2 , (2.38a)

which can be found in [Ahn94; AP98]. As a second possibility, T can be split into a traceless,

Hermitian matrix T̂ and a scalar field φ̂, where trT = φ̂Nf,irr. Then, the Lagrangian reads

LFM = χ̄[(
/∂+m + φ̂)+ T̂

]
χ+ 1

4
λTh tr

(
T̂ 2)+ λThNf,irr

2(2+Nf,irr)
φ̂2. (2.38b)

The latter form was implemented for simulations as described in section 6.1.1. For Nf,irr = 1,

both Lagrangians (2.38) have the form of GN, confirming the identity (2.27). Yet another

Lagrangian, where no factors of Nf appear in the bosonic part, was used by Björn Wellege-

hausen to derive an effective potential for local condensates in our recent paper [WSW17].

Notation for General Discussions

To fix our notation, we give the general form of the action that all models share. We have

S[Ψ̄,Ψ,ϕ] = Ψ̄I D I J [m,ϕ]ΨJ +Sbos[ϕ], (2.39)

where Ψ stands for either irreducible or reducible fermion fields, ϕ is a placeholder for all

bosonic auxiliary fields and the general indices I , J run over spacetime, flavour and spin

degrees of freedom. The Dirac operator D[m,ϕ] always depends linearly on the bosons

and describes their interaction with fermions, while the bosonic action Sbos[ϕ] collects the

terms quadratic in the auxiliaries.

2.3. Simulation Setup

This section summarises all details about our implementation of four-fermion theories

on the lattice. Most of the simulations presented in this work were performed with a C++

framework mainly developed by Björn Wellegehausen. Many details about the implemen-

tation can be found in his PhD-thesis [Wel12]. Like most lattice field theory simulations, we

use a Markov Chain Monte Carlo algorithm to estimate expectation values of observables
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defined via the path integral (2.2). Due to the HS in section 2.2.2, we have to include the

auxiliary scalar degrees of freedom, which will be represented by ϕ in this section. In

analogy to statistical mechanics, one usually interprets

P [Ψ̄,Ψ,ϕ] = 1

Z
e−S[Ψ̄,Ψ,ϕ] (2.40)

as the probability to find the system in the state given by Ψ̄,Ψ and ϕ. This requires

P [Ψ̄,Ψ,ϕ] to be non-negative. A violation of this is the origin of the sign problem, discussed

in more detail in section 2.4. In this case, the algorithms presented here may not give

correct results.

Assuming a non-negative probability distribution, expectation values of observables O

can be calculated by the path integral over all possible field states

〈O〉 =
∫

DΨ̄DΨDϕ P [Ψ̄,Ψ,ϕ]O [Ψ̄,Ψ,ϕ]. (2.41)

In a computer simulation, the program generates a finite sample of N configurations

(Ψ̄n ,Ψn ,ϕn) with n = 1, . . . , N which must be distributed according to (2.40). Then, an

approximation for the expectation value (2.41) is given by

〈O〉 ≈ 1

N

N∑
n=1

O [Ψ̄n ,Ψn ,ϕn]. (2.42)

The major difficulty is to efficiently obtain new configurations that are as statistically

independent from the previous ones as possible.

We continue in section 2.3.1 with a summary of the algorithms used to generate new

configurations. Afterwards, the problems related to chiral symmetry on the lattice are

discussed in section 2.3.2, where we also present the SLAC derivative as a solution to them.

Finally, we elaborate on the measurement of fermionic observable in our simulations in

section 2.3.3.

2.3.1. Simulation Algorithms

Since the goal is to generate configurations distributed according to (2.40), all algorithms

require the numerical evaluation of the action. The conventional approaches for simula-

tions with fermions need actions bilinear in the fermion fields, as obtained in section 2.2.2.

This allows to perform the path integral over Grassmann numbers in the partition sum

analytically. For a Lagrangian of the general form (2.39), we get the fermion determinant

det(D[m,ϕ]) of the Dirac operator D[m,ϕ], so that the probability distribution is given by

P [ϕ] = 1

Z
det(D[m,ϕ])e−Sbos[ϕ]. (2.43)

For most of our models D[m,ϕ] is diagonal in flavour space, so that the determinant

factorises: det(D[m,ϕ]) = det
(
D[m,ϕ]Nf=1

)Nf . Now, there are several ways to proceed with
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the evaluation of the fermion determinant. We explain the efficient rHMC algorithm and

an exact update algorithm that allows to study the sign problem (see section 2.4).

Rational Hybrid Monte Carlo (rHMC) Update

Most simulations in lattice field theory are performed with the Hybrid Monte Carlo (HMC)

algorithm invented by Duane et al. [Dua87], which is explained in many textbooks [Wip13;

GL10] and tutorials like [Sch09]. It generates a new configuration from the last one by an

evolution through a fictitious molecular dynamics trajectory, which is then accepted or

rejected in accordance with the probability distribution.

To evaluate the fermion determinant, so-called pseudofermions [Fuc81] are introduced,

using the fact that a Gaussian path-integral over a bosonic field φ yields the inverse of a

determinant. Hence, it is possible to write the determinant of a matrix M as

det(M) = 1

det
(
M−1

) = ∫
Dφ†Dφ e−φ

†M−1φ, (2.44)

assuming M to be positive definite. To derive the rHMC algorithm, which was first de-

scribed by Horváth et al. [HKS99], we follow the more detailed descriptions of Kennedy

[Ken06] and Wellegehausen [Wel12]. We define the explicitly positive definite matrix

M := D†D and introduce Npf pseudofermions via

det(D)Nf = det(M)
Nf
2 = (

det(M)q)Npf =
Npf∏
p=1

∫
Dφ†

pDφp exp
(
−φ†

p M−qφp

)
(2.45)

with q = Nf/2Npf. The first equality requires det(D) ≥ 0. Our simulations typically use

Npf = Nf, leading to q = 1/2. The matrix M−q is estimated with NR summands of a rational

approximation

M−q ≈α0 +
NR∑

r=1
αr

(
M +βr 1

)−1 , (2.46)

where the coefficients α0,αr and βr must be computed only once before starting simu-

lations, for example with the Remez algorithm [Fra65]. The numerical accuracy of the

coefficients, the interval on which the approximation is calculated and the number of

summands NR allow a fine tuning of the performance of the whole algorithm and different

approximations can be used in distinct steps of the rHMC update.

The main numerical cost of a simulation consists of solving (M +βr 1)xr = y for xr with

all parameters βr . There are so-called multi-shift solvers extending the common iterative

solvers to this kind of equations with shifts βr . We use a multi-shift conjugate gradient

(CG) solver [Jeg96], which can solve systems with many shifts simultaneously at small

additional cost compared to solving a single system. Additionally, the integration in the

fictitious molecular dynamics time is done on different time scales for fermions and bosons

[Urb06]. This allows to decrease the number of expensive fermion action calculations

while integrating the cheap bosonic part with higher accuracy. This is especially efficient if

the main contribution to the molecular dynamics force comes from the bosonic part.
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Exact Update

The rHMC algorithm works only for a positive definite D and does not allow to determine

the possibly complex phase. However, it is possible to rewrite the fermion determinant as

an effective action, so that (2.43) becomes

P [ϕ] = 1

Z
e−Seff[ϕ]−Sbos[ϕ] with Seff[ϕ] =− lndet(D[m,ϕ]). (2.47)

An explicit calculation of Seff is possible and allows to access its imaginary part, but this is

very expensive compared to a rHMC simulation. We only use this method on very small

lattices to check if a model shows a sign problem. If this is the case, we measure the

imaginary part as an observable and simulate the phase-quenched theory, meaning that

we only take the real part of Seff in the algorithm to generate new configurations. Further

details how to proceed in case of a mild sign problem can be found in section 2.4.1.

2.3.2. Chiral Symmetry on the Lattice

This section is devoted to the lattice formulation of fermionic theories with chiral symmetry.

A more detailed introduction is given in most textbooks, e.g. by Wipf [Wip13] or Gattringer

& Lang [GL10]. Unfortunately, a naive discretisation with a forward or backward derivative

in the action does not yield the desired result. One gets so-called fermion doublers, meaning

that a lattice model in d spacetime dimensions actually describes 2d Nf fermion flavours

instead of just Nf. They appear due to additional poles of the momentum space propagator

at the edge of the Brillouin zone [GL10]. There have been many different attempts to solve

this problem. The first one developed by Wilson can be found in any textbook on lattice

field theory (e.g. [Wip13; GL10]) and introduces an additional momentum-dependent

mass term, which decouples the doublers in the continuum limit by making them infinitely

heavy. This solution to the doubling problem is not suitable for our models since the extra

term explicitly breaks the chiral symmetry.

In fact, the implementation of chiral symmetry on the lattice is a long-standing problem

in the community, and there is even a no-go theorem by Nielsen & Ninomiya [NN81a;

NN81c; NN81b], built on earlier work [KS81; Kar81]. Assuming locality, Hermiticity and

translational invariance, it states that there is no lattice Dirac operator with chiral sym-

metry and the correct continuum limit without doublers [Wip13]. In the following, some

workarounds are presented.

SLAC Fermions

In this work, we use the very old and direct approach of SLAC fermions(f) introduced by

Drell et al. [DWY76b; DWY76a]. It starts from the continuum momentum space propagator

and simply replaces the continuous momentum vector by a finite number of discrete lattice

(f)SLAC is the abbreviation of the Stanford Linear Accelerator Center, where the authors worked when
publishing their papers.
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momenta. Here, the finite lattice volume leads to a discrete number of momenta, while the

finite lattice spacing a induces a momentum cutoff π/a. Despite that, the behaviour is the

same as in the continuum. Our discrete points follow the straight lines of the continuum

dispersion relation up to the cutoff.

The application of the derivative in momentum space is just a multiplication with the

lattice momenta. Doing a Fourier transformation back to position space, one can obtain

the matrix elements of the derivative along a single spacetime direction as

∂SLAC
xx = 0 and ∂SLAC

x y

∣∣∣
x 6=y

= π

L

(−1)x−y

sin
(
π
L (x − y)

) . (2.48)

This derivative avoids the Nielsen-Ninomiya theorem by violating the assumption of

locality, as the Dirac operator in momentum space is not a continuous function of the

momenta(g). Instead, there is a jump at the edge of the Brillouin zone. Apart from that, it

is free of doublers(h) and implements the continuum chiral symmetry on the lattice in a

straightforward way.

Nevertheless, it is seldom used in current simulations because Karsten & Smit [KS78;

KS79] showed that the vacuum polarisation of QED is no longer Lorentz-covariant, pre-

venting a renormalisation of the theory. Although there was some debate about the validity

of the calculation [Rab81; KS81], it is in general believed not to work for gauge theories. On

the other hand, the SLAC derivative can be used to solve the Schrödinger equation [FSW12]

and to study two-dimensional Wess-Zumino models [KLW05]. The renormalisability for

the latter was proven and simulations with the SLAC derivative showed fewer finite size

effects than Wilson fermions [Ber09; Ber08; Käs08; Ber10; BBP09]. The proof of renormalis-

ability works also for non-supersymmetric models with an interaction of Yukawa type, like

our models have after the HS. Additionally, high-precision results were obtained already on

moderate lattice sizes for the non-linear O(3) sigma model [Flo12]. Thus, we are confident,

that the SLAC derivative allows simulations of four-fermion theories without doublers, but

with exact chiral symmetry.

Implementation of the SLAC Derivative

It is possible to implement the SLAC derivative using the position-space matrix elements

(2.48), but it is advisable for computational efficiency to make use of its diagonal form

in momentum space. Thus, we perform one-dimensional Fourier transformations of

the lattice fields along all straight lines in all three directions. The resulting vectors are

multiplied by iγµpµ, and afterwards transformed back to position space. There, we apply

the remaining parts of D[m,ϕ], that are diagonal in position space, like a mass term or

scalar fields. A first implementation and study of GN and Th was done in a diploma thesis

[Gal14]. For the present work, the existing implementation was optimised and parallelised

(g)Campos & Tututi [CT02] show that the SLAC derivative is ultralocal up to a border matrix, which is non-zero
only for matrix indices I = J = 1 or I = J = N .

(h)There were other non-local formulations for the derivative that still showed doublers [Pel88].
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within the existing framework that uses a domain decomposition of the grid with MPI

communication(i).

Using the SLAC derivative, one has to take special care of the boundary conditions.

They are closely tied to the number of lattice points in the direction considered. For

periodic boundary conditions, it is advisable to use an odd number of points because the

resulting momenta can be arranged symmetrically around zero. For antiperiodic boundary

conditions, there is an additional shift of 1/2 in the wave numbers. In this way, there is no

zero momentum and an even number of momenta can be chosen symmetrically. Other

choices are in principle possible, but lead to an arbitrary decision if the additional unpaired

momentum is put at the lower or the upper end of the spectrum. We use antiperiodic

boundary conditions in the time direction and periodic ones otherwise. Thus, to avoid

ambiguities, we always simulate with V = L× (L−1)× (L−1) lattice points with even L and

call this a lattice of size L.

Staggered Fermions

Since almost all previous lattice simulations of four-fermion theories were performed

with staggered fermions, this section gives a short overview of their properties [GL10;

Wip13]. Often, they are also named after Kogut & Susskind [KS75]. Starting from a naive

discretisation of the kinetic term, a spacetime dependent similarity transformation of the

spinors is applied that diagonalises the γµ. One ends up with dγ copies of the same action

(two or four in our cases). To reduce the number of doublers, only a single copy is kept as

the staggered action, also reducing the computational cost of simulations. It is possible

to rearrange this single-component staggered field into new Dirac fermions. They are

formed from the eight neighbouring points of a cube, leading to a new lattice with doubled

spacing. For the reducible representation, we now get two so-called tastes of fermions

instead of the eight doublers of the naive theory. Unfortunately, the tastes do not have the

full chiral symmetry of the original theory, and it is in general not clear if the full symmetry

is recovered in the continuum limit. For GN, staggered fermions should reproduce the

correct chiral behaviour. A discussion of previous results can be found in section 3.3.2.

On the other hand, staggered simulations of Th have a breaking pattern which does not

correspond to the continuum version (2.6). These results are summarised in section 4.2.2.

Ginsparg-Wilson Relation

Long after the first formulation of QCD on the lattice, and still a long time after the initial

paper of Ginsparg & Wilson [GW82] in 1982, it was realised that solutions (lattice Dirac

operators D) to the Ginsparg-Wilson relation

{
D,γ5

}= aDγ5D (2.49)

(i)This can require a large amount of communication since the Fourier transformations need lines of the
whole linear lattice extend in any dimension. The investigation of parallel implementations more adapted
to the problem at hand could be interesting, but was outside the scope of this project.
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can be obtained and used to simulate QCD with a modified chiral symmetry. For lattice

spacing a → 0, the modified transformations reduce to the correct continuum expressions

as in (2.4), while the Ginsparg-Wilson relation reproduces the definition of a chirally

symmetric Dirac operator {
D,γ5

}= 0. (2.50)

Nowadays, several lattice Dirac operators are known that allow exact chiral symmetry on

the lattice via (2.49), see [GL10; Wip13] and references therein for some examples. Although

these operators are commonly used to study QCD, they can be employed to investigate

three-dimensional four-fermion theories. Pioneering work for using domain wall fermions

in our setup was done by Hands [Han15; Han16a], who also presented first results on GN

and Th [Han16b] that we will summarise in section 3.3.2 and section 4.2.2, respectively.

2.3.3. Calculation of Fermionic Observables

Having clarified our implementation of chiral symmetry on the lattice, the main goal

is to investigate χSB. In section 2.1.1 it was already explained that the reducible chiral

condensate
〈
ψ̄ψ

〉
:= 1

V

∑
I
〈
ψ̄IψI

〉
is an order parameter for the expected phase transition

between a symmetric and a broken phase. Thus, it is the main observable for all our

simulations. With the notation of (2.39), it can be written as a derivative of the partition

sum with respect to m:

〈
ψ̄ψ

〉= 1

Z

∫
Dψ̄DψDϕ

1

V

(∑
I
ψ̄IψI

)
exp

(
−∑

J ,K
ψ̄J D JK [m,ϕ]ψK +Sbos[ϕ]

)
=− 1

V

∂

∂m
ln Z where D[m,ϕ] = /∂+m +D[ϕ].

(2.51)

On the other hand, the chiral condensate can be expressed through the propagator as

1

V

∑
I

〈
ψ̄IψI

〉= 1

V
trD[m,ϕ]−1, (2.52)

where the matrix inverse is usually estimated by stochastic estimator methods [Bit89; DL94].

One introduces NSE vectors ηα of random noise to obtain an approximation of

D−1
I J ≈ 〈

η†
J D−1

I KηK
〉

with
〈
η†

Iη J
〉= 1

NSE

NSE∑
α=1

ηαI η
α
J = δI J and

〈
ηI

〉= 0. (2.53)

This requires to solve the NSE matrix equations DK JχJ = ηK , instead of a full inversion of

the matrix. Usually, NSE can be chosen much smaller than the matrix size and the error

decreases with 1/
p

NSE.

A second observable, that is useful for all four-fermion theories, is the chiral susceptibility.

In accordance with common practice for spin systems, it is given by the derivative of the

order parameter with respect to the external field, which is the bare mass in our case. For

continuum models, the susceptibility should show a divergence at the critical point where

27



2. General Properties and Simulation Setup

the condensate is non-differentiable. As a remnant in a finite volume, we expect a finite

peak on the lattice in our lattice susceptibility

χ := 1

V

∂

∂m

〈
ψ̄ψ

〉= 1

V

∂2

∂m2
ln Z = 1

V

〈∑
I ,J

(
ψ̄IψI

)(
ψ̄JψJ

)〉
= 1

V

∑
I ,J

(
D−1

I I D−1
J J −D−1

I J D−1
J I

)
.

(2.54)

In our implementation, no average over J is present because the connected part D−1
I J D−1

J I is

calculated with a matrix inversion on a point source at a randomly chosen lattice point. The

disconnected parts are computed with the stochastic estimation described above. To get

measurements of the susceptibility with small errors and to obtain accurate histograms of

the chiral condensate, a large number of stochastic estimators is needed. We typically use

NSE = 1000. Special algorithms are available to speed up the solution of linear equations

with multiple right-hand sides. During the present work, the incremental eigCG algorithm

of Stathopoulos & Orginos [SO10] was implemented. It gathers information about the

eigensystem of D while performing a usual CG iteration. We can use this information for

subsequent solutions with different right-hand sides to project out the lowest eigenvalues

of the matrix. This leads to a better condition number and can drastically decrease the

number of iterations needed in the CG.

During the investigation of the dual variables formulation in section 6.2, another ob-

servable, the lattice filling factor 〈k〉, proved to be useful. The field k will be introduced

in section 6.2 and counts the fermions interacting locally with the auxiliary fields. Due to

the Pauli principle, it takes integer values with k ∈ [0,dγV Nf], where the maximum is the

total number of spinor degrees of freedom on the lattice. At the maximal value, the lattice

is saturated with interacting fermions and free propagation is not possible. We will see,

that this happens at very strong couplings and introduces lattice artefacts. Regardless of its

origin, we can calculate the lattice filling factor in all formulations via

〈k〉 = 1

dγNf

(
− λ

V

〈
d

dλ
ln Z

〉
+Nϕ

)
= 1

dγNf

(
1

V

〈
Sbos[ϕ]

〉−Nϕ

)
. (2.55)

With this definition, it is normalised to 〈k〉 ∈ [0,1] and the number of auxiliary scalar

fields Nϕ appears to cancel contributions from the λ-dependent factor induced by HS in

(2.31). In the conventional formulations it is the average value of the bosonic action or

equivalently of the four-fermion terms.

2.4. Sign Problem

The rHMC algorithm described in section 2.3.1 requires a probability interpretation of

expression (2.40). This implies that the action must be real. Otherwise, the action is said

to suffer a sign problem, which obstructs simulations of many fermionic systems [TW05].
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2. General Properties and Simulation Setup

Most importantly, it also occurs in QCD at non-zero chemical potential, motivating various

attempts to avoid or solve the sign problem, see for example the review by Forcrand [For10].

In section 2.4.1, we only present a few which are relevant for this work, while section 2.4.2

investigates the properties of our Dirac operators. Only for some models, we will be able to

prove the absence of a sign problem.

2.4.1. Approaches to Solve the Sign Problem

In this section, we present two of various approaches to solve the sign problem. We begin

with the easiest approach of reweighting and go on with the fermion bag approach that is

useful for four-fermion theories.

Reweighting

A simple approach to circumvent the sign problem is reweighting [For10], which shifts

the exponential of the imaginary part of S into the observables. We rewrite the partition

sum (2.1) as

Z =
∫

Dψ̄DψDϕ e−ReS[ψ̄,ψ,ϕ]e−i ImS[ψ̄,ψ,ϕ] = ZP̂

〈
e−i ImS[ψ̄,ψ,ϕ]

〉
P̂

, (2.56)

where the expectation value is now computed with respect to the non-negative probability

P̂ = 1

ZP̂
e−ReS[ψ̄,ψ,ϕ] and ZP̂ =

∫
Dψ̄DψDϕ e−ReS[ψ̄,ψ,ϕ]. (2.57)

Then, we can write expectation values of general observables (2.2) as ratios

〈O〉 =
〈
O e−i ImS[ψ̄,ψ,ϕ]

〉
P̂〈

e−i ImS[ψ̄,ψ,ϕ]
〉

P̂

:= 〈OΩ〉P̂

〈Ω〉P̂
(2.58)

with weight Ω= e−i ImS[ψ̄,ψ,ϕ]. Viewed this way, the sign problem is strong if the denom-

inator of (2.58) becomes very small. In this case, a better estimate of 〈O〉 requires an

exponentially growing number of configurations [TW05]. Whenever we must expect a sign

problem, we perform simulations with an exact calculation of the fermion determinant

as described in section 2.3.1 and measure 〈Ω〉. We take the real part 〈w〉 := Re(〈Ω〉) as a

measure for the strength of the sign problem. If it is close to one, the reweighting procedure

can give good results. For 〈w〉 ≈ 0, different approaches are necessary.

Fermion Bag Approach

One possibility to overcome the sign problem is to introduce a different set of variables,

like in the fermion bag approach. It was invented by Chandrasekharan [Cha08; Cha10] and

extensively used to study four-fermion theories. A review can be found in [Cha13]. Results

from the relevant papers for this thesis are discussed in more detail in section 3.3.2 for GN

and in section 4.2.2 for Th. Most of these works use staggered fermions, so that they are

possibly affected by the problems discussed in section 2.3.2. Using SLAC fermions instead,

a similar approach inspired by the fermion bag formulation is presented in section 6.2.
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Contrary to conventional HMC simulations, no HS is needed to introduce the fermion

bags. Instead, the exponential of the four-fermion interaction in the partition sum (2.1)

is expanded in the coupling. Due to the fermionic nature, the expansion contains only a

single non-constant term. One can split up the path integral into configurations of new

variables that take the value 1 if the interaction term is present and 0 otherwise. In the

staggered formulation of [Cha10], the variables represent bonds between neighbouring

lattice sites that can be either free or occupied. Then, the path integral can be evaluated

analytically, again leading to a fermion determinant similar to (2.43). However, each row

and column corresponding to an occupied bond must be dropped. What remains is a

product of determinants, each describing a region where fermions are free. These regions

are called fermion bags. Due to a duality, efficient simulations can be performed both

at weak and strong couplings, when either the size of fermion bags or their dual is small

[CL11b; CL12a].

The fermion bag approach allows to solve some sign problems that are present for

example in the Nf = 2 staggered formulation of GN [CL12b; Li13]. This is due to the fact

that the sign problem only occurs for the free fermions inside the bags. Since the bags are

much smaller than the whole lattice, it is easier to resum these configurations, yielding

a reliable result. Simulations with Wilson fermions were also considered [Cha12; CL11a],

with mixed success regarding the sign problem.

2.4.2. Analytical Properties of Our Dirac Operators

Some properties of Dirac operators can be used to prove the absence of a sign problem. For

example, the free, massless operator /∂ (equal to i /p in momentum space) is anti-Hermitian

so that its eigenvalues are purely imaginary. The same is true for /∂+ i /V , the Dirac operator

of massless Th after HS in (2.33), and the model FVM in (2.37b) for m = 0. Since the matrix

size is always a multiple of the even number dγ, the determinant is purely real. It can still

be negative so that this property is not sufficient to prove the absence of a sign problem.

Nevertheless, one can show for the reducible Th that eigenvalues appear in complex

conjugate pairs, but below we will use another proof together with GN. Introducing a mass

term or a scalar field for GN as in (2.32) destroys the anti-Hermiticity. The Dirac operator

of G45 also includes the Hermitian matrix γ45, while NJL contains a mixture of Hermitian

and anti-Hermitian parts. Regarding the model FM in (2.38), the operator also contains a

mixture of Hermitian and anti-Hermitian parts.

