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1 Introduction 1

1 Introduction

Our current understanding of the fundamental interactions occurring in nature is
based on the standard model of particle physics and the theory of general relativ-
ity. These two theories are tested to very high precision and there is no established
discrepancy between their predictions and experimental data. It is, however, widely
believed that these are merely effective theories which are only valid below a certain
energy scale. This viewpoint is supported by the fact that general relativity cannot
be formulated as a consistent quantum field theory, a concept which has been incred-
ibly successful in describing the other fundamental interactions. When quantizing
general relativity one faces the problem that the resulting quantum field theory is
perturbatively non-renormalizable!, i.e., there are ultraviolet divergencies at every
order in perturbation theory which destroy the predictive power of the quantum the-
ory. Therefore it is natural to ask if there is a fundamental theory which treats the
electromagnetic, strong, and weak interactions and general relativity on the same

theoretical footing.

The most prominent candidate for such a unifying theory is string theory [1, 2]
which, in certain limits, contains both quantum field theory and general relativity.
Here the basic idea is to replace the point particles occurring in a quantum field
theory by a single one-dimensional extended object, the string. Elementary particles
are interpreted as different excitations of this string. These excitations also include
a massless symmetric two-tensor which can be identified with the graviton so that

string theory naturally incorporates gravity.

When investigating the consequences of this new concept it turns out that there
are only five consistent superstring theories which all require a ten-dimensional
space-time. These theories possess a very soft ultraviolet behavior at weak string

coupling. Here the string scattering amplitudes are exponentially suppressed below

! There is, however, some evidence that general relativity might be asymptotically safe on the
non-perturbative level, see [FS1, FS2, FS6] and references therein.
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the string scale, implying that the perturbative expansion is free of ultraviolet di-
vergencies. Further there is a web of non-perturbative dualities which relates the
five string theories to one another and also maps their strong coupling regime to
dual theories. These dualities suggest that the string theories are different limits of
an underlying eleven-dimensional theory called M-theory whose low energy limit is

given by the eleven-dimensional supergravity.

Additionally, the non-perturbative sector of these theories contains BPS-solitons
called p-branes [3]. These are static solutions of the equations of motion which carry
electric or magnetic charge with respect to the antisymmetric (p + 1)-form tensors
appearing in the action and extend in p spatial directions. They further satisfy
the BPS-bound, i.e., the charge of the solution is (in suitable units) equal to its
tension. In particular, the eleven-dimensional supergravity gives rise to an M2- and
an Mb-brane which are electrically and magnetically charged with respect to the
antisymmetric three-form tensor of the action. Especially the M2-brane will play

an important role in the following.

To describe a d-dimensional universe within string or M-theory one usually makes
the ansatz that the ten- or eleven-dimensional space-time decomposes into the (pos-
sibly warped) product of a d-dimensional observable space-time and a compact in-
ternal manifold X whose length scales are below the distances probed by current
experiments. The d-dimensional physics is conveniently described by a low energy
effective action (LEEA). For X being a special holonomy manifold, these LEEA are
locally supersymmetric, i.e., d-dimensional supergravity actions. These actions usu-
ally have a moduli space of vacua, corresponding to the deformations of the internal

manifold X and the background fields.

For theories with eight or less supercharges this moduli space includes special
points where X becomes singular, leading to a discontinuous or singular LEEA.
However, within the full string or M-theory these singularities are believed to be

artifacts, which result from ignoring some relevant modes of the theory, namely the
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winding states of strings or branes around the cycles of X. Singularities of X arise
when such cycles are contracted to zero volume, which gives rise to additional mass-
less states. It was the crucial insight of [4] that the singularities occurring in the
LEEA of type II string theory compactified on a Calabi-Yau (CY) threefold with a
conifold singularity can be interpreted as arising from illegitimately integrating out
such massless states. This has been generalized to many other situations, including
M-theory compactifications on CY threefolds [5]. In some cases it is possible to
smooth the singularity of X in two or more topologically different ways. This gives
rise to so-called topological phase transitions. Such transitions have been studied in-
tensively in literature [6, 7, 8, 9, 5]. They can be realized as parametric deformations

of vacua, but also dynamically [10, 11, 12, 13].

The usual LEEA only include those states which are generically massless, while
the extra light modes occurring in a topological phase transition are left out. We
refer to this description as the ‘Out-picture’. For the complete description of the
low energy physics, however, one also needs to include the additional light modes.
Following [13], we will call these additional light modes ‘transition states’. The low
energy description which explicitly includes these states will be referred to as the

‘In-picture’.

There are various reasons why it is important to know the In-picture description
of topological phase transitions. The compactification of type II string or M-theory
on smooth spaces gives rise to a massless spectrum which only contains neutral
states. However, in the vicinity of special points one can get non-abelian gauge
groups and charged matter [14, 15, 16], which makes such compactifications viable
for particle physics model building. Since in these models all charged particles
are transition states, it is clear that one needs the In-picture LEEA to describe
their dynamics. It has also been shown that in compactifications with background
flux the scalar potential has its minima at special points in moduli space, where

additional light states occur [17, 18]. Conversely, it has been noticed in [13] that
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even without these mechanisms the potential generated by the transition states
has the effect of the region in the vicinity of a topological phase transition being
dynamically preferred. It was then observed in [19] that including dissipative effects
like quantum particle production or Hubble friction may lead to the trapping of the
moduli at the transition locus (enhanced symmetry points). Finally, there is some
evidence that the interplay between singularities and background flux generates a
small scale, which could help to solve the gauge hierarchy and the cosmological

constant problem [20, 21, 22].

Although it is clear in principle that one should be able to “integrate in” the
additional states, not much effort has been devoted towards working out the cor-
responding LEEA explicitly. A systematic investigation was started in [23, 24], by
constructing the explicit LEEA which describe SU(2) gauge symmetry enhancement
through string or brane winding states in five and four dimensions. For compact-
ifications with 16 supercharges non-abelian gauge symmetry enhancement of the

LEEA has been considered in [25].

The first step to obtain analogous results for flop transitions occurring in M-
theory compactified on CY threefolds was made in [13]. In this case the transition
states are given by charged hypermultiplets which combine with the neutral hy-
permultiplets arising from the smooth CY compactification. Local supersymmetry
requires that these fields parametrize a non-flat quaternion-Kéahler manifold [26]. In
[13] the difficulties in working with these rather complicated manifolds were avoided
by taking the hypermultiplet manifold to be flat. This, however, is only compatible
with global supersymmetry and does not result in a consistent supergravity descrip-

tion of the transition.

The first part of this thesis extends this program and constructs In-picture LEEA
for general flop and conifold transitions which are N = 2 locally supersymmetric.
The strategy is to combine information about the transition states coming from M-

theory with knowledge about the general N'= 2, D = 5 gauged supergravity action
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[27, 28, 29, 30] recently reinvestigated in [31].? Working in the M-theory setup
thereby has the advantage that the vector multiplet sector of the LEEA does not
receive quantum corrections and can be determined exactly. Furthermore the moduli
cannot bypass the transition locus which in five dimensions is a real codimension

one boundary of the vector multiplet moduli space.?

As long as the CY threefold X is smooth, the LEEA can be obtained by dimen-
sional reduction [32]. Besides the five-dimensional supergravity multiplet, it contains
vector and hypermultiplets whose couplings are determined by X. The LEEA is an
ungauged supergravity action: all fields are neutral, the gauge group is abelian,
and there is no scalar potential. In a flop or conifold transition the Kidhler mod-
uli are varied such that X becomes singular through the contraction of N isolated
holomorphic curves. The winding states of M2-branes around these curves give rise
to N charged hypermultiplets, which become massless at the transition locus [5].
These are the transition states that we want to integrate in. Since they are charged,
the resulting action is a gauged supergravity action, which has a non-trivial scalar

potential.

The vector multiplet sector of the LEEA contains the Ké&hler moduli which
control the sizes of the N holomorphic curves and, hence, the phase transition. These
parametrize a so-called very special real manifold which is completely determined
by a cubic polynomial, the prepotential. In the Out-picture the prepotential can
be computed exactly and the threshold corrections arising from integrating out the
transition states have been derived in [5]. As a result, we can determine the vector

multiplet part of the In-picture LEEA exactly.

The situation is much more complicated in the hypermultiplet sector. This is

one of the main points addressed this thesis. Local supersymmetry requires that

2Here N counts real supercharges in multiples of 4. Thus N = 2 refers to the smallest super-
symmetry algebra in five dimensions.

3This is in contrast to compactifications of type II string theory where the vector multiplet
sector receives non-trivial quantum corrections and the complex vector multiplet scalars need to
be fine-tuned in order to run into the transition locus.
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the hypermultiplet manifold is a quaternion-K&hler manifold with non-trivial Ricci
curvature [26]. The latter constraint excludes hyper-Kéhler and in particular flat
manifolds. The main difference between (generic) quaternion-Kéhler manifolds and
other geometries familiar from supersymmetric theories, such as hyper-Kéahler and
special Kéhler manifolds, is that there are no simple, globally defined holomorphic
objects which encode the information one needs to construct the LEEA. There is no
Kéhler potential and in general a quaternion-Kéahler manifold is not even a complex
manifold. Moreover, for the study of gaugings it would be convenient to take the
hypermultiplet manifold to be a direct product, with the neutral fields in one factor
and the charged fields in the other. But this is also not an option, because the
product of two (generic) quaternion-Kéhler manifolds is not quaternion-Kahler.

Due to these complications, this type of geometry is much less understood than
the other geometries occurring in supergravity. In particular, only very limited
results exist on how to explicitly compute the hypermultiplet metric in string or
M-theory. The best studied subsector is the universal hypermultiplet, which at tree
level is described by the coset %, but receives non-trivial quantum corrections
[33, 34, 35]. The tree level result for the neutral hypermultiplets can be obtained
through the c-map [36, 37], but only little is known about quantum corrections (see
[38] for a review). Charged multiplets have not been studied at all.

Therefore we take the approach of using a toy model: to describe the hypermul-
tiplet sector of the LEEA we use a particular family of symmetric quaternion-Kéhler

spaces, the non-compact versions of the unitary Wolf spaces

U(1+ N,?2)
Ul+N)xU(?2)’

X(1+N)= (1.1)

containing N + 1 hypermultiplets. In order to cope with the technical problems aris-
ing in the hypermultiplet sector it is extremely useful that every quaternion-Kéhler
manifold can be obtained from a so-called hyper-Kéahler cone by a superconformal

quotient [39]. As indicated by the name, this construction is intimately related to
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the construction of hypermultiplet actions using the superconformal tensor calculus
[40, 41, 42]. This treatment does not utilize the fact that the spaces X (1 + N)
happen to be Kéhler, but only relies on techniques which apply to any quaternion-
Kéhler manifold. Moreover, working on the level of the hyper-Kihler cone has the
advantage that the product of two hyper-Kéhler cones is again a hyper-Kéhler cone.
Thus one can put the neutral and charged fields in separate factors. The isometries
of X(1+ N) are also obtained from their counterparts on the corresponding hyper-
Ké&hler cone. We find the resulting parametrization very useful for discussing the
gauging of the LEEA as there is a simple relation between the microscopic data
and the Killing vectors occurring in the LEEA. The parametrization of X (1 + N)

used in [37], which relies on its Kéhler structure, is much less useful for this.

In the second part of this thesis we use our In-picture LEEA to investigate the
effect of the dynamical transition states on five-dimensional Kasner cosmological
solutions.* We thereby extend earlier work by Briindle and Lukas [13] on flop tran-
sitions who addressed this question using a non-supersymmetric effective action.
Even though these five-dimensional cosmologies are not directly related to our ob-
servable universe, there are nevertheless two relevant questions which can also be

addressed in this five-dimensional setup.

First, studying cosmological solutions with time-dependent moduli allows to ex-
plicitly address the question of dynamical moduli stabilization. As these moduli
parametrize the shape and volume of the internal manifold this is equivalent to ask-
ing whether there are manifolds X which are dynamically preferred. In particular
the time-dependence of the volume of X is of importance, as a rapid decompactifi-

cation may not be compatible with experimental observations.

Second, the last couple of years have seen a tremendous improvement in mea-
suring cosmological observables [44, 45, 46]. This data supports a ‘cosmological

standard scenario’ [47] which includes a period of primordial inflation [48, 49] in

“For a review of these cosmologies in the context of string theory see [43].
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the early universe. Further, there is some evidence that the modest acceleration
observed today is only a very recent phenomenon in the history of the universe [50].
While there is a wealth of models explaining this observational input by postulating
an ‘ad-hoc’ scalar potential, it turns out that deriving such potentials from string or
M-theory is rather hard. Even though there has been considerable progress in this
direction [51, 52, 53], inflation is non-generic and involves some degree of ‘functional
fine tuning’. Subsequently it was argued in [54, 55] that realistic cosmologies will
most likely occur in the ‘central region of moduli space’ which is not accessible by

string dualities.

The inclusion of transition states in the LEEA thereby provides a natural way to
obtain scalar potentials from string or M-theory compactifications. As we will see
in the following, these potentials are completely fixed by the underlying M-theory
data, so that there is no room for fine-tuning. They also provide explicit examples
for potentials arising in the central region of moduli space, leading to the natural
question if they have the necessary properties to support inflation. In particular
the potentials constructed in this thesis have both flat and steep directions which
makes it concievable that they give rise to hybrid inflation [56, 57]. This would
in particular be interesting in the context of brane world scenarios [58] where the

four-dimensional universe is embedded into a higher-dimensional space-time.

The remaining parts of this thesis are organized as follows. In section 2 we review
the necessary background material on five-dimensional supergravity, CY compactifi-
cations, topological phase transitions, and Kasner cosmologies. The superconformal
quotient construction of the metrics, the Killing vectors and the moment maps of
the Wolf spaces X (N + 1) is carried out in the appendix D and our results are
summarized in section 3. These are used to construct the In-picture LEEA de-
scribing general flop and conifold transitions in sections 4 and 5, respectively. In
sections 6 and 7 we investigate the properties of Kasner cosmologies undergoing

a flop transition in the Out- and the In-picture. The corresponding analysis for
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conifold transitions is given in section 8. We conclude with a summary in section 9.

Some of the results presented in this thesis have already been published. The
superconformal quotient construction of the geometrical data for the Wolf spaces
X(N + 1) and the In-picture LEEA for flop transitions appeared in [FS3]. The
Kasner cosmological solutions given in sections 6 and 7 were discussed in [FS4, FS5]
which also include some additional material. The results on conifold transitions
in sections 5 and 8 will appear in a future publication [FS10]. Additional results
on accelerating cosmologies arising from M-theory compactified on a maximally
symmetric internal space and on the interplay between space-time singularities and
the Kéhler cone have been published in refs. [FS8] and [FS9], respectively, but
are not included in this thesis. The same applies to the results on supersymmetric

Euclidean actions obtained in [FS7].

2 Background material

We begin with a review of the relevant properties of ' = 2, D = 5 gauged su-
pergravity [27, 28, 29, 30, 31] and its relation to M-theory compactified on CY
threefolds. For smooth CY compactifications this relation was worked out in [32].
Our conventions for the five-dimensional gauged supergravity action follow [59]. We

refer to these papers for further details.

2.1 Five-dimensional gauged supergravity

The LEEA of eleven-dimensional supergravity compactified on a smooth CY three-
fold X with Hodge numbers h* is given by five-dimensional supergravity coupled
to ny = hb!' — 1 abelian vector and ny = h*! + 1 neutral hypermultiplets. By
explicitly including the transition states arising in a flop or conifold transition we

additionally obtain dny charged hypermultiplets.



10 2 Background material

The natural starting point for the construction of a LEEA which includes these
states is given by the general N' = 2, D = 5 gauged supergravity action with ny
vector, ny = ny + dny hyper and no tensor multiplets. Anticipating the results

of the subsequent sections, we limit ourselves to the case of abelian gaugings. The

a

4 v + 1 vector

bosonic matter content of this theory consists of the graviton e
fields A] with field strength F, = 0,A] — 0, AL, ny real vector multiplet scalars ¢,

and 4ny real hypermultiplet scalars ¢*. The bosonic part of the Lagrangian reads:

1o 1.1 ,
vV—9 ‘Cbo;02nic = _§R - ZG’IJFJI/FJ g
1 1
_EQXYDNQXDNCIY - _gmyDu¢wDu¢y (2'1)

2
1

+ \/écfmﬁ—g‘le““f’”F;,,FpiAf — g®V(¢,q).

The scalars ¢® and ¢ parametrize a very special real manifold My [27] and
a quaternion-K#hler® manifold My [26]. The manifolds My are Einstein. A
ghostfree action requires that their Ricci scalar satisfies R = —8ny(ny + 2) which

is readily seen using the superconformal calculus [60].

The vector multiplet sector is determined by the completely symmetric tensor
Crik, appearing in the Chern-Simons term. This tensor is used to define a real

homogeneous cubic polynomial
V(h) = Cryx B' b7 BX (2.2)

in ny + 1 real variables A!. The ny-dimensional manifold My is obtained by

restricting this polynomial to the hypersurface

V(¢) = Cryx h'(¢) ' (¢) K" (¢) = 1. (2.3)

°In parts of the physics literature, including [26], these manifolds are called ‘quaternionic’.
However, in the mathematical literature quaternionic is a weaker condition than ‘quaternion(ic)-
Kahler’. Definitions for both kinds of manifolds are given later in the main text.
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The coefficients a;; appearing in the kinetic term of the vector field strength are

given by
1 0 0
ars(h) '=— 5 == == InV(h)
3 OhT Oh’ V=1 (2.4)
= -2 C]JK hK +3 CIKL CJMN hKthMhN .
Defining
T 3 0 . I K
h:c = — 5 8¢$ h ((b), ]’L[ = C[JKh h y (25)

the metric on My is proportional to the pullback® of a;y,

Gay(®) == hi h) ar;. (2.6)

The hypermultiplet scalars ¢* parametrize a quaternion-Kéhler manifold of di-
mension dimg(Mgy) = 4ng. For ng > 1 such manifolds are characterized by their

holonomy group,

while in the case ny = 1 they are defined as Einstein spaces with self-dual Weyl
curvature. The restricted holonomy group implies that the curvature tensor decom-

poses into an SU(2) and USp(2ny) part
Rxywz f1 fﬁa = €;j Rxyvap + Cap Rxvij - (2.8)

Here i = 1,2 is an SU(2) index and A = 1,...,2ny is a USp(2ny) index. These
are raised and lowered by the symplectic metrics ¢;; and Cap, respectively. The

Ang-bein fi4 is related to the metric on My by

gxy = [ P €iCap = f fria, (2.9)

6The a;; can be interpreted as a metric on the space into which My is immersed by (2.3).
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and satisfies:

ARt =07, faf =604 (2.10)

Local supersymmetry requires the SU(2) part of the curvature to be non-vanishing
[26]. This feature ezcludes hyper-Kéhler manifolds as target manifolds, since these

have trivial SU(2) curvature.

The superconformal quotient construction [40, 41] employed in the next section
provides a method to obtain all the quantities of interest in the hypermultiplet sector.
In this approach the metric gxy and all its isometries are computed from their
counterparts on the associated hyper-Kéahler cone, without the need to introduce
the vielbein f¥!. However, to be able to relate our results to the major part of
the literature on hypermultiplets, we review the properties of quaternion-Kéhler

manifolds using the vielbein fiA.

We first introduce the Levi-Civita connection I'y /X, a USp(2ny) connection
wyg', and an SU(2) connection wy,’. The vielbein is covariantly constant with

respect to these connections,
Ox [y = Txy’ [ + fPwxd + W ¥h=0. (2.11)
The SU(2) curvature can be expressed in terms of the vielbein as
Rxvij = fxca [y - (2.12)

Raising the index j with €, we can expand the SU(2) curvature in terms of the

standard Pauli matrices,
RXYij =1 Rxy (OT)ij ) (2.13)

where 7 = 1,2, 3 enumerates the Pauli matrices. The R, defined in this way are



2 Background material 13

real and satisty
1

1
r RsYZ:__5r55Z_
XY 4 X 2

€IREZ (2.14)

It is no accident that the above formula resembles the quaternionic algebra. A
quaternion-K#hler manifold is in particular quaternionic, i.e., there locally exists a
triplet of almost complex structures, which satisfy the quaternionic algebra. The
curvatures R’y are proportional to the Ké&hler forms derived from these almost
complex structures. However, since in general none of these almost complex struc-
tures is integrable, a quaternion-K#hler manifold does not need to be Kihler, or, in

fact, not even be complex.

We now turn to the isometries of Mgy which are relevant for the gauging. These
must be compatible with the three locally defined almost complex structures, i.e.,
they leave the almost complex structures invariant up to an SU(2) rotation. Such
isometries are called tri-holomorphic. Given a tri-holomorphic Killing vector K7 (q)
on the quaternion-K#hler manifold, the R’ can be used to construct an SU(2)

triplet of real prepotentials Pf(q), the so-called moment maps [61]:"
rvK} = Dx Pf, DxPj:=0,Pf + 2w P}. (2.15)

Here w¥ is defined by w,,” =: 1wk (0,),”. Using eq. (2.14) this relation can be solved

for the Killing vector K7} (q):

4
K¥ = —gR’" ZXDx Py . (2.16)

Hence the moment map P/ provides a triplet of functions from which the Killing
vectors of My can be obtained. Additionally, one can show that eq. (2.15) deter-
mines the prepotentials uniquely. In particular, covariantly constant shifts P; © are

excluded. This is shown by first contracting eq. (2.15) with Dy and then using the

"Up to a rescaling, these are identical to the ji” given in the next section.



14 2 Background material

harmonicity property of the prepotentials [62]:

1
Pl = —Dx (KnyR™ XY) . (2.17)
2nH
By virtue of eq. (2.15), this relation implies Py © =0 as Ry K} = 0 for a covari-

antly constant shift. Hence there is no analog of D = 4, N' =1 Fayet-Iliopoulos

terms in D = 5, N' = 2 supergravity with a non-trivial hypermultiplet sector.

We now discuss the gauging of the Lagrangian (2.1). The scalars take values in
a Riemannian manifold, and the gauge group must operate on them as a subgroup
of the isometry group in order to keep the action invariant. This procedure includes
the covariantization of the derivatives appearing in the scalar kinetic terms with

respect to isometries of the vector or hypermultiplet target manifolds,
Duq” = 0uq* + 8A K7 (q), Dud® = 0,0" + gA, K7 (d). (2.18)

Here the K7X(q) and K¥(¢) are the Killing vectors of the gauged isometries in the
hypermultiplet and vector multiplet scalar manifold, respectively. An important
consequence of the gauging is that we now have a non-trivial scalar potential V (¢, q).
Since we have both vector and hypermultiplets but no tensor multiplets, this po-
tential is determined by the gauging of the hypermultiplet isometries. In order to

write down V explicitly, we define:

Pr(6,0) = K (OPH@), Pida) == hUOPIa), K¥(6,a) = b (9K (0).
(2.19)
Here h'(¢) are the scalars (2.2) associated to the gauge field A, K7¥(¢) denotes
the Killing vector of the hypermultiplet isometry for which AIIL serves as a gauge

connection, and Pj is its associated SU(2) triplet of moment maps. The scalar
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potential takes the form

3
V(g,q) = —4P"P" + 2" P Py + ngyKXKY . (2.20)

To discuss the vacuum structure of this potential, it is further useful to introduce

W= ,/g prpr, (2.21)

which can be read off from the supersymmetry variations of the gravitino. Under

the real ‘superpotential’ [59]

the condition that the phase Q" defined by

PT=\/gWQT, QQ =1, (2.22)

is independent of the vector multiplet scalars, 0,Q" = 0, the scalar potential (2.20)

can be rewritten in terms of W:
9
V(¢,q) = —6W? + 5gAEaAwazw. (2.23)

Here ¢*, A,¥ =1, ...ny +4ny denotes the combined set of vector and hypermulti-
plet scalar fields and ¢"* is the direct sum of the vector and hypermultiplet inverse

metrics,

9" (6,9) = g"" (q) ® g™ (9) . (2.24)

The ‘stability form’ (2.23) is useful, because it is sufficient to guarantee the gravi-

tational stability of the theory [63].

It was further shown in [59, 64] that the minima of W are given by the solution
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of the algebraic equations®

hi (@) P (¢e,qe) = Pf (¢c) and K*(¢e, q.) =0. (2.25)

Here ¢. and g. denote the submanifolds of the vector and hypermultiplet scalar
manifolds where the conditions (2.25) are satisfied. These submanifolds correspond
to the supersymmetric vacua of the theory. Indeed it is straightforward to check
that the solutions of the equations (2.25) are critical points of the potential (2.20)
with V4, 4 < 0, implying that the resulting vacua are Minkowski or anti-de Sitter.
Further 0,Q" = 0 is always satisfied on the submanifolds ¢., g. so that V restricted

to these subspaces can always be rewritten in its stability form (2.23).

Depending on the choice of gauging there are several types of solutions of this

equations:

e There are no solutions at all. In this case the entire supersymmetry is broken

spontaneously.

e There are isolated supersymmetric solutions. This implies that all moduli of

the theory are fixed and there are no flat directions in the potential.

e There may be solutions where the conditions (2.25) fix (some of) the hyper-
multiplet scalars, while the vector multiplet scalars are unconstrained. This is

called a Coulomb branch.

e On the contrary there can be solutions where (some of) the vector multiplet
scalars are fixed while the hypermultiplet scalars are free to take values in a

submanifold of Myy. This corresponds to a Higgs branch.

e Finally there can also be solutions where both vector and hypermultiplet

scalars are restricted. This is called a mixed branch.

8For analogous relations in ' = 2, D = 4 super-Yang-Mills theory see [65].
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As it will turn out, the vacua of the Lagrangians constructed in this thesis correspond
to either Coulomb or Higgs branches, and the other cases will not be relevant in the

following.

2.2 Calabi-Yau compactifications

When compactifying eleven-dimensional supergravity on a smooth CY threefold X
[32], one obtains a five-dimensional ungauged supergravity action, i.e, all fields are
neutral under the gauge group U(1)"V ™! and there is no scalar potential. In this
case the objects introduced above acquire a geometrical interpretation: the vector
multiplet scalars encode the deformations of the Kéhler class of X at fixed total vol-
ume, while the hypermultiplet scalars parametrize the volume of X, deformations
of its complex structure, and deformations of the three-form gauge field. The hy-
permultiplet containing the volume is called the universal hypermultiplet, because
it is insensitive to the complex structure of X. Further, the Cj;x determining the

vector multiplet sector of the LEEA are given by the triple intersection numbers of

X

Y

Cisk = D;-Dy- Dy, (2.26)

where the Dy, I = 0,...,ny are a basis of the homological four-cycles Hy(X,Z).
The dual basis C' for the two-cycles is defined by

cl-D;=4,. (2.27)

By integrating the Kihler form J over the two-cycles C7 we obtain the quantities

hl = / J, (2.28)
c!
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which control the volumes of even-dimensional cycles of X. In particular, the overall

volume of X is given by
1 I
vol(X) = 3 / JANI AT =ECryh'h B (2.29)
tJx

Since the modulus corresponding to the total volume belongs to the universal hy-

permultiplet, one needs to introduce rescaled fields
rl = (6wol(X)) Y3 h!, (2.30)

in order to separate the vector and hypermultiplet moduli [32, 13]. These rescaled
moduli appear in the cubic polynomial (2.3). Moreover, one needs to split the vol-
ume into the volume modulus V, which is a dynamical field, and a fixed reference
volume v, which relates the eleven-dimensional and the five-dimensional gravita-

tional couplings,

vol(X)=v-V, where —— = . (2.31)

(11) k)

2.3 Topological phase transitions

We now review the geometry and M-theory physics of the topological phase transi-
tions which will be investigated in this thesis. The discussion follows [6, 5, 66] while
additional background information can be found in [67, §].

The Kahler moduli space of a CY threefold X is a cone, called the Kéhler
cone. This cone is defined by the condition that the volumes of all curves C' C X,

holomorphic surfaces S C X, and X itself are positive when measured with the

Kihler form J

/J>0 , /J/\J>O , /J/\J/\J>0. (2.32)
C D X
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The vector multiplet moduli space is the projectivization of this cone, or, equiv-
alently, a hypersurface corresponding to fixed total volume. At the boundaries of
the Kéahler cone some submanifolds of X contract to zero volume and X becomes a
singular CY space X. If there is a second, inequivalent, way to smooth the singu-
larities of X, leading to a topologically different CY manifold X, then X and X are

said to be related by a topological phase transition.

In this thesis we are interested in one particular type of singular CY spaces X ,
namely those containing N isolated nodes (double points). These occur if N isolated
holomorphic curves C;,¢ = 1,..., N, have collapsed to points. Locally these nodes
can be described as the vertex of a cone in C* given by the zero locus of a quadratic
polynomial. One particular way to parametrize this cone is the zero locus of the
polynomial U = xy — 2t where z, v, z,t are the complex coordinates of C*. The base
of this complex cone is given by P! x P/ ! where P denotes the complex projective
space of complex dimension n. The nodes in X can be resolved by expanding them
into one of the P!’s. This is called a small resolution. Alternatively the cone can
locally be described as the zero locus of the polynomial ¥ = Z:.L:l ¢? with the ¢;
again being complex coordinates in C*. In this case the base of the real cone is
given by the product S? x S? where the S? ~ P! is identified with one of the
PY’s introduced before. This indicates that besides resolving the node by a small
resolution, the singularity can also be expanded into a three-sphere. This is called

a deformation.®

While smoothing the nodes of X by either small resolutions or deformations
results in a smooth manifold, the condition that this manifold is again CY places
some global constraints on the smoothing. In fact the N node case has only two

types of topological phase transitions connecting different CY manifolds X and X.

If the N contracting holomorphic curves C; belong to the same homology class

9In principle the node can also be expanded into a surface of complex codimension one which
is called a blow-up. This, however, is not compatible with the resulting smoothed manifold being
CY.
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C* = q; CT and have volume h* = ¢; h! there is the possibility of a flop transition.'®
In this case the cycles C; (which correspond to the P! in the base of each cone, say)
are contracted and the resulting nodes are resolved into holomorphic curves C; (which
correspond to the P'" in the base of the cones) in the homology class C* = —C*. This
operation relates two topological different but birationally equivalent CY manifolds
X and X. The Kihler cones of X and X can be glued together along their common
boundary h* = 0. The triple intersection numbers Crsx of X are related to those

of X by

~ N
Crik =Crjk — E(DI'C*)(DJ'C*)(DK'C*), (2.33)

while the Hodge and Euler numbers do not change in the transition. By joining the
Kahler cones of all CY threefolds related by flops, one obtains the extended Kéhler

cone.

The second transition can occur if the sum of the N collapsing cycles C; of X is

homologically trivial and satisfies N > r > 0 homology relations

N
Y aulCl=0, p=1,...r (2.34)
=1

In this case we have N —r independent cycles whose contraction results in N nodes.
Deforming these nodes into three-spheres then also leads to a topological different
CY manifold X and is called a conifold transition. The Hodge numbers of X and
X are related by

W(X) = hUN(X) = (N =7), h"2(X) =h2(X) +r, (2.35)

10Tn the language of Wilson [67] this is a type-I contraction. Type-III contractions which cor-
respond to a four-cycle collapsing to a two-cycle of genus g and lead to SU(2)-enhancement (i.e.,
additional massless vector multiplets) have been studied in [23, 24] and will not be considered here.
Further there are type-II contractions where a four-cycle collapses to a point and the cubic cone
where the CY threefold degenerates. For these cases no supergravity description is known and
they will also not be considered here.
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implying a change in the Euler characteristic xg(X) = xu(X) — 2N. We also
note that the nodes of a conifold transition cannot be deformed in topologically
different ways. Even though the deformation contains an entire SO(2)-family of

three-spheres, these are all homotopically equivalent.

In terms of the microscopic M-theory these transitions have the following inter-
pretation. In the smooth CY threefold X the holomorphic curves C; can be expanded
in the homology basis, C* = ¢*;C!, and have a volume h* = ¢';h!. By wrapping M2-
branes around these curves, one obtains N hypermultiplets!! which carry charges
+(q¢*;),I =0,...,ny, under the gauge fields AL. This means that each of these mul-
tiplets is charged under the gauge group U(1) C U(1)"v ! associated with the gauge
field A/ = ¢';Al. Their masses are proportional to the volume of the holomorphic
curves. By dimensional reduction of the M2-brane action one computes the mass
[13]

M’ =T(6v)"° |’ b’

: (2.36)

where T}y) is the tension of the M2-brane. Since Z* = 4¢';h’ is the central charge of
the charged states with respect to the five-dimensional supersymmetry algebra, we
recognize the five-dimensional BPS mass formula M{ypg) = const - [Z°[.1? As these
states become massless at h* = 0, it is precisely these charges hypermultiplets which

we want to include in our In-picture LEEA.

In the case of a conifold transition the nodes arising from the collapsing cycles
C; can also be deformed into three-cycles of the CY threefold X. The corresponding
change in the Hodge numbers (2.35) indicates that the number of massless vector

and hypermultiplets on the two sides of the transition is related by 7y = ny — (N —r)

HRecall that a hypermultiplet is a short representation of the supersymmetry algebra where
half of the supersymmetry generators act trivially. The mass of such short representations needs
to saturate the BPS bound, i.e., the mass is (in suitable units) equal to the central charge carried
by the multiplet.