Reducible Models

First, we show the absence of a sign problem in the reducible representation for the

combination of GN and Th, simulated in section 5.1. Additionally, we include a possible

mass term, showing the result to hold also for massive Th, studied in section 4.1.2. This

operator has parts proportional to γµ and the identity. Using the representation of the

Clifford algebra (2.17), we get a block diagonal form of the Dirac operator with an additional
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minus sign for the lower block of γµ. We can write the determinant with an anti-Hermitian

irreducible part Dah =σµ(∂µ+ iV µ) =−D†
ah and the Hermitian part M = (m +σ)1= M † as

det(DGN+Th) =
∣∣∣∣∣Dah +M 0

0 −Dah +M

∣∣∣∣∣= det(Dah +M)det(−Dah +M)

= det(Dah +M)det
(
(Dah +M)†)= |det(Dah +M)|2 ≥ 0,

(2.59)

where we used det(D†) = (detD)∗. Similarly, one can use σ2, the charge conjugation matrix

of the irreducible representation, to show that the two blocks are the complex conjugate of

each other.

This proof no longer works for G45 because γ45 introduces a sign flip in the Hermitian

part that cannot be compensated by Hermitian conjugation. On the other hand, the

model with a negative coupling g 2
G45 < 0 (or alternatively choosing a positive sign of the

interaction in (2.8)) possesses an anti-Hermitian operator including iγ45ρ, that is free of a

sign problem. We show in appendix D that this is not the right choice, so that we must use

the version with potential sign problem. For NJL, an argument with the reducible charge

conjugation matrix shows that eigenvalues come in complex conjugate pairs, turning the

determinant real [GKN13]. Thus, the absence of a sign problem can only be proven for

even Nf.

Irreducible Models

Now, we turn towards irreducible models. In the case of Th, the anti-Hermitian operator

ensures purely imaginary eigenvalues. For the massless model, no sign problem is expected

for even Nf,irr due to the relation to the reducible model. This is no longer valid with

an irreducible mass term, where we must expect a sign problem for any Nf,irr. For the

irreducible G45 in (2.21) (the irreducible model with GN interaction), we have DG45,irr =
/∂+m +ρ for a single irreducible flavour with general complex eigenvalues. If Nf,irr is

even, the resulting operator is similar to the reducible GN, but a sign is missing that is

important to ensure non-negative eigenvalues via charge conjugation. For example, the

irreducible two-flavour model has det
(
DG45,irr

)2 = det
(

/∂+ρ1)2 while the reducible single-

flavour model has det
(
DGN,red

)= det(/∂+σ1)det(−/∂+σ1) = |det(/∂+σ1)|2. We must expect

a sign problem for any Nf,irr, but if we simulate the phase-quenched model with an exact

update as described in section 2.3.1, we have∣∣detDG45,irr
∣∣= ∣∣det

(
/∂+ρ1)∣∣2 ≡ detDGN,red. (2.60)

Thus, for any even Nf,irr, a phase-quenched simulation of the irreducible model should be

identical to the reducible GN. Regarding the Fierz transformed versions of irreducible Th,

no properties but the anti-Hermiticity of FVM are known, leading to a real determinant.

For FM a complex determinant must be expected.
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We begin our numerical study with GN, knowing from previous investigations that a

second-order χSB phase transition exists for all flavour numbers. It defines the chiral Ising

universality class commonly discussed to be relevant for the physics of graphene [Her06;

JH14]. The name originates from the Z2-symmetry breaking that our GN Lagrangian (2.11)

shares with the Ising model, while the fermionic nature with chiral symmetry puts it in a

distinct universality class.

To measure the critical exponents, we work with methods from the theory of finite

size scaling that we introduce in section 3.1. Furthermore, it summarises our numerical

methods to interpolate data points and to obtain error estimates. Simulating the reducible

GN with the SLAC derivative introduced in section 2.3.2, we provide a general overview of

observables in GN as well as new measurements of the critical exponents in section 3.2. We

also study various different methods to obtain the critical exponents in order to find the

optimal choice for the evaluation. Our findings are discussed and compared to previous

results in section 3.3. Finally, in section 3.4, we compare the reducible GN with G45, which

is equivalent to an irreducible formulation of GN.

3.1. Observables and Computational Methods

An order parameter for a second-order χSB phase transition is the chiral condensate 〈ψ̄ψ〉
introduced in section 2.3.3. It is directly related to the expectation value of the GN scalar

field σ in the Lagrangian (2.32) due to a DSE,∫
Dψ̄DψDσ

δ

δσ(x)
e−S[ψ̄,ψ,σ] = 0 ⇔ 〈

ψ̄ψ
〉=−λGN〈σ〉, (3.1)

with σ= ∑
x σx . Thus, there is no need for a time-consuming computation of the chiral

condensate on every configuration. We only calculate it on the smallest lattice size for a

general overview. As in the Ising model, we expect tunnelling between the two minima of

the effective potential at σmin and −σmin, leading to 〈σ〉 ≈ 0. Hence, we take the absolute

value and use Σ := 〈|σ|〉 as an order parameter. Similarly, we measured the susceptibility of

the scalar field

χ=V
(〈
σ2〉−〈|σ|〉2) (3.2)

instead of the susceptibility of the chiral condensate. Both Σ and χ are expected to show a

particular behaviour at a second-order phase transition that can be described by critical

exponents. In section 3.1.1, we present methods to obtain them from lattice simulations.

Furthermore, we combined results from simulations at different λGN with an interpolation

algorithm described in section 3.1.2 together with our method to estimate statistical errors.
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3. Gross-Neveu Model

Table 3.1.: A common set of critical exponents and the corresponding physical quantity. The
reduced coupling t is defined in (3.3), m is an external symmetry breaking parameter and k is
the momentum. The column “Ising” refers to the standard mean field values for the Ising model
with Z2-symmetry [Wip13]. The mean field calculation for GN is different, due to a different
form of the effective potential. Values up to order 1/Nf from Hands et al. [HKK93] are given in the
column “GN”. A more general calculation shows that these values depend on the dimension and
only coincide with the Ising values for d = 4 [HKK91]. O

(
1/N 2

f

)
results are given in (3.4).

Exponent Quantity Relation Ising GN

α specific heat, m = 0 C ∝|t |−α 0
β order parameter, m = 0 Σ∝ tβ 1/2 1+O

(
1/N 2

f

)
γ susceptibility, m = 0 χ∝|t |−γ 1 1+ 8

Nfπ
2

δ order parameter at t = 0,m 6= 0 Σ∝ m
1
δ 3 2+ 8

Nfπ
2

ν correlation length ξ∝|t |−ν 1/2 1+ 8
3Nfπ

2

η two-point correlation function Dσ∝ 1
kd−2+η 0 1− 16

3Nfπ
2

3.1.1. Critical Exponents from Finite Size Scaling

For the definition of critical exponents, several observables are considered as a function of

the reduced coupling

t = λcr
GN −λGN

λcr
GN

. (3.3)

In table 3.1 the commonly used set of exponents and their definitions is given together

with their values in 1/Nf-expansion up to first order from Hands et al. [HKK93]. With more

sophisticated techniques, the critical exponents were obtained at least up to O
(

1/N 2
f

)
[Gra92;

Gra93; Gra94a; Vas93; Der93]. They are presented by Kärkkäinen et al. [Kär94] in a form

convenient for comparison with lattice results as

1

ν
= 1− 32

3π2n
+ 64

(
27π2 +632

)
27π4n2

+O (n−3), (3.4a)

γ

ν
= 1+ 64

3π2n
+ 64

(
27π2 −304

)
27π4n2

+O (n−3), (3.4b)

where n = Nf dγ includes the number of spinor components dγ additionally to Nf. There-

fore, it is different for reducible and irreducible models. A closer look at the expansion

(3.4a) shows that the large-Nf expansion may not be valid for the values of Nf considered

here. For example, the second-order term is larger than the first-order term for Nf = 2,

where (3.4a) reads 1/ν= 1−0.135+0.341. For this reason, Janssen & Herbut [JH14] use a

Padé approximation

[1/1](1/ν)(Nf) =
584+27π2 +18π2Nf

632+27π2 +18π2Nf
(3.5)

for comparison. The notation [1/1] f stands for an approximation of the function f by the

quotient of two polynomials each with degree 1. A series expansion of (3.5) leads back to

(3.4a), but the rational function can provide better estimates for small values of Nf.
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Only two critical exponents are given in (3.4) because the others are not independent

and can be obtained from hyperscaling relations. Derivations for many of them are given

in the book of Plischke & Bergersen [PB06]. Later, we will use for example

2β+γ= dν
d=3=⇒ 2

β

ν
+ γ

ν
−3 = 0, (3.6)

where we restricted the expression to the spacetime dimension(a) d = 3. Another iden-

tity can be used to relate the exponent γ to the anomalous dimension η, which is often

calculated in analytical work:

γ

ν
= 2−η ⇒ β

ν
= 1

2
(1+η). (3.7)

Further useful relations for GN are given by Hands et al. [HKK91] and proven to be satisfied

up to O (1/Nf). Hands et al. [HKK93] also showed that the validity of hyperscaling is equiva-

lent to the renormalisability of the model. Thus, it is important to check in our numerical

results if these relations hold. We calculate γ/ν and β/ν independently and monitor the

quality of our estimates with the identity (3.6). The third independent measurement is

performed for 1/ν.

Finite Size Scaling and Critical Coupling

The ratios of critical exponents can be obtained by lattice simulations with methods from

the theory of finite size scaling. Our setup is comparable to previous lattice studies of GN

[Kär94; CS07] and similar models (e.g. [FJP96]). We calculate critical exponents from the

scaling of thermodynamic observables with the size of the finite system, assuming that the

correlation length ξ is the only relevant length scale. Good introductions can be found in

the books of Landau & Binder [LB09], Plischke & Bergersen [PB06] or in more detail in the

older work of Binder [Bin92]. The validity of hyperscaling relations is used when deriving

the expressions cited in the following and gives another reason to check it numerically.

Before we are able to calculate critical exponents, we have to determine the critical

coupling of the phase transition. Examining the fourth-order cumulant by Binder [Bin81],

UB = 1−
〈
σ4

〉
3
〈
σ2

〉2 , (3.8)

this can be done independently of critical exponents. Note, that the powers are taken after

summation over the lattice since σ=∑
x σx . In the symmetric phase, the distribution of

the scalar field is expected to be Gaussian around zero, so that UB(λGN À λcr
GN) = 0 for a

theory with Z2-symmetry [CS07]. On the contrary, the value of UB(λGN ¿ λcr
GN) = 2/3 in

the broken phase is independent of the symmetry. In a finite system, there is a smooth

transition between these values. Only directly at the critical point, the value UB(λcr
GN) is

independent of the system size. Thus, λcr
GN can be obtained from the intersection points of

(a)In general, relations involving d are called hyperscaling relations, otherwise they are just called scaling
relations.

34



3. Gross-Neveu Model

UB(λGN) for different lattice sizes. For very small sizes, corrections to the constant value

are expected. According to Binder [Bin81], they can be described by

UB(L,b) =U cr
B

(
1+ c L−w 1−b−w− 1

ν

1−b− 1
ν

)
. (3.9)

Here, UB(L,b) is the value of the two Binder cumulants for the lattice sizes L and b L

at their intersection, assuming b > 1. U cr
B is the value of the Binder cumulant at the

continuum critical point. We further introduced an arbitrary constant c and a correction

exponent w that is a universal quantity like the critical exponents defined in table 3.1. It

was recently calculated up to first order of the large-Nf expansion by Gracey [Gra17]. A

similar form exists for the value of the critical coupling. Commonly, the term 1−b−1/ν is

crudely approximated by 1/ν lnb, so that plots of the data depending on 1/lnb can be roughly

fitted with the linear functions [Bin81; CS07]

UB(L,b) ≈U cr
B + cU

lnb
(3.10)

λ−1
GN(L,b) ≈ (λcr

GN)−1 + cλ
lnb

, (3.11)

obtaining values for the coefficients cU ,cλ as well as U cr
B ,λcr

GN, the continuum estimates for

Binder cumulant and coupling at the critical point.

Here, a special problem arises due to the SLAC derivative because we do not simulate

on cubic lattices. As mentioned in section 2.3.2, we have V = L × (L −1)× (L −1) lattice

points, making it uncertain, which value of L to take for the finite size scaling formulae.

They require the validity of hyperscaling relations and the derivation of Binder [Bin81]

assumes V = Ld . Thus, the most reasonable choice is

L̃ = 3p
V = 3

√
L(L−1)2. (3.12)

From a more physical point of view finite size scaling theory is based on the fact that the

correlation length on the lattice is limited by the lattice size. Hence, taking L̃ = L−1 as the

smallest extent of the lattice could be a good choice. We will investigate both possibilities

together with the naive choice L̃ = L in order to find systematic errors. In the following, we

keep this problem in mind, but drop the tilde on L to make the notation clearer.

Critical Exponents from Finite Size Scaling

After obtaining λcr
GN and U cr

B , these values are used to evaluate Σ and its susceptibility χ.

In the following, both variants are possible and we will compare results from using e.g.

Σ(λcr
GN) and Σ(U cr

B ). Then, a dependence on the lattice size of the form

Σ := 〈|σ|〉∝ L−β
ν and χ∝ L

γ
ν (3.13)

is expected from finite size scaling theory for sufficiently large L. In this way, we obtain

the ratios β/ν and γ/ν that are related by the hyperscaling relation (3.6). As a second,
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independent exponent, we measure ν because there are several possible observables that

only scale with ν. One example is the slope of the Binder cumulant (3.8). It scales with

∂UB

∂λ
∝ L

1
ν . (3.14)

The same scaling behaviour is expected for derivatives of the logarithm of the order param-

eter to some power. We use the particular form

D := ∂ ln〈|σ|〉
∂λ

= 〈|σ|Sbos〉
〈|σ|〉 −〈Sbos〉∝ L

1
ν , (3.15)

where Sbos is the purely bosonic part of the action corresponding to (2.32). Contrary to〈
σ2

〉
, the scalar field is first squared and then averaged over the lattice. This observable

only contains up to three powers of the scalar field and thus seems preferable to (3.14),

where also higher powers must be calculated.

A similar method, sometimes called phenomenological renormalisation [EFM92], is to

consider lattices of size L and b L and perform fits to

fλ(O ) := ln

(
O (bL,λcr

GN)

O (L,λcr
GN)

)
=ω ln(b), (3.16)

where O = Σ,χ,D and the corresponding exponents ω are −β/ν,γ/ν and 1/ν. Corrections

similar to (3.9) can be calculated. Additionally, we used (3.16) with values of the observables

at fixed U cr
B instead of λcr

GN and call the corresponding function fU (O ).

In the continuum theory, χ and D are divergent at the critical point. This is not possible

in a finite volume, but both observables should have a peak which grows for increasing

volume. Thus, fully independent of the estimate for λcr
GN from the Binder cumulant, we can

use the maximal values at the peaks in χ and D for O in (3.16). Similarly, we can estimate β

directly from the scalar field expectation value by a fit to the defining equation

Σ∝ (
λcr

GN −λGN
)β . (3.17)

This first requires an extrapolation to infinite volume. We perform this by a linear fit,

checking if Σ is constant or tends to zero for V →∞. Then, we scan a range of λcr
GN as a

fixed parameter in the fit and chose the result with the smallest error in β.

In total, we can compare three different approaches, where the first two can be done

either at fixed critical coupling or fixed value of UB using a conversion from λGN to UB with

our measured function UB(λGN). The methods are:

Fit λ/UB: Direct linear fit to the size dependence (3.13) and (3.15) after taking the loga-

rithm of the data points. This was used for example in [Kär94; CS07]

Ren λ/UB: Phenomenological renormalisation by evaluation in terms of ratios of different

lattice sizes L and bL and fits to (3.16). See for example [FJP96].
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noBC: Estimation of the exponents without use of the Binder cumulant, where γ/ν and 1/ν

are obtained from the height of maxima in χ and D. Σ is directly fitted to (3.17) to

obtain β.

3.1.2. Interpolation and Error Estimates

With Monte Carlo simulations it is only possible to obtain values of observables at discrete

couplings λp for p = 1, . . . , Nλ. The method of multi-histogram reweighting [FS89] allows

to reuse the data from all Nλ simulations to calculate observables as a continuous function

in λ, interpolating the discrete measurements. Like Kärkkäinen et al. [Kär94], we use a

variation of this method, which does not need histograms. It was first described by Kajantie

et al. [KKR91] and works as follows.

As input, we need measurements of the scalar field average (1/V
∑

x σx)p,i for all p =
1, . . . , Nλ on every configuration i = 1, . . . , N conf

p as well as the part of the action that is

proportional to the coupling. For GN, the latter is given by Hp,i := (1/2
∑

x σ
2
x )p,i , the bosonic

action divided by the coupling. Then, one solves the following system of equations for the

free energy fp at λp :

e− fp =
Nλ∑

q=1

N conf
q∑

i=1
P

(
λp , Hq,i

)
, (3.18a)

P
(
λ, Hq,i

)= ωq e−λHq,i∑
r ωr N conf

r e−λr Hq,i+ fr
. (3.18b)

Here, additional weights ωp = (1+2τp )−1 can be used to take the autocorrelation time τp

into account. We will introduce it in (3.21). Then, ωp N conf
p is an estimate for the number of

uncorrelated configurations at coupling λp .

For any observable that is only a function of the scalar field, we can use (3.18b) to evaluate

it at arbitrary λ. Once the fp are determined, it is given by

〈O〉(λ) =
∑

p,i O
(
σp,i

)
P

(
λ, Hp,i

)∑
q, j P

(
λ, Hq, j

) . (3.19)

We use this procedure to calculate 〈|σ|〉,〈σ2
〉

,
〈
σ4

〉
,〈Sbos〉 and 〈|σ|Sbos〉 as functions of λ.

With these expectation values, we can calculate interpolations for the susceptibility χ (3.2),

the Binder cumulant UB (3.8) and the logarithmic derivative of the order parameter D

(3.15).

Since the values Hq,i can be very large and grow with the lattice volume, it is beneficial

for the numerical evaluation to rewrite (3.18b) as

P
(
λ, Hq,i

)=ωq

[∑
r
ωr N conf

r eHq,i (λ−λr )+ fr

]−1

. (3.20)
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The C-code(b) written to calculate interpolations evaluates the exponentials with data

type long double, which has an extended precision and range using 80 bits(c). This was

sufficient to obtain interpolations over a reasonable range of λ for all lattice sizes studied

here. In addition, the system of equations (3.18b) allows a constant shift in all fp , allowing

to fix one parameter (for example f1) at an arbitrary value. This reduces the number of

equations to solve by one. For the problem at hand, we perform a first run with f1 = 0 to

determine the full solution. For further solutions on resampled data, that we need in the

next paragraph to obtain error estimates, we set f1 =−1/2 fNλ
, leading to a solution where

the fp are distributed symmetrically around zero. This slightly increases the performance

and prevents numerical overflows in the exponentials, hence allowing interpolations over a

longer range in λ. Besides that, a solution of the system can be obtained with a few (O (10))

iterations of a standard solver for non-linear equations. The current implementation

uses a multidimensional root finding algorithm of the freely available GNU Scientific

Library.

Error Estimates

Common methods to estimate statistical errors in lattice field theory calculations are

Jackknife- and Bootstrap-resampling together with a binning of the data. See the book of

Gattringer & Lang [GL10] for a short introduction. All data points directly obtained from a

simulation are given with a Jackknife error estimate of one standard deviation calculated

in the simulation program.

For the calculation of the critical coupling and critical exponents, the whole procedure

described above is performed within a binned Bootstrap process, allowing a greater flexi-

bility than the Jackknife method. With a single set of lattice size and flavour, it proceeds as

follows:

1. Divide the dataset of N conf
p configurations for each λp into bins of size Nbin. This is

done to reduce the correlation of configurations. In the following evaluation, we use

Nbin = 50.

2. Create Nboot samples for each λp , where each sample has the original number of

N conf
p configurations but consists of randomly chosen bins.

3. Calculate Nboot interpolations, one for each set of samples.

Afterwards one can calculate a statistical error with the usual Bootstrap formula (see e.g.

[GL10]) for every point of the interpolation, but we will continue with the interpolation

samples on the randomly arranged bins. Performing the whole evaluation of critical expo-

nents on a large set of resampled data allows us to obtain reliable estimates of the statistical

errors for our final measurements. We repeat the three steps with each of the Nlat lattice

(b)The source code of the implementation can be obtained from https://github.com/daniel-schmidt/
HistogramReweighting.

(c)This number of bits can depend on compiler implementation and system architecture.
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sizes available for a given Nf. For a single run of the finite size scaling analysis, we now

need a single interpolation from each lattice size. Building all possible combinations of

samples from the different lattices gives a total of Ntot = N Nlat
boot combinations of interpola-

tions. Performing the evaluation on all of these samples is not feasible given our amount

of data (usually Nboot = 1000 and Nlat = 7). We use another random choice, so that the

implemented algorithm is:

1. Randomly select a combination of interpolations from the Ntot possible combina-

tions, e.g. by generating Nlat random indices in the range from 1 to Nboot.

2. Obtain an estimate of
(
λcr

GN,U cr
B

)
by intersecting the interpolated Binder cumulants

of the chosen combination.

3. Calculate an estimate of the critical exponents with the other observables Σ,χ and D

of the same combination, possibly using either λcr
GN or U cr

B .

Repeating this Nhist = 104 times(d), we get histograms of critical values and exponents.

Then, the best estimate is given by the mean of all Nhist values with a statistical error given

by the standard deviation of the data.

Integrated Autocorrelation Time

To include a weight for the different λp in the interpolation (3.18), we calculate the inte-

grated autocorrelation time τ of |σ| with an octave code from [Wol04; Wol07; SSV11]. It

calculates τ from the autocorrelation function Γ(t), which depends on the separation t

between the configuration numbers. As usual it is defined by [GL10]

τ= 1

2
+

W −1∑
t=1

Γ(t )

Γ(0)
, (3.21)

and the algorithm tries to find an optimal cutoff W to minimize systematic as well as

statistical errors.

3.2. Simulation Results for the Reducible Model

In this section, we numerically explore the reducible GN and calculate critical exponents

for Nf = 1,2,4 and 8. Since there is no sign problem in this model (see section 2.4.2), we use

the rHMC algorithm explained in section 2.3.1. A first run with an rHMC trajectory length

of 0.6 showed large autocorrelations in σ, preventing reliable estimates for the critical

coupling. An increase to 3.0 on smaller lattices (L ≤ 16) and 5.0 on L ≥ 20 was necessary to

ensure independent configurations when performing 10 intermediate updates between

measurements. We tuned the parameters of the algorithm to achieve an acceptance rate of

more than 80%.

(d)Larger numbers like Nhist = 5 ·104 are possible but do not give better error estimates.
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Figure 3.1.: Observables in GN as a function of λGN for various Nf on lattice size 8. The first
row shows expectation values of absolute values of the chiral condensate 〈|ψ̄ψ|〉 and the scalar
field Σ. The second row displays the scalar field susceptibility χ from (3.2) and the derivative
of the logarithm of the scalar field expectation value D from (3.15). The last row shows the
Binder cumulant UB from (3.8) and the lattice filling factor 〈k〉 defined in (2.55). Most errors
are smaller than the symbol size. The large fluctuations for λGN . 0.2Nf are due to insufficient
thermalisation (see figure 3.2) and Pauli blocking on the lattice. Not all points in this region are
visible in the plot range.

We begin with a general presentation of the observables in section 3.2.1, qualitatively

investigating the general behaviour including dependence on flavour number and lattice

size. Additionally, remarks about the interpolation procedure are given. Afterwards, sec-

tion 3.2.2 compares different methods to calculate the critical coupling and gives estimates

for all four flavour numbers we investigate. Quantitative results for the critical exponents

are given in section 3.2.3, where different approaches are compared again. In the present

section, we mainly focus on various evaluation methods. Later, in section 3.3, our best

estimates are compared to literature values.

3.2.1. General Observations

We first present an overview of the observables for GN on lattice size 8, where it is easy to

obtain a large number of configurations for many couplings. The results as a function of
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Figure 3.2.: HMC history of scalar field values at strong couplings. To make the images clearer,
only every 50th measurement is shown.

λGN for varying Nf are given in figure 3.1. As expected, Σ, the absolute value of the scalar

field, tends to zero for large λGN (weak coupling) and shows a region with non-zero expec-

tation value for stronger coupling, signalling χSB. The value of Σ grows linearly with the

interaction strength, but for very strong couplings (λGN < 0.15 for Nf = 1), large fluctuations

and a sharp decrease are present. Looking at the scalar field values on single configurations

of the ensembles in figure 3.2, we find a problem with the thermalisation of the system at

very strong couplings. While only a few updates are needed to reach equilibrium for weak

couplings, about 104 are necessary for λGN = 0.136 and λGN = 0.144 until the scalar field

shows a fluctuation around an average value close to 4. Correspondingly, the integrated

autocorrelation time (not shown here) is of order 103 for Nf = 1 and 2. There seems to be a

saturation of the average value at these couplings and a linear growth is no longer observed.