2From the eleven-dimensional point of view the mass of a wrapped M2-brane is given by M, (1) =
T(2)vol(C) = T(2)(6vV)'/3|q;h!|. However, the relation between the eleven-dimensional and five-
dimensional metrics involves a conformal rescaling by the volume modulus V.
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and ny = ny + r, respectively. Including the N additional hypermultiplets which
are massless at the transition locus, the massive states on the X branch should be
given by the degrees of freedom associated with N — r vector and hypermultiplets.
But as both vector and hypermultiplets are short multiplets whose mass must be
equal to their central charge, one expects that these degrees of freedom organize
themselves into long representations of the supersymmetry algebra. Investigating
these representations [68] yields that this can be achieved by a vector multiplet
‘eating up’ a hypermultiplet to form a massive long vector multiplet. Therefore we
expect that the transition states on the X branch are given by N — r long vector
multiplets which become massless at the transition locus. The non-BPS nature
of these multiplets thereby fits nicely with the fact that the microscopic picture
does not contain BPS-branes which could wrap three-cycles to give rise to pointlike

BPS-states.!3

In the case of the flop it was shown in [5] that the discontinuity in the triple
intersection numbers indicated by (2.33) can be interpreted as a threshold correc-
tion arising from illegitimately integrating out the charged hypermultiplets which
become massless at the transition locus. Our aim now is to explicitly include these
states in the LEEA, then called the In-picture LEEA S, to obtain a smooth descrip-
tion of the physics at the transition locus. In the language of Wilsonian effective
actions the relation between the Out- and the In-picture is as follows. The collaps-
ing cycles C; give rise to N charged hypermultiplets with mass proportional to A'.
For energy scales below these masses, we can use the standard LEEA S, obtained
by the dimensional reduction on X whose vector multiplet sector is determined by
the prepotential V. However, the complete low energy description in the vicinity
of the transition locus requires that we work with the In-picture LEEA S. The

vector multiplet sector of S is completely determined by the prepotential ¥, which

13The exact microscopic origin of these degrees of freedom remains to be clarified. For the
case of type IIB string theory it was argued in [7] that these states correspond to massive string
excitations.
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we would like to determine in terms of V. To find this relation we note that there is
an intermediate regime, where the transition states have small, but non-vanishing
masses. Here both the actions S and S are valid. Therefore one can relate S to S
by integrating out the transition states. In the vector multiplet sector this can be

done exactly. Using the result of [5] we obtain'*

N>(h03. (2.37)

=1

V=V-

N | —

For flop transitions this result can be brought to a suggestive form by writing

the C;;x as ‘averaged triple intersection numbers’ [23],

Crix = % (CIJK + é]JK) ) (2.38)

where Crsx and C’UK are related by (2.33). The change Crjx — C’UK can be
viewed as a threshold effect resulting from integrating in the extra hypermultiplets

at h* > 0, continuing to A* < 0, and then integrating them out again.

For a pair of CY threefolds X, X related by a conifold transition, however, an
analog of the relation (2.38) remains to be established as the threshold corrections
arising from integrating out the massive modes on the X branch have not been
computed. In this context we point out that knowing the triple intersection num-
bers of X and X explicitly and applying (2.37) to find the In-picture C;,x gives a

prediction for these corrections.

Let us also remark that it does not make sense to use the extended action S
far away from the transition locus, where the extra states have a considerable mass,
because the full M-theory contains many other massive states which are not included
in S. Moreover, there are additional boundaries of the Kihler cones of X and X,

where some other states become massless.

'“Comparing to [5] the correction term differs by a factor of § which is due to our different
normalization of h.
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2.4 Kasner cosmologies

Besides constructing LEEA which explicitly include the extra light modes arising
in topological phase transitions, we are also interested in the dynamics of the CY
moduli and the space-time induced by the transition states. This will be our main
focus in the sections 6 — 8. When investigating these dynamics, we use the following

Kasner ansatz for the five-dimensional space-time metric:
ds? = —e?dt? 4 20472 + 2PV dy? . (2.39)

Here 7 = (2!, 2%, 2°) are three space-like coordinates, parametrizing the macroscopic
dimensions, while y is the coordinate of the fifth, extra dimension. Note that we
include a non-trivial lapse function ’® in the ansatz. This will play a crucial role
in solving the Einstein equations in the Out-picture analytically. We also impose
that all fields are homogeneous in the four space-like directions, i.e., they do not

depend on the spatial coordinates.

Moreover, we restrict ourselves to the case where the vector fields Aﬁ can be
consistently set to zero, as this will considerably simplify the later analysis. In
the Out-picture the equations of motion are always solved by Alﬂ = 0. In the In-
picture, however, the covariant derivative in the hypermultiplet kinetic term adds

the contribution

ju = g V _g gXY(Q) 8MqX k;:;uge(Q)’ (2'40)

to the vector field equations of motion which does not vanish when setting AL =0.
For the In-picture Lagrangians constructed in the subsequent sections, this term
vanishes, if the complex hypermultiplet scalar fields ¢* are restricted to be real.

Therefore we will use this truncation when studying the dynamics of these theories.

Under these assumptions we get the following non-trivial equations of motion

from the Lagrangian (2.1):
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Einstein equations:

3(d2+d5) = T+g’e”V,
2+ B +24B+36° + 82— 206 — 0 = —T+g’e™V, (2.41)

3(d+26* —va) = -T+g’e™V,

vector multiplet sector:

.. .o N BV
hypermultiplet sector:
=X X Y .Z LA N ax w2 xy OV
¢ +I%,¢ ¢+ (3a+5—-v)§ +evgy &J—Y_O' (2.43)

Here the “overdot” indicates a derivative with respect to the time coordinate t, i.e.,

¢* == 2¢*, etc. We also introduced the kinetic energy T as
7=t ¥V oo deay 2.44
-—QQXYq q +29wy¢¢ s ( . )

which is positive semi-definite. The 7%, and ['%,, denote the Christoffel symbols of
the vector and hypermultiplet scalar metrics g, and gxy, respectively. To obtain
the equations of motion valid in the Out- or In-picture, we make the appropriate
substitutions for the potential and the scalar field metrics. When studying numerical

solutions, g will be fixed to the value determined by M-theory, eq. (4.16).
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3 The hypermultiplet target manifolds

In subsection 2.3 we determined the exact vector multiplet sector of the In-picture
LEEA including the transition states originating from a flop or conifold transition.
Our next task is the construction of a family of hypermultiplet target manifolds
which can be used to describe the additional charged hypermultiplets arising in
these transitions. We will not attempt to derive these manifolds directly from M-
theory, but use the Wolf spaces (1.1). In order to find the explicit LEEA we need
to know the metrics, the Killing vectors, and the moment maps of these spaces
explicitly. As already mentioned, the Wolf spaces also happen to be Kéhler, so that
one can deduce these quantities from the corresponding Kéhler potential. However,
the structure relevant for the gauging of isometries is the quaternionic structure,
as the scalar potential depends on the moment maps of the Killing vectors, which
form a triplet under the SU(2) related to the quaternionic structure. Therefore we
will construct these objects from their counterparts on the associated hyper-Kéhler
cone using the superconformal quotient construction [40, 41, 42]. This method can

be applied to any quaternion-Kéhler space.

The construction of the Wolf spaces (1.1) has been described in [40] but explicit
formulae for the metric have only been given for X (1). The general form of the
Killing vectors of X (N + 1) has been obtained in [41]. In this section we summarize
the explicit formulae for the metrics, Killing vectors, and moment maps of all these
spaces obtained in the appendix D. As it will turn out in the next sections, the

resulting parametrization is extremely useful for including the transition states in

the LEEA.

Before considering the particular family (1.1) of quaternion-Ké&hler spaces, let us
briefly explain the underlying method. From the physical point of view the basic
idea is to construct theories with Poincaré supersymmetry as gauge-fixed versions

of superconformal theories. In the case at hand one starts with a theory of n =
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N + 2 hypermultiplets'® invariant under rigid superconformal transformations. The
corresponding hypermultiplet manifold M3, is a hyper-Kihler cone, i.e., it is hyper-
Kihler and, in addition, possesses a homothetic Killing vector x? satisfying D,x® =
.. This implies that the hyper-Kihler metric g, of MPS; has a hyper-Kihler
potential x, with x, = D,x and g, = D,Dyx. Moreover, M3, is a cone over a
so-called tri-Sasakian manifold with radial coordinate r = /2x. Superconformal
invariance also implies that by multiplying the homothety x* with the SU(2) triplet
of complex structures J = [J*,J, J%] of MSS, one obtains an SU(2) triplet of
Killing vectors,

k= Jexb. (3.1)

Using the superconformal calculus, the rigid superconformal theory can be coupled
to conformal supergravity and thus be promoted to a locally superconformal the-
ory. This theory is gauge-equivalent to a theory of n — 1 hypermultiplets coupled to
Poincaré supergravity. In this reinterpretation one of the hypermultiplets becomes
dependent on the other fields and acts as a compensator. Geometrically this gaug-
ing corresponds to performing a superconformal quotient of M35, with respect to
the four conformal Killing vector fields ¢, k. The resulting hypermultiplet mani-
fold My of the Poincaré supergravity theory is quaternion-Kihler. In fact every
quaternion-Kéhler manifold can be obtained by this construction from its associated

hyper-Kéhler cone [39].

The construction of the Wolf spaces X (n—1) which have dimension dimg (X (n—
1)) = 4(n — 1) proceeds in several steps. First one needs to obtain the hyper-
Kihler cone H(?™ associated with the space X (n — 1). In [40] this cone has been
constructed as the hyper-Kihler quotient [69] of flat C®"*2) with respect to a par-
ticular tri-holomorphic U(1) isometry. Then the superconformal quotient is taken
in two steps. First one quotients %" by the homothetic Killing vector x* and
the Killing vector k* = [k3¢] corresponding to the Cartan direction of the SU(2)

15For notational convenience we have set N +1=mn — 1.
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isometry group. This quotient is a standard Kiahler quotient [70]. The resulting
space is the twistor space 272 over X (n — 1). In the second step one quotients
Z(@n=2) by the remaining Killing vectors k* and £~. The isometry (3.1), however,
is only holomorphic and not tri-holomorphic. This implies that at the level of the
twistor space, k™ and k™ are isometries up to SU(2) rotations only. In order to
obtain well defined quantities on the quaternion-Kéhler manifold one has to include

a compensating SU(2) transformation.

3.1 Results for the metric and isometries of X (n — 1)

The actual derivation of the explicit formulae for the metric, Killing vectors and
moment maps of the Wolf spaces X (n — 1) is, however, rather technical and will not
be required in the subsequent sections of this thesis. Therefore this subsection only

gives a summary of our results while the calculation is contained in appendix D.

We start by introducing complex coordinates v, u;, i = 1,...,n — 1 with respect
to the almost complex structure J3, corresponding to the n — 1 hypermultiplets of
X(n —1). Arranging our indices as X,Y = {v%, 0%, u;, 4;} the components of the

metric G5 on X (n — 1) can be read off from the matrix

0 Gw 0 Gu
Gﬁv 0 Gﬁu 0
Gxy = . (3.2)
0 Gw 0 Gu

Gz‘w 0 Gﬁu 0
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The entries of this matrix are given by

1 . . 1 . . 7 7
Gua, = 2 (77” + v’ v“) ~ o5 (nﬂul + v’ (vlul)) (77”@;4— v (ﬁla,—)) ,
1 . - -
Gy, = s (ﬂgvj (1 +nkluka[) — am’tig (vlul)> , (3.3)
1 1 7 1
Goizi = — iz — —5 (0;770") (2 0') — —— ;5
= 5 o (ni ') (nav') g 1
1 _ 1 _ T
+ ﬂ U; Uy — %7 U; Uy (vl ul) (vlui) .
Here we introduced the (n — 1) x (n — 1) matrix n;; := diag[—1,... — 1] and its
inverse 7 while ¢, and ¢_ are given by
br i =1+4n;0'0, ¢_ =1+ n7uwi; + (v'u;) (0" 4) . (3.4)

The other non-vanishing entries of the matrix (3.2) can be obtained from the con-
dition that Gxy is hermitian with respect to J3. These metrics are, however, not
Kéihler as the holomorphic assignment in (3.3) is adapted to the quaternionic struc-
ture, which cannot be used to define a Kéhler potential. However, there must be
a non-holomorphic coordinate transformation which brings the metric given above

into its Kéhler form [37].

The universal hypermultiplet X (1) is obtained by setting n = 2. In this case
the index 4 has only a single value and may be omitted. Setting 7;; = m;1 = —1 the

general metric (3.3) becomes

1 _
Guﬁ = —ﬁ(l—vv),
I
Guw = %?UU, (3.5)
1 _ _
Gy = Brra (1 —wa (1 -vo)%),

which is the metric for the universal hypermultiplet derived in [40].
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The Killing vectors of the general metric (3.2) are conveniently obtained in terms
of the generators [ta]JI of the Lie algebra su(n — 1,2). Dropping the index « enu-
merating the (n + 1)? — 1 generators of su(n — 1,2) and splitting the matrix index
I =14,n,n+ 1, their components read

B o= it ol it — o el — it — o) (n”'aj- + @Ea,;) :
BU = duy (T L) — ity — it it (v ) (3.6)
o .
—2’11,2' kz + ﬂ ]C< nijU] s

with k¢ and k, given by

k=24 (0" +¢", ;) and
(3.7)

k=< ("o + " = u — "+ VT 0 )

[\9|s.

The components of the Killing vectors with respect to 9y and 0y, are obtained from

eq. (3.6) by complex conjugation.

The SU(2) triplet of moment maps ji", r = +, —, 3, associated with these Killing

vectors is also obtained from its counterpart on the hyper-Kéhler cone,

1 _ . . _ .
po= - {@’ Moyt 08 + 10+ W st L ) (3.8)
2¢ {1thZ * g+ ugtt, 0,4 1", — (wit, 1 +1"0) (@'
= (i +77) (wed®) + 47 (wid) (59) }
Ab 4 . n ,j n+1 Z J i
= wt vl +1 v =1 u; v’ ) +ut,
2¢1/2¢1/2 { ? ( j ) 1

+t 1 — t”+,1l+1 (uZ vi) } ,

with i~ and " related by complex conjugation. This equation completes our
summary of the results obtained in appendix D. We now have all the ingredients

for modelling the hypermultiplet sector of our In-picture LEEA.
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3.2 Examples of isometries on X(2)

Before we embark on this construction, let us illustrate how the general formulae
(3.6) and (3.8) may be used. For this purpose we anticipate some results obtained
in the next sections and calculate the Killing vectors and moment maps for the flop
and conifold LEEA with hypermultiplet sector based on X (2). It turns out that the

corresponding isometries are generated by
1 ..
tFlop:Zdlag[la_?’alal]a (39)

and

tor = diag[1, —=1,0,0], (3.10)

respectively. The relative normalization of these generators is chosen such that they
give rise to the same mass on the Coulomb branch of the transition. Substituting

these matrices into eq. (3.6), we find the corresponding Killing vectors,

kFlO = —1 0,02,0,—1_)2,0,—U2,0,ﬂ2 T: 3.11
P

, o _ 4T
kee = i [v', —v*, =0, 0%, —wi, us, Up, —Us] (3.12)
which are given with respect to the basis

{81)1 , 87]2, 8171, 8172, aul, (9UQ, aal, (9172} . (313)

When gauging these isometries we also need the triplet of moment maps associ-
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ated with these Killing vectors. They are found by evaluating eq. (3.8):

W (U2U2 — ?72?7,2)
pop = W (viug + v%1y) | s (3.14)
+ —_

%% (/U/QUQ) — ﬁ (1_)2’1)2)

— W (vlul — ’UQUQ — ’ljl’lll + 17217,2)

ﬂEf = - W (Ulul - ’l)2u2 + 17117,1 — ’17217,2) . (315)
oL

| — 5 (Wl — uallz) + 5 (017" — v?0%)

Here the components of the moment maps {j', 42, i*} are adapted to the basis
associated with the complex structures given in (D.2). Their relation to i and i~
is given by

A

pl=pt+p, pP=-i(pt-p), pd=pt. (3.16)

This completes our excursion on isometries in the two hypermultiplet case.

3.3 The relation to the supergravity conventions

In order to use the results obtained in this section to construct a supergravity
Lagrangian based on eq. (2.1) we need to rewrite them in the conventions used
in section 2.1. Comparing the metric for the universal hypermultiplet given in [59]
and [40] we find that the components of the metric Gxy given in (3.2) and the

metric gxy in the Lagrangian (2.1) are related by

gxv(q) = —Gxv(q) . (3.17)

Looking at the definitions of the moment map (2.15) and the one given in [41], we

further find that these differ by a factor of one half,

Pr(q) =5 i (q)- (3.18)



3 The hypermultiplet target manifolds 33

When studying cosmological solutions it is further interesting to identify a sub-
space of the hypermultiplet target manifold X (n — 1) with the universal hypermul-
tiplet X (1) which, for CY compactifications, contains the CY volume V and three
real scalars 0,0, 7 stemming from the reduction of the three-from. To this end we
observe that restricting the metric on X (n — 1) to the subspace spanned by v!, u,
with all other coordinates set to zero gives rise to the metric (3.5) for X(1). By
combining the coordinate transformations given in [40, 59] it is then straightforward
to relate the parametrization of the universal hypermultiplet X (1) given by gxy(q)
obtained from (3.5) to the one derived from CY-compactifications of M-theory [71],

1

1 1
st = oVt o L (Aot 2dr —2rae) + L (@67 4 art) . (319

Explicitly, we find

Vo= %(1—1@(1—1}@)2—1}1—)),
o = Fu—1) (1-vo),
0 = %(v(l—i—u(l—vv))+v(1+u(1—UU))),
S i(@(l—f—ﬂ(l—m—)))—v(l—i—u(l—m_)))), (3.20)
where L is given by
Li=(1+u(l—vt)(1+a(l—ovp)). (3.21)

Therefore we recover the eleven-dimensional meaning of the coordinates v, u parametriz-
ing X (1) in (3.5) and in particular their relation to the CY volume V. We note that
taking v = v = 0 and u = u corresponds to setting ¢ = § = 7 = 0 and truncating

the universal hypermultiplet to the volume scalar V.
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4 The flop transition

We now have all the ingredients to write down the explicit In-picture LEEA for
general flop transitions including the charged extra states which become massless
at the transition locus. To illustrate the key features of the construction, we first
consider an example based on the F'1-model reviewed in appendix C before turning to
the generic transition. In both cases we proceed by first deriving the Lagrangian and
then showing that the scalar masses obey the conditions arising from the microscopic

picture.

4.1 The Lagrangian of the F;-model
Gauging the general supergravity action

According to the microscopic description of the flop transition occurring in the -
model the In-picture Lagrangian should contain one neutral and one charged hyper-
multiplet. These play the roles of the universal hypermultiplet and of the transition
states, respectively.!® The latter are charged with respect to the vector field A
whose associated cycle collapses at the flop. In our particular model this implies
that the transition states are charged with respect to the vector field associated with
the scalar field combination (U — W), as this is the modulus that vanishes at the
transition locus. Taking the hypermultiplet scalar manifold My to be X (2) with
complex coordinates v, v?, u1, us, we choose the universal hypermultiplet as being

represented by v!,u;, while the transition states are given by v2, us.

Our first task is to identify the proper gauging in the hypermultiplet sector.
Here we need a Killing vector which encodes the U(1) charges of the second hy-
permultiplet. This implies that the correct Killing vector should be independent

16 As explained in the introduction, our model only includes the universal hypermultiplet and
the transition states. The additional neutral hypermultiplets arising in the CY compactification
are frozen and will not be included in the following analysis.
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of v!,u;, should not act on the universal hypermultiplet, and that its components
with respect to 0,2 and 9, are of the form —iv? and ius, respectively.!” Inspecting
the expression for a general Killing vector on X(2) (3.6), it turns out that these
specifications determine the Killing vector uniquely.'® Anticipating this result, this
Killing vector, kriop, and its associated triplet of moment maps /i, have been given

in egs. (3.11) and (3.14), respectively.

In the next step we perform the gauging of (2.1) with respect to this isometry. In
order to compare our five-dimensional supergravity action with eleven-dimensional
M-theory data, it is natural to use the embedding coordinates h!, (C.1), as these
are the coordinates which are related to the volumes of the CY cycles. However,
for the F;-model it is more convenient to work with the variables T, U, W given in
(C.3). Further, it is useful to label the vector fields A] by their corresponding scalar
field:

{4, I=0,1,2} — {A], A7 AV} . (4.1)

Next we consider the scalar kinetic terms of (2.1). Since we do not gauge any
isometries of the vector multiplet scalar manifold, the corresponding gauge covariant

derivative becomes a partial derivative,
D,¢° =0,¢° <« Kj(¢) trivial. (4.2)

In the hypermultiplet sector the microscopic picture fixes the U(1) gauge connection

of the isometry (3.11) to be A — A/Y. To implement this requirement we set

K7 () =0, Kj(@)=rkip(@),  Kiyla) = —kip(@) - (4.3)

Flop Flop

"Here and in the following we use conventions in which the charged hypermultiplet fields u;
carry U(1) charge ¢ = +1 while their CPT conjugate partners v! have charge ¢ = —1.

18 Any rescaling of the Killing vector can be absorbed by a rescaling of the gauge coupling g. We
will fix the normalization of the Killing vector and show later that g is uniquely determined by
microscopic M-theory physics.
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The covariant derivative for the hypermultiplet scalars then becomes
Dug* =0uq" +g (A4, — AY) kiop(a) - (4.4)

This expression shows that the universal hypermultiplet parametrized by v!,u; is
neutral, while the transition states v? uy carry U(1) charges ¢ = —1 and ¢ = +1

with respect to the gauge connection, respectively.

Next we turn to the scalar potential (2.20) where we take the independent vector
multiplet scalar fields as ¢* = U, W, while T'(U, W) is given in eq. (C.9). Including
the rescaling (3.18) the PJ are given by

T T 1 ~T T 1 ~nNT
Pr(g) =0, Pyle) =5 irop(@)» Piv (@) = = 5 iF10p(a) - (4.5)
Correspondingly, P" is obtained as
pr=tpp = lewswow) 4.6
=9 Hriop = 5 ( ) HFiop 5 (4.6)

where we used (C.3) in the second step.

In order to construct the scalar potential, we work out the superpotential (2.21).

For the P" above this is given by

W =656 (i (tgug) + i (v2v2)> U-W). (4.7)

It is now straightforward to check that the Q" defined in (2.22) is independent of

the vector multiplet scalars,

2 P l[)’rFlop(q)
QI =\7375= — — . (4.8)
3 2(*%_ (tpun) + ﬁ (v20?)

Hence the condition 0,Q" = 0 is trivially satisfied. This implies that the scalar
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potential can be written as
9
V(#,q) = —6W* + Sg" WL (4.9)

Here g"¥ is defined in (2.24) with ¢*¥ (q) being (minus) the inverse metric on X (2)
and ¢g*¥(¢) the inverse of the In-picture vector multiplet scalar metric (C.10). The

coordinates of the scalar manifold My ® My are taken to be

¢A:{UI,U2,61,172,U1,U,2,I_I,1,EQ,U,W}. (410)

Alternatively, we can compute the scalar potential by substituting the quantities
KX, P", P, and the inverse vector and hypermultiplet scalar metrics directly into
the scalar potential (2.20). By explicit computation one finds that the resulting
expressions agree. Since the equality of (2.23) and (2.20) requires some non-trivial
identities of quaternion-Kéhler geometry, this result provides a non-trivial check for

our derivation.

Vacua and mass matrix

After constructing the In-picture Lagrangian for our flop model, let us investigate
its vacuum structure and calculate the corresponding mass matrix. From the micro-
scopic analysis we know that the masses of the transition states must be proportional

to [U — W| while all other fields must be massless.

The supersymmetric vacua of V can then be found via the algebraic eqs. (2.25).
For the specific gauging (4.3), (4.5) these equations are solved by v? = uy, = 0, with
the value of the other fields v', u;, U, W undetermined. This implies that we have
an entire manifold Mo, of critical points, corresponding to a Coulomb branch

parametrized by the vacuum expectation values of the universal hypermultiplet and
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the vector multiplet scalars:

2 =1y =0

OAV | pmeey =0, Mcou = (4.11)
v u, U,W not fixed by eq. (2.25).

When investigating the possibility that V has additional (possibly non-supersymmetric)
vacua, it first seems like there are some other critical points. A thorough investi-
gation of these points, however, establishes that they are outside the admissible
coordinate region of the scalar manifolds, i.e., at these points the scalar metric gsa

is no longer positive definite.

To determine the type of vacuum corresponding to this set of critical points, we
substitute the condition for a critical point into the potential (4.9). Since both W

and 0, W vanish at v? = us = 0, we find

W(¢a‘]) |MCou1 =0. (4'12)

Hence the manifold Moy corresponds to a set of Minkowski vacua with vanishing

cosmological constant.

We now calculate the masses of the scalars in our model. These are given by the

eigenvalues of the mass matrix

0 0 Vipg| . (4.13)

MA — 2 gAE _
R Moo

where g** is given in eq. (2.24). Evaluating this expression for the potential (4.9)
we find
M = (mpep)? diag[0,1,0,1,0,1,0,1,0,0], (4.14)

given with respect to the basis (4.10). This result shows that the universal hyper-
multiplet v, u; and the vector multiplet scalars U, W are massless and parametrize

the flat directions of the potential. The masses of the transition states v?, uy are
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given by

(mesop)? = 3 865U ~ W) = 2 g (H')?. (4.15)

In terms of the microscopic picture |h'| = 6~1/3|U — W| corresponds to the volume
of the shrinking cycle. This implies that (4.15) has precisely the structure expected
from the eleven-dimensional point of view. By comparing with (2.36) and using
(2.31) together with the value T(2) = (-3%)/3 of the M2-brane tension [13], we find

K1)

that g is fixed by M-theory,

g=/2(48m)" (4.16)

Thus the In-picture LEEA is completely fixed once we choose the hypermultiplet
manifold to be X (2).

4.2 The Lagrangian for general flop transitions

After working out the In-picture Lagrangian for an explicit model containing a
single charged hypermultiplet, we will now generalize this setup to a generic flop
where N hypermultiplets become massless at the transition locus. Our construction
does not depend on the details of the vector multiplet scalar manifolds connected
by the flop and can easily be adjusted to any specific transition. The relation
between Out-picture and In-picture is given by the orbit sum rule (2.38). After
fixing the hypermultiplet scalar manifold to be X (/N + 1), we find that the resulting
hypermultiplet sector of these In-picture Lagrangians is still uniquely determined

by the microscopic theory.

Constructing the action

For a generic flop transition the homology class C* = ¢q;C! of the contracting cycle

contains NV isolated holomorphic curves. In this case the transition states are given
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by N hypermultiplets, which carry U(1) charge ¢ = +1 with respect to the vector
field A* = q;A] associated to C*."* Generalizing our construction from the previous
section, we take the hypermultiplet scalar manifold to be X (N + 1), which will
contain the universal hypermultiplet v!,u; and N charged hypermultiplets v%, u,.
Here the index o = 2,..., N + 1 enumerates the charged hypermultiplets which
correspond to the transition states. We further use h* = grh’ to denote the volume

of the shrinking cycle C*.

The microscopic theory imposes that the transition states v®, u, carry U(1)
charge ¢ = —1 and ¢ = +1 with respect to A}, while the universal hypermultiplet
remains neutral. This condition requires the existence of a holomorphic Killing
vector of the form:

i : T . :
kfyge = =1 [0, 0%, . oMk =4[0, ug, ... ung1] (4.17)

Since this Killing vector is holomorphic, its components kg;uge and kg;uge can be

obtained from kg;uge and kgi .. by complex conjugation. The sign conventions and
overall scale in (4.17) are chosen such that for N = 1 we reproduce the results of

the previous section.

The first step is to check whether there exists a generator ¢ which gives rise to this
Killing vector. Restricting the general expression for a Killing vector on X (N + 1)

to the terms linear in the hypermultiplet scalars, eq. (3.6) simplifies to

kS

I
o

bl

(tn+711+1 o tn n) ,

IR U S SRR A e |
k —z(tjv v't n+1),

k, =

N | .

(4.18)

R = (0 — Py — g (T — )

9Here as well as in the following section on conifold transitions we do not assume that an
adapted parametrization of the Kihler cone (where A’ > 0) has been chosen.
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Equating this expression to the Killing vector proposed in (4.17) yields that ¢! ;=
ak (5ij is diagonal, where the N + 1 real constants a; are determined by the following

system of equations

n+1 n+1 n+1 n

N+1 (4.19)
al—i-Zaa—i-t”n U 1 =0.

The last equation arises from the condition that ¢ should be traceless. This set of

equations has the unique solution:

n n N 2 N+1 3
tl—t —t+n+1_N+3, t2: .=1 +N+1_—N7-|-3. (420)
Hence the gauge generator tg,,g. is uniquely determined,
N 3 3 N N
trauge = di ,— e, — , , 4.21
g = T8\ N 13 N +3 N+3 N+3 N+3 (4.21)

~
Ntimes

Observe that in the case N = 1, this is exactly the generator (3.9) of our example.

In the next step we calculate the moment map for this isometry by substituting
tgauge iNt0 €q. (3.8). Taking linear combinations g' = gt + o, p* = —i (p* — )
and using the definition (3.4) to simplify the resulting expressions, we obtain the
following SU(2) triplet of moment maps:

s (V" ta = 0"a)

ﬂgauge == W (’Ua Uq, -+ @aﬂa) . (422)

2¢ (TaUa) — ﬁ (0%v®)

The gauging of this isometry exactly proceeds as in the example of the previous

section.
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In order to complete the construction of our In-picture Lagrangians we still have
to calculate the scalar potential. For this purpose we first derive the superpotential

W (2.21). The moment map P" is given by

1 * AT
P =—h [, ..(q)- (4.23)

9 gauge

Substituting in the explicit form of fig,,,., the superpotential W becomes

9 1/2
L 1 Uala) — 1 v*v® ! 1%Uy) (VU

Looking at Q" defined in (2.22), we see that

Qr — g g — ﬂgauge(q)
W (Bauge (0) Buge())

7z (4.25)
is independent of the vector multiplet scalar fields and satisfies the condition 0,Q" =

0. Hence the scalar potential can be expressed in terms of the superpotential and

takes the form (2.23).

Calculating the mass matrix

After constructing the effective Lagrangian which includes the transition states for
a generic flop transition, we now check that the masses of the scalar fields satisfy the
conditions arising from the microscopic theory. Similar to the [';-model example,
the only solution to the eqs. (2.25) is given by setting all transition states to zero.*

The vacuum expectation values of the vector multiplet scalars and the universal

hypermultiplet are not determined. Thus the manifold My, of supersymmetric

20The existence of further critical points of V depends on the explicit choice of vector multiplet
scalar manifold and is therefore not addressed here.
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vacua of our theory again corresponds to a Coulomb branch

V¥ = uy =0, a=2,....,N+1
MCou] - (4.26)
vl g, 9%, not determined.

Substituting Mo, into the superpotential, we find that W vanishes identically.
Hence we have V(¢, ¢)|mq,,, = 0 and the vacuum is Minkowski. This is in complete

analogy to our analysis in the previous subsection.

We will now calculate the mass matrix (4.13) for our Lagrangian. In this case it

is more convenient to start from the scalar potential in the form (2.20):
3
V(g,q) = —4P"P" + 2g" P, Py + ZngKXKY, (4.27)

Here the first observation is that for the P" given in (4.23) the terms P"P" and
g™ Py Py are of fourth order in the transition states. This implies that these terms
do not contribute to the mass matrix of our model since they vanish identically
when taking two derivatives with respect to any scalar field and restricting to Mcouw
afterwards. Hence the masses of our fields are solely generated by the last term in
eq. (4.27).

In the next step we show that the vector multiplet scalar fields ¢* are massless.

The matrix

MAE = aAaz (% g2 gxy KX KY) (428)

Mcoul

has non-trivial entries if and only if both A and ¥ take values in the hypermultiplet
sector. To see this, we expand KX = h*(¢)k},,.(¢) and note that kJ,..(¢) vanishes
when restricted to Mcoy. This implies Myy is only non-trivial if there is one
derivative acting on each of the Killing vectors kX, ..(¢). Since g=* = ¢*¥ @ g*¥ is
the direct sum of the hypermultiplet and vector multiplet inverse metrics, we find
that non-trivial entries of the mass matrix (4.13) may occur in hypermultiplet sector

only. This establishes that the vector multiplet scalars ¢* are massless.
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Thus we restrict our analysis to the case where both A and X take values in the
hypermultiplet sector and calculate the masses of the hypermultiplets. Only terms

where one of the derivatives acts on each Killing vector contribute to M xy:

3
MXY = 5 g2 (h*)2 awz 8X kgguge ay ngauge . (429)
MCoul

The actual calculation of M xy proceeds in two steps. We first calculate the matrix

K = OxkY oe(@) | Moy - With respect to the basis

gauge

X 1 N+1 -1 _N+1 . .
{or oMt M s u, G U ) (4.30)

KY, is diagonal and has the following form:

- ]
K* =diag {0, —4,...,—4,0,4,...,%,0,4,...,%4,0, —4, ..., —0] . (4.31)
[ —— N — N — H_/J
N times N times N times N times

In the second step we calculate gxv (¢)| e, DY restricting the general expression

for gxy(q) obtained from eq. (3.3) to Mcou-?* We find that all blocks appearing in

9xv (9)| me,,, are diagonal:

_ 112
Guioy = W (1 — tyuy (1 —o'o?) ) y o Guags = ﬁfsaﬂ,
Guia, = Q(ﬁ%z_ (1 - 7717}1) s Guaig = Z(ﬁ% 6a,8, (432)
Gply; = — 2(#%2_ (ﬂlvl) .

Here and in the following ¢, and ¢_ are understood to be restricted to Mcoy. The

matrix M xy can now be computed from

Mxy = gg2 (W) [KgK"] . (4.33)

21Recall that the components of Gxy (¢) are minus the components of gxy (q).
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Explicitly, we find

MXY =

0

A
, (4.34)

0

0

D oo o o
o Iy o o

with A and B being the following (N + 1) x (N + 1)-dimensional block matrices:

A= 4;1 2(h*)? diag {0,1,...,1}, B= 4; 2(h*)? diag {0,1,...,1} . (4.35)
N times N times

Finally we need to calculate the inverse metric g*Y, restricted to Mcou, by
inverting gxv|amq,, given in (4.32). The resulting inverse metric is again of the

structure (3.2) with block diagonal entries. The only non-zero components are given

by

¢— ) g’uaﬁﬂ = 2¢+5a/3 ’
(1 — g (1 — 1711)1)2) , gue® =2¢_ 5, (4.36)
¢

(17,1’01) .

%
8-

Q
||

2
2
20+

<,
| l

The hypermultiplet masses are given by the eigenvalues of the mass matrix
X _ Xz
MYy = g¥ May |, - (4.37)

Using the results (4.34) and (4.36), we find that the resulting matrix is diagonal

X

X 2
M, = (mpip)® |0,1,...,1,0,1,...,1,0,1,...,1,0 1
—— = =
N times N times N times N times Y

1

3 g ey

. (4.3)

where (mpip)? = 2 (h*)?g?. This result explicitly shows that our Lagrangian con-
tains one massless hypermultiplet, given by the complex fields v!, u;. This multiplet

corresponds to the universal hypermultiplet. The transition states v*, u, all acquire
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3
— \@ gh . (4.39)

It is proportional to the volume of the flopped cycle, h*, as required by the underlying

the same mass

microscopic theory. Comparing (4.39) to eq. (2.36) we find that the gauge coupling
constant g is again set by (4.16).

This result concludes the construction of the In-picture Lagrangian for a generic
flop transition. We find that after fixing the hypermultiplet scalar manifold to be
X (N + 1), the hypermultiplet sector of the resulting action is uniquely determined
in terms of the microscopic theory. We further note that in order to calculate the
mass matrix, we did not need to specify the details of the vector multiplet sector.
Hence the analysis in this section can be used to model any flop transition where
N charged hypermultiplets become massless. In the case where N =1 these results

exactly match the ones found in the explicit example given in subsection 4.1.