For even smaller couplings, there is still a tendency to grow at least for λGN = 0.12 and

λGN = 0.128, but no thermalisation was reached within 3 ·104 updates. Since the chiral con-

densate is proportional to λGN〈σ〉 by (3.1), the saturation of 〈σ〉 leads to a non-monotonic

condensate approaching zero in the λGN → 0 limit. All other observables show unreliable

values in this region due to the insufficient thermalisation. Regarding the lattice filling

factor defined in (2.55) and shown in the bottom right of figure 3.1, we find the onset of

thermalisation problems above half filling around λGN = 0.2Nf. For larger λGN, the lattice

filling decreases smoothly. It approaches zero in the region of the critical point, indicating

that the symmetric phase is dominated by free fermions. In conclusion, the lattice filling

factor suggests three phases: a phase of lattice artefacts with very long autocorrelations,

when more than half of the fermions are interacting, a strongly interacting phase with

broken chiral symmetry and a symmetric phase with almost no fermion interaction.
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Outside of the artefact phase, we find the expected behaviour in figure 3.1: The Binder

cumulant approaches the values of 2/3 in the broken and 0 in the symmetric phase with

a transition in the critical region. This region is also marked by a peak in both suscepti-

bility χ and logarithmic derivative of the scalar field expectation value D. The integrated

autocorrelation time is of O (1) for all couplings outside the problematic region.

Dependence on the Flavour Number

When increasing the flavour number, we observe a growing value of λcr
GN/Nf in figure 3.1,

moving the critical point away from the artefact phase. The scalar field in the linear regime

grows slower the larger the value of Nf, indicating a changing critical exponent β. This

is consistent with smaller peaks in the susceptibility and the logarithmic derivative, also

indicating a weaker phase transition for increasing Nf. A detailed analysis of the critical

exponents can be found in section 3.2.3. Despite the change in the critical coupling, the

saturation phase sets in around the same coupling. Independently of Nf, the observed

scalar field averages for λGN . 0.24Nf are very close to each other if the ensemble was

able to thermalise. Note, that the changes in Σ from Nf = 4 to Nf = 8 are already small,

indicating that we approach the large-Nf regime. This is reasonable because the expansion

(3.4) is done in 1/n, counting all spinor components so that n = 32 for Nf = 8. Regarding the

computational cost, the necessary simulation time for a fixed number of configurations

increases approximately linearly with Nf.

Dependence on the Lattice Size, Statistical Errors and Interpolation

An overview of the finite size scaling behaviour of the observables near the critical point is

given in figure 3.3 for Nf = 1 and 2. Similar graphics for Nf = 4 and 8 are given in figure C.1
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Figure 3.3.: Raw data and interpolations for GN observables. Symbols indicate the measured data
points with error bars, while lines denote the interpolation obtained with histogram reweighting.
An error estimate for the interpolation is given by a shaded band around the main line.

of appendix C. Data points from simulations are shown together with an interpolation

calculated by the algorithm described in section 3.1.2. Both have error estimates obtained

by a resampling method. Here, we show simulations with evenly spaced lattice sizes

L = 8,12,16,20 and 24 for all flavours on a number of couplings near the critical point.

Additional lattice sizes L = 10 and 14 will be included in section 3.2.2 and 3.2.3 to reduce

errors when determining critical couplings and exponents. A simulation with Nf = 1

and L = 32 was also performed, but is too noisy to increase the quality of our exponent

estimates. We mainly use it to check for systematic errors. The numbers of configurations

we measured is given in detail in appendix C (see table C.1). It is usually 104 or larger for

L ≤ 16 and between 1.5 ·103 and 104 for L ≥ 20.

Despite the changes in the critical coupling and the heights of peaks, the general be-

haviour is the same for all Nf investigated here. The absolute value of the scalar field shows

a clear scaling region, where the value decreases to zero with increasing lattice size, while

the different curves join for increasing coupling strength and are very similar for smaller

λGN. Deviations from scaling are large for L = 8, but already L = 12 is much closer to the

infinite volume limit.

We are able to find a small common region of intersection in the Binder cumulant,

indicating the critical coupling. It is analysed in detail in section 3.2.2. The asymptotic

value of 2/3 for strong coupling is reached quickly for lattice sizes of 16 and larger, showing

a good finite size scaling. On the other side of the intersection (in the symmetric phase),
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tail near the critical coupling for
Nf = 1. Data points from simu-
lations are shown together with
interpolations (transparent, thin
lines) of resampled data. Extrap-
olating the intersections to the
continuum, the critical coupling
is estimated by 0.4751(4), see fig-
ure 3.6(b) and table 3.2.

statistical errors in the Binder cumulant are much larger than in the broken regime. This

can make it difficult to find a unique intersection between adjacent lattice sizes, especially

for L = 20 and 24, where a smaller number of configurations is available. It also obscures

the scaling and may even lead to negative average values of UB. Nevertheless, we mostly

observe the correct approach to zero when increasing L at fixed coupling.

The logarithmic derivative is also affected by larger errors in the symmetric phase on the

largest lattice sizes. Both observables depend on higher powers of the scalar field (third

power for D and fourth power for UB), which can amplify fluctuations. On the contrary, the

errors in the susceptibility are very small, but both χ and D show the expected qualitative

behaviour. They both have a peak, which grows approximately constantly with increasing

lattice size. The quantitative analysis in section 3.2.3 will lead to estimates for γ/ν and 1/ν.

The position of the peak moves to weaker couplings when increasing the lattice size, in

agreement with the intersection points in UB and the roughly non-zero values in Σ. Likely,

the critical inverse coupling on a finite lattice is always smaller than the infinite volume

counterpart.

The interpolation with histogram reweighting tends to show undesirable oscillations

in the symmetrical phase for UB and D, whenever we found large statistical errors in the

data. Indeed, the oscillations can be decreased by interpolating ensembles with better

statistics. This implies that we need a large number of configurations also on larger lattice

sizes, where simulations are expensive. For example, more than 1000 configurations are

necessary for L = 24 to obtain data with sufficient quality. Apart from this, the interpolation

allows to obtain smooth curves that fit the data almost everywhere within the error bars.

Especially the susceptibility is fitted well and the maximum of the peak in the interpolation

seems reasonable, even if only a few data points are available.

3.2.2. Binder Cumulant and Critical Coupling

Now, we go on to a detailed evaluation of the lattice size dependence to calculate the

critical coupling and the value of the Binder cumulant at criticality. A close-up of the

critical region for Nf = 1 and a selection of L is given in figure 3.4, also showing a selection
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Figure 3.6.: Data from intersections of the Binder cumulant for Nf = 1 and L = 3
p

8 ·72. For each
lattice size L′ = 3

p
V ′ intersection points are shown together with mean and standard deviation

similar to the histograms in figure 3.5. The extrapolations were obtained by fitting combinations
of single points to (3.11).

of trajectories on the resampled data blocks. Clearly visible, the intersection of a curve

with the one of the subsequent lattice size moves to larger λGN and smaller UB. Keeping

the smallest lattice size L fixed, we determine the intersection with every size L′ > L. As

described in section 3.1.2, we do this with a set of Nhist = 104 random combinations of

single interpolations on resampled data sets. The resulting histograms for the critical

inverse coupling are given in figure 3.5. Gaussian probability distributions fit well to the

histograms and the mean indeed moves to larger λGN for increasing L′.
Next, we extrapolate each data set to infinite volume values for λcr

GN and U cr
B . Varying

also the smallest lattice size and trying to fit the scaling law with corrections (3.9) did not

lead to reasonable and stable results, so that the rough approximation (3.11) of linear fits

to UB(L,b) or λGN(L,b) vs. 1/lnb was used. Again, b is the ratio of two lattice sizes L′ = b L,

keeping L fixed. The result of the extrapolation is close to the intersection of the smallest

with the largest lattice and can be found together with the data at various L′ in figure 3.6.

Numbers estimated with this procedure together with their statistical error are given in
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(3.22) to the Nf-dependence expected for λcr

GN
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figure 3.7 and table 3.2 for all four flavour numbers. It is known from the large-Nf expansion,

that the inverse critical coupling should depend on Nf via λcr
GN ∝ N 2

f /Nf+1 [HKK91]. Allowing

an additive and a multiplicative renormalisation for our inverse critical lattice coupling,

we indeed found a good fit of

λcr
GN(Nf)

Nf
= 0.16(4)+ 0.65(5)Nf

1+Nf

Nf→∞−−−−→ 0.81(9) (3.22)

to our data points. It is also shown as a dashed line in figure 3.7.

Systematic Errors

To investigate sources of systematic errors, we compared diverse methods to evaluate the

data. No significant deviation was found testing the different possibilities to define the

lattice size (see (3.12)). Hence, we use the third root of the volume for L and L′. Secondly,

we can compare various evaluation methods. Estimates for λcr
GN and U cr

B from the Binder

cumulant intersection and from direct continuum extrapolations of Σ are shown in fig-

ure 3.8. To investigate a third source of systematic errors, the evaluation for both methods

was also carried out without the smallest (L = 8) and the two smallest (L = 8 and L = 10)

lattices. While the direct estimation does not depend much on the smallest lattice sizes,

the Binder cumulant method does. The mean value moves to larger couplings and smaller

U cr
B when leaving out small lattices or adding L = 32 for Nf = 1. This shift of the intersection

points can be seen directly in figure 3.4 and indicates deviations from the finite size scaling

predictions. Corrections for the smaller lattices seem to be necessary, but fits to (3.9) were

not successful. In general, the Binder cumulant method underestimates the continuum

value of λcr
GN and overestimates the value of U cr

B . Comparing the two different methods,

results for Nf = 1 mostly agree well within the errors, while the lattice size dependence of

λcr
GN is much stronger for Nf ≥ 2. Figures for Nf = 4 and 8 can be found in figure C.2.

Nf λcr
GN

λcr
GN/Nf U cr

B

1 0.4751(4) 0.4751(4) 0.3603(19)
2 1.2141(10) 0.6071(5) 0.3353(21)
4 2.7329(26) 0.6832(6) 0.3136(32)
8 5.810(4) 0.7263(5) 0.2844(34)

Table 3.2.: Results forλcr
GN and U cr

B for Nf = 1,2,4
and 8. Values were obtained by a continuum
extrapolation of intersections of the Binder cu-
mulants on various lattice sizes as given in fig-
ure 3.6.
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3.2.3. Critical Exponents

We first present results from the phenomenological renormalisation method RenU (see

section 3.1.1) with observables as a function of UB, where we found the best fulfilment of

the hyperscaling relation (3.6). A comparison with the other methods follows. Similarly

to the evaluation of the critical coupling, we determine critical exponents on each of the

Nhist = 104 samples of our resampled data and obtain histograms to estimate the statistical

error in the exponents. As an example, results for Nf = 1 are given in figure 3.9. The

distribution is Gaussian and the one for 1/ν shows the largest standard deviation due to the

fluctuations in D observed in section 3.2.1.

An example for one of the Nhist evaluations is shown in figure 3.10. We take as many

values as possible for the smallest lattice size L, e.g. L = 8,10,12 and 14 so that enough

larger lattices remain. For Σ,χ and D we perform linear fits with each given L to (3.16),

obtaining the three critical exponents −β/ν,γ/ν and 1/ν from the slopes. As can be seen in
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Figure 3.11.: Critical expo-
nents for various Nf. The
dashed lines represent the
1/Nf-expansion results given
in (3.4), whereas the dotted
green line corresponds to the
Padé approximation for 1/ν
given in (3.5). A small hor-
izontal offset was added to
the data points making them
better distinguishable.

figure 3.10, the slopes of the fits are quite stable against variations of L. Thus, corrections

to the finite size scaling behaviour are not necessary and we take the average value of

the slopes for all L as estimate for the critical exponent. Repeating this with Nhist = 104

samples, we obtained the histograms in figure 3.9.

The results for our four values of Nf are presented in table 3.3 and figure 3.11. The latter

also displays the second-order large-Nf formulae (3.4) with dashed lines and the Padé

approximation for 1/ν in (3.5) with a dotted line. We observe, that our results follow the

general trend of the large-Nf expansion with decreasing γ/ν and 1/ν for increasing Nf, while

Table 3.3.: Best estimates of criti-
cal exponents for various Nf. The
last column gives the result of the
hyperscaling relation (3.6) and
should be zero. All values were
obtained with the RenU method.

Nf 1/ν β/ν γ/ν 2β/ν+γ/ν−3

1 1.096(34) 0.824(13) 1.366(26) 0.01(4)
2 1.07(4) 0.886(16) 1.228(34) 0.00(5)
4 1.08(5) 0.915(21) 1.17(4) 0.00(6)
8 1.02(6) 0.960(28) 1.07(6) −0.01(8)
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Figure 3.12.: Comparison of different methods to evaluate critical exponents. For each method,
evaluations excluding the smallest one or two lattice sizes are given. The last plot on the right
shows the fulfilment of the hyperscaling relation (3.6) and should be zero. The data shown in
these plots can be found in table C.2.

β/ν increases. Deviations from the dashed lines are large for Nf = 1 and still relevant for

Nf = 2, especially for 1/ν. For Nf = 4, we are already near the expansion within our statistical

errors and a good match is found for Nf = 8. The Padé approximation (3.5) does not fit

well to our results for Nf ≤ 4. In contrast to our data, it decreases for Nf → 1 and is below 1.

On the other hand, also the large-Nf prediction of 1/ν with Nf < 4 seems not reliable, as it

predicts much larger values than we found in our simulation. At Nf = 8, we are still able

to resolve the small deviation of the large-Nf expansion from the limit Nf → ∞, where

all exponents have the value 1. At least our estimates for β/ν and γ/ν are more than one

standard deviation away from this value.

Systematic errors

In figure 3.12(a), an overview of critical exponents for Nf = 1 obtained by the different

methods explained in section 3.1.1 is given together with results omitting smaller lattice

sizes. For the latter case, we only find larger changes for Fitλ when calculating the expo-

nents without smaller lattices. This impairs the good results for the full data set, where

the smallest statistical errors are present. Additionally, the hyperscaling relation is badly

fulfilled when including all data, casting further doubt on this method. The other methods

perform better when skipping smaller lattices because they depend on the factor b = L′/L

and already use multiple small lattices (see for example figure 3.10). Regarding our results
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for Nf = 1, the best choice is RenU , where statistical errors are comparably small and the

hyperscaling relation is better fulfilled than for Renλ. The direct estimates of critical ex-

ponents without Binder cumulant (noBC) give slightly different results, especially for γ/ν.

Likewise, the evaluation of the Binder cumulant slope (3.14) deviates from the other results

for Nf = 1, leading to larger values. Including lattice size 32 for RenU , we only observe

larger error bars for β/ν and γ/ν, while the mean value for 1/ν is larger than without L = 32.

The situation is similar for larger Nf, see for example figure 3.12(b) for Nf = 2. Additional

plots are given in the appendix, where Nf = 4 can be found in figure C.3(a) and Nf = 8

in figure C.3(b). In all cases, we find the smallest statistical errors in Fitλ accompanied

by large lattice size dependence and slight violation of the hyperscaling relation. RenU ,

the phenomenological renormalisation depending on UB, seems preferable, also over the

same procedure depending on λGN, because it produces the most stable results with best

accuracy of the hyperscaling relation. In contrast to Nf = 1, better agreement with the

results from noBC and the Binder cumulant slope is found.

3.3. Discussion and Comparison With Previous

Results

In this section we compare our findings of section 3.2 with previously obtained values for

the critical exponents. They are universal quantities and can be compared directly to results

from other calculations. There is a lot of literature available on the chiral Ising universality

class of the Z2-symmetry-breaking transition of GN. While some authors discuss exactly
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Figure 3.13.: Comparison of our critical exponents with results from the literature. Only the
most recent results are given for the analytical works. The vertical dashed lines give an overall
average with a standard deviation indicated by the shaded area. No literature values for Nf = 8
are available. The data shown in these plots can be found in table C.2.
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the model we considered here, others give critical exponents for the Gross-Neveu-Yukawa

model (GNY) that includes a kinetic term and a fourth-power interaction for the scalar

field. Indeed, the additional terms are irrelevant in the continuum limit, so that the model

yields the same large-distance physics [MZ03]. Additionally, some authors investigate a

variant of GN with Majorana spinors and O(N )-symmetry that is also expected to be in the

same universality class. We begin with a review of analytical results in section 3.3.1 and

afterwards discuss older lattice simulations in section 3.3.2. Overview plots comparing

our results with the most recent previous findings are given in figure 3.13. The data can be

found in the appendix in table C.2. We finally give a summary in section 3.3.3.

3.3.1. Previous Analytical Results

We already presented the results from large-Nf expansion up to O
(

1/N 2
f

)
[Gra92; Gra93;

Gra94a; Vas93; Der93] in (3.4) and a Padé resummation for 1/ν [JH14] in (3.5). We compared

them with our results in figure 3.11 and found both in good agreement for Nf = 8. Also

Nf = 4 still seems to follow the analytical expansion. For all exponents with Nf = 1 and 2,

deviations from 1 are smaller in our simulations than predicted by the large-Nf expansion,

but a breakdown of it in this region is not surprising. The Padé approximation is not helpful

and predicts a decrease in 1/ν for decreasing Nf that our data does not support.

More involved calculations include expansions in the spacetime dimension as well

as non-perturbative methods. All these methods commonly calculate the exponent 1/ν

and the anomalous dimensions ηbos,ηferm of bosons and fermions. Here, we use the

hyperscaling relations (3.7) to obtain values for γ/ν as well as β/ν for better comparison.

ε-Expansions

Expansions were done both around lower (2+ε) and upper (4−ε) critical dimensions. In 2+ε
dimensions Gracey et al. [GLS16] recently extended previous works [Gra90; Gra91; LR91]

to order ε4 and gave critical exponents for Nf = 2. The expansion in 4−ε was calculated by

Mihaila et al. [Mih17] up to third order extending older work of Rosenstein et al. [RYK93].

The authors presented critical exponents for Nf = 1 and 2, obtained with Padé resummation

like Gracey et al. [GLS16]. Lower-order results for both expansions around 2+ε and 4−ε
were combined by Fei et al. [Fei16] with a two-sided Padé resummation to obtain values

for Nf = 1 and 2 at d = 3.
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For Nf = 1, our result for 1/ν agrees well with these results, while our value for β/ν is larger.

In accordance with the hyperscaling relation, a deviation of γ/ν in the opposite direction

is found. Taking the large systematic deviations in figure 3.12(a) into account, our result

is still consistent with values of β/ν≈ 0.8. Further studies generating more configurations

on larger lattices would be necessary to examine if the estimate for β/ν approaches the

previous calculations. For Nf = 2, the discrepancy for 1/ν is larger and only matches well

with the result of Mihaila et al. [Mih17]. On the contrary, the deviations from his values

for β/ν and γ/ν are the largest, while our results are in acceptable agreement with the other

findings.

FRG Results

There were many investigations of GN variants with an FRG approach. Most recently, a

high-precision study by Knorr [Kno16] employed pseudo-spectral methods and extended

a first study [BK15] to next-to-leading order. Critical exponents with high accuracy were

given for Nf = 1 and 2. Older works in leading order include [RVW01; HNW02; JH14; VZ15]

and [BGS11], which also gave values of critical exponents for Nf = 2,4 and 12. All these

studies are in good agreement and the results seem to converge, so that we only use the

values of Knorr [Kno16] for comparison in figure 3.13. For β/ν, we find a good fit with our

values for Nf = 2, opposed by larger disparity for Nf = 1. Regarding 1/ν, a good match is

found for Nf = 1, but not for Nf = 2. Comparing Nf = 4 with [BGS11], we are more than a

standard deviation off the FRG results.

Conformal Bootstrap

Lately, the conformal bootstrap showed great success determining the critical exponents

of bosonic theories like the Ising model to very high precision (see e.g. [Kos16]). Starting in

2016, Iliesiu et al. [Ili16] began investigating fermionic theories in three dimensions with

these methods, leading to the first results for GN in [Ili17]. Clearly visible in figure 3.13,

their estimate for η (here converted to γ/ν and β/ν) agrees with the other analytical methods,

as well as with our result for Nf = 2. On the contrary, the accuracy of the 1/ν result seems

questionable, especially for Nf = 1, where their values deviate from the overall average in

figure 3.13(a) by more than two standard deviations.

3.3.2. Previous Lattice Results

Regarding previous lattice results, some works use approaches similar to ours, utilising

lattice field theory implementations with HMC algorithm. They are presented in the next

paragraph, while we also summarise alternative methods at the end of this section.

HMC simulations

There were a few previous lattice field theory studies calculating critical exponents of GN,

all using staggered fermions. The first was performed by Hands et al. [HKK93]. They mainly
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simulated Nf = 12 flavours(e) to verify their results from the large-Nf expansion, which we

already summarised in table 3.1. They determined the exponents β,γ and δ directly from

fits to the relevant observables and were not able to resolve O (1/Nf) corrections. To obtain

ν, they performed a finite temperature analysis and got ν = 0.94(13). They mentioned,

that their lattice formulation is only free of a sign problem for even Nf/2. This requirement

was neither mentioned nor taken into account by Kärkkäinen et al. [Kär94], who did a

similar simulation with Nf = 2. They used finite size scaling techniques to obtain ratios of

critical exponents similar to our approach given in section 3.1.1. Good agreement with

the large-Nf formula for γ/ν (3.4b) was found, while there were slight deviations for ν. An

independent measurement of β/ν fulfilled the hyperscaling relation (3.6) correctly to the

three given decimal places. Despite the possible sign problem, our results for Nf = 2 fit

theirs within errors. The last study with this setup was done by Christofi & Strouthos [CS07]

for Nf = 4, where the same ratios of critical exponents were measured. We also find good

agreement with our data.

An exploratory study of Hands [Han16b] successfully simulated GN with two flavours of

domain wall fermions, but the author did not calculate critical exponents. These domain

wall fermions are a solution to a generalised version of the Ginsparg-Wilson relation (2.49),

that was adapted for three-dimensional four-fermion theories [Han15; Han16a]. The

dependence on an additional parameter, the separation of the domain walls Ls , is studied.

It must be chosen large enough because the full chiral symmetry on the lattice is only

recovered for Ls →∞.

Non-HMC Simulations

Further results from simulations are available that did not use an HMC algorithm. Chan-

drasekharan & Li [CL13] employed the fermion bag approach shortly introduced in sec-

tion 2.4.1. It allowed to simulate Nf = 2 with staggered fermions, similarly to [Kär94], but

the absence of the sign problem in this formulation could be shown [CL12b]. The suscepti-

bility and ratios of correlation functions were used to obtain the critical exponents η,ηψ

and ν by a single fit. They were found to agree with values obtained for Th, contrary to the

expectation for the continuum models. See section 4.2.2 for further discussion of these

lattice results. Their exponents did not agree with the work of Kärkkäinen et al. [Kär94],

which they believed to originate from the sign problem that was ignored there. By contrast,

our new results are in better agreement with [Kär94] and the fermion bag data point is far

off the overall average in figure 3.13(b).

Another approach are QMC algorithms that allowed to study quantum mechanical

systems in analogy to GN for Nf = 1 without sign problem. Wang et al. [WCT14; Wan15]

used a Continuous-Time QMC to simulate spinless fermions on a honeycomb lattice at

half filling that should share the chiral Ising universality class with GN and GNY. However,

their critical exponents (see table C.2(a)) were not in agreement with previous analytical

(e)All values of Nf given here refer to continuum flavours, which is twice the number of staggered flavours for
the reducible representation. See also section 2.3.2 for details about chiral fermions on the lattice.
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results. They attributed this discrepancy to the fact that they used two-component spinors

with opposite chirality, contrary to field theory calculations where the irreducible spinors

have the same chirality. Results roughly consistent with these numerical findings were

also reported by Hesselmann & Wessel [HW16]. Furthermore, Majorana QMC is also free

of a sign problem and was used by Li et al. [LJY15], again giving numbers that are not in

agreement with analytical calculations. Their value of νwas consistent with the other QMC

approaches, but they found a larger value of η if (and only if) they included larger lattice

sizes. With our new field-theoretical approach, we can confirm the discrepancy between

the QMC simulations and other field theory methods, since our predictions in figure 3.13(a)

are much closer to previous analytical calculations than the lattice QMC results. Possibly,

also the lattice itself plays an important role because the QMC simulations were performed

on a graphene-like honeycomb lattice, while ours is cubic.

3.3.3. Summary

We presented the first extensive study of GN with exactly chiral fermions in a lattice field

theory approach and calculated critical exponents for Nf = 1,2,4 and 8. The situation in

the literature is clear for Nf = 2 and our result fits well within the previous results, the only

exception being the fermion bag simulation [CL13]. Oddly, we are in better agreement

with the staggered simulation [Kär94] that possibly suffered a sign problem. For Nf = 1

large discrepancies between analytical and QMC computations are present. Here, we

can support the analytical results, although our own estimates for γ/ν and β/ν need more

refinement. Also, simulations with other exactly chiral fermions could be useful to clean

up the situation. In comparison with the few values explicitly given for Nf = 4, our results

fit within errors to the older simulation with staggered fermions [CS07], but more statistics

would be required to improve our results. Then, a significant deviation from the large-Nf

expansion could be found. No such deviation is present for Nf = 8 in γ/ν, where we find

a good match with (3.4b). We likely still see deviations for β/ν and γ/ν at Nf = 8 from their

infinite-Nf value of 1, opposed to the findings for Nf = 12 [HKK93]. In general, our result

for ν raises the question if the value of 1 is approached from below, as predicted by the

large-Nf expansion and FRG calculations [BGS11]. Our plot figure 3.11 rather suggests,

that it always stays above 1. This could be another starting point for refined studies or

simulations with different lattice fermions.