5 The conifold transition

After deriving the In-picture LEEA for a general flop transition we now turn to the
In-picture description of a general conifold transition. In analogy to the flop we will
proceed by first constructing the Lagrangian before showing that it gives rise to the
vacuum structure and mass matrix intrinsic to the transition. The new feature of
these Lagrangians is that, besides the Coulomb branch familiar from the flop, they
have a second supersymmetric vacuum branch, a Higgs branch.

In terms of the algebraic eqs. (2.25) describing the supersymmetric vacuum
structure of the Lagrangians this setup can be understood as follows. Suppose we
gauge an isometry where we can fix some of the hypermultiplet scalars to obtain
P7(g) = 0 while the corresponding Killing vector K;*(g) remains non-zero. Having

P7(q) = 0 suffices to meet the first condition in (2.25).?2 In order to satisfy the

22Tn terms of four-dimensional super-Yang-Mills theory the conditions P}(g) = P?(q) = 0 and
P3(q) = 0 correspond to F- and D-flatness, respectively [65].
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second equation, h!(¢) KX (q) = 0, we then have the choice to either fix the remaining
hypermultiplet scalars such that K;*(g) = 0 or the vector multiplet scalars such that
h'(#) = 0. The first choice corresponds to the Coulomb branch, while the second
one gives rise to the Higgs branch. The intersection locus where both K;*(q) = 0

and h!(¢) = 0 are fulfilled is the conifold locus.

In order to identify the correct isometries whose gauging describes the charged
states arising in the conifold transition we turn to the corresponding microscopic
description. The analysis of subsection 2.3 indicates that we should look for a set

of Killing vectors o = 1,..., N — 1 of the form?

ke =i[0,0%,0,..., —v**2,0,...,0]",
i (5.1)
kt=4i[0, —u?,0,...,u*"?,0,...,0]

a+29 a+2»

where the entries ‘—v and ‘u occur at the a+ 2 position. The components of
kX with respect to 9 and @y, are obtained from k¢ and k* by complex conjugation.
Here we have chosen our hypermultiplets such that v!, u; parametrize the universal
hypermultiplet, v2, uy arise from the M2-brane wrapping the cycle C; = — 22;2 Cas

o+l 44q41 correspond to the M2-branes wrapping

and the remaining hypermultiplets v
the cycles Co, o = 2,..., N, respectively. The set of Killing vectors (5.1) mutually
commutes, [l%a, lAcﬁ] = 0, so that the hypermultiplets are charged with respect to a
subgroup U(1)V~! c U(1)"v*!. Equation (5.1) further indicates that we need at

least two charged hypermultiplets in order to describe a conifold transition.

5.1 The minimal Lagrangian

Before constructing the In-picture LEEA describing the general conifold transition,

let us first illustrate the essential features of the transition by considering a minimal

Z3Here we consider the case where N holomorphic curves satisfying 7 = 1 homology relations
are contracted and all the neutral hypermultiplets except the universal hypermultiplet have been
truncated.
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model containing one vector and two hypermultiplets. The general analysis given
above implies that in this case both hypermultiplets must correspond to transition
states, i.e., we are in a situation where the universal hypermultiplet has also been
truncated. The vector multiplet sector is taken to be the most general one vector
multiplet manifold discussed in appendix A while the hypermultiplet sector is given

by X (2).

Constructing the action

Our first task is then to identify a suitable gauge connection Aj. The Higgs branch
condition h*(¢.) K (g.) = 0,K}(g.) # 0 requires that h*(¢) must have a zero
for some value ¢ inside the vector multiplet scalar manifold. The discussion in
appendix A then fixes h*(¢) = h'(¢@) since h°(4) does not have this property. Second
we need an analog of the isometry (5.1) for this model. Truncating the universal
hypermultiplet and assigning negative and positive U(1) charge with respect to A
to u; and us, respectively, implies that the corresponding Killing vector is given by

eq. (3.12) with its moment map being (3.15).

The gauging of the general supergravity Lagrangian (2.1) proceeds completely

analogous to the case of the flop transition. Based on the previous discussion we set

P (¢,q) := %hl(d)) pee(q),  K¥(¢,q) == h'(¢) k&(q), (5.2)

with k& and pfy given in (3.12) and (3.15), respectively. Substituting P" (¢, ¢) given

above into the superpotential (2.21), we obtain

. 2
W :% { (i (v'o' —v*0?) — i (w1 — uﬂz))

1

(5.3)
(vlu —v%u ) (17111 — 0% ) }
1 2 1 2

1/2
+

Following the calculation (4.23) — (4.25) we establish that Q" defined in eq. (2.22)
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is independent of the vector multiplet scalar. This implies that the scalar potential

V (¢, q) is determined by its stability form (2.23).

Vacua and mass matrices

The supersymmetric vacua of this potential are determined by the conditions (2.25).
Looking at the moment map (3.15) reveals that fif; vanishes if and only if v' =
v% u; = uy. Restricting the Killing vector (3.12) to this subset we find that the
resulting expression is non-vanishing. The second condition in (2.25) can then be
met, by either setting the hypermultiplet scalars to zero, which corresponds to the

Coulomb branch
Mou = {v' =u1 =1 =uy =0, ¢ undetermined} , (5.4)
or fixing ¢ = 0 which yields the Higgs branch
Migiggs = {v' =0 =tv, uy =us=tu, =0} (5.5)

On the latter, the non-trivial vacuum expectation value of the hypermultiplet scalars
spontaneously breaks the U(1) gauge group. Restricting the superpotential (5.3) to
these vacua, we find that the resulting expression vanishes. This implies that these
vacua are Minkowski, establishing that our model has the correct vacuum structure

to describe a conifold transition.

To complete our discussion, we also calculate the masses of the fields on the two
vacuum branches. In analogy to eq. (4.10), we take the coordinates on Mgy X My
to be

¢A:{’Ul,U2,171,172,U1,u2,ﬂ1,ﬂ2,¢}. (56)

The evaluation of the mass matrix (4.13) on the Coulomb branch proceeds exactly
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as in the case of a flop transition and yields

M| g = (Meow)® diag[1,1,1,1,1,1,1,1,0], (5.7)
with
2 3 2 1\ 2
(mCOUI) = §g (h ) . (58)

This is exactly the same mass as the one obtained for the transition states occur-
ring in the flop transition (4.39) which indicates that we obtained the correct BPS
mass for hypermultiplets arising from M2-branes wrapping a holomorphic cycle with

volume A'.

Let us now turn to the Higgs branch. Here we have to evaluate the mass matrix
for the scalar fields (4.13) and in addition obtain a mass term for the vector field A}
In the latter case we note that since ars|s—0 = laxo (cf. appendix A), the kinetic
term for the vector fields has its standard form, so that the mass of A}L can be read
off directly from the term proportional to (A}L) ? arising in the hypermultiplet kinetic

term. Defining

(Mitigge)? = 282 (i oo+ Q%uﬂ) , (5.9)

where ¢, is understood to be restricted to Mijges, we find that the vector field A}i,
the vector multiplet scalar ¢ and three hypermultiplet degrees of freedom acquire
the mass mmuiges while the remaining fields stay massless.?* In terms of supersym-
metry algebra representations (see for example [68]) these modes organize into one
massless hypermultiplet and one long vector multiplet of mass miiges containing the
massive degrees of freedom as well as one massless hypermultiplet mode providing
the longitudinal mode of the vector field. In this sense the vector multiplet ‘eats up’

one of the hypermultiplets to become a non-BPS multiplet.

In terms of CY compactifications this model has the following interpretation.

24Note that one of the massless hypermultiplet scalars has an interpretation as a Goldstone
boson arising from the spontaneous broken U(1) gauge symmetry.
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At the conifold point all fields are massless and we have one vector and two hyper-
multiplets. Far away from this point, however, the massive degrees of freedom are
heavy and should be integrated out. In this case only the massless modes on the
branches remain and we acquire one massless vector or hypermultiplet when on the
Coulomb or Higgs branch, respectively. This minimal model can then be interpreted
as connecting two CY compactifications X and X associated with the Coulomb
and the Higgs branch. Their Hodge numbers differ by 25! (X) = A (X) — 1 and
hl2(X) = h2(X)+1 in agreement with the general formula (2.35) for N = 2,7 = 1.
In section 8 we will demonstrate that this transition from the Coulomb to the Higgs

branch can indeed be realized dynamically.

5.2 The Lagrangian for general conifold transitions

After working out the minimal Lagrangian describing a conifold transition we will
now generalize this setup to the case where N charged hypermultiplets become mass-
less at the transition locus. When including the neutral universal hypermultiplet,
the hypermultiplet sector of the corresponding Lagrangian contains /N +1 hypermul-
tiplets and thus will be modelled by X (N +1). In contrast to the actions describing
the general flop transition we also need to specify an explicit vector multiplet sector
for the conifold Lagrangian so that we can determine the mass matrix on the Higgs
branch. In this sector we will use the family of very special real manifolds discussed
in appendix B with nyy > N — 1 vector multiplets. Even though these manifolds
are not directly related to an exact In-picture vector multiplet sector arising from a
CY compactification, this ansatz is general enough that it can readily be adjusted
to any particular conifold transition by substituting the corresponding In-picture

vector multiplet sector obtained from eq. (2.37).
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Constructing the action

Our first task in constructing the Lagrangian of our model is to determine the
generators t, € su(N +1,2) which give rise to the isometries (5.1). For this purpose
we first restrict the expression for a general Killing vector on X (N +1), (3.6), to the
subset of Killing vectors which are linear in the hypermultiplet scalar fields given by
eq. (4.18). Equating this expression with the Killing vectors (5.1) and imposing the
condition that t, is traceless leads to an overdetermined system of equations from
which the generators t, can be determined. In the case of the Killing vectors (5.1)

we find the solution

te =diag [0,1,0,...,=1,0,...,0], (5.10)

where the entry ‘—1’ sits at the o + 2 position. Hence the Killing vectors (5.1) are
indeed isometries of X (N + 1).

In the next step we calculate the moment maps /i}, of these isometries. Substitut-
ing the generators t, into eq. (3.8) and taking the linear combinations ' = g+ +/,
p@? = —i (g™ — fi7) we obtain

2 2 25
2(151/2(251/2 (U Ug — Ua+ Ua+2 — U U + Ua+ Uu —|—2)
YA 2 2 25
Ko = 2¢1/2¢1/2 (U uy — vy a+t2 T 7? Uy — V0 +2) : (511)
+ —_
o 1 252 2 s0+42
2¢ (uglly — Uaraliate) + 557 (V70° — pet2gat?)

In order to complete the construction of the Lagrangian, we then have to gauge
these isometries. Following our previous discussion we need N — 1 gauge fields
A%, whose corresponding scalar fields h%(¢) vanish at some subset of the vector
multiplet scalar manifold. By virtue of eq. (B.5) this condition is satisfied for all
hI(¢), I =1,...,ny, but not for h°(¢). Without loss of generality we then choose
the gauge fields A}, « = 1,..., N — 1, to serve as the gauge connections for the

Killing vectors.
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The gauging of the Lagrangian proceeds analogous to the one for the flop and

we set

Pr= LR @) i), KX = (6 K@), (5.12)

with the sets kX (q) and 4% (q) given in (5.1) and (5.11), respectively. The scalar
potential of this Lagrangian is determined by substituting these relations, the hy-
permultiplet metric obtained from eq. (3.2) and the inverse vector multiplet scalar

metric (B.7) into
3
V(¢,q) = —4P"P" +2¢™ P} P; + ZgXYKXKY : (5.13)

This completes the construction of the Lagrangian. Let us remark that rewriting
V(o, q) in terms of the superpotential (2.21) is not helpful in this case as it is simpler
to determine the vacuum structure and mass matrices of the Lagrangian in terms

of the moment maps and the potential (5.13).

Vacua and mass matrices

We now check whether the supersymmetric vacuum structure and the mass matrices
of the Lagrangians constructed above agree with the specifications coming from the
microscopic theory. Determining the vacuum structure again utilizes the algebraic
eqs. (2.25) and proceeds completely analogous to the one for the minimal model.
Looking at the set of moment maps (5.11) reveals that they vanish if and only if

N+L — ¢ and

all charged hypermultiplets have the same value, i.e., if v2 = ... = v
Up = ... = uny1 = u. To solve the second condition in (2.25) we then have the

choice to either fix v = u = 0, leading to the Coulomb branch

MCOLIl:{Uzz-":’l)N+1:O,UQZ---:UN+1:0}, (5_14)
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or to set ¢* = 0 <> h*(¢) = 0 which corresponds to the Higgs branch
MHiggs:{U:’UZ:...:UN+1,’LL:U2:...:UN+1’ ¢a:0} . (515)

The scalars not present in these equations are not fixed by the vacuum conditions
and correspond to flat directions. We further note that the non-trivial value of the
hypermultiplet scalars on the Higgs branch breaks the U(1)¥~' c U(1)"v*! spon-
taneously. Substituting the conditions of vanishing i, and K* into the potential
(5.13) shows that these vacua are Minkowski so that we obtain the correct vacuum
structure expected for a conifold transition.

Our next task is to calculate the mass matrices for these vacuum branches. As in
the case of the general flop transition, we start with the scalar potential in the form
(5.13). We first analyze the Coulomb branch before turning to the Higgs branch.

In the first step of determining the mass matrix (4.13) we check which terms of
the potential give a non-zero contribution. On the Coulomb branch we can use the
arguments given in the case of the general flop (see below eq. (4.27)) to establish
that only the hypermultiplet scalars obtain a mass and that we can restrict ourselves

to evaluating the matrix

3
Mxy = ;¢ b W gwz (0x k) (0v kF) : (5.16)
MCoul

For this purpose we first compute K := h®dxk! (¢). Using the basis (4.30) the

resulting matrix is diagonal,
KY% =idiag[H,-H,-H, H], (5.17)

with
H:diag[o,—Zha,hl,...,hN—1 . (5.18)

Next we restrict the hypermultiplet scalar metric gxy(g) to the Coulomb branch,
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which gives rise to the non-zero entries (4.32). The matrix M xy is then calculated
via eq. (4.33) and has again the form (4.34) with the block matrices A and B now
given by

a0 [0 (5] 0
B=_- [ (Zha) (h') ,(h,Nl)Z].

Raising one index of M xy with the inverse hypermultiplet metric restricted to the

(5.19)

Coulomb branch (4.36) we obtain the matrix M?%, encoding the hypermultiplet
scalar masses. Explicitly we find the masses for the universal hypermultiplet v!, u,
the hypermultiplet v2, u, arising from the wrapped cycle C; = — fovzz C, and the
other hypermultiplets v*™! u,,; associated with the cycles Co, o = 2,..., N, of

volume h®~! to be

3 3
my =0, m2=\/;g ;ha, and ma+1:\/;gh“1, (5.20)

respectively. These masses are in complete agreement with the microscopic theory,
which demands that the mass of the hypermultiplets is proportional to the volume
of the cycle wrapped by the corresponding M2-brane. Comparing these masses to
the BPS mass formula (2.36) fixes g to the value (4.16). This input pins down the

remaining freedom of the In-picture LEEA in terms of the microscopic data.

Let us now turn to the Higgs branch. Here we do not have a prediction for the
masses of the massive states in terms of the microscopic description. But since the
data on the Coulomb branch together with the charge assignment (5.1) completely
determines the Lagrangian, we can use our model to predict the masses on this

branch.

We again begin our calculation by investigating which terms of the potential

(5.13) contribute to the mass matrix on the Higgs branch. The first term pro-
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portional to P"P" is of second order in both ¢* and fi, which both vanish when
restricted to the Higgs branch. Hence all its second derivatives vanish when re-
stricted to Mpjge and there is no contribution to the mass matrix. The second
term, 2g™ Py P/, has orders zero and two in ¢* and fi, respectively. This indi-
cates that this term is of relevance for the hypermultiplet mass matrix, as the only
non-vanishing second derivative terms (restricted to Mpiges) are obtained when one
derivative with respect to a hypermultiplet scalar acts on each of the moment maps.
Finally the third term is of second order in ¢® while the Killing vectors kX do
not vanish on Mpjegs. Therefore this term gives rise to the vector multiplet scalar

masses, as we have to take two derivatives with respect to the vector multiplet

scalars to have a non-vanishing expression when restricting to Muggs-

The analysis of the supersymmetry representations [68] and the explicit example
of our minimal Lagrangian show that the massive modes on this branch combine
into massive long vector multiplets composed of one vector and one hypermultiplet
of the same mass. In order to determine this mass it then suffices to compute the

vector multiplet scalar masses arising from the third term in the potential.

We start by evaluating

May =28 gxy (9. 1°() KY) (9, n°(6) Y

5 (5.21)

MHiggs

To this end we first calculate the (ny) x 4(N + 1) dimensional matrix K, X :=
Oy h®(¢) kX. Taking the basis (4.30) for the hypermultiplets and using the definition
(B.5) for h!(¢) we find

KX—hO —iU2Q i172Q Z’LLQQ _7;’U/2Q

0 0 0 0

(5.22)
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where Q denotes the (N — 1) x (N + 1) matrix?

0 —1
Q=11 : Tv—1yx(v-1) - (5.23)
0 —1

and ‘0’ is short for the (ny — N +1) x (N + 1) dimensional zero matrix.