3.4. The γ45-Model (Irreducible Gross-Neveu Model)

After our extensive study of the reducible GN, we have a short look at its irreducible version,

which is equivalent to G45 in the reducible representation (see section 2.1.2). Here, a

non-vanishing scalar field expectation value Σ breaks the Z2 parity like the irreducible

mass term discussed in section 2.1.2. Simulation results are given in section 3.4.1 and
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Figure 3.14.: Real parts of the expectation values of the weights for the irreducible GN with
varying Nf and L. Due to the large difference in scale between Nf,irr = 1 (where GN and Th are
equivalent) and larger Nf, two plots are shown in figure 3.14(a).

discussed in section 3.4.2. Additionally, a calculation in appendix D shows that G45 with

our choice of sign for the interaction in (2.11) has the same effective potential to first order

as GN.

3.4.1. Simulation Results

Our code implements both the irreducible formulation of GN in (2.21) as well as the

equivalent reducible G45 with γ45 as interaction matrix. Since both implementations

showed good agreement in the observables for Nf,irr = 2Nf, only results with the irreducible

formulation are shown here, were also odd Nf,irr can be simulated.

Due to the results of section 2.4.2, we must expect a sign problem(f) for any Nf,irr. Hence,

simulations with the phase-quenched model and the exact update algorithm were per-

formed. As noted in section 2.4.2, the phase quenched irreducible formulation is identical

to the reducible model, but it allows to measure the expectation value of the weight 〈Ω〉
defined in (2.58). Its real part 〈w〉 takes the value of 1 if the action is real. The worse the

sign problem is, the closer the weight gets to 0. The results in figure 3.14(a) show that

the sign problem is much worse for Nf,irr = 1 than for larger flavour numbers. The single

flavour model is anyhow special due to its equivalence to Th (see (2.27)) and the simple

combination of Z2-parity that is broken here, together with a U (1)-symmetry.

(f)Remarkably, the absence of a sign problem can be shown for G45 with imaginary couplings, but the
potential calculated in appendix D is no longer stable.
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For Nf,irr > 1 the deviation of the weight from 1 is very small on lattice size 6 and decreases

further for larger Nf,irr. In figure 3.14(b) we see that the sign problem gets stronger for

increasing lattice size, but is still of order 10−3 for L = 8.

We can use the measured weights to perform reweighting and calculate corrected ex-

pectation values of observables with equation (2.58). For Nf,irr = 2 and 4 for size L = 8, the

corrections are of order 10−3 and smaller than the statistical errors in the scalar field. In

figure 3.15, one can see that Σ is, up to the saturation phase, in very good agreement with

the measurement of reducible GN for Nf = 1 and 2 on the same lattice size. Clearly, an

evaluation of critical exponents for the irreducible GN would lead to very similar results as

for the reducible version.

3.4.2. Discussion

Gehring et al. [GGJ15] studied G45 together with GN- and Th-interactions by methods of

FRG. For Nf = 1, these interactions form a complete basis for the space of models with

at least the symmetries of GN. For larger Nf also
(
ψ̄aγµνψa

)2 had to be included in the

investigation. They found the critical behaviour of GN only governed by the expected fixed

point for Nf ≥ 2. For Nf = 1 a different fixed point governs the phase transition, which may

have different properties than the pure GN fixed point. Thus, the authors suspect that they

found two fermionic theories (GN and G45 for Nf = 1), which show spontaneous breaking

of a Z2-symmetry but potentially different critical behaviour.

On the contrary, our results in section 3.4.1 give evidence that this is not the case and that

both GN and G45 share the same universality class for Nf,irr = 2Nf. This is also supported

by the FRG calculation of Höfling et al. [HNW02] in the irreducible representation, where

critical exponents for Nf,irr = 4 were found in agreement with later results for the reducible

model with Nf = 2. At any currently accessible lattice size, we expect the sign problem

for Nf,irr ≥ 2 to be small enough, so that no relevant influence of reweighting on the

critical exponents can be found. However, we cannot exclude that both models become

fundamentally different for very large lattice sizes. For Nf,irr = 1, conventional simulations
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are not possible due to the strong sign problem, but our dual-variables approach presented

in section 6.2 can provide a way to solve it for this special case.
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4. Thirring Model With Auxiliary

Vector Field

This chapter is dedicated to Th in the original formulation (2.33), which contains an

auxiliary vector field due to HS. In contrast to GN, where chapter 3 showed evidence

that χSB can occur for any number of flavours with a second-order phase transition,

Th is commonly expected to have a broken phase only for small Nf. Thus, the main

question is: For which numbers of flavours can χSB happen in Th? Our answer to this

question from simulations of the Lagrangian (2.33) with an auxiliary vector field is given

in section 4.1. Remarkably, it is fundamentally different from most previous answers

reviewed in section 4.2. This motivated further studies of coupled models in chapter 5 and

alternative formulations of Th in chapter 6.

4.1. Simulation Setup and Results

This section presents new results from numerical simulations of the vector field formu-

lation (2.33) with SLAC fermions and a conventional rHMC algorithm, as described in

section 2.3. Necessary preliminary considerations are given in section 4.1.1, where a pre-

viously observed unphysical phase in lattice simulations of Th is discussed. We give our

own results for Th with a small mass in section 4.1.2 to make contact with earlier lattice

simulations. Afterwards, section 4.1.3 presents results from the first lattice simulation of

massless Th with exactly chiral fermions.

4.1.1. Observables and Unphysical Phase

We mainly use the observables given in section 2.3.3, but use Σ := 〈∣∣Ψ̄Ψ∣∣〉 instead of the

chiral condensate (2.51), similar to our definition for GN. Additionally, we will show Fisher

plots for simulations with non-zero mass as introduced in the next paragraph.

Fisher Plots

These plots are based on the definitions of critical exponents, as given in table 3.1 for GN.

We use 〈
ψ̄ψ

〉∝ m
1
δ and

〈
ψ̄ψ

〉∝ tβ, (4.1)

where t is the difference between λTh and the critical coupling as given in (3.3). Del Debbio

& Hands [DH96] use a more general expansion in t

m = c1 〈ψ̄ψ〉δ+ c2 t 〈ψ̄ψ〉δ− 1
β + . . . (4.2)
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which, using the mean field values of β= 1/2 and δ= 3 in table 3.1, becomes

〈
ψ̄ψ

〉2 = c̃1
m〈
ψ̄ψ

〉 + c2 t . (4.3)

The Fisher plot shows
〈
ψ̄ψ

〉2 as a function of m/〈ψ̄ψ〉. Thus, straight lines are expected in

the plot if the mean field approximation is valid. Additionally, a fit to (4.2) with positive

intercept on the vertical axis signals a non-vanishing chiral condensate in the limit m → 0.

We show Fisher plots of our own simulations in section 4.1.2.

Unphysical Phase

Before we go on to our lattice simulations, we have to take care of an issue that was

reported by Del Debbio et al. [DHM97]. They found an unphysical phase, where the chiral

condensate decreases and attributed this transition to a substantial difference between

different regularisations. While the large-Nf expansion in the continuum [Han95] uses

a current-conserving Pauli-Villars regulator, a lattice regularisation violates the current

conservation. In this case, a divergent term appears that obstructs the transversality of

the vacuum polarisation tensor. Del Debbio et al. [DHM97] compare this to the situation

for QED3, where a lattice perturbation theory calculation is given in the book of Rothe

[Rot05]. In contrast to Th, two divergent contributions from different Feynman diagrams

cancel each other, resulting in a finite expression for the vacuum polarisation as in the

continuum. Only one of these diagrams occurs for Th because the interaction is ψ̄ iVµψ and

not ψ̄eie Aµψ as in lattice QED3. Hence, there is only a single vertex with two fermions and

a vector boson. To absorb the divergence of Th on the lattice, it is necessary to introduce a

wave function renormalisation and a coupling constant renormalisation. They find

g 2
Th → g 2

R = g 2
Th

1− g 2
Th J (m)

⇒ λR =λTh − J (m), (4.4)

where g 2
R and λR are renormalised (inverse) couplings and

J (m) = 2
∫ π

−π
d3q

(2π)3

sin2 qµ∑
ν sin2 qν+m2

m→0−−−→ 2

3
. (4.5)

Thus, in the chiral limit m → 0, there is a limiting bare coupling of λlim
Th = 2/3 with λR < 0 for

λTh <λlim
Th .

The authors interpret this as an unphysical phase and suggest that the model is no

longer unitary for such strong bare couplings. In all their simulations with different flavour

numbers, they find a sharp drop in the chiral condensate for couplings 1/g 2
Th = λTh/Nf ≤ 0.3.

Although the numerical value does not match 2/3 well, they are drawn to the conclusion

that this could be a sign of the onset of the unphysical phase. With this argument, a later

study [CHS07] interprets the maximum of the chiral condensate as the point of infinite

renormalised coupling.

Although this calculation depends on the use of Wilson fermions and a similar calculation
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for the SLAC derivative is closer to the continuum expansion in [Han95], we must replace

integrations over all momenta by corresponding sums over the Brillouin zone. A full

calculation is difficult, but the requirement of an additive renormalisation (4.4) seems

plausible. A different explanation of the unphysical phase is provided by our lattice filling

factor 〈k〉 defined in (2.55). We saw in figure 3.1 that GN shows lattice artefacts and a

decreasing condensate, when the value of 〈k〉& 0.5 is exceeded. Thus, Pauli blocking may

also be the reason for the unphysical behaviour for strong λTh.

Janssen & Gies [JG12] comment on this topic from the viewpoint of FRG. They do not find

the transversality of the vector propagator necessary for the model to be non-perturbatively

renormalisable if one studies a larger space of four-fermion theories. They suggest that the

non-monotonic chiral condensate may be related to the Th fixed point not being on the

axis of pure Th coupling, as described in section 4.2.1.

4.1.2. Explicit Symmetry Breaking With a Mass Term

We start our numerical investigations of massive Th with simulations in the reducible repre-

sentation, where the model is free of a sign problem (see section 2.4.2). A particular lattice

size is considered in the first part, while larger sizes and the irreducible representation are

considered afterwards. For all data points in this section, we obtained 1000 configurations

with 10 intermediate updates.

Reducible Model for Lattice Size 12

Results from a conventional rHMC simulation with lattice size 12 and Nf = 1,2 and 3

are given in figure 4.1. The first row of figure 4.1(a) presents curves of Σ for m in steps

of 0.02 between 0.02 and 0.18 as a function of λTh/Nf. They all have a maximum around

λmax
Th ≈ 0.5Nf and show the non-monotonic behaviour attributed to a transition to an

unphysical phase, as explained in section 4.1.1. Remarkably, the susceptibility shows a

maximum approximately at the coupling, where Σ is maximal. Like in GN, the peak in the

susceptibility corresponds to a transition in the lattice filling factor from small values at

weak coupling to strongly growing values. On the other hand, the maximum of Σ in GN

does not coincide with this point. Comparing to the form for GN in figure 3.1, the decrease

for strong coupling is rather smooth and we did not find thermalisation problems in Σ for

Th.

Weakening the explicit breaking, the values of Σ decrease roughly linearly, leaving no

trace of a broken phase for any Nf in the chiral limit. For Nf = 1 the curves are more

pronounced around the maximum, but not qualitatively different. Only the maximum in

χ moves to stronger couplings, an observation we cannot make for Nf ≥ 2. Thus, it looks

like there is no χSB present for Nf = 1 either. The Fisher plots in figure 4.1(b) solidify this

outcome. No trajectory for any λTh has a positive intercept with the vertical axis that would

indicate χSB. Increasing the coupling strength (decreasing λTh), the trajectories move to

the left, up to the point where λTh ≈ λmax
Th . For even stronger couplings, the trajectories
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4.1(a) Chiral condensate, susceptibility and lattice filling factor. The colour indicates different
masses.
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4.1(b) Fisher plots. The colour indicates different couplings. A line of constant inverse coupling
(colour) intersecting the vertical axis would indicate χSB.

Figure 4.1.: Simulation results for reducible, massive Th on lattice size 12. The columns show
different flavour numbers.
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4.2(a) Fisher plots for Nf = 1 showing the dependence on the lattice size.
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4.2(b) Differences between lattice size 16 and 20 in the Nf = 1 Fisher plot as a function of the bare
mass. The couplings in each panel are the same as in 4.2(a). The two curves indicate changes on
the horizontal axis in 4.2(a), as well as in the vertical direction. Different colours and symbols
indicate the sign of the change. The orientation of the triangle signifies the direction of change
when going from size 16 to 20, e.g. up and to the left for all masses in the leftmost plot.

Figure 4.2.: Lattice size dependence of the reducible massive Th for Nf = 1. Both parts show the
same couplings. The values 0.53 and 0.56 are very close to the maximum in Σ on both sides,
while 0.80 is in the weak coupling regime where no χSB is expected.

have a different shape. The slope is now negative and the curves move quickly to the right

of the Fisher plot. Again, the behaviour is slightly different for Nf = 1, but without any

significant impact on χSB.

Dependence on the Lattice Size

Simulations for Nf = 1 were also performed on lattice sizes 8, 16 and 20 to study finite

volume effects. Fisher plots for a selection of couplings are shown in figure 4.2(a). While

the curves for lattice size 8 show a visible deviation, there are only very small differences

between larger lattices. For points with the same mass, figure 4.2(b) shows the difference

between size 16 and 20 in both vertical and horizontal direction of the Fisher plots in

figure 4.2(a).

For the couplings λTh = 0.53 and 0.56 close to the maximum in the condensate at λmax
Th ,

we can see that the points for all masses move up and to the left of the Fisher plot, when

increasing the lattice size. This also happens for λTh = 0.6 and 0.8 with small masses, but

some points with larger mass move in the opposite direction. The changes are strongest
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Figure 4.3.: Strength of the sign problem for irreducible Th with mass. Rows show results for
different L, while columns have increasing Nf from left to right. Note the different scales of colour
for L = 4 and L = 6.

for λTh = 0.53, but they are rather small in total. Thus, we expect lines in the Fisher plots

on larger lattices that are closer to the critical point (intersecting the origin) and we cannot

fully exclude χSB. But to explicitly see this, lattice sizes far beyond currently possible

simulations would be necessary.

Irreducible Model

We can contrast our previous findings with results from the irreducible model. Here, we

use the naive mass term mχ̄χ and the corresponding condensate, associated to parity

breaking (see section 2.1.2). Since a sign problem must be expected, we first look at the

real part of the weight for m = 0.01, . . . ,0.1 given in (2.58). In figure 4.3, we display 1−〈w〉,
which should be zero, but we find a non-zero region with growing values for increasing

mass. Thus, the sign problem gets stronger with larger bare mass, at least in a region

that correlates with large values of Σ. In the chiral limit, we expect and observe that the

sign problem vanishes for even flavour numbers. Surprisingly, also odd Nf,irr > 1 have a

well-behaved sign for small masses with 1−〈w〉 very close to 0. In general, taking a larger

flavour number mitigates the sign problem, similar to irreducible GN in figure 3.14(a).

Increasing the lattice size from 4 to 6, a huge increase of the maximum of 1−〈w〉 is present

in figure 4.3. We must expect a very strong sign problem for larger lattice sizes and masses.

Nevertheless neglecting it, we performed rHMC simulations on lattice size 12. The

results for Nf,irr = 1,2,3 are shown in figure 4.4. The different nature of the Nf,irr = 1 model

is clearly visible, showing signs of dynamical mass generation as expected, since the model

is equivalent to GN. We find trajectories that tend to intersect the vertical axis, although

the true behaviour might be obscured by insufficient knowledge about the curvature of the

lines and the sign problem. Showing a behaviour similar to the simulations in the reducible
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Figure 4.4.: Fisher plots for the irreducible Th. Note, that a potentially strong sign problem was
ignored here.

representation, no hint for χSB can be found for Nf,irr = 2 and also Nf,irr = 3, where all

lines are farther away from the origin. Hence, χSB seems to exist only for Nf,irr = 1, but the

present results are clearly not sufficient for a reliable conclusion.

4.1.3. Massless Model

This section presents new results for the reducible model with m = 0, which has the

full chiral symmetry of the continuum model. 1000 configurations with 10 intermediate

updates were calculated for massless Th with various numbers of flavours and lattice

sizes from 8 to 20. The results for the absolute value of the chiral condensate Σ and

the susceptibility χ are shown in figure 4.5. There is no signal of a non-vanishing chiral

condensate in the large volume limit for any number of Nf, since the already small values

of Σ decrease with increasing lattice size. They are artefacts of the stochastic estimator

method used to obtain the chiral condensate, as explained in section 2.3.3. Remarkably,

the noise has a form reminiscent of the curves for non-zero mass in figure 4.1(a) with

a maximum around λTh/Nf ≈ 0.5. We can indeed reduce the noise by a factor of
p

10 by

taking 10 times more estimators, as expected. This can also be seen in figure 4.5, where all

simulations were done with 1000 estimators, except L = 20 where only 100 estimators were

used to reduce the computational costs. Therefore, the noise in Σ in the L = 20 simulation

is larger by roughly a factor of
p

10 than for the other sizes.

We conclude, that there is no non-zero chiral condensate for Th in our simulations due

to the exactly implemented chiral symmetry. Even looking at the individual configurations,

we found Σ to be close to zero. Viewed in contrast to GN, we now do not have a scalar field,

that transforms under chiral transformations with σ→−σ. The auxiliary vector field of Th

is invariant under any chiral transformation and fermions were integrated out to obtain

the fermion determinant in (2.43), leaving no accessible order parameter.
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Figure 4.5.: Absolute value of the chiral condensate and susceptibility for the massless Th. The
left column shows the dependence on the volume for Σ with Nf varying from 1 at the top to
4 at the bottom. The vertical axis is scaled by 10−3, showing a very small value of the chiral
condensate. The non-zero value is only due to numerical errors and decreases with increasing L.
The number of stochastic estimators was decreased by a factor of 10 for L = 20, explaining the
larger values in the top left image. The right column shows the corresponding susceptibilities.
Note the large difference in scale for Nf = 1 and Nf > 1 and see also figure 4.6.
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Susceptibility

The right column of figure 4.5 shows the susceptibility (2.54). A large difference in the shape

exists for Nf = 1 and Nf > 1. In the latter cases, the susceptibility is a rather smooth curve,

that increases up to a maximum around λTh = 0.5Nf. For growing λTh (weak couplings) it

decreases very slowly from the maximal value. Fluctuations are much larger for Nf = 1 and

there is a flat region at λTh ≈ 0.45. The main peak at λTh ≈ 0.54 is much more pronounced

than for Nf > 1 and grows strongly with the lattice size.

To compare the differences more easily, we investigated the maxima of the chiral sus-

ceptibility. Naively taking all points higher than their two neighbours on each side as

local maxima, we obtained rough estimates for position and value of maxima in the sus-

ceptibility. They are plotted in figure 4.6 as a function of 3
p

V , as defined for GN in (3.12).

Only a single maximum was found for all curves with Nf ≥ 2, while several local maxima

can be present for Nf = 1. Regarding the values of the susceptibility at these maxima, we

can clearly distinguish between the global maximum with the large peak and a second

maximum around λTh ≈ 0.45 that occurs due to fluctuations around a roughly constant

value in the flat region described earlier.

Increasing the lattice size, the maximum indicating the plateau range is quite stable

in height, in contrast to the global maximum that grows for any flavour number. The

remarkable difference between Nf = 1 and more flavours is only seizable when comparing

the amount of growth: The global maximum for Nf = 1 is twice as high for L = 20 than for

L = 8, while the increase for Nf = 2 is 1.04 and decreases further to 1.02 for Nf = 4. Thus,

one might suspect that there is a remnant of a chiral symmetry breaking phase transition

left for Nf = 1 that does not persist for higher flavour numbers.

Comparing the susceptibility with the lattice filling factor in figure 4.7, the plateau for

Nf = 1 and a change in curvature for Nf = 2 is observed, where 〈k〉 is well above half filling.

We again find the main peak of χ near the transition from the weakly interacting phase

to stronger interactions. This was also the case for the physical phase transition of GN

in figure 3.1. But since the position of the susceptibility peak for the massive model in

section 4.1.2 and figure 4.1(a) is at the maximum of Σ, it might be a sign of the transition

to the lattice artefact phase. We will gain more insight into this in section 5.1, where the

coupled GN and Th parameter space is investigated.

Irreducible model

A short investigation of the irreducible model with m = 0 confirmed the observations

in figure 4.3 for non-zero mass. The sign problem only persists for Nf,irr = 1, where the

results are consistent with the equivalent GN-formulation presented in figure 3.14(b). Here,

the same form of the weight as a function of the inverse coupling arises, although the

fermion determinant only takes values ±1 on a single configuration, while it is complex

in the equivalent irreducible GN formulation. Thus, the real-valued fermion determinant

of Th is not superior to the complex-valued determinant of GN. While the absence of
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Figure 4.6.: Position and height of peaks in the chiral susceptibility of Th. The first row shows the
position in λTh and the second row the value of the susceptibility at this coupling. The columns
have increasing Nf from 1 (left) to 4 (right). As for GN, the values are plotted depending on 3
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instead of L. The plots in the first row have ∆λTh = 0.01 as a rough error estimate. Only for Nf = 1,
more than a single maximum was found. The ones with larger distance to the estimated critical
coupling of λmax
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maxima at lower coupling correspond to the flat region in figure 4.5.
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Figure 4.7.: Massless Th lattice filling factor (left axis) in comparison with susceptibility (right
axis) for Nf = 1 (circles) and 2 (triangles). χ is shown on a logarithmic scale to highlight its
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Figure 4.8.: Previous results for the critical flavour number in Th. The result of Kondo [Kon95]
was obtained by large-Nf-expansion, the other sources above the line are different lattice results.
Janssen & Gies [JG12] used FRG methods to obtain a value of N cr

f , while the other works below
the line employed DSEs. Further details are given in section 4.2.1 and section 4.2.2.

the sign problem for even Nf,irr was expected from section 2.4.2, it is merely a numerical

observation for odd Nf,irr. No configuration with negative sign was found for Nf,irr = 3 and

L = 8 in a run generating 10000 configurations for a large range of λTh.

4.2. Discussion and Comparison With Previous

Results

Contrary to our numerical results in the previous section, many older works found χSB

for a small number of flavours in Th. Commonly, a critical flavour number N cr
f is given,

so that two phases (a broken and a symmetric one) exist for Nf ≤ N cr
f . For larger flavour

numbers, the model is in the symmetric phase for any coupling. Although many estimates

of N cr
f are available, no agreement on a value exists. An overview of N cr

f values for χSB in

the reducible formulation calculated so far is given in figure 4.8.

Furthermore, the whole discussion in the literature is obscured by the subtle differences

between reducible and irreducible representations. There are actually two mechanisms

for dynamical mass generation: as an alternative to χSB in the reducible representation,

the parity (2.23) of the irreducible model can break spontaneously. Building upon the

work presented in this thesis, Björn Wellegehausen derived an effective potential for local

condensates in our publication [WSW17]. Calculating coefficients of the potential with the

simulation program also used here, he found no χSB for any even number of flavours in

the irreducible model. This is in good agreement with our directly obtained data for the

reducible model. However, a value of N cr
f,irr = 9 was found for spontaneous parity breaking

in models with an odd Nf,irr. This is not visible in figure 4.4 for Nf,irr = 3. In fact, the values of

couplings where we observed χSB in [WSW17] are smaller than the ones shown in figure 4.4

and exhibit the possibly unphysical behaviour, moving to the right for increasing coupling

strength. A partial explanation for the different behaviour with odd and even Nf,irr and the
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large discrepancies in the literature can be given by a parity breaking Chern-Simons-like

term. It arises when integrating over an odd number of fermions, but cancels out for

even numbers. The order of the limits V →∞ and m → 0 determines if a cancellation

happens, an issue that lead to some discussion in the literature [Gom91; Ahn94; RS94;

Ito95]. Together with the potentially strong sign problem we ignored in figure 4.4, this may

explain the different result we found here for Th with Nf,irr = 3. More details on previous

analytical results are summarised in section 4.2.1 and we compare our findings with other

lattice simulations in section 4.2.2.

4.2.1. Previous Analytical Results

The oldest investigations of 3-dimensional Th were done using ingredients from a large-Nf

expansion in DSE approaches. Gomes et al. [Gom91] did a first study and obtained a value

of N cr
f = 128/π2dγ, where dγ = 4 for the reducible and dγ = 2 for the irreducible model. In the

first case, this leads to N cr
f ≈ 3.24. A different view on the irreducible Th was adopted by

Hong & Park [HP94], leading to the conclusion that dynamical mass generation can happen

for any Nf,irr, so that no critical value exists. But the authors considered the breaking of the

irreducible parity (2.23), for which the irreducible condensate
〈
χ̄χ

〉
is an order parameter.