It is then straightforward to calculate M, = 2 g [K g K] . | Misggs 10 be
My, = 3g* (h%)*diag[11, 0] . (5.24)
Here II denotes the (V — 1) x (N — 1) matrix
= [v]* Q95 Q" + [uf* Q9ua Q" — v Qg5 Q" — u¥ Qgus Q" , (5.25)

where v, u are the values of the hypermultiplet scalars on the Higgs branch and gz,
Jau, Jaw and g,; denote the block matrices appearing in the hypermultiplet scalar
metric gxy(q). Introducing M := QgQT with g representing the blocks of gxy(q)

we find that there is a simple relation between the components of M and g

Mag = 922 — G(a+2)2 — 92(6+2) T Y(a+2)(+2) - (5.26)

Evaluating this expression on Myjg,s, we find M = 0 if g = g,3 or g = gg, While for

g = gy and g = g, we obtain

1

1
— (14 d4p) and mas = — (1 +dap) , (5.27)
204

2_

maﬂ =

respectively. This allows us to write down M., explicitly. Its non-zero components

25This matrix is the charge matrix of the N + 1 hypermultiplets with respect to the U(1)N~!
gauge connections Af.
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read

3 1 1
Moz =362 (0 (S 1o+ - 7 ) (1+6), (5.28)

The mass matrix M7, for the vector multiplet scalars is obtained by raising one
index of M, using the inverse vector multiplet scalar metric restricted to the Higgs

branch (B.8). Defining

(e = (07 =2 3°07) (o4 o). 529)

2=N

where ¢, and ¢_ are understood to be restricted to Mpiggs, we find

M, = (Mitiggs)” diag [M%, 0] , (5.30)

Y

with M% =1+ 6%.

This result shows that all ‘spectator vector multiplets’ h!, I = N, ..., ny, which
do not serve as a gauge connection for the isometries remain massless. Determining
the eigenvalues of M?; shows that the vector multiplet scalars ¢* acquire two dif-
ferent masses. One scalar has mass (N)'/2 my;g,, while the remaining N — 2 scalars
have degenerate mass mupigs. Here it is interesting to observe that, in the presence
of spectator vector multiplets, the mass of these states depends on both the vector
and hypermultiplet degrees of freedom which points at the non-BPS nature of the
corresponding long vector multiplets. We also observe that in the absence of spec-
tator vector multiplets and for N = 2 the general formula (5.30) agrees with the

results obtained for the minimal Lagrangian of the previous subsection.

In terms of CY compactifications, these general Lagrangians have the following
interpretation. On the Coulomb branch, associated with the CY compactification
on X, we have ny vector and one hypermultiplets which are generically massless. At
the conifold locus one obtains N additional massless hypermultiplets. When going

to the Higgs branch arising from the CY compactification on X, N — 1 charged
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hypermultiplets are ‘eaten up’ by the massive vector multiplets to form long vector
multiplets. We are then left with ny — (IV — 1) vector and two hypermultiplets
which are generically massless. This establishes that our In-picture LEEA indeed
provides a continuous description of a conifold transition where the Hodge numbers
change by A (X) = b (X) — (N —1) and h?*(X) = h'2(X)+ 1. In particular this
class includes the conifold transition of the quintic studied in [9, 2] where the Hodge
numbers of X and X are given by hb'(X) = 102, A'?(X) = 0 and h"'(X) = 87,
h2(X) =1.

6 Kasner cosmologies and Out-picture flops

After constructing the In-picture LEEA describing a general flop and conifold tran-
sition we now come to the second part of this thesis and investigate the effects of
the transition states on the Kasner cosmologies introduced in subsection 2.4. In this
course we first turn to the Out- and In-picture description of a flop transition in
this and the subsequent section, respectively, before studying cosmological solutions

undergoing a conifold transition in section 8.

We begin with cosmological solutions in the Out-picture. In this case the transi-
tion states have been integrated out and the transition manifests itself in a disconti-
nuity in the triple intersection numbers. We proceed by first deriving some general
properties of such transitions which can be established without specifying the vector
and hypermultiplet manifolds in subsection 6.1 before focusing upon the F;-model

in subsection 6.2.

6.1 General properties of cosmological solutions

We start our investigation by considering an arbitrary CY threefold and cosmological
solutions which pass through a topological phase transition involving a finite number

of transitions states but no change in the Hodge numbers.?® This means that we do

26This excludes the conifold transitions discussed in section 5.
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admit both flop transitions with an arbitrary number of charged hypermultiplets,
and type-III contractions which lead to SU(2) gauge symmetry enhancement [67,
16, 5, 23]. In the latter case one has two charged vector multiplets together with a
number of charged hypermultiplets depending on the details of the contraction. We
will show that the logarithmic scale factors v(t), a(t) and 5(t) of the metric (2.39)

are smooth across any topological phase transition satisfying these assumptions.?”

The only source of discontinuities in the Qut-picture is the jump in the triple
intersection numbers, which can be understood as a threshold effect. When inte-
grating out the transition states one finds that the Out-picture prepotentials in the

two Kéhler cones differ by the amount [5, 16, 23]

AV = = (§ny — dny) (h*). (6.1)

1
6
Here h* = g;h! is proportional to the volume of the collapsing cycle?® C* = ¢;C",
while dny and dny count the vector and hypermultiplets which become massless in
the transition. The transition locus corresponds to h* = 0. By virtue of eq. (2.4) we
find that AV does not contribute to the metric ay; at the transition point. Hence
ary and also g, will be continuous. But the first derivative of ar; with respect to
h* is not continuous due to the jump in the triple intersection numbers indicated
by eq. (6.1). This implies that the derivative of g,, and therefore the Christoffel

connection 7% , is discontinuous at the transition locus.

Next we impose that the function 7" defined in (2.44) is constant. As we will see,
this corresponds to a specific choice of the lapse function in our ansatz and leads

to a consistent solution. If 7" is constant the Einstein equations decouple from the

*TThis was also shown in [13] for the flop of a single curve.
28The CT are a basis of Hy(X,7Z), therefore ¢; € Z.
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matter equations and can be solved analytically

alt) = ct+co,

/W):—EL@ﬁ—ﬂt+@, (6.2)

C1

1

where the ¢; are constants of integration. This solution does not depend on the

choice of the vector and hypermultiplet scalar metric. It satisfies
3¢+ F—-v=0. (6.3)

We read this as a condition which fixes the lapse function such that 7" is constant
with respect to the corresponding time variable. Now we have to check whether
this is consistent with the scalar equations of motion. Substituting in our result,
these reduce to the standard geodesic equations with respect to the vector and

hypermultiplet scalar metrics
F =0, +IN,¢" ¢ =0. (6.4)

By taking the time derivative of T" and using the geodesic equations above we find

a

that T is conserved, -

T = 0, so that we indeed have a consistent solution of the

equations of motion.

In order to prove that the functions «(t), 5(t) and v(t) given by (6.2) are smooth,
we only need to show that the piecewise constant function 7" is continuous at the
transition point. Looking at the definition (2.44), we find that T contains the vector
and hypermultiplet scalar metrics as well as ¢z and ¢*. The metrics have already
been shown to be continuous. To establish the continuity of the scalar fields, we
observe that their dynamics is governed by the geodesic equations (6.4). These

differential equations are different at both sides of the transition line because of the
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discontinuity in the Christoffel symbols 77, .. But since eq. (6.4) is of second order,
we can choose the constants of integration in such a way that the scalar fields ¢°, ¢*
as well as their first derivatives q'ﬁw, ¢~ are continuous at the transition locus. Then
T is continuous at the transition line. This completes the proof of the statement

given above.

Note that we only get a smooth solution if we choose a particular lapse function.
This choice is distinguished by the fact that the gravitational and scalar equations
of motion decouple. Moreover, the time variable corresponding to our lapse function
is the affine parameter of the geodesic equations on the moduli spaces. When study-
ing cosmological solutions, however, we will use the standard cosmological time T,
which amounts to setting the lapse function to unity. In this parametrization the
second derivatives of a(7) and B(7) are continuous, but have a kink when crossing
the transition locus. This frame dependence of solutions resembles the differences

between the string frame and the Einstein frame familiar from string theory.

6.2 Cosmological solutions of the F;-model

We now turn to the cosmological solutions of the [F;-model. In order to have the
standard parametrization used in cosmology we now switch to the cosmological time

7 so that the space-time metric (2.39) becomes
ds? = —d7? 4 2 d7? 4 ¥ dy?. (6.5)

Here and henceforth it is understood that all fields and the functions « and 8 now
depend on 7 and we use the “dot” to indicate derivatives with respect to 7. The
corresponding equations of motion can be obtained from (2.41), (2.42) and (2.43) by
setting v = ¥ = 0 and replacing t — 7. The vector multiplet scalar metric is given by
eq. (C.7) where the choice of metric depends on in which region the solution evolves.

Further we restrict the hypermultiplet sector to the universal hypermultiplet with
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metric (3.19). The scalar potential is set to zero, since the transition states have

been integrated out.

Parametrizing the solutions in cosmological time, we note that the Einstein and
matter equations do not decouple anymore. By taking certain linear combinations,

Einstein equations may now be written as

3 (a%aﬁ) = T(r),
3 (B 324208 — a?) - _T(r), (6.6)
3(a@+2¢%) = —T(r).

In this parametrization 7" is no longer conserved along the integral curves of

(2.42) and (2.43) and therefore depends on 7.

Possibilities for inflation

In order to discuss whether this model allows inflation, we first introduce the scale

factors

a:=e%, a=dae*, d:(d+d2)ea,

o N (6.7)
bi=ef, bh=ge b=(,8+,82>e5.

An expansion of space-time in the - and y-dimensions is characterized by a > 0

and b > 0, while accelerated expansion corresponds to @ > 0 and b > 0, respectively.

Rewriting Einstein’s equations (6.6) in terms of d and b and taking appropriate

linear combinations leads to

1 ..
a:—<§T+d2> e b= (-T +3¢") €. (6.8)

These equations show that the Out-picture does not allow for accelerated expansion
in the Z-dimensions, since @ is negative semi-definite. An accelerating phase in the

y-dimension is possible and requires 362 > T.
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Numerical Examples

We will now study numerical solutions of the eqs. (2.41), (2.42) and (2.43) parametrized
by the cosmological time 7. In this course we restrict the universal hypermultiplet
sector of our model to the volume scalar V' and set o, 6, 7 to zero which can be done
consistently. In this case eq. (2.43) becomes

V—%V2+(3a+ﬁ')f/:0. (6.9)

We first focus on the dynamics of the vector multiplet scalar fields U, W. Their
typical dynamics is shown in figure 1. Here the arrows point towards increasing
values of 7. But the equations of motion (2.41), (2.42) and (2.43) are invariant under
time reversal 7 — —7 so that each trajectory has a time-reversed counterpart.

The vector multiplet scalar trajectories may be classified according to the bound-
aries where they start and end. Figure 1 shows one example for every type of these
trajectories. We find that for every possible pair of boundaries there is one class of
trajectories which start at one of the boundaries and end at the other.? All bound-
aries can be reached in a finite time which depends on the particular trajectory
chosen. The solution “L” corresponds to a certain subclass of the types introduced
above. Here the absolute value of the field derivatives decreases monotonically, so
that the corresponding solution stays inside the vector multiplet moduli space for
an exceptionally long time. None of the examples becomes singular while inside the
extended Kiahler cone. We further observe that all trajectories are one-time differ-
entiable at the flop line U = W. Details on the behavior of the solutions at the
other boundaries of the vector multiplet scalar manifold can be found in [FS4].

Let us now turn to the other fields appearing in the equations of motion. Exam-

ples of their characteristic behavior are illustrated in figure 2. The initial conditions

29For the U = 0 boundary b; this is not obvious from figure 1. The numerical analysis indicates
that the trajectories which leave the plot at W = 3 approach the boundary b; at large values of
W. However, the numerical solutions are not conclusive about whether the boundary is reached
at a finite of infinite value of W.
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1.5+

0.5+

Figure 1: Tllustrative examples for possible solutions of the Out-picture equations of motion with

initial conditions given in table 2 in the appendix C. The solutions “a” to “f” connect all possible

boundaries of the extended Kihler cone. Solution “L” is an example for a solution that starts at
the boundary and remains inside the moduli space for an exceptionally long time.

for these trajectories are given by the lines “b”, “d” and “L” in table 2.

The first row of figure 2 shows the behavior of the vector multiplet scalar fields
U(r),W(r). The first two diagrams display the solutions “b” and “d” which both
start at the boundary b3 and end at b; and by, respectively.?® The second row shows
the behavior of the CY volume V. Here we observe that V(7) either increases or
decreases monotonically, depending on whether the solution started with V(0) > 0
or V(0) < 0. Choosing V(0) = 0 leads to a constant volume. We find that V' does
not become singular, V = 0 or V = oo, while the solution is inside the extended
Kéhler cone. The evolution of the scale factors a(7) and S(7) is shown in the
third row of figure 2. All solutions have & < 0. Their behavior is governed almost

entirely by their initial conditions ¢(0), 3(0). For positive (negative) initial values

30For the definition of these boundaries see appendix C.
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Figure 2: Three examples of solutions illustrating the typical behaviors of cosmological solutions
in the Out-picture description of a flop transition. The solutions “b” and “d” show the usual
run-away behavior of the moduli fields while the “L” solution stays inside the extended Kahler
cone for an exceptionally long time.
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the solutions monotonically increase (decrease). The only exception to this rule
arises when the solution approaches the boundary b;. In this case the kinetic term
T becomes large due to the vector multiplet scalar metric ggyn) developing an infinite
eigenvalue. This induces a rapid decrease of both «(7) and 3(7). But the solution
only becomes singular at the boundary b,. Therefore we do not encounter any space-

time singularities, while the vector multiplet scalars are inside the extended Kéhler

cone of the model.?!

7 Kasner cosmologies and In-picture flops

After analyzing the behavior of cosmological solutions in the Out-picture description
of a flop, we now turn to the corresponding In-picture. The new ingredient is the
non-trivial scalar potential induced by the transition states. As we will show in
the following, it is this new feature that can give rise to an accelerating phase in
our cosmological solutions and leads to the dynamical stabilization of the moduli
close to the flop.3? Thus we start the discussion of the In-picture by examining the

properties of this potential.

7.1 The scalar potential of the F;-model

In subsection 4.1, we found that the potential arising in the In-picture description of
the flop transition occurring in the F;-model is of the form (2.23). It is completely
determined by the vector and hypermultiplet metrics obtained from (C.10) and (3.3)
and the superpotential (4.7). The potential is positive semi-definite, V(¢,q) > 0.

Its minima correspond to supersymmetric Minkowski vacua which are parametrized

31This is in agreement with the more general analysis [72, FS8].

32Gince the In-picture LEEA is smooth, it is clear that Kasner solutions are smooth at flop
transitions and also at any other transition involving finitely many transition states including
conifold transitions.
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Figure 3: The potential V(g,q) at fixed values of the hypermultiplet scalars u; = us = 0.2,v! =
v? = 0. The potential has its minimum in the vicinity of the flop line U = W. At the boundary

‘by” where the metric gg;) has a zero eigenvalue the potential diverges, while at the boundary ‘b;’
It

where gz, ) becomes infinite it is finite.
by the subset Moy of the scalar manifold given in eq. (4.11). These minima are

the only critical points of the potential.

Figure 3 shows the potential V (¢, ¢) for some non-trivial but fixed values of the
hypermultiplet scalar fields. The potential is positive definite and finite as long as
we are inside the vector multiplet scalar manifold. While figure 3 clearly shows that
the value of the potential is small in the vicinity of the flop line U = W, an explicit
calculation reveals that its actual minimum for fixed non-zero values of the transition
states is not located at the flop line but slightly next to it.3® The potential diverges
at the boundary b, where the vector multiplet metric g;(clyn) has a zero eigenvalue. At

the boundary b;, where det(g;gyn)) is infinite, the potential is finite. This feature can

33Note that this point is not a critical point of the potential, since the derivatives with respect
to the hypermultiplet scalars does not vanish.
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be traced back to the second term of the scalar potential (2.23) which contains the
inverse metric g™ ?¥. Finally we observe that in the limit W — oo the potential

diverges quadratically, V oc W2,

After considering the properties of the potential at the boundaries of the vec-
tor multiplet scalar manifold, let us comment on the boundaries appearing in the
hypermultiplet sector. These are given by the loci where the hypermultiplet metric
derived from (3.3) has an infinite eigenvalue. This occurs for either ¢, or ¢_ defined
in (3.4) becoming zero. The potential diverges at all boundaries of the hypermulti-

plet moduli space.
Figure 4 illustrates the dependence of the potential on the transition states.
Taking v? = p, uy = ¢q both real and v! = u; = 0 and substituting this restriction

into ¢, and ¢_, we obtain

b =1-p°, ¢_=1-¢+p°¢. (7.1)

This indicates that p is bounded and takes values —1 < p < 1, while ¢ is unbounded.

In summary we find that the potential diverges at all boundaries of the moduli
space where either the vector or the hypermultiplet scalar metric develops a zero
eigenvalue. At the boundaries where det(gsa’) becomes infinite, the potential is
finite. These features can also be deduced from eq. (2.23). However, as explained

before, it is not clear to which extent the In-picture LEEA at the boundaries really

captures the microscopic M-theory physics.