Both papers were criticised by Itoh et al. [Ito95] for treating the auxiliary field as a gauge

field, although their action was not gauge invariant. They themselves used a hidden local

symmetry of Th and wrote it as a proper gauge theory with a particular gauge fixing. In a

new DSE calculation for the reducible model, they found N cr
f = 128/3π2 ≈ 4.32 for infinite

coupling, the same value they had found for QED3. This work was further extended and

confirmed by Sugiura [Sug97]. Also Kondo [Kon95] used this gauge theory formulation of

Th, but he constructed an effective potential for the chiral condensate in leading order of

the large-Nf expansion and calculated N cr
f as a function of the coupling, with N cr

f = 2 for

g 2
Th →∞. Employing Fierz identities when computing the effective potential, a different

parity breaking pattern emerged in [Ahn94; AP98]: a dynamical mass generation for two

and three irreducible flavours was seen, whereas the potential becomes unbounded from

below for Nf →∞. Similarly, in the functional Schrödinger picture no symmetry breaking

in the large-Nf limit was found, while it appeared when higher-order corrections in 1/Nf

were included [HLY94]. These works mostly focused on reducible models conserving

the reducible parity (2.15) [HP94; Ito95; Kon95; Sug97] or did not distinguish between

irreducible and reducible models [Gom91; HLY94]. Thus, their predictions for N cr
f should

hold for χSB in the reducible representation, which we did not observe in our lattice

simulations.

Recently, Janssen & Gies [JG12] did an extensive study of four-fermion theories with FRG

methods, see also [GJ10; Jan12]. They only found the fixed point governing the critical

behaviour of Th on the axis of pure Th interaction for Nf →∞, while it was off the axis for

any finite Nf. On the contrary, this fixed point was dominated by an NJL interaction for
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small Nf, showing dynamical generation of a fermion mass. The latter did not exist for

large Nf. Balancing this competition between scalar (NJL) and vector (Th) channels, they

found N cr
f ≈ 5.1(7).

4.2.2. Previous Lattice Results

During the 1990s, many lattice simulations of reducible Th with staggered fermions were

performed, that we summarise in the first part of this section. The particular problems

of this approach were already described in section 2.3.2. Only recently, other simulation

methods were used to study Th, which are reviewed at the end of this section.

Conventional Algorithms with Staggered Fermions

All simulations with staggered fermions have an even number of Nf, since a single staggered

flavour corresponds to two continuum flavours (see section 2.3.2). The symmetry breaking

pattern for the lattice formulation of Th with N staggered flavours is [DH99]

U (N )⊗U (N ) →U (N ) with Nf = 2N , (4.6)

and it is not clear if the correct pattern (2.6) is recovered in the continuum limit. Note, that

U (N )⊗U (N ) is the continuum chiral symmetry of GN in (2.14).

The first simulation results in 1996 were reported by Del Debbio & Hands [DH96] and

Kim & Kim [KK96]. The latter used the hidden local symmetry of [Ito95] to simulate Th

as a gauge theory. They included a small fermion mass and extrapolated the measured

chiral condensate to the chiral limit. HMC simulations with lattice volumes 83 and 163

were performed for Nf = 2,4,6 and they always found a two-phase structure in the chiral

condensate. Nevertheless, a qualitatively different behaviour of the phase transition for

Nf = 2 and Nf = 6 was present. They concluded that the value of N cr
f must be in between.

With similar parameters but with an action containing an auxiliary scalar field instead

of a gauge field, Del Debbio & Hands [DH96] made use of Fisher plots to extrapolate

their measured condensate to m → 0. Together with the extensions [DHM97; DH99], the

authors found N cr
f < 6. The given Fisher plots clearly show χSB for Nf = 2 and 4 with a

second-order phase transition. No clear signal appeared for Nf = 6, while evidence for a

first-order transition with coexisting symmetric and broken phases was found. Due to this

observation, they concluded that there is no possibility to perform a continuum limit for

Nf = 6, resulting in

4 < N cr
f < 6. (4.7)

Their extensive study was accompanied by the investigation of susceptibilities and bound

state masses as well as numerous conference proceedings [Han97; Del97b; Del97a]. It was

complemented by Hands & Lucini [HL99] with simulations using a different algorithm

allowing odd and non-integer flavour numbers. They mainly focused on Nf = 3 and 5. In

the first case, a second-order phase transition was found with critical exponents fitting in
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4. Thirring Model With Auxiliary Vector Field

between the ones at Nf = 2 and 4. For Nf = 5, the order of the phase transition could not be

determined. The behaviour of lines in the Fisher plot for this case [HL99, fig. 5], exhibiting

an ‘accumulation of the constant coupling trajectories around a line which if continued

would intercept the horizontal axis’, is actually similar to our observations near the tran-

sition to the unphysical phase in figure 4.1(b) and figure 4.4. Their conclusion was that

the phase transition changes from second order at Nf = 4 to first order at Nf = 6, showing

an intermediate behaviour in between. This did not allow a more precise statement than

(4.7), but they gave a critical line in the (g , Nf)-plane.

Most recently, Christofi et al. [CHS07] repeated simulations with integer and non-integer

values of Nf ∈ [2,18] and various non-zero bare masses. They determined the limiting cou-

pling, where the theory is suspected to change into an unphysical phase (see section 4.1.1),

as the coupling g−2
max of maximal chiral condensate. To obtain a value for N cr

f in the strong

coupling limit, they plotted both g−2
max and the value of the condensate at this coupling as

functions of Nf. They found some changes with the flavour number and concluded that

N cr
f = 6.6(1). (4.8)

Regarding details of the phase transition like critical exponents, their results disagree with

the ones of the works presented in section 4.2.1 as well as our current simulations.

Fermion Bag Simulations

Another approach, also using staggered fermions and shortly introduced in section 2.4.1,

are fermion bag simulations. The first example of the fermion bag algorithm already

provided results for massless Th: Chandrasekharan [Cha10] found a second-order phase

transition for a single staggered flavour (that would be Nf = 2 in the reducible representa-

tion) and gave critical exponents. This study was extended to small couplings and lattice

volumes up to 403 [CL11b; CL12a]. It was the first result with m = 0 and the authors noted

that the chiral condensate was expected to be always zero. They studied the susceptibility

instead, together with two other susceptibilities for conserved charges. Results for the

critical exponents were obtained by a simultaneous fit to predictions from chiral perturba-

tion theory. Since the fermion bag formulation also uses staggered fermions, their lattice

action had the same symmetry (4.6), which may not have the correct continuum limit.

Furthermore, a later paper [CL13] claimed that their lattice versions of GN and Th have

the same symmetry and critical exponents. This was never observed in any other study

of the two models and casts some doubt on the simulations regarding the question if the

staggered lattice action successfully represents the continuum Th.

Domain Wall Fermions

The last numerical study of Th was started recently by Hands [Han16b] with exactly chiral

fermions and a conventional HMC algorithm. He used domain wall fermions in a formu-

lation presented earlier [Han15; Han16a] that are a solution to a generalised version of

the Ginsparg-Wilson relation (2.49). While there was no ambiguity for GN in his setup, he
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presented two versions of Th, differing in the treatment of the auxiliary vector field in the

additional dimension introduced for the domain wall fermions.

Numerical simulations were performed on a lattice of volume 123 with a spacing of

Ls = 16 between the domain walls. He presented results obtained with a bare mass of

m = 0.01 for Nf = 2. Similar to the observations with staggered fermions, he found a peak

in the chiral condensate that could be related to a transition into the unphysical phase

described in section 4.1.1. With domain wall fermions, the maximum was at 1/g 2 ≈ 0.2,

compared to 0.3 for staggered fermions. Comparing the shape of our condensate for m 6= 0

in figure 4.1(a), we find qualitative agreement with these results [Han16b, fig. 10] and also

the older results from staggered fermions in [DHM97, fig. 3] and [CHS07, fig. 2]. For both

formulations of Th he found 〈ψ̄ψ〉/m to be constant, concluding that the chiral condensate

vanishes in the limit m → 0. Thus, no χSB was present for Nf = 2 and

N cr
f < 2. (4.9)

The linear decrease with the mass is consistent with our observations for any Nf. Prelim-

inary results for Nf = 1 presented in a talk [Han17] also showed this behaviour, leading

to the same conclusion as our simulations: No chiral symmetry breaking is present in

simulations of reducible Th with exactly chiral fermions.
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This chapter presents simulations with an enlarged space of four-fermion interactions.

The main focus is again on the chiral symmetry of Th, where the pure simulations in

chapter 4 did not provide much insight. Motivated by the successful determination of

critical properties for GN in chapter 3, we combine it with Th and present results for the

whole two-dimensional coupling space in section 5.1. Another reason for this study are

the FRG results for Th [GJ10; JG12; Jan12] (see section 4.2.1) that suggest to include more

couplings in the space of four-fermion interactions.

The second model, presented in section 5.2, couples a simplified version of NJL to

Th. Similar to GN, the auxiliary fields transform non-trivial under chiral transformations

(see (2.36)) and we can measure the chiral condensate, but the coupled model still has

a continuous U (1) chiral symmetry generated by γ5. Compared to the discrete chiral

symmetry of GN, this coupled model is closer to the original formulation of Th. We can

obtain histograms that directly show if the U (1)-symmetry is broken or not.

5.1. Thirring Model With Gross-Neveu Model

In chapter 3, we found useful results for GN with our numerical setup, where it is easy

to study the scalar field expectation value as an order parameter of χSB. On the contrary,

simulations of Th provided little new insight into its critical properties. Therefore, it is

natural to study the combination of both models, which has the Lagrangian

LTh+GN = ψ̄a (/∂+ i /V +σ)ψa + 1

2
λThVµV µ+ 1

2
λGNσ

2. (5.1)

A HS was already applied and introduced a vector field Vµ as well as a scalar field σ. We

directly study the chiral limit m = 0 and always use the reducible representation, where we

showed the absence of a sign problem in section 2.4.2. As usual, the couplings λX are the

inverse of the original couplings in the four-fermion formulation and include a factor of

Nf, see (2.30). Special emphasis is put on the behaviour in the limit of weak GN coupling

when λGN →∞. In this limit we should recover the pure Th.

Our new simulations are presented in section 5.1.1 and found to be in surprisingly good

agreement with the literature. Only a small number of previous works with analytical

studies of the Lagrangian (5.1) are available and will be summarised and discussed in

section 5.1.2.

5.1.1. Simulation Results

Numerically, the simulation of (5.1) is no more challenging than simulations of the single

models. As a check for a sign problem, the model was simulated with the exact algorithm
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Figure 5.1.: The coupled GN and Th model for Nf = 1,2,3. The columns show the absolute value
of the chiral condensate Σ and the susceptibility χ. The rows have Nf = 1,2 and 3 from top to
bottom. Simulations were performed on lattice size 8 and an interpolation was used to obtain
smooth images.

for Nf = 1, λGN = 1.0,1.2 and various λTh on lattice size 6. No deviation from a positive

determinant was found in agreement with the analytical prediction. The main additional

cost comes from scanning a larger parameter space with two couplings for each Nf. For

a quick overview, ensembles of 1000 configurations in the whole coupling plane were

generated for lattice size 8 and Nf = 1,2,3. Results for Σ as defined in section 4.1.1 and

its susceptibility χ are shown in figure 5.1. In all plots, we see a region of non-vanishing

chiral condensate that extends to large λTh. This is expected, since the χSB of GN should

be recovered in this limit. As figure 5.2(a) shows, its shape at constant λTh is already similar

to the condensate of the pure GN, but the critical point is shifted to larger λGN.

Near the lower and near the left border, when at least one of the two couplings is strong,

there is a connected region with small values of the condensate. We know from section 3.2.1,

that thermalisation problems occur in the lower region, preventing reliable estimates of
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Figure 5.2.: Comparison of Σ and χ in the space of coupled GN and Th with the single models for
Nf = 1.

the chiral condensate. It is interesting to see that this region is connected to the left border,

where the Th interaction is strong. Here, the proposed lattice artefact phase of Th from

section 4.1.1 is approached in the pure Th limit λGN →∞ (upper left corner). In the upper

right region, the low value of the chiral condensate is clearly present due to the intact

symmetry, since it is connected to this phase of GN. The main question is if this region

is directly in contact with the unphysical phase to the left for the limit of vanishing GN

coupling strength. This is difficult to tell from the data in figure 5.1 for any Nf.

The susceptibility also reflects this phase structure and provides a little more insight. We

can identify the peak of GN which ends at the right border. Furthermore, there is a second

peak, signalling the transition to the unphysical phase of Th, similar to our observations

with a mass term in figure 4.1(a). Near the lower border, this second peak vanishes and

only artefacts of the badly thermalised scalar field are present. Most interestingly, the

physical peak merges with the other one when approaching the upper border of the pure

Th, leading to the signal in figure 4.5. This fusion of the peaks can also be seen in cuts at

fixed λGN as in figure 5.2(b), where the non-vanishing chiral condensate is enclosed by

both peaks and decreases as the peaks join. Comparing the different flavour numbers,

we can see a significant difference between Nf = 1 and larger flavour numbers. While the

physical phase boundary is curved upwards for Nf = 1 and the condensate extends towards

larger λGN, the curvature for Nf ≥ 2 is much smaller.
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Dependence on the Lattice Size

Simulations on larger lattice sizes were performed at a fixed value of λGN = 1.2. The results

can be found in figure 5.3. One can see that lattice size 8 is rather small, since the value of

the chiral condensate increases and becomes more pronounced on larger lattices. From the

GN simulations in chapter 3, we would expect an almost constant value of the condensate

in the broken phase, as for the scalar field in figure 3.3. For L = 12 and L = 16 the lines are

already in good agreement up to the transition to the unphysical phase, while the peaks in

the susceptibility still move farther apart. Due to the limited statistics, the signal is noisy

and further simulations would be necessary for a detailed analysis of the finite size scaling

behaviour.

5.1.2. Discussion and Comparison With Previous Results

We now go on to compare our findings with the few results available from previous publi-

cations and discuss possible implications for the critical flavour number of Th.

Previous Analytical Results

Dateki [Dat97] studied the Lagrangian (5.1) with methods similar to the investigation of Th

by Kondo [Kon95] (see section 4.2.1). He used the hidden local symmetry of the latter to

write the coupled theory as a gauge theory with gauge field Vµ and constructed an effective

potential for the order parameter by an inversion method. His main result was a critical

surface in the space spanned by both couplings and Nf given by

g 2
GN = 1+ 1

Nf

(
2

g 2
Th

log
(
1+ g 2

Th

)−1

)
. (5.2)

In his notation, the phase transition of pure GN is at g 2
GN = 1+1/Nf in the large-Nf expansion,

in agreement with [HKK91]. He found that this point also determines the critical behaviour

for the full space. If the model is in the broken phase of GN with g 2
GN & 1, this phase

dominates and there is always χSB. For g 2
GN . 1 (symmetric phase of GN) the coupled
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model is dominated by Th, showing χSB only if the flavour number is lower than a critical

one. Performing the limit g 2
Th →∞ in (5.2), it is given by

Nf =
(
1− g 2

GN

)−1
. (5.3)

Approaching the critical coupling of GN, g 2
GN → 1, we see that N cr

f →∞, as expected for

pure GN. Possible implications for the critical flavour number of Th were not discussed

by the author, but we can recover the pure Th for g 2
GN → 0, which obviously gives N cr

f = 1.

Thus, (5.2) implies the existence of χSB in pure Th for N cr
f = 1, but only at infinitely strong

Th coupling. First setting g 2
GN = 0 in (5.2), we get an expression for the critical flavour

number of Th:

Nf = 1− 2

g 2
Th

log
(
1+ g 2

Th

)
. (5.4)

This also exhibits a phase transition for N cr
f = 1 at infinite coupling, while no χSB exists

for larger Nf or at any finite value of Th coupling if we only consider integer numbers of

(reducible) flavours. However, note that Nf = 1 is not large. The expansion in 1/Nf is likely

not valid for this value!

Results in qualitative agreement with Dateki [Dat97] were already found before by Kim

et al. [KKK95] using DSEs. But similar to the first works for Th, they added a gauge fixing

term to the Lagrangian without physical motivation. These results were used by a few

works [DGM98; MS00] using the combined interaction of Th and GN to model the low

energy behaviour of superconductors. From a FRG perspective, it is natural to study a

whole theory space with different interaction channels. As mentioned earlier, Janssen &

Gies [JG12] studied a complete basis of four-fermion interactions, a part of which are GN

and Th. Since the fixed point dominating the critical behaviour of Th was found to have

non-vanishing λGN for finite Nf, this is another motivation to study a space of more than a

single four-fermion interaction.

Comparison with Our Numerical Results

The result of Dateki [Dat97] is plotted in figure 5.4 and bears a resemblance to our lattice

simulations in figure 5.1. He observed a similar difference between Nf = 1 and larger

flavour numbers because the critical line only diverges for N cr
f = 1 and reaches the pure

Th (λTh → 0). The situation in our lattice simulations is complicated by the lattice artefact

phase of Th. If we stick to the interpretation that this phase starts where the renormalised

coupling λR from (4.4) turns zero and that this point corresponds to the second peak in

the susceptibility (or the decrease of the chiral condensate), the question about a critical

flavour number can be formulated in terms of the susceptibility peaks in the (λGN,λTh)-

plane. There are three different possibilities: The two peak lines ...

1. intersect at finite λGN;

2. stay apart for all λGN; or

3. merge in the λGN →∞ limit.
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In the first case, there would be no χSB for this flavour number, while it would be clearly

present in the second case. For the last possibility, we would have found N cr
f in the limit

λTh → 0 as commonly given by the analytical works in section 4.2.1. In the scenario of

Dateki [Dat97], we have the third case for Nf = 1 and the first one for all other integer values

of Nf. Our simulation results are consistent with this scenario, since the peaks only seem

to merge for Nf = 1 and there is still a single peak left in pure Th. Only a very small signal

remains for Nf ≥ 2 making the case 1 most likely. Thus, our simulations favour N cr
f < 2. It

is not possible to tell with the available amount of data if we really have χSB for Nf = 1.

Besides a merged peak, the signal for pure Th could be only the unphysical peak, while

the physical phase transition vanished in the artefact phase. Also the second scenario is

still feasible, since the peaks move apart for larger volumes. A careful study of the infinite

volume limit together with the limit of λGN →∞ would be necessary to exclude it. We

present a more detailed study in the next section for a combined model that preserves a

larger symmetry group.

5.2. Thirring Model With a Global U (1) Model

The study of coupled GN and Th in section 5.1 already provided some insight into χSB in

the plane spanned by both couplings and in the limit of pure Th. But this approach breaks

a part of the large chiral symmetry group of Th down to the symmetry of GN with a discrete

Z2 group. In order to study a coupled model with a continuous symmetry, we chose a

version of NJL, where the chiral symmetry (2.5d) generated by γ5 is intact and the auxiliary

fields transform under a group of U (1) as given in (2.36). To keep it as simple as possible,

the new fields are taken to be global, in the sense that they are constant in spacetime. They

can vary from one configuration to another, but the field values are the same for all lattice

points.
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5.2.1. Model Definition and Observables

Here, we present the Lagrangian of the model that we simulated together with special

observables adapted to the U (1)-symmetry of the coupled model.

Model Definition

We use an action that is based on a sum of the Lagrangians for Th in (2.33) and NJL in

(2.35). Together with the partition function, it is given by

S =∑
x
ψ̄

(
/∂+ i /V − 1p

V

(
σ+ iγ5τ

))
ψ+ 1

2
λTh

∑
x

VµV µ+ 1

2
V λg

(
σ2 +τ2) (5.5)

:= SD +STh +Sg, (5.6)

Z ∝
∫

Dψ̄DψDVµdσdτe−S . (5.7)

Note, that there is no summation over the lattice in Sg because the fields are constant in

spacetime. This is also the reason for the volume factor of 1/
p

V in the Dirac operator. After

a rescaling of the fields likeσ→p
Vσ, we can integrate them out and obtain a four-fermion

action similar to (2.9). But due to the global fields, the action

e−Sg = exp

(
1

2λgNf

(
Σ2 −T 2)) (5.8)

contains averages over the lattice in Σ := 1
V

∑
x ψ̄xψx and T := 1

V

∑
x ψ̄xγ5ψx , that can be

interpreted as real and imaginary part of the chiral condensate. In the limit λg →∞, the

action gives a trivial contribution of 1 to the partition function and we recover Th. Similarly,

we can switch off the Thirring coupling to perform a simulation of the global NJL part.

For the definition of observables, it is convenient to transform the fields to a polar

coordinate form with σ = r cosφ and τ = r sinφ, adapted to the U (1)-symmetry of the

global model. In the following, we will use a partition sum Z (r ) dependent on the radial

direction r and defined via

Z :=
∫ ∞

0
dr r e−Sg(r )Z (r ). (5.9)

Observables

We can use Z (r ) to get a formula for the absolute value of the chiral condensate by

Σ̄= 1

V

∑
x
〈ψ̄eiγ5φψ〉 =

∫ ∞

0
dr r e−λgr 2

Σr . (5.10)

Here, Σr is defined as

Σr = 1p
V

∂ ln Z (r )

∂r
= 1

V Z (r )

∫
Dψ̄DψDVµ

∫ 2π

0
dφ

∑
x
ψ̄eiγ5φψe−SD−STh . (5.11)

In addition, we define a corresponding rotated susceptibility χ̄ by using ∂2 ln Z (r )
∂r 2 in the

expressions above. A direct measurement of the chiral condensate is also possible. Addi-

tionally, we can obtain histograms in the (Σ,T ) plane, but it proved to be more beneficial
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Figure 5.5.: Histograms of the chiral condensate for the pure global model with Nf = 2 and L = 16.
The given couplings are in the unphysical phase (λg = 0.10), in the broken phase (λg = 0.50),
close to the critical coupling (λg = 0.64) and in the symmetric phase (λg = 0.66).

to make histograms of Σ(x) := (ψ̄ψ)(x) and T (x) := (ψ̄γ5ψ)(x) at each point x on the lattice.

The remaining U (1)-symmetry leads to rotationally invariant two-dimensional histograms

and the observed forms are either rings or disks. To analyse this data, we calculate another

one-dimensional local histogram in the radial direction by computing r =
p
σ2 +τ2 and

binning the r -values. Since we choose the bins of the radial histogram of equal width ∆r ,

we have to include a correction because the area in the original histogram grows with the

radius. The area of the ring corresponding to bin k is

π
(
r 2

k+1 − r 2
k

)=π(
(rk +∆r )2 − r 2

k

)=π∆r (2rk +∆r ) = 2π∆r r̄k , (5.12)

where r̄k = 1
2 (rk+1 + rk ) is the midpoint of each bin. Since 2π∆r is constant, we divide each

value in a bin by r̄k to obtain a correct histogram. We use a cubic spline interpolation of the

radial histogram to obtain the radius with the maximal value, which should correspond to

the absolute value of the chiral condensate. In the following, we call this condensate Σhist.

5.2.2. Simulation Results for the Pure Global Model

At first, we study the pure global model without Th interaction. As mentioned earlier, we

can make histograms for real and imaginary parts of the condensate. Examples for Nf = 2

on lattice size 16 are shown in figure 5.5. The corresponding observables introduced in

section 5.2.1 are shown in figure 5.6. At very strong global couplings, we find rings with

small width as in the first image of figure 5.5. The radius, corresponding to the absolute

value of the chiral condensate, increases with λg up to a maximum. Around this maximum,

the width of the rings grows, so that the rings look like in the example in the second image

of figure 5.5. Following the previous interpretations, the physical phase with χSB is to the

right of the maximum in figure 5.6. In this phase, the radius of the rings decreases with

decreasing coupling strength up to a point of phase transition. Around this point, the rings

no longer show a clear hole in the origin as in the third image. Finally, we get small disks

centred around the origin when we arrive in the symmetric phase.
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below equation (5.11).
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Figure 5.7.: The rotated
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axis gives the range for Σ̄
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In figure 5.6, the data points labelled with Σhist are obtained from these histograms. The

fluctuations and errors around the critical point result from the difficulty to distinguish

rings and disks at these couplings. The rotated chiral condensate Σ̄ defined in (5.11) is

indeed a good definition to describe the radius of the histograms. In the broken phase it

agrees well with Σhist and does not suffer from the problems around the phase transition.

On the other hand, it shows no sharp transition at this point due to finite-size effects like

the condensate of GN (see figure 3.1 and figure 3.3). Thus, Σhist is more reliable to indicate

a symmetric phase. The usual definition of the absolute value of the chiral condensate Σ

shows a behaviour similar to Σ̄ but has a smaller scale. The lower part of figure 5.6 shows,

that the peak of the ordinary susceptibility χ is not at the physical transition. Its form

follows the shape of the chiral condensate. On the contrary, the rotated susceptibility χ̄

has a peak at the critical point and serves as a good observable for it.

Regarding the dependence on Nf, only little variation is found in figure 5.7. The peak in χ̄

is less pronounced for larger Nf and the finite size effects in Σ̄ are smaller. Most importantly,

the physical phase transition stays at constant λg/Nf ≈ 0.75 and the position of the maximal
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Figure 5.8.: Coupled Th with global NJL for various flavours on L = 8. An interpolation was used
to obtain smooth images.

condensate is also constant. Comparing the simulations on lattice size 8 in figure 5.7 with

size 16 in figure 5.6, the rotated susceptibility grows with increasing lattice size, as expected.

The observables related to the chiral condensate are more pronounced on the larger lattice,

but the phase transition stays roughly at the same coupling.