7.2 Fixed points of the equations of motion

After discussing the properties of the F;-model scalar potential, we now turn to the
In-picture equations of motion. Before investigating their properties numerically,

let us first obtain some analytic results by studying the fixed point properties of
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Figure 4: The scalar potential restricted to the submanifold U = W = 0.6, v! = u; = 0 and
v? = p,us = q taken to be real. The potential diverges at the loci where ¢, or ¢_ become zero.

these equations. We begin by rewriting the system of second order equations (2.41),
(2.42) and (2.43) as a set of coupled autonomous first order equations. This is done

in the standard way by introducing the momentum variables:
X = qr, pxzz(;'ﬁx, vi=d, §:=8. (7.2)
Substituting in these variables, the equation of motion can be written as
X =B, p5 =B, 6" =85, p" =2, ¥=5y, 0 =P, (7.3)

where the constraint arising in the Einstein equations takes the form

§ = % (%(T +g’V) — ’yz> : (7.4)
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In these expressions the functions (; are given by:

gy =", B=r",
X _ 5 pX — X YZ_2XY8_V
By = —@By+d)p vzP P g0 5y

oV
T T AT y 2z 2 7y -~
By = —@Bv+8)p" =7 0"p —gg 9’

2 2

By = —75—372+§g2\/, ﬁ5:—375—52+§g2\/. (7.5)

The set of fixed points of these equations consists of the points where the func-
tions (3; vanish simultaneously. For the matter fields the only solution to the equa-

tions 83X = 0,83 = 0 is given by p¥ = 0, p* = 0. Substituting this constraint into

;( , 85, we find that these functions vanish if g** g(% = (. Since the metric ¢**
is non-degenerate, this condition requires aa% = 0. This is just the condition for

a critical point of the potential, which has already been investigated in the previ-
ous subsection. Using the result (4.11) we see that the fixed points of the matter
equations are

ME* = { Mcow, p*¥ =0, p"=0}. (7.6)

Hence the fixed point manifold of the equations of motion is parametrized by the

flat directions of the potential.

Concerning the Einstein equations, we first observe that under the condition (7.6)

T and V vanish identically. In this case 3, 85 and the constraint (7.4) simplify to

/37|Mrcr'1at:_76_372, ﬁ6|Mrgat:_376_52, 5:_’)/. (77)

Applying the fixed point condition 8, = 0, 5 = 0 implies that v = 0, 6 = 0 while

the values of a and 3 are not determined by the fixed point condition. Thus we find
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that the equations (7.3) have an entire manifold of fixed points ME’, given by

Mcou, PX=0,p°=0,7=0,0=0
MEP: Coul p p 7 (78)

«, f undetermined.

Let us now discuss the properties of these fixed points. To this end we calculate
the critical exponents arising from linearizing the equations (7.3) in the vicinity of

the fixed points. These exponents are given by the eigenvalues of the stability matrix

Bz'j = aj 5i|MgP ’ {Z:J € Oé,ﬁ,é, Ps d)z’pz’qX7pX} : (79)

In order to calculate the entries of this matrix, we observe that

Byl _ o oae OV
90| .~ 07 067067 |

FP
MG

(7.10)

is the negative of the mass matrix M* ) (4.14). With this information at hand, it

is now straightforward to compute the entries of B;; with respect to the basis (7.9),

0 1, 0 O 0 0
0 0 0 O 0 0
0 0 0 14 0 0
B, = (7.11)
0 0 0 O 0 0
0000 0 I
0000 My 0

The eigenvalues of this matrix are either zero or purely imaginary. Here it is useful to
distinguish between the directions corresponding to the fields o, 3, 7, 6, ¢, p*, v, uy, 01, 0y

and the charged transition states v2, us, ©%, 5. The corresponding eigenvalues for
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these fields are given by
3
gneutral 0 ’ gtrans ; \/;61/3 g ([7 ”7) ’ (712)

respectively. This result implies that the fixed plane is neutrally stable, i.e., the
solutions are neither attracted nor repelled by the fixed points. In other words these
fixed points are non-hyperbolic [73, 74]. Since in this case it is not guaranteed that
the stability matrix encodes the behavior of the full non-linear system, we rely on
numerical solutions. As we will see in the next subsection, the transition states
indeed oscillate around their fixed point value v?> = uy = 0. The frequency of these
oscillations depends on the actual values of the vector multiplet scalar fields. This

is the same qualitative behavior as indicated in eq. (7.12).

7.3 Numerical solutions

We now turn to the numerical solutions of the equations of motion (2.41), (2.42)
and (2.43). In order to be able to work with a trivial vector field background, we

restrict the theory to the case where the hypermultiplet scalar fields are real, i.e.,
Q, = Re(v"), ¢, =Re(v?), Qu.=Re(w1), ¢,=Re(uy). (7.13)

As discussed in subsection 2.4, this restriction allows us to work with a trivial vector
field background. Further it is straightforward to check that it provides a consistent

truncation of the hypermultiplet equations of motion (2.43).

To illustrate some characteristic features, we have picked a few examples of
solutions whose initial conditions are given in table 3 in the appendix E. The
solution labeled ‘b"” has the same initial conditions as the corresponding solution
‘b’ in the Out-picture, the only difference being one dynamical transition state for

which we choose a non-vanishing initial value. This feature allows us to compare
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Figure 5: Numerical solutions of the In-picture equations of motion for the initial conditions ‘b’’
(left) and ‘1’ (right) given in table 3. The trajectories U(7), W () stabilize in the vicinity of the
flop line. The right diagram also illustrates how the solution is repelled by the boundary bs.

the qualitative behavior of the Out- and the In-picture solutions. Another example
labeled ‘i’ illustrates the behavior of a solution which initially starts far away from

the flop line.

Let us first focus on the dynamics of the vector multiplet scalars U, W. The
trajectories of the example solutions ‘b” and ‘i’ projected to the vector multiplet
scalar manifold are shown in figure 5. The solutions first approach the flop line before
starting to oscillate around U = W. However, the flop line is not an attractor: the
solutions oscillate in the region close to the flop, but do not settle down at a fixed
point. This generic behavior of solutions differs from the corresponding behavior
in the Out-picture, where the solutions crossed the flop line and did not stabilize.
The In-picture solution ‘b” initially evolves analogously to its Out-picture cousin ‘b’
but after crossing the flop line is turned back by the potential. A similar effect is

shown in the second diagram, where one can also observe that the trajectory gets
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repelled when approaching the boundary b,. Hence the In-picture potential provides
a mechanism that prevents the solutions from running into the boundaries where
det(gag;l)) = 0. This is different from the Out-picture, where such boundaries are

reached in finite time.

Let us now focus on the solution ‘b’ more closely. The corresponding moduli
are shown in figure 6. We observe that the vector multiplet moduli U(7) and W (1)
oscillate around the flop line U = W instead of approaching the boundary b;. The
CY volume V(1) is obtained by substituting the numerical solution into eq. (3.20).
We find that when picking the initial value V(0) = 0.1, as for the Out-picture
solution ‘b’, the volume increases monotonically. This is completely analogous to
the corresponding Out-picture solution. The difference between the two pictures is,
however, that the Out-picture volume undergoes an accelerated increase while the

volume in the In-picture shows decelerated increase.

The initial values for the transition states were chosen such that g,(7) is frozen
to be zero. The non-trivial initial value for g, results in ¢,(7) oscillating around
gy = 0. The frequency of oscillations depends on the difference |U(7) — W (7)] in the
sense that a large difference induces rapid oscillations while a small difference, i.e.,
being close to the flop, corresponds to a low frequency. After some initial period
the logarithmic scale factors «(7) and SB(7) become almost constant. This differs
from the Out-picture where a(7) — —o0, 3(7) — —oo as the solution approaches

the boundary b;.

So, comparing these examples of In- and Out-picture solutions we find that the
inclusion of the charged transition states drastically modifies the behavior of the
solution. In particular, the In-picture solution does not run into a boundary where

the solution becomes singular.

The complete solution of our second example ‘i’ is shown in figure 7. Here we
have taken the vector multiplet scalar W to start “far away” from the flop line and
the initial conditions for ), and @, were chosen such that the CY volume stays

constant, V(1) = 1.
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Figure 6: The complete numerical solution of eqs. (2.41), (2.42) and (2.43) starting with the
initial values ‘b”’ given in table 3. These are the same as for the Out-picture solution ‘b’ except
for the non-trivial transition state g, = 0.1. Starting from the upper left, the plots depict the
dynamics of the vector multiplet scalars U(7), W(r), the CY volume V(7), the transition states
qu(7),qy(7) and the logarithmic scale factors a(r), (), respectively. After some initial period
the CY volume stabilizes, the logarithmic scale factors increase monotonically, and g, (7) oscillates
around the fixed plane value ¢, = 0.
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Figure 7: The complete numerical solution of eqs. (2.41), (2.42) and (2.43) starting with the initial
values ‘I’ given in table 3. As in figure 6, the diagrams show the dynamics of the vector multiplet
scalars U(7), W(7), the CY volume V(7), the transition states ¢,(7),q,(7) and the logarithmic
scale factors a(7), 5(7), respectively. The vector multiplet scalars are repelled when approaching
the boundary bs. The transition states g,(7), ¢,(7) oscillate with exactly the same frequency.
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Figure 8: The left and right diagram show U(7), W(r) and the CY volume V(r) arising from
the initial conditions ‘g’ given in table 3. The solution starts at the flop line but then evolves away
and oscillates around U = W. Furthermore, V(7) is no longer monotonic but oscillates before
stabilizing.

The scalars U(r), W () start in a region of high potential so that the solution
first rolls down to the region of low potential before it begins to oscillate around
the flop line. The first turning point in W (7) and the second turning point in U(7)
correspond to points where the solution is repelled by the boundary b,. In the region
where |U(1) — W(r)| is large the moduli ¢,(7) and ¢,(7) exhibit rapid oscillations
around the zero line. The frequency of the oscillations is identical for both ¢, (7)
and g, (7). The logarithmic scale factors «(7) and B(7) increase monotonically with
time. In fact, a closer look on their dynamics in subsection 7.4 reveals several short
periods of accelerated expansion, although these do not significantly influence the

behavior of a(7) and B(7).

For the solution ‘g’ shown in figure 8 we have chosen our initial values (see table

3) for U and W to be on the flop line. However, the solution does not stay at the
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flop but starts oscillating around it. This result illustrates again that the flop line is
neither a stable nor an unstable manifold. Another notable feature of this solution
is that the CY volume V(7) is no longer monotonic, but oscillates before settling
to a finite value. This behavior is caused by giving non-trivial initial values to the
transition states.

A common property of all the solutions presented in this subsection is that if we
evolve them backwards in time, they become singular. Here the magnitude of &(7)
and ((7) becomes increasingly large, while the moduli ¢%, ¢* are still inside their
respective manifolds. As this happens, our numerical solutions are no longer reliable

and we do not obtain any conclusive results about the origin of this singularity.

7.4 The search for inflation

In this subsection we investigate whether inflation is possible in the In-picture model.
Equation (6.7) shows that the Out-picture does not admit accelerated expansion in
the Z-directions, while in the y-direction the occurrence of acceleration depended on
the actual value of &. However, contrary to the Out-picture, the In-picture contains

a scalar potential, which, in principle, can give rise to an inflationary phase.
General analysis of our model
The starting point for our analysis are the Einstein equations (2.41) written in terms
of the cosmological time 7. Setting ¥ = 0, = 0, these take the form:
3 (a%aﬁ') — T+gV,
2+ B+2aB+36+ 5> = —T+g>V, (7.14)

3(@+2¢%) = -T+¢’V.

Eliminating the terms containing &3 and rewriting the second and third equation

in terms of @ and b given in (6.7), we find the following analytic expressions for
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and b:
1 . 1
Q= (5 (8V-T) - aZ) e®, b= (— (T—i— 5g2 W) + 3@2) e’ (7.15)

These equations show that while V opposes accelerated expansion in the extra-
dimension, it also enables accelerated expansion in the Z-directions. Acceleration
in the three-space occurs if the potential dominates over the kinetic term 7" and
the @-contribution. In principle, eq. (7.15) allows for de Sitter like solutions, which
correspond to V > 0, & positive and approximately constant, and 7" small compared
to V. However, since the ground state of our model is Minkowski, we cannot realize
these de Sitter like solutions. The best approximation we can obtain are solutions
which behave de Sitter like for a limited period of time. This can be realized when

the scalar fields roll slowly at a non-vanishing value of the potential.

Slow-Roll conditions

Having found that our model admits inflationary phases in principle, we investigate
whether there is a region in our parameter space where our potential satisfies the
slow-roll conditions.

We consider the consistency conditions given in terms of the slow-roll parameter
€ [49], generalized to non-linear sigma models (see for example [75]). Since the
existence of a slow-roll regime is a property of the scalar potential V(¢,q), we
will drop the (3 + 1)-split of our space-like directions and set a(7) = B(7). We
also introduce the standard Hubble parameter H = . In terms of the covariant
derivative with respect to the scalar field metrics, D,¢" = ¢* + I'_¢"¢%, the
equations of motion (2.41), (2.42), and (2.43) imply

H*=_(T+g*V), D,¢"+4H¢" = —g’ ng% . (7.16)

| =

Here (¢*) = (¢°,¢*) and '’y is the Christoffel connection with respect to the
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combined scalar metric gaz = ¢zy ® gxy. Slow-roll inflation implies the following
conditions:

T < ¢*V, D,¢" < 4H¢™ . (7.17)
In the slow-roll regime we can use the eq. (7.16) to express € := g2LW entirely in

terms of the potential,
3 5, 0V OV

16V Y 94" agh

€ (7.18)

Consistency of the slow-roll conditions requires € < 1. By substituting a(7) = 5(7)
into eq. (2.40) and eliminating &(7), we find that an accelerated expansion needs
3T < g?V. Hence the period of inflation ends when € = %

We then use this generalized slow-roll parameter € (7.18) to investigate the pos-
sibility of slow-roll inflation for the In-picture scalar potential V (¢, ¢). An extended
numerical check shows that the condition for slow-roll inflation, i.e., the right hand
side of eq. (7.18) being less than one third, is never satisfied. Thus we conclude

that our scalar potential does not allow for a phase of slow-roll inflation.

Numerical examples

Even though our model does not admit slow-roll inflation, it nevertheless has so-
lutions with short periods of accelerated expansion. This is not in conflict with
the results above, as the conditions leading to (7.18) may be violated so that the

approximation which we used to show that € is bigger than one third breaks down.

Let us return to the numerical solutions ‘b’” and ‘i’ studied in subsection 7.3. The
functions @(r) and b(7) for these solutions are shown in the left and right diagram of
figure 9, respectively. In both cases i(r) and b() show an oscillatory behavior. But
the most prominent feature is that both solutions have short periods of acceleration.
Looking at the solution ‘b” we see that b(7) is positive for an extended period. This
corresponds to a decelerated contraction of the y-direction which later turns into

expansion (see figure 6). In the three-dimensional Z-space we observe several short
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Figure 9: The factors d(7) and b(r) along the solutions ‘b’” and ‘i’ given in table 3. Both solutions
yield multiple short periods of accelerated expansion in three-space. The late time maxima are
slightly positive.

periods of accelerated expansion at late times. For the solution ‘i’ these periods are
more pronounced. Here b(T) is initially negative and oscillates strongly whereas at
later times we see small fluctuations. A common feature of the scale factors of both
solutions is that after an initial period the average value of acceleration is small and
negative, showing preference for a decelerating universe.

This behavior can also be understood from eq. (7.15). From there it is obvious
that accelerated expansion in the three-space requires V(¢(7), ¢(7)) to dominate over
T(é(7),q(7)) and &(7)? for some 7. For our potential these requirements are most
easily met if the transition states are non-zero and the vector multiplet moduli take
values far away from the flop line. But there the transition states oscillate rapidly,
and each time they pass through zero the potential vanishes, killing inflation.

These effects are also displayed by our numerical solutions. Looking at figure
6 shows that solution ‘b” initially has a large value of &(7), which for early times

suppresses acceleration in a(7) and induces acceleration in b(7). For later times
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&(1) decreases and the value of a(7) is controlled by 7" and V. During this phase
we observe decelerated expansion when 7' dominates, while accelerated expansion
corresponds to V dominating. The fluctuations in d(7) reflect the fluctuations of
the transition states. The potential vanishes if these are zero, so that at the cor-
responding points we automatically obtain decelerated expansion. On the other
hand, if the numerical values of the transition states are large, the value of V also
becomes large. These points are the most likely ones for V dominating over 7" and
give rise to the observed short phases of accelerated expansion. For the solution ‘i’
the effect of accelerated expansion is enhanced by choosing a small initial value of
& and |U — W| being large, leading to large values of the potential and hence of
d. The fluctuations in @(7) are induced by the oscillations of the transition states,

which cause oscillations in the value of the potential.

Note that the mechanism which leads to accelerated expansion in the above
examples is rather generic. Acceleration is maximal at a collective turning point,
where 7" momentarily vanishes and the moduli fields turn from running “uphill” the
potential to running “downhill” the potential.3* The farer the system is away from
this point, the smaller is the resulting acceleration. As we have seen, the phases of
acceleration in our model are not strong enough to induce an inflationary growth of
the scale factors a, b. This is consistent with our earlier result that slow-roll inflation

cannot be realized.

34Tt was pointed out in [76], that essentially the same mechanism is responsible for transient
accelerating phases in cosmologies of hyperbolic and flux (S-brane) compactifications of string and
M-theory.
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8 Kasner cosmologies and conifold transitions

After studying cosmological solutions of the F;-model we now return to the In-
picture description of the conifold transition. The aim of this section is to show
that these transitions can occur dynamically. To this end we study Kasner type
cosmological solutions of the minimal Lagrangian constructed in subsection 5.1. For
explicitness and in order to be able to obtain numerical solutions we fix its vector
multiplet sector by setting ¢ = 0 and use the M-theory value (4.16) for the gauge
coupling g.