5.2.3. Simulation Results for the Coupled Model

We now turn towards simulations in the full two-dimensional coupling space of the model

(5.7). For various couplings on lattice size 6 with Nf = 1, the determinant showed no nega-

tive sign in a simulation with 1000 updates that were performed with an exact calculation

of it. Thus, we can be assured that rHMC simulations are feasible. A first overview of

the full coupling space is given in figure 5.8 for lattice size 8. Due to the observations in

section 5.2.2, we show the rotated observables Σ̄ and χ̄ together with the chiral condensate

from the radial histogram Σhist. The general behaviour is similar to the coupled GN and Th

described in section 5.1 (see in particular figure 5.1). For Nf ≥ 2, the condensate extends

only shortly into the region of λg/Nf & 0.75, where the pure global model is in the symmetric
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phase. Again, this non-zero region is more pronounced for Nf = 1. Comparing the two

versions of the chiral condensate, we can see here that the smeared extension of Σ̄ to large

λg does not occur for Σhist. It is only an artefact of the stochastic estimation.

The susceptibility shows two peaks, where the one to the right (for λTh →∞) belongs to

the physical transition of our global NJL model. One more time, we observe a second peak,

that we can attribute to the unphysical phase transition of Th. It merges with the physical

peak in the limit λg →∞, where we recover the pure Th. Thus, we are faced with the same

problem described in section 5.1.2.

Extrapolation of N cr
f as a Function of λg

We now investigate the extrapolationλg →∞ in more detail on larger lattices. To determine

a critical flavour number at a fixed λg, we performed simulations with many non-integer

Nf ∈ [1.7,4.0], which is possible in the rHMC algorithm as long as an integer number of

pseudofermions is used, see (2.45). We obtained values of λcr
Th for the artefact transition as

the point of steepest increase in Σhist for increasing λTh. For the physical transition, we use

the point, where the condensate falls below a threshold of 0.03. Plotting both critical points

for L = 12 as a function of Nf for various global couplings, we obtain figure 5.9. We find a

good agreement with linear fits of λcr
Th(Nf) for both transitions. Chiral symmetry breaking

is present for a given λg in the triangular region between the two lines of the corresponding

colour. An estimate for N cr
f at the given λg can be obtained by the intersection of the two

lines, indicating the point, where the physical transition moves into the artefact phase.

Increasing λg, the position of the unphysical transition is quite stable, while the λcr
Th of the

physical point decreases. This narrows down the region of non-zero chiral condensate and

reduces N cr
f . Simulations with λg/Nf = 1.0 on L = 16 showed a similar trend when increasing

the lattice size. Extrapolating N cr
f (λg) in the global coupling, we obtained figure 5.10 and a

good fit with a rational function

N cr
f (λg) = 2.15(4)+1.44(4)

(
λg

Nf

)−12.0(9)

. (5.13)
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Figure 5.11.: Rotated susceptibility χ̄ for Nf = 1 and fixed λg as a function of Th coupling. Note
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This leads to a value of N cr
f = 2.15(4) for the pure Th. A fit with an exponential ansatz found

a similar result of N cr
f = 2.18(3).

Extrapolation for Nf = 1

Additional simulations for Nf = 1 were performed to probe the result at weaker global

coupling and with more lattice sizes. Since values of Σhist become too small for reliable

estimates of the critical points, we now use peaks in the rotated susceptibility χ̄. An

overview for two global couplings is given in figure 5.11. With λg = 1.0 Nf close to the

critical coupling of the pure global model, we find a sharp peak at the unphysical transition

and a well-separated, wide maximum at larger λTh that grows with increasing lattice

size. For λg = 4.0 Nf and L = 12, we do not find a second maximum related to a physical

transition, casting doubt on our previously obtained critical flavour number. A small

maximum appears again for L = 16 and 20, very close to the sharp peak of the unphysical

transition.
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Figure 5.12.: All maxima of the rotated susceptibility χ̄ for Nf = 1. The error bars represent the
resolution in λTh used in the simulations. Note the logarithmic scale on the vertical axis and the
small offset added to λg for L = 16 and 20 to increase visibility of the data points.

The positions of all maxima we found are indicated in figure 5.12. Here, rational fits did

not work well, but we were able to model the λg-dependence by an exponential ansatz with

λcr
Th = a e−bλg + c. We found c = 0.176(1) for the unphysical transition and c = 0.189(1) for

the physical one, suggesting that the peaks stay apart for λg →∞. However, we must admit

that simulations with larger λg likely do not show separate peaks unless larger lattices are

used. This delicate handling of the two limits λg →∞ and V →∞ prevents more reliable

results.
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After the direct simulation of Th in the common vector field formulation in chapter 4 and

the studies of Th coupled with other models in chapter 5, this section presents another

alternative approach to χSB for Th. We abandon the vector field formulation, where no

order parameter of χSB is accessible, and reformulate Th with other degrees of freedom.

Fierz identities, already introduced in section 2.2.1, provide means to do this in various

ways. Results of simulations with these transformed Lagrangians are reported in section 6.1.

The second part in section 6.2 is closely related to this since it was originally invented by

Björn Wellegehausen to overcome the sign problem that we will find in section 6.1. It is an

adaption of the fermion bag idea of Chandrasekharan [Cha08; Cha10], that we reviewed in

section 2.4.1, to our setup with the SLAC derivative. We re-express the partition sum of our

four-fermion models in terms of a new dual field that can be interpreted as an occupation

number for the lattice degrees of freedom.

6.1. Fierz Identities

In this section, we study Th after the application of Fierz identities, as described in sec-

tion 2.2.1. To our knowledge, no previous lattice simulations with this setup were published,

but Fierz identities have been used for large-Nf [Ahn94; AP98] and FRG studies [GJ10; Jan12;

JG12] of Th. Results of these works were already reviewed in section 4.2.1. We will present

details about the implemented actions in section 6.1.1. Since it was not possible to show

the absence of a sign problem in section 2.4, we investigate its occurrence and severity in

section 6.1.2.

6.1.1. Implementation Details

Starting point for the implementation are the Lagrangians after HS in (2.37) and the variants

in (2.38). Here, we show an example for the formulation (2.38b), which has the fewest

number of degrees of freedom. It contains a Hermitian, traceless matrix T̂ of dimension

Nf,irr, which has N 2
f,irr −1 independent real entries. As a basis for such matrices, we can

take generalisations of the Gell-Mann matrices λs as given by Stover [Sto] and use the

decomposition T̂αβ = ts(λαβ)s with s = 1, . . . , N 2
f,irr −1. Together with the trace degree of

freedomφ, the reformulated model includes N 2
f,irr real scalar fields, while Th contains three,

independently of Nf,irr. With the trace of the generalised Gell-Mann matrices in flavour

space given by (λαβ)s(λβα)r = 2δsr , we can write

T̂αβT̂βα = ts tr (λβα)s(λαβ)r = 2
∑

s
t 2

s . (6.1)
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Now, the Lagrangian reads

LFM = χ̄α
[(

/∂+m +φ)
δαβ+ ts(λαβ)s

]
χβ+

1

2
λTh

∑
s

t 2
s +

λThNf,irr

2(2+Nf,irr)
φ2. (6.2)

We can finally rescale the field φ→
√

2+Nf,irr
Nf,irr

φ and obtain the implemented Lagrangian

LFM = χ̄α
[(

/∂+m +
√

2+Nf,irr

Nf,irr
φ

)
δαβ+ ts(λαβ)s

]
χβ+

1

2
λTh

(∑
s

t 2
s +φ2

)
. (6.3)

The same procedure can be applied for the other reformulations.

Contrary to the models studied in chapter 3, 4 and 5, the Lagrangians resulting from

(2.37) have Dirac operators which are non-diagonal in flavour space. Therefore, it is not

possible to write the fermion determinant as a power of the single-flavour operator as in

(2.45). We have to use the full operator with flavour indices, so that the matrix size grows

with Nf,irr. This largely increases the computational costs for larger flavour numbers. Since

we must expect a sign problem (see section 2.4.2), we use conventional simulations with

the exact update algorithm described in section 2.3.1 to study it.

6.1.2. Simulation Results

In figure 6.1(a), we compare the different formulations of Th for Nf,irr = 2 and L = 4. This

figure confirms the absence of a sign problem for Th in the usual vector field formulation

for even Nf,irr that was already discussed together with the massive model in figure 4.3.

Furthermore, results for the first Fierz identity (2.26a), leading to FM, and the second

identity (2.26b), leading to FVM, are given. The corresponding Lagrangians were given

in (2.37a) and (2.37b). For the first Lagrangian with a GN-like term and a matrix field in

flavour space, no restrictions on the sign of the determinant were found in section 2.4.2 and

a complex phase is indeed present in our simulations. The deviations from a real weight

are strongest in a region of λTh/Nf ∈ [0.2,0.4] and decrease for both stronger and weaker

couplings. Since the weights are not close to zero, reweighting as in (2.58) is possible and

was performed for Σ in figure 6.2. The region of imaginary weights is accompanied by

a maximum in the chiral condensate that could be a sign of χSB. Reweighting is clearly

necessary and alters the mean values in a significant way. Unfortunately, an increase in

lattice size dramatically worsens the sign problem. Results for the still very small size L = 6

are shown in figure 6.1(b). There, we find a region with complex determinant, where the

real part of the average weight 〈w〉 is close to zero, rendering reweighting impossible. When

increasing Nf,irr, this behaviour does not change except that the sign problem also seems

to be present for small λTh. Note, that only very few configurations could be obtained for

larger Nf because the computational cost drastically increases as the number of degrees

of freedom grows with N 2
f,irr. By any account, conventional simulations with Lagrangian
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Figure 6.1.: Study of the sign problem of Th after Fierz transformations were applied. Both plots
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the Dirac operator is real and positive.
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FM in (2.37a) are not possible. In section 6.2, we investigate an alternative approach to

simulate this model.

Although the Dirac operator of FVM with Lagrangian (2.37b) has real eigenvalues (see

section 2.4.2), the sign problem in figure 6.1(a) is even worse. The sign jumps on nearly

every update in the HMC, leading to an average value close to zero. This behaviour is

already present on lattice size 4 and prevents any data evaluation. Therefore, no further

simulations where performed with this reformulation.

We conclude that Fierz identities can relate four-fermion models without a sign problem

to equivalent models with a sign problem. The sign problem arises in different ways for

the two Fierz identities, but it is always too strong to obtain meaningful results regarding

χSB. Conversely, this may be a great benefit for models that originally suffer from a sign

problem and allow a reformulation in a sign-problem-free manner. Unfortunately, the

situation is reversed for Th, which is free of a sign problem in the common vector field

formulation, but allows no access to χSB. Note, that an investigation of NJL in d = 4 found

a similar trade-off between χSB and a sign problem when using Fierz identities [GKN13].
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Although the very strong sign problems could not be solved here, our recent work [WSW17]

bridged the gap between a sign-problem-free simulation in the vector formulation and

explicit order parameters after Fierz transformations by the construction of an effective

potential. This required the introduction of dual variables as presented in the next section.

6.2. Dual Variables Formulation

This section investigates a dual-variables formulation of four-fermion theories with SLAC

fermions. It was originally proposed by Björn Wellegehausen to solve the sign problem

of Th after Fierz transformations, as presented in section 6.1. Based on the fermion bag

idea of Chandrasekharan [Cha08; Cha10] introduced in section 2.4.1, we integrate out the

interaction part of the partition sum to obtain new variables kI J that can be interpreted

as lattice occupation numbers. A detailed calculation is shown in section 6.2.1, while

section 6.2.2 presents first numerical results.

6.2.1. Derivation

We start from a general Lagrangian similar to (2.39) for irreducible four-fermion models

after HS. Abbreviating the scalar fields in the Dirac operator with a matrix H , we write

L = χ̄(
/∂+H [ϕ]

)
χ+Sbos[ϕ](λ), (6.4)

where Sbos[ϕ] contains quadratic terms in the bosonic fields ϕ. In general, H has lattice,

spin and flavour indices, which we collect in a single index I . Assuming implicit summation

over these indices, the partition sum is given by

Z (λ) =CHS

∫
Dχ̄DχDϕe−χ̄I (/∂I J+HI J [ϕ])χJ−Sbos[ϕ](λ) :=CHS

∫
DϕW [ϕ]e−Sbos[ϕ](λ). (6.5)

Here, CHS = (λ/2π)V Nϕ/2 is the pre-factor induced by HS in (2.31) and depends on Nϕ, the

number of bosonic degrees of freedom per lattice site, e.g. Nϕ = 1 for GN or Nϕ = 3 for Th.

Splitting the exponential of sums into a product, the fermionic part becomes

W
[
ϕ

]= ∫
Dχ̄Dχe−χ̄I /∂I JχJ

∏
M ,N

e−χ̄M HM NχN . (6.6)

There is still a summation over I and J implied, while the sum over M and N was replaced

by the product. Since χ̄,χ are Grassmann variables we have χMχM = χ̄M χ̄M = 0. Hence,

the exponential function contains only two terms in its series expansion. We have

W
[
ϕ

]= ∫
Dχ̄Dχe−χ̄I /∂I JχJ

∏
M ,N

(
1− χ̄M HM NχN

)
. (6.7)

With the introduction of dual variables kM N ∈ {0,1}, acting as occupation numbers, we

can use 1− χ̄M HM NχN = ∑1
kM N=0

(−χ̄M HM NχN
)kM N . Whenever a kM N is set to one, the
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corresponding fermionic degree of freedom participates in the interaction. Now, we expand

the product of sums to a sum over all possible configurations of kM N :

W
[
ϕ

]= ∑
{kM N }

∫
Dχ̄Dχe−χ̄I /∂I JχJ

∏
M ,N

(−χ̄M HM NχN
)kM N . (6.8)

Here, we can restrict kM N to a matrix with maximal one non-zero entry per row and column.

The contribution of all other configurations is zero, due to the Grassmann nature of χ̄,χ.

For example, k11 = 1 and k21 = 1 would lead to a product involving χ1χ1 = 0. Thus, we have

the constraints ∑
M

kM N ∈ {0,1} and
∑
N

kM N ∈ {0,1}. (6.9)

Integrating over the fermions in (6.8), we get the usual determinant of the derivative

operator, but the contribution of the first exponential is cancelled by the second factor

every time a kM N = 1 is set. This leads to the determinant of a free Dirac operator, where

each row M and column N is deleted, whenever a kM N is set. We denote this matrix by

/∂[k] and obtain

W
[
ϕ

]= ∑
{kM N }

det(/∂[k])
∏
M N

(−HM N )kM N . (6.10)

To proceed, we need to specify the form of H and Sbos. In the following, we present the

calculation for GN, which has the simplest form. The more involved derivations for Th and

FM can be found in appendix E.

Irreducible GN / G45

The irreducible version of Lagrangian (2.32) has HM N = σxδx yδi jδαβ (no summation

over x), where the field contribution σx is diagonal in the spacetime-index x and indepen-

dent of spinor (i , j ) and flavour (α,β) indices. Thus, the dual-variables field only depends

on the lattice position and we can write

W [σ] =
∑
{kx }

det(/∂[k])
∏

x
(−σx)kx , (6.11)

where kx :=∑
i ,αkxiα ∈ {0,1, . . . ,2Nf,irr} includes a sum over spinor and flavour indices. The

constraint (6.9) is trivially fulfilled because kM N must be diagonal.

Going back to the partition sum, it can be factorised in local weights w(kx ) that are given

by the Gaussian integrals in

Z (λGN) =CHS
∑
{kx }

det(/∂[k])
∫ ∞

−∞

∏
x

dσx(−σx)kx e−
1
2λGNσ

2
x :=CHS

∑
{kx }

det(/∂[k])
∏

x
w(kx).

(6.12)

The remaining one-dimensional integration can be performed easily. Since the integrand

in w is odd for odd values of kx , the integral vanishes in these cases(a) and we can restrict

the configurations to those with even kx . With the usual Γ-function that extends the

(a)With non-zero mass also contributions from odd kx arise.
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factorial function to non-integer numbers, they have a local weight of

w(kx) =
∫ ∞

−∞
dσ (−σ)kx e−

1
2λGNσ

2 =
(

2

λGN

) kx+1
2

Γ

(
kx +1

2

)
for even kx . (6.13)

Now, the product over x in (6.12) can be simplified by introducing k =∑
x kx . Additionally,

we define occupation numbers ns for s = 0,1, . . . , Nf,irr, counting how many kx of a given

configuration have the value 2s. They are related to the lattice volume by
∑Nf,irr

s=0 ns = V ,

since every lattice site must be occupied exactly once. After pulling out a common factor

CGN =CHS · (2/λGN)
V
2 =π−V

2 , the full partition sum is given by

Z (λGN) =CGN
∑
{kx }

det(/∂[k])

(
2

λGN

) k
2

Nf,irr∏
s=0

Γ

(
2s +1

2

)ns

. (6.14)

In this form, the meaning of 〈k〉 as a lattice filling factor as well as the definition (2.55)

become apparent. Indeed, we can obtain an expression containing the expectation value

of our dual-variables field by − λ
V

d
dλGN

ln Z . A shift by −1/2 is necessary to compensate the

additional contribution from CGN and we divide by kmax
x = dγNf,irr for a normalisation such

that 〈k〉 ∈ [0,1].

Other Formulations

In the formulation FM, we obtain a field kαβxi . As before, we use the abbreviations k and

kαβx for the sums over the missing indices. Contrary to the previous paragraph, we must

count diagonal and off-diagonal values of kαβx separately. Here, ns,x with s = 1,2 gives the

number of diagonal elements kααx (no summation) that equal s at a given x, ns =∑
x ns,x ,

and ñ2 counts how many kαβx take the value 2 for α< β on the whole lattice. With these

definitions, the result of the computation for FM in appendix E is

Z (λTh) =C
∑

{
k
αβ

xi

}det(/∂[k])(−1)k 2ñ2

(
2

λTh

) k
2 ∏

x
Γ

(
n1,x +1

2

)
U

(
n1,x +1

2
,

n1,x +3

2
+n2,x ,1

)
.

(6.15)

All coefficients independent of k are collected in C = 2V (Nf,irr−1)π−V
2 . The confluent hyper-

geometric function of the second kind U (a,b, z) is well-known in mathematics [Wei] and

its values can be calculated for example with Mathematica. The local constraints on kαβxi

are

kαβx = kβαx ,
Nf,irr∑
α=1

kαβxi ∈ {0,1} ,
Nf,irr∑
β=1

kαβxi ∈ {0,1}, n1,x even. (6.16)

In appendix E, we also derived a partition function for Th with dual variables k i j
xα and

similar constraints. Here, the action of the Fierz transformation is clear: It interchanges

spin degrees of freedom by flavour degrees of freedom. In the FM formulation, we have

dγ = 2 matrices kαβxi of size Nf×Nf, while we have Nf dγ×dγ-matrices in the Th formulation.

Both versions are fully equivalent with respect to the rows and columns that are deleted in

the free Dirac operator /∂[k]. Also the difference between any formulation of Th and GN
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becomes apparent. In GN, we must always delete the row and the column with the same

index because kx is diagonal. This preserves the anti-Hermiticity of the operator and leads

to real determinants of /∂[k]. For Th, we have additional interactions between different

spinor components that are not present in GN. They can be realised by interactions of

different spins as in Th or between different flavours as in FM.

In general, the range of interactions on the lattice depends on the fermion derivative,

while the derivation of the partition sums in the dual variables formulation is independent

of the choice of the lattice derivative. In our investigation with SLAC fermions, a lattice

site x interacts with all other points along the straight lines in all three spacetime directions

that pass through x. In comparison, the interaction in the approach of Chandrasekharan &

Li [CL13] is only between the corners of a cube. Their formulation of GN has interactions

across the edges, the diagonals on the surfaces, and through the body of the cube. Opposed

to our formulation, there is less interaction for Th, where only edge bonds are allowed.

6.2.2. Implementation and Results

For lattices with only 4×1×1 points and Nf = 1 or 2, it is possible to confirm the equiva-

lence of the partition sums before and after introduction of the dual variables in an exact

calculation with Mathematica. In the dual-variables approach, we can also compute Z (λ)

for quasi-two-dimensional lattice sizes like 2×3×1, but larger lattices require a Monte

Carlo algorithm to sample configurations.

Implementation

An implementation(b) with a simple Metropolis algorithm was used to perform updates. In

the beginning, the program generates a list of allowed local configurations kI J either for FM

or GN. For a single update, the resulting weight is always zero when choosing a new random

configuration at a single random lattice point. Hence, new random configurations are

placed at two different random lattice sites. Afterwards, an accept/reject-step is performed,

where we have to calculate the change of the action from the old configuration k1 to the

new k2. For this, an efficient update of the determinant is done with the formula [Bro]

det(/∂[k2]) = det
(

/∂[k1]+ AB †)= det(/∂[k1])det
(
1+B † /∂[k1]−1 A

)
, (6.17)

where det(/∂[k1]) is the fermion determinant before the update. A and B are matrices of

shape (rank /∂)×n where n ¿ rank /∂ is the number of rows and columns that need to be

updated. Hence, the matrix in the last factor of (6.17) is of size n ×n and its determinant

can be computed at low cost. A full calculation of the determinant and the inverse of the

free Dirac operator is only necessary for the initial configuration. If the new configuration

was accepted, we also have to update the inverse of /∂[k1]. This can be done similarly to the

(b)Source code can be found on https://github.com/daniel-schmidt/FermiOwn.
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6.3(a) GN with scalar field and its dual variables
formulation given by (6.14).
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6.3(b) Th in the vector field formulation and the
dual variables form of FM given in (6.15).

Figure 6.3.: Comparison of observables for the dual variables formulation. Results with L = 4 from
a conventional simulation with exact update are compared to their equivalent dual variables
formulation simulated with a Metropolis algorithm.

determinant update (6.17) with a simplified version of Woodbury’s formula [Lie]

/∂[k2]−1 = (
/∂[k1]+ AB †)−1 = /∂[k1]−1 − /∂[k1]−1 A

(
1+B † /∂[k1]−1 A

)−1B † /∂[k1]−1. (6.18)

For the simulations presented in the following, we used 10V updates between measure-

ments to decrease correlations. As with the exact algorithm, we have direct access to the

complex phase of the determinant and can obtain the weight as defined in (2.58). Likewise,

we also simulate phase-quenched if the determinant is not positive.

Irreducible GN

As a first step, we present the single-flavour case, where all formulations given above are

equivalent to the irreducible GN and a strong sign problem was found in section 3.4. The

field kx can take the values 0 or 2 and due to n0 +n1 =V and n1 = k/2, we only need n1 to

rewrite the partition sum (6.14). The prefactor cancels due to Γ(1/2) =p
π and Γ(3/2) =p

π/2

and we find

Z (λGN) = ∑
{n1,x }

det(/∂[n1])λ−n1
GN . (6.19)

Whenever an n1,x is set, we delete the whole contribution (two rows and two columns) at

that point in /∂. In appendix E, we also showed that the FM partition sum (6.15) becomes

identical to (6.19) for Nf,irr = 1 when considering λTh = 3λGN from the Fierz identity (2.27).
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We show in figure 6.3(a) that a naive simulation of (6.19) reproduces the sign problem

of the scalar field formulation as previously given in figure 3.14(a). In contrast to GN, the

determinant is no longer complex, since /∂[n1] is anti-Hermitian for all n1 as in the vector

field (Th) formulation of the Nf,irr = 1 model. Our numerical investigation showed that

exactly all configurations with a negative determinant are those with an odd n1. This

can provide a solution to the sign problem: we only sample the configurations with even

n1, which always have a positive determinant and allow a probability interpretation of

their weights. Given such a configuration, we can add the contribution from all odd

configurations with n1 +1 employing a reweighting procedure as in (2.58). Here, it does

not matter that the weights are negative. For every configuration with even n1, there are

V −n1 configurations with odd n1+1, each with a previously unset nx,1 set to 1. Thus, there

seems to be no need to sample the configurations with odd n1. With further investigations,

e.g. regarding algorithmic properties like ergodicity and efficient update schemes, this

approach should allow sign-problem-free simulations of the Nf,irr = 1 four-fermion model,

which are not possible at the moment.

For the GN-equivalent with Nf,irr = 2, the sign problem in the dual variables approach is

worse than in the original scalar field formulation, see figure 6.3(a). So far, no systematic

analysis to identify possible resummations was done for this model. Regarding the lattice

filling factor 〈k〉, the results from our two different approaches are in reasonable agreement

for GN, even in the region where the sign problem is strongest. For very strong couplings,

where GN showed an unphysical phase with thermalisation problems, we even get a

smoother curve from the dual variable approach.

Multi-Flavour FM

In figure 6.3(b), we compare the vector field formulation of Th, where no sign problem was

found, with the dual-variables version of FM. As in the previous paragraph, 〈k〉 is also in

agreement for both formulations of Th at strong couplings, but deviations become large

for 〈k〉. 0.5. For a wide range of λTh, we already find an average weight close to zero on

lattice size L = 4. This must be compared to figure 6.1(a), where the sign problem for FM in

a conventional simulation was shown. It is worse in the dual variables formulation, again

preventing a successful calculation of observables.

Various attempts to classify and resum local configuration were not yet successful in

obtaining positive weights. Nevertheless, we shortly discuss the local configurations of kαβxi

with Nf,irr = 2 as an example. In this case, i ,α as well as β take the values 1 or 2, leading

to 28 = 256 possible configurations for a fixed x. Selecting only those that are allowed

by the constraints (6.16), we are left with 15 configurations. They are given in table 6.1

together with the matrix kαβx including a sum over spins, the values of n1,n2 and ñ2 and

the resulting local weight

wloc
(
n1,x ,n2,x , ñ2,x

)
:= 2ñ2,x

p
π
Γ

(
n1,x +1

2

)
U

(
n1,x +1

2
,

n1,x +3

2
+n2,x ,1

)
. (6.20)
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Table 6.1.: Allowed local configurations for the dual variables formulation of FM with Nf,irr = 2.

The matrix kαβx in the third row is the sum of the matrices kαβxi in the first two rows. In the fourth

row, n1 and n2 count the number of ones and twos on the diagonal of kαβx , while ñ2,x counts the
twos in the upper right corner. ñ1,x is not given here because it is not needed in the partition
sum (6.15).

number 1 2 3 4 5 6 7 8

kαβx1

(
0 0
0 0

) (
0 0
0 0

) (
0 0
0 0

) (
0 0
0 1

) (
0 0
0 1

) (
0 0
1 0

) (
0 1
0 0

) (
0 1
1 0

)
kαβx2

(
0 0
0 0

) (
0 1
1 0

) (
1 0
0 1

) (
0 0
0 1

) (
1 0
0 0

) (
0 1
0 0

) (
0 0
1 0

) (
0 0
0 0

)
kαβx

(
0 0
0 0

) (
0 1
1 0

) (
1 0
0 1

) (
0 0
0 2

) (
1 0
0 1

) (
0 1
1 0

) (
0 1
1 0

) (
0 1
1 0

)
n1,x ,n2,x , ñ2,x 0, 0, 0 0, 0, 0 2, 0, 0 0, 1, 0 2, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

wloc 1 1 1/2 3/2 1/2 1 1 1

number 9 10 11 12 13 14 15

kαβx1

(
0 1
1 0

) (
0 1
1 0

) (
1 0
0 0

) (
1 0
0 0

) (
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)
kαβx2

(
0 1
1 0

) (
1 0
0 1

) (
0 0
0 1

) (
1 0
0 0

) (
0 0
0 0

) (
0 1
1 0

) (
1 0
0 1

)
kαβx

(
0 2
2 0

) (
1 1
1 1

) (
1 0
0 1

) (
2 0
0 0

) (
1 0
0 1

) (
1 1
1 1

) (
2 0
0 2

)
n1,x ,n2,x , ñ2,x 0, 0, 1 2, 0, 0 2, 0, 0 0, 1, 0 2, 0, 0 2, 0, 0 0, 2, 0

wloc 2 1/2 1/2 3/2 1/2 1/2 11/4

We can reduce the number of necessary configurations from 15 to 10 because some of

them lead to the same global weight det(/∂[k]). For example, configurations 10 and 14

are identical because the first can be obtained from the second by an exchange of spin.

Also 9 and 15 delete the same rows and columns in /∂[k]. Additionally, only the sign of

the determinant changes when switching from a flavour-singlet interaction to a flavour-

mixing one. In the matrix form of table 6.1, this amounts to moving the ones from the

diagonal entries to the off-diagonal elements. The configuration pairs (2,3), (8,13), and

(14,15) are related in this way. Finally, two such changes identify 9 with 15, which both

lead to the same determinant. In total, the local weight of the sum over configurations 9,

10, 14, and 15 (all those with kx = 4) is 2−2 · 1/2+ 11/4 = 15/4 and it is sufficient to include

only one configuration, e.g. number 15, with this local weight into the calculation of the

partition sum. The remaining 10 configurations are given in table 6.2 together with their

local weights. For Nf,irr = 3, all 118 allowed configurations can be filtered out of the total 218

configurations. This is no longer possible for Nf ≥ 4, where a more constructive approach

would be necessary that directly leads to allowed configurations. Another possibility to

investigate is the dual-variables formulation of Th given in appendix E, where one can
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Table 6.2.: Reduced set of configurations for the dual variables formulation of FM with Nf,irr = 2.
A resummation of configurations (2,3), (8,13) and (9,10,14,15) was performed.

number 1 3 4 5 6 7 11 12 13 15

wloc 1 −1/2 3/2 1/2 1 1 1/2 3/2 −1/2 15/4

obtain the same configurations in table 6.1 for Nf,irr = 2 with kαβxi replaced by k i j
xα. This has

the advantage for simulations that /∂ can be split into independent single-flavour blocks,

contrary to the formulation presented here.

The resummations performed here are not sufficient to obtain a set of configurations

with positive weights as for the single-flavour model. The complex phase of the fermion

determinant is not predictable so far and the sign problem for FM remains unsolved.

Nevertheless, the dual variables formulation in terms of the fields kI J provided new insights

into four-fermion theories and allowed a definition of the lattice filling factor that is also

useful for conventional simulations with auxiliary fields.
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In this work, we investigated a previously unused approach to four-fermion theories on the

lattice. We performed the first simulations of three-dimensional fermionic QFTs with the

SLAC derivative, allowing an exact implementation of all internal symmetries at any finite

lattice spacing. Its dispersion relation is as close to the continuum form as possible and

no ambiguities arise due to its use in lattice formulations. Hence, it is a very good choice

to study effects like χSB in strongly interacting QFTs without gauge symmetries. Prime

examples for such theories are three-dimensional four-fermion models. Keeping possible

applications in condensed matter physics in mind, we used them as toy models to learn

more about spontaneous χSB.

Our main objects of study were GN with a scalar-scalar interaction and Th with a vector-

vector interaction. Many previous works exist for GN, calculating critical exponents with

various numerical as well as analytical methods. Therefore, GN provided a good testing

ground to explore the performance of the SLAC derivative and our simulation setup for

investigations of χSB in three-dimensional four-fermion theories. We were able to confirm

the common belief that χSB exists for any number of fermion flavours. To study the

phase transition quantitatively, well-known methods from the theory of finite sizes scaling

were successfully employed. Furthermore, an algorithm was implemented that uses all

physical information from the ensembles at various couplings to calculate a smooth

interpolation. Using these methods, critical exponents for the phase transitions with

Nf = 1,2,4 and 8 were calculated. For Nf = 4 and 8, we found good agreement with the

large-Nf expansion. In comparison with previous lattice field theory simulations employing

staggered fermions for Nf = 2 and 4, our new results match well with the older estimates.

Remarkably, our results for Nf = 2 support the findings of Kärkkäinen et al. [Kär94], where

a possible sign problem of their lattice formulation was ignored, but they are not in good

accord with estimates from the fermion bag approach of Chandrasekharan & Li [CL13].

For Nf = 1, large discrepancies exist in the literature between analytical calculations and

QMC simulations. Our work provides the first calculation of critical exponents in a lattice

field theory approach and agrees reasonably well with the results from FRG methods and

ε-expansions around 2 and 4 dimensions. Therefore, it is questionable if the works with

QMC algorithms actually simulate models in the same universality class. Further work in

this area seems to be necessary to find the origin of the disparity. Note, that the calculation

of the exponent ν in the conformal bootstrap approach also shows a large deviation from

our result. In general, our approach with the SLAC derivative works well for χSB in GN and

it is competitive to other lattice simulations. In a short study, we also provided evidence

that GN in the irreducible representation as well as the equivalent G45 are in the same

chiral Ising universality class as GN.
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The situation for Th is less clear in the literature and our results propose a radically

different picture, contrary to the common belief. Previously, almost all investigations,

either on the lattice, using DSEs or FRG methods, found a critical flavour number N cr
f such

that χSB is present for Nf ≤ N cr
f . Though the values given for N cr

f vary in the literature, its

very existence seemed to be established. Only the most recent lattice simulations of Hands

[Han16b; Han17] with a different approach to exact chiral symmetry raised doubt on this.

Spontaneous symmetry breaking was neither found for Nf = 2 [Han16b] nor for Nf = 1

[Han17]. This is consistent with our own simulations, where also no trace of spontaneous

χSB is present. In the conventional formulation of massless Th with an auxiliary vector

field, a clear statement was hampered by the exact implementation of chiral symmetry

because no order parameter for its breaking is accessible on the lattice. With an external

breaking by a mass term, we found no evidence for χSB for any flavour number.

Our effort to study a larger space of couplings, combining Th either with a GN interaction

or a global NJL term, is also consistent with the absence of χSB in Th for any Nf. We always

found a three-phase structure in the coupling plane with a region of lattice artefacts,

a symmetric regime, and a phase of spontaneous symmetry breaking. Whenever we

approached the pure Th by reducing the second coupling, indications for χSB vanished

and we were left with a symmetric phase in direct contact with the unphysical region. For

both coupled models, the region of broken symmetry for Nf = 1 was found to exhibit a

different shape than for Nf ≥ 2 with a larger extension in the direction of the pure Th. In a

more detailed study of Th coupled to the global NJL for Nf = 1, it was difficult to perform

the two limits of pure Th and infinite volume. On larger lattices, the region of χSB extends

closer to the pure Th. Although a rough extrapolation showed a very small region of broken

symmetry for pure Th, this result may change when including larger lattices and weaker

couplings of the global model.

Alternative approaches to Th using Fierz identities to reformulate the model with differ-

ent degrees of freedom were not successful in direct simulations. For both identities used

here, we found a very strong sign problem preventing the investigation of χSB, although

an order parameter is accessible in these formulations. Here, the main conclusion is that

the sign problem can appear with very different characteristics for Lagrangians that are

physically equivalent due to Fierz identities. In general, also the introduction of dual

variables was not yet successful to eliminate the sign problem. Nevertheless, it provided

an insight into the unphysical phases, which we found for GN and Th. In the case of GN,

we found a saturation of the scalar field and thermalisation problems as soon as more than

half of the lattice is filled. For Th, the peak in the chiral susceptibility as well as the position

of the maximum in the condensate for massive fermions appear where the lattice filling

factor has a transition between low filling and a region of linear increase. The reformula-

tions in this work also paved the way for our work [WSW17], combining simulations in the

sign-problem-free vector field formulation of Th with effective potentials for local order

parameters that Björn Wellegehausen derived from a Lagrangian after Fierz transformation.
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The dual variables formulation may also be used to study the irreducible four-fermion

model with Nf,irr = 1, where GN and Th are equivalent. In conventional simulations of this

model with a mass term, we found indications of parity breaking but also a strong sign

problem. Remarkably, always the same dependence of the weight on the coupling arises in

different formulations, although the determinant of the Dirac operator is complex for GN

and real for Th. In the dual variables formulation, we also find arbitrary real weights, but

the negative contributions only come from configurations where an odd number of lattice

sites participates in the interaction. This should allow sign-problem-free simulations

which could be a topic for new studies.

In conclusion, we record that no reliable evidence for χSB in Th was found in this work,

although our approach worked well to calculate the critical exponents of GN for different

Nf. Only for Nf = 1, our simulations for Th seem to show remnants of χSB. A reason for

this is provided by the effective potentials calculated in [WSW17]. For all couplings, the

one for Nf = 1 is very flat at the origin, but the small curvature is positive, making the

theory always symmetric. Our paper also showed that χSB is only absent for all Nf in the

reducible representation. A critical flavour number with a value of N cr
f,irr = 9 only exists for

odd Nf,irr and is related to a spontaneous breaking of parity. This can provide a possible

explanation for the values found in earlier simulations with staggered fermions, together

with the differences in the symmetry that the lattice theory preserves. The discrepancies

in DSE and FRG results are harder to explain and further investigations are needed to

achieve overall consensus on the answer of the critical flavour number in Th. Our current

approach with SLAC fermions strongly suggests that there is no χSB in the reducible model,

in agreement with other simulations using chiral fermions [Han16b; Han17]. It also shows

that exact chiral symmetry on the lattice is necessary to capture the correct behaviour of

four-fermion theories in three dimensions. The older works with staggered fermions seem

to be reliable for GN but not for Th. Thus, also other previous lattice results for four-fermion

models should be checked with exactly chiral fermions. For example, investigations of

NJL and a larger space of multiple four-fermion interactions could be done with our setup.

Additionally, future simulations with SLAC fermions could also provide new estimates

for the critical exponents of the chiral Heisenberg universality class with a study of the

U (1)-invariant GN.
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A. Derivation of Fierz Identities

Here we give a derivation of some Fierz identities that are useful to rewrite the Th in-

teraction of the irreducible model. In this setup, a complete set of matrices is given by

{1,σ1,σ2,σ3}, where the σµ are the usual Pauli matrices. Any 2× 2-matrix M j k can be

expressed as

M j k = 1
2 tr(M)δ j k + 1

2 tr(Mσµ)(σµ) j k . (A.1)

We set M j k = B j iχ
α
i χ̄

β

l Clk ≡ Bχαχ̄βC with arbitrary matrices B and C . The lower indices

i , j , . . . label the two-spinor components, while the upper Greek indices from the beginning

of the alphabet α,β, . . . label the Nf,irr flavours. Spacetime indices µ,ν run over d = 3

directions. Inserting this in the completeness relation, we get

B j iχ
α
i χ̄

β

l Clk = 1
2 Bmiχ

α
i χ̄

β

l Cl mδ j k + 1
2 Bmiχ

α
i χ̄

β

l Cln(σµ)nm(σµ) j k , (A.2)

⇔ Bχαχ̄βC =−1
2

(
χ̄βC Bχα

)
1− 1

2

(
χ̄βCσµBχα

)
σµ. (A.3)

In the second line we switched to a matrix notation, took care of the anti-commuting

nature of spinors and used the cyclic property of the trace. Taking general matrices A,B

and performing a multiplication with χ̄γA from the left and Dχδ from the right leads to the

general identity

(
χ̄γABχα

)(
χ̄βC Dχδ

)
=−1

2

(
χ̄βC Bχα

)(
χ̄γADχδ

)
− 1

2

(
χ̄βCσµBχα

)(
χ̄γAσµDχδ

)
. (A.4)

Now, there are several options to obtain a Th interaction term. It appears on the right-

hand side of (A.4) for A = B =C = D = 1 if we contract the flavour indices of the equation

with δαβ and δγδ. We obtain

(
χ̄γχα

)2 =−1
2

(
χ̄αχα

)2 − 1
2

(
χ̄ασµχ

α
)2 , (A.5)

where we use the abbreviation
∣∣χ̄γχα∣∣2 = (

χ̄γχα
)(
χ̄αχγ

)
. Thus, we can replace the Th

interaction by a GN-term and another flavour-mixing interaction. For a single irreducible

flavour, this establishes the identity of GN and Th via

(
χ̄ασµχ

α
)2 =−3

(
χ̄αχα

)2 . (A.6)

Another possibility is to take B =σν,C =σρ and A = D = 1, leading to the Th-interaction

term on the left-hand side of (A.4). Now using the Clifford algebra we can derive

(
χ̄γσνχ

α
)(
χ̄βσρχ

δ
)
=−1

2

(
χ̄βσρσνχ

α
)(
χ̄γχδ

)
− 1

2

(
χ̄βσρσµσνχ

α
)(
χ̄γσµχδ

)
(A.7)

=−1
2

(
χ̄βσρσνχ

α
)(
χ̄γχδ

)
− 1

2

(
χ̄βσρ

(
2δµν−σνσµ

)
χα

)(
χ̄γσµχδ

)
and contract this equation with δνρ. This gives a factor of 3 (the spacetime dimension) for
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the first term on the right-hand side due to δνρσνσρ =σνσν = 3 · 1, while the second term

contains 2σµ−3σµ =−σµ. On the left, there is no matrix multiplication between σν and

σρ, so that we get a term similar to the Th interaction. Now, the equation reads

(
χ̄γσνχ

α
)(
χ̄βσνχδ

)
=−3

2

(
χ̄βχα

)(
χ̄γχδ

)
+ 1

2

(
χ̄βσµχ

α
)(
χ̄γσµχδ

)
. (A.8)

This identity can be contracted in two different ways to obtain the Th interaction: On

the one hand, a contraction with δαγ and δδβ generates the term on the left-hand side, on

the other hand, the term appears on the right-hand side after a contraction with δαβ and

δγδ. The results are

(
χ̄ασνχ

α
)2 =−3

2

(
χ̄βχα

)2 + 1
2

(
χ̄βσµχ

α
)2

, (A.9)(
χ̄γσνχ

α
)2 =−3

2

(
χ̄αχα

)2 + 1
2

(
χ̄ασµχ

α
)2 . (A.10)

In the first case, the Th interaction is replaced by two flavour-mixing terms, which include

both 1 and the Pauli matrices. In the second case, the GN interaction appears again, but

we also have a flavour-mixing term with σν. For the single-flavour case, these identities

lead back to the relation between Th and GN in (A.6).

Further identities including products of Pauli matrices can be calculated from the general

form (A.4), but only the most basic identities derived above were used for simulations in

this work. See [Jan12; GGJ15] for a more comprehensive treatment of the topic.

102



B. General Hubbard-Stratonovich

Transformations

This section contains derivations of the necessary formulae for the HS of flavour-mixing

interactions, needed in section 2.2.2 to transform the Lagrangians after application of Fierz

identities. We want to transform exponentials with flavour-mixing terms of the form

exp
[
±α2

∣∣χ̄αΓχβ∣∣2
]

, (B.1)

where Γ is either the identity or σµ and α ∈R. A summation over all lattice points in the

exponent is implied. Here, we do the calculation for Γ= 1, which carries over to Γ=σµ,

since this is only a matrix in spinor space, not interfering with the flavour structure. We

present the calculation for a positive sign in the exponent of (B.1), which is needed for the

Lagrangian (2.28a) of FM.

In the following, it is important to distinguish between Hermitian conjugation with

respect to spin degrees of freedom, denoted by the usual †, and Hermitian conjugation

regarding the flavour indices, written here with the superscript hc. Regarding spinor

products , we use the convention χ̄=χ† of Wipf [Wip13; Wip16] and have

(
χ̄βχα

)† =χ†
αχ̄

†
β
= χ̄αχβ. (B.2)

This expression is not Hermitian in spinor space, in contrast to the Hermitian flavour-space

matrix Xαβ = χ̄αχβ:

(
X hc)

αβ = X ∗
βα = (

χ̄βχα
)∗ = ((

χ̄βχα
)†

)T = (
χ̄αχβ

)T = χ̄αχβ = Xαβ. (B.3)

The transposition with T is with respect to the spin indices and can be dropped in the

next-to-last equation because the expression includes an implicit summation over the spin

index and is a scalar. Hence, we can introduce a Hermitian matrix field Tβα = T ∗
αβ

= (
T hc

)
βα

and define a shifted Hermitian matrix in flavour space

Mβα = (2α)−1Tβα+αχ̄αχβ =
(
M hc)

βα. (B.4)

The following expression

− tr
(
M ·M hc

)
=− tr

(
M 2)=−Mβα

(
M hc)

αβ =−
(

1

4α2
TβαTαβ+α2χ̄αχβχ̄βχα+ χ̄βTβαχα

)
(B.5)

yields the necessary term to compensate the four-fermion interaction in the exponential

(B.1). Thus, we multiply with the Hubbard-Stratonovich factor exp
[− tr

(
M ·M hc

)]
. In the

resulting Lagrangian, the last term gives a Hermitian contribution to the Dirac operator.
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B. General Hubbard-Stratonovich Transformations

To obtain the additional factors that appear after the transformation, we integrate the

exponential over M . Since this matrix is Hermitian, we can split it into real and imaginary

part using a symmetric matrix S and an antisymmetric matrix A with

Mβα = Sβα+ iAβα, (B.6)

where Sβα = Sβα, Aβα =−Aβα and Sβα, Aβα ∈R. This leads to

−
Nf,irr∑
α,β=1

MβαMαβ =−
Nf,irr∑
α,β=1

(
S2
βα+ A2

βα

)
=−

Nf,irr∑
α=1

Sαα−2
∑
α<β

(
S2
βα+ A2

βα

)
, (B.7)

where we have a total of Nf,irr + 2 · Nf,irr(Nf,irr−1)
2 = N 2

f,irr Gaussian integrals, but the Nf,irr

integrals over the diagonal components do not have a factor of 2 in the exponent. We get

in total∫
DM exp

[
− tr

(
M ·M †

)]
= (p

π
)Nf,irr

(√
π

2

)Nf,irr(Nf,irr−1)

= 2−Nf,irr
2 (Nf,irr−1) (pπ)N 2

f,irr . (B.8)

For the HS we divide by this factor to normalise the integral to one. Rewriting the integral

in terms of the new auxiliary field Tαβ, we get an additional factor of (2α)−N 2
f,irr from the

integration measure. Hence, the resulting overall factor for a fixed lattice site is

Cx,HS = 2−Nf,irr
2 (Nf,irr−1) (2α

p
π
)−N 2

f,irr =p
2

Nf,irr
(
α
p

2π
)−N 2

f,irr . (B.9)

In the Lagrangian (2.28a), we have α2 = λ−1 and an additional scalar field φ that comes

with its own prefactor of
√

λ
2π

V
. The total prefactor for the whole partition function is

CHS = 2
V
2 Nf,irr

(
λ

2π

)V
2

(
N 2

f,irr+1
)

. (B.10)

We will use this expression to compare the partition sums calculated in the dual variables

formulation of section 6.2.

104



C. Additional Material for the

Gross-Neveu Model

In this appendix, we collect additional material for GN as presented in section 3.2 and

section 3.3.

Table C.1.: Number of configurations obtained for
GN. All numbers are given in units of 103 and ad-
ditional 10 updates between measurements were
performed. The first 100 configurations were not
used in order to ensure thermalisation. If two
numbers are given, e.g. 10,30, the larger number
was obtained for couplings near the critical point.
If a range is given, e.g. 7.5–10, simulations did
not reach their goal and were evaluated with the
amount of configurations that could be obtained.

L Nf = 1 Nf = 2 Nf = 4 Nf = 8

8 10,30 10,30 10,30 10,30
10 10,30 10,20 10 10
12 20 20 10 7.5–10
14 10,12 12 10 1.3–5.8
16 10 10 10 8–10
20 2,10 5 2 1.45–2
24 2–10 2,5 1.8–2 1.6–2
32 1–2

0.0

0.1

0.2

Σ

0.0

0.2

0.4

0.6

U
B

2.60 2.65 2.70 2.75 2.80

λGN

0

5

10

15

χ

2.60 2.65 2.70 2.75 2.80

λGN

0

5

10

D

L = 8 L = 12 L = 16 L = 20 L = 24

C.1(a) Nf = 4

Figure C.1.: Raw data and interpolations for GN observables in addition to figure 3.3. Symbols
indicate the measured data points with error bars, while lines denote the interpolation obtained
with histogram reweighting. An error estimate for the interpolation is given by a shaded band
around the main line.
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0.0
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0.2
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0.4
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U
B
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χ

5.4 5.6 5.8 6.0 6.2

λGN

0

2

4

6

8

D

L = 8 L = 12 L = 16 L = 20 L = 24

C.1(b) Nf = 8

2.73 2.74

λcr
GN

BC, L ≥ 8

BC, L ≥ 10

BC, L ≥ 12

0.28 0.30

U cr
B

C.2(a) Nf = 4

5.82 5.84

λcr
GN

BC, L ≥ 8

BC, L ≥ 10

BC, L ≥ 12

0.225 0.250 0.275

U cr
B

C.2(b) Nf = 8

Figure C.2.: Comparison of λcr
GN and U cr

B for different methods as in figure 3.8. The critical
couplings were obtained from the intersection of Binder cumulants (BC), where also U cr

B can
be calculated. Results are given with the full set of L available and with smaller sets leaving out
lattice size 8 or 8 and 10.
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0.85 0.90 0.95

β/ν

Renλ L ≥ 8

Renλ L ≥ 10

Renλ L ≥ 12

RenU L ≥ 8

RenU L ≥ 10

RenU L ≥ 12

Fitλ L ≥ 8

Fitλ L ≥ 10

Fitλ L ≥ 12

∂λUB(λcr
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∂λUB(U cr
B )
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1.0 1.1

1/ν
−0.1 0.0 0.1
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C.3(a) Nf = 4

0.9 1.0

β/ν

Renλ L ≥ 8

Renλ L ≥ 10

Renλ L ≥ 12

RenU L ≥ 8

RenU L ≥ 10
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C.3(b) Nf = 8

Figure C.3.: Comparison of different methods to evaluate critical exponents as in figure 3.12. For
each method, evaluations excluding the smallest one or two lattice sizes are given. The last plot
on the right shows the fulfilment of the hyperscaling relation (3.6) and should be zero.
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C. Additional Material for the Gross-Neveu Model

Table C.2.: Comparison of critical exponents for GN. The most recent analytical results, all
available lattice results and our own results from various evaluation methods as described in
section 3.1.1 are shown. The data is also plotted in figure 3.12, C.3(b) and 3.13

C.2(a) Nf = 1

Method Paper 1/ν β/ν γ/ν

large Nf, Padé [Gra94b],[JH14] 0.955a 0.758 1.483
4−ε 3rd order [Mih17] 1.166 0.732 1.537
2-sided Padé [Fei16] 1.174 0.753 1.494
FRG [Kno16] 1.075(4) 0.775 1.449
conf. bootstrap [Ili17] 0.760 0.772 1.456
CTQMC [WCT14] 1.25(5) 0.651(4) 1.698(7)
CTQMC [HW16] 1.35(7) 0.637(13) 1.725(25)
MQMC [LJY15] 1.30(5) 0.725(10) 1.550(20)

Renλ L ≥ 8 this work 1.118(33) 0.797(17) 1.399(21)
Renλ L ≥ 10 this work 1.13(4) 0.773(26) 1.421(29)
Renλ L ≥ 12 this work 1.11(5) 0.780(34) 1.42(4)
RenU with L = 32 this work 1.21(10) 0.824(33) 1.37(7)
RenU L ≥ 8 this work 1.096(34) 0.824(13) 1.366(26)
RenU L ≥ 10 this work 1.10(4) 0.822(16) 1.371(32)
RenU L ≥ 12 this work 1.09(5) 0.823(18) 1.37(4)
noBC L ≥ 8 this work 1.085(26) 0.84(4) 1.317(20)
noBC L ≥ 10 this work 1.084(30) 0.84(4) 1.317(24)
noBC L ≥ 12 this work 1.08(4) 0.84(4) 1.316(28)
Fitλ L ≥ 8 this work 1.107(15) 0.843(10) 1.354(13)
Fitλ L ≥ 10 this work 1.120(22) 0.808(19) 1.386(22)
Fitλ L ≥ 12 this work 1.122(33) 0.806(29) 1.388(34)
∂λUB(λcr

GN) this work 1.217(32) – –
∂λUB(U cr

B ) this work 1.231(30) – –

aNote, that a wrong value for this was stated by Vacca & Zambelli [VZ15] which is also given in [Kno16].
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C.2(b) Nf = 2

Method Paper 1/ν β/ν γ/ν

large Nf, Padé [Gra94b],[JH14] 0.962 0.872 1.256
2+ε 4th order [GLS16] 0.931 0.873 1.255
4−ε 3rd order [Mih17] 1.048 0.836 1.328
2-sided Padé [Fei16] 0.948 0.869 1.261
FRG [Kno16] 0.994(2) 0.888 1.224
conf. bootstrap [Ili17] 0.880 0.871 1.258
staggered [Kär94] 1.00(4) 0.877(4) 1.246(8)
fermion bag [CL13] 1.205(15) 0.810(5) 1.38(1)

Renλ L ≥ 8 this work 1.095(32) 0.850(14) 1.266(26)
Renλ L ≥ 10 this work 1.056(41) 0.895(18) 1.206(34)
Renλ L ≥ 12 this work 1.034(55) 0.914(26) 1.175(51)
RenU L ≥ 8 this work 1.068(36) 0.886(16) 1.228(34)
RenU L ≥ 10 this work 1.066(46) 0.888(21) 1.218(45)
RenU L ≥ 12 this work 1.058(60) 0.889(28) 1.209(60)
noBC L ≥ 8 this work 1.062(25) 0.892(42) 1.205(22)
noBC L ≥ 10 this work 1.062(27) 0.895(43) 1.204(22)
noBC L ≥ 12 this work 1.065(31) 0.897(43) 1.208(26)
Fitλ L ≥ 8 this work 1.061(16) 0.902(10) 1.216(16)
Fitλ L ≥ 10 this work 1.039(25) 0.920(14) 1.184(24)
Fitλ L ≥ 12 this work 1.031(38) 0.924(23) 1.167(41)
∂λUB(λcr

GN) this work 1.077(38) – –
∂λUB(U cr

B ) this work 1.093(37) – –

C.2(c) Nf = 4

Method Paper 1/ν β/ν γ/ν

large Nf, Padé [Gra94b],[JH14] 0.967 0.934 1.131
FRG [BGS11] 0.978 0.944 1.113
staggered [CS07] 1.020(21) 0.927(15) 1.152(25)

Renλ L ≥ 8 this work 1.125(45) 0.857(21) 1.236(34)
Renλ L ≥ 10 this work 1.092(58) 0.890(26) 1.199(45)
Renλ L ≥ 12 this work 1.094(78) 0.887(43) 1.202(66)
RenU L ≥ 8 this work 1.078(51) 0.915(21) 1.168(43)
RenU L ≥ 10 this work 1.071(64) 0.916(26) 1.166(54)
RenU L ≥ 12 this work 1.067(79) 0.917(31) 1.165(66)
Fitλ L ≥ 8 this work 1.065(25) 0.923(15) 1.159(23)
Fitλ L ≥ 10 this work 1.054(37) 0.928(20) 1.152(33)
Fitλ L ≥ 12 this work 1.068(59) 0.911(37) 1.169(55)
∂λUB(λcr

GN) this work 1.070(51) – –
∂λUB(U cr

B ) this work 1.080(50) – –
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C.2(d) Nf = 8

Method Paper 1/ν β/ν γ/ν

large Nf, Padé [Gra94b],[JH14] 0.979 0.967 1.067

Renλ L ≥ 8 this work 1.084(48) 0.887(20) 1.167(40)
Renλ L ≥ 10 this work 1.062(62) 0.900(30) 1.149(55)
Renλ L ≥ 12 this work 0.971(75) 0.977(32) 1.045(66)
RenU L ≥ 8 this work 1.019(61) 0.960(28) 1.073(59)
RenU L ≥ 10 this work 0.999(76) 0.966(35) 1.062(74)
RenU L ≥ 12 this work 0.979(94) 0.970(46) 1.052(94)
Fitλ L ≥ 8 this work 1.036(25) 0.971(13) 1.083(24)
Fitλ L ≥ 10 this work 1.044(41) 0.953(24) 1.100(41)
Fitλ L ≥ 12 this work 0.977(56) 1.000(29) 1.036(54)
∂λUB(λcr

GN) this work 1.046(58) – –
∂λUB(U cr

B ) this work 1.068(59) – –
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D. Mean Field Calculation for the

γ45-Model

Here, we present a first-order mean field calculation for G45 to show that the well-known

effective potential of GN appears and to confirm that we use the model with the correct

sign of interaction. Similar calculations for GN and NJL can be found for example in the

textbooks of Coleman [Col85] and Miransky [Mir94] and in the paper of Scherer et al.

[SBG13].

We begin with the Dirac operator of the Lagrangian (2.34), which can be split in two

blocks similarly to (2.59). Due to the minus sign in the second block of γ45 in (2.17), we

have

D[ρ] =
(
σµ∂µ+αρ 0

0 −σµ∂µ−αρ

)
:=

(
D2[ρ] 0

0 −D2[ρ]

)
. (D.1)

Here, we introduced the irreducible Dirac operator D2[ρ] and the constant α= 1 for our

choice of interaction sign in (2.8). If we had chosen the other sign (or g 2
G45 < 0), we would

get α= i and the full operator would be anti-Hermitian.

The minus sign in front of the second operator is irrelevant for the determinant in spinor

space, since it is 2-dimensional. The general form of the eigenvalues for the operator D2[ρ]

is

λ± =αρ± i
∣∣pµ∣∣ ⇒ λ+λ− = (αρ)2 + ∣∣pµ∣∣2 . (D.2)

The second operator has λ(2)
∓ =−λ± =−αρ∓ i

∣∣pµ∣∣ leading to complex conjugate pairs for

α= i from λ∗+ = λ(2)− and λ∗− = λ(2)
+ , while no relation exists for α= 1. This agrees with the

fact given in 2.4.2 that the operator with α= i is free of a sign problem, while this is not the

case for the second possibility.

To calculate a mean field approximation, we ignore fluctuations of ρ. Then, the theory is

described by the effective action obtained after integration over the fermions as in (2.47).

With P [ρ] ∝ e−S we have

S = Seff[ρ]+Sbos[ρ] =− lndet(D[ρ])+Sbos[ρ] =− tr ln(D[ρ])+Sbos[ρ]. (D.3)

The trace of logarithms is the sum over all logarithms of the eigenvalues. Our D in the

irreducible representation has two distinct eigenvalues from the spinor matrix structure

and infinitely many from the differential operator parametrised by pµ, where the trace is

given by the integration over d3p. The sum over the spin-eigenvalues gives lnλ−+ lnλ+ =
ln(λ+λ−), and the whole action is given by

S = Sbos[ρ]−Nf

∫
d3p

(2π)3
ln(−λ+(p)λ−(p)) = Sbos[ρ]− Nf

2π2

∫ Λ

0
dp p2 ln

[
(p2 +α2ρ2)2]. (D.4)
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In the last step, we performed the integration over the angular coordinates and introduced

a momentum cutoff Λ. The factor of Nf comes in since the multi-flavour Dirac operator

contains Nf identical diagonal copies of the single-flavour operator. The remaining integral

can be performed and we get

S

Nf
= λG45ρ

2

2
− 2α2Λρ2

3π2
+ 2α3ρ3

3π2
arctan

(
Λ

αρ

)
− Λ3

6π2
log

((
α2ρ2 +Λ2)2

)
+ 2Λ3

9π2
, (D.5)

which can be expanded for Λ→∞ to

Seff

Nf
≈ α

∣∣ρ∣∣3

3π
+ρ2

(
λG45

2Nf
− α2Λ

π2

)
+ 2Λ3

9π2
− 2Λ3 log(Λ)

3π2
. (D.6)

Dropping the term without field dependence and introducing the renormalised coupling

λren =
(
λG45
2Nf

− α2Λ
π2

)
, we obtain

Seff

Nf
≈ ρ2λren +

α
∣∣ρ∣∣3

3π
. (D.7)

For G45 with α = 1, this is the same result commonly presented for GN, but we find an

imaginary term ∼ i
∣∣ρ∣∣3 for the modified version of G45 without sign problem and λG45 < 0.

The derivative is given by
dSeff

dρ
= ρ

(
2λren +

α
∣∣ρ∣∣
π

)
, (D.8)

which has an extremum at ρ = 0 and two additional extrema at ρ =±2παλren if λren < 0.

The latter are indeed minima of the effective potential, which takes the values of 4π2

3 λ3
ren < 0

below the value of the potential at the origin. This shows that χSB for our definition of G45

with α= 1 should happen for any Nf as in GN.
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E. Derivation of Dual-Variable

Formulations

Here, we calculate the dual-variables formulation of the partition sum for FM, where

we found a very strong sign problem in section 6.1.2. This was the main motivation to

study this formulation. Additionally, we explore a direct derivation from the vector-field

formulation of Th.

Derivation for FM

Contrary to the direct implementation described in section 6.1.1, we use the Lagrangian

(2.37a) with a redundant scalar field φ and a Hermitian matrix T in flavour space. In total

we have Nϕ = N 2
f +1 real degrees of freedom. This version is easier to treat than the form

with a traceless matrix used in section 6.1.1. The interaction term is given by

Hαβ
x = Tαβ

x +φxδ
αβ. (E.1)

Due to its index structure, our dual variable kαβxi also has two flavour indices, one spinor

index and a spacetime index, but the expression (6.10) for W only contains kαβx =∑
i kαβxi

explicitly. It takes the values 0, 1 or 2 since there are two spinor components.

As in (6.12), we can introduce local weights w(kx) and write the partition sum as

Z (λTh) =CHS
∑

{
k
αβ

xi

}det(/∂[k])(−1)k
∏

x
w(kx), (E.2)

where CHS was calculated in (B.10). The weight at a fixed lattice site x is

w(kx) =
∫ ∞

−∞
dφ

∫ ∞

−∞
dT

(
Tαβ+φδαβ

)k
αβ
x

exp

(
−1

2
λThφ

2 − 1

4
λTh

∑
γδ

T δγT γδ

)
. (E.3)

The integration measure over the Hermitian matrices
∫

dT =∏
α≤β

∫
dTαβ is given such

that we can use T βα = (Tαβ)∗ and only count independent degrees of freedom. In a similar

way, we can factorise the exponential function and write

exp

(
−1

4
λTh

∑
αβ

TαβT βα

)
=∏
αβ

e−
1
4λThTαβT βα =

(∏
α

e−
1
4λTh(Tαα)2

)( ∏
α<β

e−
1
2λTh

∣∣Tαβ
∣∣2
)
. (E.4)

Now, we can split the local weight into factors only containing either diagonal or non-

diagonal elements of T . We obtain

w(kx) =
∫ ∞

−∞
dφe−

1
2λThφ

2 ∏
α

wdiag
(
φ,kαα

) ∏
α<β

wnd

(
kαβ,kβα

)
. (E.5)
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The integrals over the non-diagonal fields are given by the complex Gaussian integral

wnd(k,k ′) =
∫

dz e−
1
2λTh|z|2 zk (z∗)k ′ = 2π

λTh
k !

(
2

λTh

)k

δkk ′ (E.6)

leading to the additional constraint kαβx = kβαx . Including the product over flavours and

lattice points for configurations with non-zero weight, we get a sum over the off-diagonal

variables k̃ = ∑
x
∑
α<βkαβx in the exponent. Whenever a kαβx has the value 2, we have to

include an additional factor of 2 from k !. Hence, we introduce ñ2, counting the number of

kαβx = 2 for α<β. In conclusion, we have

∏
x

∏
α<β

wnd

(
kαβ,kβα

)
=

(
2π

λTh

)V Ñ

2ñ2

(
2

λTh

)k̃

with Ñ = 1

2
Nf,irr(Nf,irr −1). (E.7)

The diagonal contribution is given by a real integration

wdiag(φ,k) =
∫ ∞

−∞
dt e−

1
4λTht 2 (

t +φ)k = 2
√

π

λTh


1 k = 0,

φ k = 1,

2
λTh

+φ2 k = 2.

(E.8)

To put the products over x and α together, we introduce numbers ni ,x for i = 0,1,2 that

count, how many kααx equal i (no summation over α). At each x they can take the values

ni ,x ∈ {0,1, . . . , Nf,irr} and must sum up to Nf,irr in total. With this notation, we obtain

∏
x

∏
α

wdiag(φ,k) = 2V Nf,irr

(
π

λTh

)V Nf,irr
2 ∏

x
φ

n1,x
x

(
2

λTh
+φ2

x

)n2,x

. (E.9)

Finally, we can perform the remaining integral over φ in (E.5). At each lattice point it is

I (n1,n2) :=
∫ ∞

−∞
dφe−

1
2λThφ

2
φn1

(
2

λTh
+φ2

)n2

=C I

∫ ∞

−∞
dϕe−ϕ

2
ϕn1

(
1+ϕ2)n2 , (E.10)

where a redefinition of the field with ϕ :=
√

λTh
2 φ was used and we defined C I (n1,n2) :=(√

2
λTh

)(1+n1+2n2)
. We can directly see that the integral vanishes if n1 is odd. Then, the

integrand is an odd function which is integrated over a symmetric interval. For even n1,

the integrand is a function of ϕ2, allowing us to restrict the integration to the positive real

numbers. We substitute ϕ=p
y and obtain

I (n1,n2) =C I

∫ ∞

0
dy e−y y

n1−1
2

(
1+ y

)n2 with n1 even. (E.11)

This integral is proportional to an integral representation of the confluent hypergeometric

function of the second kind [Wei]

U (a,b, z) = 1

Γ(a)

∫ ∞

0
dy e−z y y a−1(1+ y)b−a−1. (E.12)
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Reading off a = (n1+1)/2, b = n2 + (n1+3)/2 and z = 1 we are lead to the solution

I (n1,n2) =
C I Γ

(
n1+1

2

)
U

(
n1+1

2 , n1+3
2 +n2,1

)
n1 even,

0 n1 odd.
(E.13)

For the integer values of n1,n2 that are relevant here, it can be analytically evaluated with

computer algebra systems like Mathematica.

We now evaluated all parts of the local weights in (E.5) together with the product over all

lattice sites. This enables us to write down the partition sum

Z (λTh) = 2
V Nf,irr

2

(
λTh

2π

)V
2

(
N 2

f,irr+1
) ∑
{

k
αβ

xi

}det(/∂[k])(−1)k

︸ ︷︷ ︸
from (E.2)

(
2π

λTh

)V Ñ

2ñ2

(
2

λTh

)k̃

︸ ︷︷ ︸
from (E.7)

·2
V Nf,irr

2

(
2π

λTh

)V Nf,irr
2

︸ ︷︷ ︸
from (E.9)

∏
x

C I (n1,x ,n2,x)Γ

(
n1,x +1

2

)
U

(
n1,x +1

2
,

n1,x +3

2
+n2,x ,1

)
︸ ︷︷ ︸

from (E.13)

. (E.14)

Using ni =∑
x ni ,x , we get an overall factor (2/λTh)

1
2 (V +n1+2n2) by pulling C I out of the prod-

uct. Together with (2/λTh)k̃ , the exponent combines to 1
2 (V +n1 + 2n2 + 2k̃) = 1

2 (V + k).

The powers of 2π/λTh in the sum partially cancel with the prefactor from HS. Collecting all

remaining coefficients independent of k in C = 2V Nf,irr−V π−V
2 we arrive at the final form

Z (λTh) =C
∑

{
k
αβ

xi

}det(/∂[k])(−1)k 2ñ2

(
2

λTh

) k
2 ∏

x
Γ

(
n1,x +1

2

)
U

(
n1,x +1

2
,

n1,x +3

2
+n2,x ,1

)
.

(E.15)

The local constraints on the field kαβxi are

kαβx = kβαx ,
Nf,irr∑
α=1

kαβxi ∈ {0,1} ,
Nf,irr∑
β=1

kαβxi ∈ {0,1}, n1,x even. (E.16)

Single-Flavour Model

For Nf,irr = 1, the possible local configurations are k11
xi ∈ {(0,0), (0,1), (1,0), (1,1)}. Summed

over the spin, only the first and the last configuration are allowed by the constraints

because they have k11
x ∈ {0,2}. The corresponding value for n1,x is always 0, which leads

to Γ(1/2)V =πV
2 in the partition function and cancels the factor C . Furthermore, we find

n2,x = 0 for the first and n2,x = 1 for the second possibility, so that n2 = k
2 is the only

remaining variable. The confluent hypergeometric function evaluates to U (1/2, 3/2,1) = 1

and U (1/2, 5/2,1) = 3/2 respectively. This contributes a total factor of (3/2)n2 . Since there is

only one flavour, ñ2 is always zero. Finally, we arrive at the following partition sum for

Nf,irr = 1:

Z (λTh) =
∑
n2,x

det(/∂[n2])

(
3

λTh

)n2

. (E.17)
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This is identical to the single-flavour partition sum for the irreducible GN in (6.19) and

confirms the identity λTh = 3λGN given below equation (2.27).

Derivation for the Irreducible Th

The interaction term in the irreducible version of (2.33) is independent of flavour indices,

but has a contribution in spin-space. With HM N =Vx,µδx yσ
µ

i jδαβ (summation only over µ)

we get

Z (λTh) =CHS
∑

{
k

i j
x

}det(/∂[k])
∏

x

∫ ∞

−∞
dVx,µ

(
−Vx,µσ

µ

i j

)k
i j
x

:=CHS
∑

{
k

i j
x

}det(/∂[k])(−1)k
∏

x
w(kx),

(E.18)

where k i j
x =∑Nf,irr

α=1 k i j
xα ∈ {0,1, . . . , Nf,irr}. To proceed with the integration of the vector field,

we use the Pauli matrices as a specific representation of σµ. Then, the local weights are

given by

w(kx) =
∫

dVµexp

(
−1

2
λV 2

µ

)
(V1 − iV2)k12

x (V1 + iV2)k21
x V

k11
x +k22

x
3 (−1)k22

x . (E.19)

The integration over V3 is given by a Gaussian integral similar to (E.8), but k i j
x now takes

Nf +1 values. The integral vanishes for odd k̄x = k11
x +k22

x ∈ {0,1, . . . ,2Nf,irr}, otherwise it is

w3(k̄x) :=
∫ ∞

−∞
dV3 e−

1
2λThV 2

3 V k̄x
3 =

(
2

λ

) 1
2 (k̄x+1)

Γ

(
k̄x +1

2

)
for k̄x even. (E.20)

As for GN in (6.14), we can introduce occupation numbers ns for s = 0,1, . . . , Nf,irr, counting

how many configurations have the trace k̄x = 2s, and write

∏
x

w3(k̄x) =
(

2

λTh

) 1
2

(
k̄+V

)
Nf,irr∏
s=0

Γ

(
2s +1

2

)ns

. (E.21)

For the integration over V1 and V2 we introduce a complex notation z =V1+ iV2 and obtain

an integral identical to (E.6) with the constraint k12
x = k21

x . With
∑

x k12
x = k12, the product

over the lattice volume is given by

∏
x

w12(k12
x ,k21

x ) =
(

2π

λTh

)V (
2

λTh

)k12 ∏
x

k12
x !. (E.22)

Again, the exponents of 2/λTh combine to the total k. Introducing ñs , which counts how

many k12
x have the value s, and C =π−V

2 , we can write the resulting partition sum as

Z (λTh) =C
∑

{
k

i j
xα

}det(/∂[k])(−1)k+k22
(

2

λTh

)k Nf,irr∏
s=0

(s!)ñsΓ

(
2s +1

2

)ns

. (E.23)
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Abbreviations

γ45-model (G45)

A four-fermion theory, where the reducible interaction includes the matrix γ45 =
iγ4γ5. In the irreducible formulation, it acquires the form of the reducible Gross-
Neveu model (GN), so that we sometimes refer to it as the irreducible GN. The
Lagrangian is defined in (2.8) and the bosonised version is given in (2.34).

chiral symmetry breaking (χSB)

Chiral symmetry is related to the handedness of fermions, see section 2.1.1 for a
detailed introduction for three-dimensional four-fermion theories. It can break
spontaneously at strong couplings which leads to a dynamically generated fermion
mass (see (2.16)).

conjugate gradient (CG)

Standard iterative method to solve a system of linear equations. A good introduction
can be found in the book of Saad [Saa03]. It is commonly used in the update of
an HMC algorithm as well as in evaluations of observables. See section 2.3.1 and
section 2.3.3.

Dyson-Schwinger-Equation (DSE)

Relations between Green’s functions in a QFT, found by Dyson [Dys49] and Schwinger
[Sch51], that can be used to perform non-perturbative studies of a theory.

Fierz matrix formulation (FM)

A four-fermion theory that was obtained by application of the Fierz identity (2.26a)
to Th. It contains a GN term and a Hermitian matrix in flavour space after HS. The
Lagrangian is given in (2.28a) and the bosonised version can be found in (2.37a).

Fierz vector-matrix formulation (FVM)

A four-fermion theory that was obtained by application of the Fierz identity (2.26b)
to Th. It contains a GN term and a vector of Hermitian matrices in flavour space
after HS. The Lagrangian was defined in (2.28b) and the bosonised version given in
(2.37b).

Functional Renormalisation Group (FRG)

A non-perturbative approach to QFTs based on renormalisation group equations that
allow integration over scales to interpolate between microscopic descriptions and
macroscopic phenomena of physical systems. See [BTW02; Gie12] for introductory
reviews.

Gross-Neveu model (GN)

The simplest four-fermion theory with a scalar-scalar interaction, well-known to
show χSB for any number of flavours. It has a Z2-symmetry that breaks sponta-
neously. The acronym usually refers to the reducible verion, for which the Lagrangian
is defined in (2.11). The bosonised version after HS is given in (2.32).
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Gross-Neveu-Yukawa model (GNY)

An extension of GN, where the scalar field introduced by HS is a dynamical field with
a fourth-power potential. It shares the chiral Ising universality class with GN and has
the same critical exponents. See also section 3.3.

Hubbard-Stratonovich transformation (HS)

A method based on Gaussian integrals to transform four-fermion Lagrangians into
Lagrangians bilinear in the fermion fields. For this purpose, additional auxiliary
fields without kinetic term are introduced. See section 2.2.2 for details.

Hybrid Monte Carlo (HMC)

An algorithm that is commonly used to generate a new configuration from an old one
in a Markov Chain Monte Carlo simulation. It combines an evolution of a fictious
molecular dynamics system with a Metropolis update. See section 2.3.1 for details.

Nambu–Jona-Lasinio model (NJL)

A four-fermion theory with two auxiliary scalar fields. One of the four symmetry
generators of Th is broken, but the remaining chiral symmetry is still continuous.
Hence, some other authors call it U (1) Gross-Neveu model. The Lagrangian is defined
in (2.9) and the bosonised version is given in (2.35).

Quantum Chromodynamics (QCD)

The theory of the strong interaction describing the dynamics of quarks and gluons.
It is strongly interacting at low energies, making studies with non-perturbative meth-
ods necessary for this regime. Lattice QCD is the most prominent example of a lattice
gauge theory, see for example [GL10].

Quantum Field Theory (QFT)

A theory based on the quantisation of fields, usually used to describe fundamental
interactions in particle physics. A good introduction can be found in the book of
Peskin & Schroeder [PS95].

Quantum Monte Carlo (QMC)

Various approaches from condensed matter physics using Monte Carlo methods to
investigate non-relativistic systems in a Hamiltonian formulation.

rational Hybrid Monte Carlo (rHMC)

A modification of the HMC algorithm that uses a rational approximation to calculate
a rational power of the Dirac operator. See section 2.3.1 for details.

Thirring model (Th)

A four-fermion theory with a current-current interaction and a large, continuous
chiral symmetry. It is usually believed to only show χSB for small flavour numbers
Nf ≤ N cr

f , although this is not in accordance with recent lattice simulations. The
reducible version is defined in (2.7) and the Lagrangian with an auxiliary vector field
is given in (2.33). The irreducible Lagrangian given in (2.20) has the same form as
the reducible model. Main results for the Thirring model can be found in chapter 4,
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but also chapter 5 and 6 address the question of the critical flavour number of this
theory.

three-dimensional Quantum Electrodynamics (QED3)

The QFT of electromagnetic interactions in three spacetime dimensions. It is some-
times discussed to share properties regarding chiral symmetry with Th.
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