8.1 The scalar potential of the minimal Lagrangian

Before investigating the dynamics of the theory, let us discuss its scalar potential.
In subsection 5.1 we found that it is of the form (2.23) with W given in (5.3).
The potential is positive semi-definite, V(¢,q) > 0, and has two branches of su-
persymmetric Minkowski vacua given by Mcow and Muyiggs in eq. (5.4) and (5.5),

respectively.

To illustrate the structure of V(¢,q) we restrict the hypermultiplet scalars to

the one parameter subspace
q = Re(u1) = Re(up), v' = v* = Im(u;) = Im(ug) = 0. (8.1)

On this subspace the Coulomb and the Higgs branch are given by ¢ # 0,¢ = 0 and
¢ =0,q # 0, respectively. Further V(¢, ¢) simplifies to

V(g,q) =

2(1—2¢%) (1 — 3¢2)2/3 ¢ ¢ (8.2)

This indicates that for g # 0, ¢ # 0 the scalar potential diverges at the boundaries
of the scalar manifolds given by ¢<i* = :I:\/g and ¢§it = i\/g. Even though these
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Figure 10: The scalar potential (8.2) of the minimal Lagrangian. The potential is positive semi-
definite, but displayed ‘upside down’ in order to show the structure of the Coulomb- and the Higgs
branch which manifests itself as a cross.

boundaries are located at finite coordinate distance, we point out that they have

infinite geodesic distance from the origin.

The potential (8.2) is shown in figure 10. To make its vacuum structure manifest
it is displayed ‘upside down’. The Coulomb and the Higgs branch meet at the
conifold locus ¢ = 0, = 0. Around this locus we have a central region where
the potential almost vanishes. This central region and the vacuum branches are
bounded by steep hyperbolic potential walls. We also observe that in the central
region there is no energy barrier which obstructs that a classical solution evolves

from the Coulomb to the Higgs branch and vice versa.
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8.2 Conifold transitions of cosmological solutions

We now turn to cosmological solutions of the minimal model.*® The corresponding
equations of motion are obtained by substituting the vector and hypermultiplet
scalar metrics (A.7) and (3.17) together with the scalar potential obtained from (5.3)
into the egs. (2.41), (2.42) and (2.43). To parametrize the solutions in cosmological
time 7 we also set v = v = 0. The resulting equations are further simplified by
restricting them to the subspace (8.1) which allows us to work with a trivial vector

field background and provides a consistent truncation of the equations of motion.

When solving these equations numerically, we are in particular interested in
solutions which start on one vacuum branch and at some later time evolve along the
other one. According to the discussion in subsection 5.1 such a solution has then

undergone a conifold transition.

One example of such a solution is given in the figures 11 and 12. The initial
conditions of the trajectory are given in table 4 in the appendix E. Figure 11
displays the evolution of the scalar fields ¢(7) and ¢(7) and the logarithmic scale
factors a(7) and 5(7) in the left and right diagram, respectively. The evolution of
a(7) and B(7) is completely analogous to the behavior found for the solution ‘b”
displayed in figure 6. The interesting new feature of this solution is the dynamics of
the scalar fields. For 7 < 250, say, the absolute value of ¢(7) is large while the one
for ¢(7) is very small, indicating that the solution evolves along the Higgs branch.
For 250 < 7 < 350 we encounter a crossover, where |¢(7)| and |¢(7)| are comparable
and the solution evolves in the central region of the scalar potential. For 7 2 350 the
role of ¢(7) and ¢(7) have reversed. Now ¢(7) has a very small modulus while |¢(7)|
has become large. This indicates that the solution now evolves along the Coulomb

branch, revealing that it has undergone a transition from one vacuum branch to the

35Note that this Lagrangian does not contain neutral hypermultiplets which, for CY compactifi-
cations, could play the role of the universal hypermultiplet. This can be interpreted as a truncation
where all neutral hypermultiplets have been set to zero which, by virtue of eq. (3.20) corresponds
to frozen CY volume, V = 1.
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Figure 11: The scalars and logarithmic scale factors along a Kasner cosmological solution un-
dergoing a conifold transition. The corresponding initial conditions are given in table 4 in the
appendix E.

other.

Figure 12 shows the same solution projected onto the ¢-g-plane. Here the
black hyperbolic lines correspond to equipotential lines of the scalar potential. The
Coulomb and the Higgs branch equal the vertical ¢ = 0 and the horizontal ¢ = 0
axes, respectively. A conifold transition corresponds to the solution ‘bending around
the corner’ when crossing from one vacuum branch to the other. For this bending
to occur, the solution has to start with non-trivial initial values in both ¢ or qb
and q or ¢ as both ¢ = ¢ = 0 and ¢ = ¢ = 0 are consistent truncations of the
equations of motion. This indicates that a solution starting with initial condition
Oinit = q'binit = 0 always stays on the Higgs branch. Likewise giniy = ¢init = 0 leads
to a solution trapped to the Coulomb branch. Note that this implies that conifold
transitions cannot occur dynamically in the Out-picture, since @it = Gt = 0 is
always satisfied in this case.

The second remarkable feature illustrated by figure 12 is that solutions evolving
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Figure 12: A cosmological solution undergoing a dynamical conifold transition projected to the
g-¢-plane. The black lines are equipotential lines of the scalar potential. The four corners of the
cross correspond to the boundaries of the scalar manifolds which are at infinite geodesic distance

from the origin.

away from the central region experience an effective repulsive force which drives
them back to the center. This in demonstrated by the turning points appearing if
the solution “runs up” the Higgs or the Coulomb branch.?® Hence we find that, as
in the case of flop transitions, the transition region is dynamically preferred even

though the solution does not stabilize at the transition locus.

We further remark that there is some evidence that the equations of motion for
the conifold are chaotic. Here we observe that evolving two solutions with almost
identical initial conditions may result in the two solutions evolving at two different
vacuum branches at some later point in time. This is similar to observations made

for the potential V = x?y? which is also believed to exhibit chaotic behavior.

36For the potential V = z2y? this type of behavior was analyzed in [77] where it was found that
there is an effective potential Veg o In(z) driving the solutions back to the central region.
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9 Summary and Conclusions

In this thesis we constructed five-dimensional gauged supergravity actions which
have all the essential features to describe flop and conifold transitions in M-theory
compactified on Calabi-Yau threefolds. The new feature of these actions is that
they explicitly include the extra light modes occurring in the transition region. The
masses of these modes are encoded in the scalar potential. These actions smoothly
connect the Calabi-Yau compactifications on the manifolds related by the transition,
and there is no discontinuity or singularity arising at the transition locus. This is
especially remarkable for conifold transitions, as these link Calabi-Yau compactifi-
cations with different Hodge numbers and therefore a different number of massless
vector and hypermultiplets.

While the vector multiplet sector of these actions was determined exactly, we

used a toy model based on the Wolf spaces X (1 + N) = UU(1+N’2)

m to describe

the hypermultiplets. In this context we worked out the metrics, the Killing vectors,
and the moment maps of these spaces making use of the superconformal quotient
construction [40, 41, 42]. This geometrical data suffices to determine any hyper-
multiplet sector based on X (1 + N) occurring in N = 2 supergravity in dimensions
3 < D < 6. Furthermore, this approach considerably simplifies the investigation of
gaugings, as the Killing vectors and moment maps are directly given in terms of the
generators of the isometry group of the underlying Wolf space.

Our low energy effective actions have all the properties required to model flop and
conifold transitions. Only the transition states acquire a mass away from the tran-
sition locus and the potential has a family of degenerate supersymmetric Minkowski
ground states, which is parametrized by the moduli of X. None of the flat directions
is lifted, and the number of vacuum branches exactly agrees with the requirements
of the microscopic theory. Note that this is not implied by the charge assignment
alone. The scalar potential which determines the masses of the scalar fields is a

complicated function determined by the gauging. Here it was not obvious a priori
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that the gauging does not lift some of the flat directions or creates new ones. Thus
it is non-trivial that we can model flop and conifold transitions with our quaternion-

Kahler manifolds.

However, it is clear that a LEEA based on X (1 + N) can only be a toy model,
as the hypermultiplet manifolds which actually occur in string and M-theory com-
pactifications are unlikely to be symmetric spaces. Moreover, it is conceivable that
integrating out the charged hypermultiplets modifies the couplings of the neutral
hypermultiplets, so that the manifolds of the In-picture and the Out-picture are
not related by the simple truncation X (1 + N) — X (1). Yet, the very fact that we
find a consistent description of the topological phase transitions shows that while
such threshold corrections might modify the couplings, they cannot play an essen-
tial role. This is different in the vector multiplet sector, where these corrections are
crucial when determining the In-picture LEEA, because the Out-picture LEEA are

discontinuous.?”

In summary, our models are a reasonable approximation of M-theory physics
because they (i) define consistent gauged supergravity actions, (ii) have, for an
arbitrary number of transition states, the correct properties to model the transitions,
(iii) are unique once the hypermultiplet scalar manifold is fixed and (iv) are simple

enough to allow for explicit calculations.

The last point is illustrated by studying Kasner cosmological solutions arising in
particular examples for flop and conifold transitions. Thereby we investigate both
the Out-picture, where the extra light states arising in the transition are integrated
out, and in the In-picture, where they are dynamical. In the Out-picture, cosmolo-
gies undergoing a flop transition are regular while conifold transitions cannot be
realized dynamically. The moduli encoding the volume and shape of the internal

manifold typically show run-away behavior and there is no accelerated expansion in

37In the related case of SU(2) enhancement it was proven in [23] that the Out-picture LEEA
cannot be extended to an SU(2) invariant action without taking into account the threshold cor-
rections.
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three-space. This changes drastically once all light modes occurring in the transition
region are taken to be dynamical. In this case both flop and conifold transitions
lead to a smooth variation of the physical quantities across the transition locus, even
though the latter interpolate between internal spaces with different Euler numbers.
Further the non-trivial scalar potential has profound consequences for moduli sta-

bilization and inflation.

Concerning the moduli stabilization we have seen that the usual picture of run-
away behavior can be highly misleading. As soon as we allow all light states to
be excited the moduli are dynamically confined to the transition region. Thus the
“almost singular” manifolds close to a topological phase transition are dynamically
preferred.®® This is somewhat surprising, because the potential has still many un-
lifted flat directions, so that there is no energy barrier which prevents the system
from running away. Therefore this effect cannot be predicted by just analyzing the

critical points of the superpotential.

The behavior of our cosmological solutions can be qualitatively understood from
a thermodynamic analogy. Around the transition locus additional degrees of freedom
can be excited. Generically, the available energy is then distributed equally among
all the light modes (“thermalization”). Once this has happened it becomes very
unlikely (though it remains possible in principle) that the system “finds” the flat
directions and “escapes” from the transition region (“entropy beats energy”). This
picture is consistent with all the numerical solutions we have looked at: irrespective
of the initial conditions the system finally settles down in a state where all the fields
either approach constant finite values or oscillate around the transition region with
comparable and small amplitudes. For long simulation time one sees “fluctuations
from equilibrium”, i.e., some mode picks up a bigger share of the energy for a while,
but the system eventually thermalizes again. In the case of flop transitions, this fits

nicely with the non-hyperbolic character of the fixed point manifold, which implies

38For a quantitative analysis of this effect for hyperbolic potentials see [77].
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that linearized solutions describe oscillations.

In a realistic scenario of moduli stabilization one would of course prefer that the
system is damped, so that the moduli are attracted to fixed point values. This
is possible for hyperbolic fixed points, which are the generic case in dynamical
systems. Obviously, the non-generic feature of our system is the existence of a
degenerate family of supersymmetric vacua. It would be interesting to investigate
if the lifting of these flat directions makes the fixed point hyperbolic. This would
open the possibility of attractor behavior, but also carries the risk of reintroducing

run-away behavior.

Let us now discuss what can be learned about inflation. Our In-picture solutions
generically exhibit several periods of transient acceleration. Both the analysis of
the slow-roll conditions and the study of numerical solutions shows that the amount
of acceleration is much too small to account for an inflationary expansion of the
early universe. However, our mechanism might still be relevant for the moderate

acceleration suggested by current observations.

Again, the behavior of the solutions can be understood qualitatively in terms
of properties of the scalar potential. The point is that the potential is only flat
along the unlifted directions parametrized by the moduli. Thus it is either flat,
but vanishing, or non-vanishing, but steep. This also explains why hybrid inflation
[56, 57] is not realized in our models, despite the ingredients are present, namely
several scalar fields and both flat and steep directions in the scalar potential. To
get a considerable amount of inflation, one needs to lift the flat directions gently

without making them to steep.

Our construction also avoids the no-go theorem [78, 79, 80] which excludes
de Sitter vacua in ten- or eleven-dimensional supergravity compactified on time-
independent, smooth and compact internal spaces based on the strong energy con-
dition. In both the Out- and the In-picture we compactified on a time-dependent
manifold. Moreover, in the In-picture we have gone beyond eleven-dimensional su-

pergravity by including states of wrapped M2-branes, in order to have a sensible



9 Summary and Conclusions 93

theory when the internal space becomes singular. But as we have seen, the mere
fact that the no-go theorem is circumvented does not automatically lead to the

existence of de Sitter solutions or inflation.

This feature is shared by two other approaches for obtaining positive semi-definite
potentials from string or M-theory compactifications, namely the inclusion of fluxes
and hyperbolic compactifications. As was pointed out in [76, 81], it is a common
feature of these potentials that cosmological solutions exhibit epochs of accelerated
expansion, which generically are not pronounced enough to describe primordial in-
flation. The inclusion of transition states in singular Calabi-Yau compactifications
provides an interesting alternative to naturally obtain such potentials from string

or M-theory.

In summary we see that the dynamics of the transition states is interesting and
relevant, but can only be part of the solution of the problems of moduli stabilization
and inflation. The first step to extend our work is to consider more general gaugings
of our five-dimensional model. Here the detailed study of Kasner solutions performed
in this thesis will be helpful, because we know which kinds of contributions to the
equations of motion are needed in order to enhance the periods of acceleration and to
stabilize the moduli. Once gaugings which lead to interesting cosmological solutions
are found, one should clarify whether these can be derived from string or M-theory
where they correspond to adding fluxes or branes. This framework also allows to

address supersymmetry breaking.

Another direction is to work out to which extent our results can hold indepen-
dently of the detailed form of the hypermultiplet metric. In particular, one can
use the fact that a Calabi-Yau manifold has a flop transition in order to constrain
the hypermultiplet metric in the In-picture. Yet another direction is to consider
topological transitions other than flop and conifold transitions, where one also gets
non-abelian gauge symmetry enhancement. Finally, one should investigate four-

dimensional cosmologies, for example in the context of type Il compactifications
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on Calabi-Yau threefolds. Here the main new complication is the vector multiplet
sector, which no longer is controlled by a simple cubic polynomial, but by a general
holomorphic prepotential. Ultimately, all these directions need to be put together
to find realistic four-dimensional cosmologies in compactifications which include the

effects of flux, branes and transition states.
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A Vector multiplet sector I: one multiplet

The simplest In-picture LEEA describing a conifold transition contains two charged
hypermultiplets and was constructed in subsection 5.1. The vector multiplet sector
of this action consists of a single vector multiplet. For convenience we collect all the

relevant properties of this sector in this appendix.

Following [30], the prepotential (2.3) of the most general one vector multiplet

scalar manifold can be brought to the standard form
V=WW—;MWW+cwW=1, (A1)

where ¢ denotes an arbitrary real constant. The value ¢ = —\/% corresponds to the

manifold O(1,1) considered in [59] while the (Out-picture) prepotential

1
V:§U3+§UT2:1, (A.2)

which arises from Calabi-Yau compactifications on T? x K3 [82] can be mapped to
the case |c| > %

The metric coupling the vector field kinetic terms is obtained from eq. (2.4) and

reads
aoo @
ary = 00 o1 y (A3)
a0 aii
with entries
1 2
wo = -2 +3 (07— 302
1 3h! 0\2 1,2 0 1
ap = h'——= (2(1)° = (h1)*) (h* —ch') (A.4)

ay = K —2¢h'+3 (BOh —c(h')?)?.

Observe that at the conifold point, h° = 1, h! = 0, this becomes the two-by-two
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unit matrix. Hence the two vector field kinetic terms decouple and have standard

normalization at this point.

To fully specify the action, we also need a parametrization of the vector multiplet
scalar manifold. Here it is convenient to introduce the vector multiplet scalar field
¢ as the homogeneous coordinate

hl

=15 (A.5)

Solving this relation for A' and substituting the resulting expression into the prepo-

tential (A.1), it is straightforward to calculate h’(¢) introduced in eq. (2.3):

-1/3 —1/3

wo = (1-3¢4cd) . B@=o(1-Feecs) . A9

The vector multiplet scalar manifold (2.6) is then given by

3(2—4co+¢?)
(2—-3¢2+2c¢3)?

Jay = (A7)

At the conifold point &'(¢) = 0 <+ ¢ = 0 this metric is regular ggy|s=0 = 3. The
coordinate range of ¢ is bounded by the values ¢* and Sfit, at which the metric
becomes zero or infinite. For |c| < % the metric diverges at both ¢ and ¢t
while for |¢| > % we encounter one zero and one infinity bounding the coordinate
range of ¢. For the special case ¢ = 0 considered in section 8 we have ¢$t = j:\/g
implying the corresponding vector multiplet scalar manifold is given by the interval
}—\/g, \/g [ Note that even though the coordinate length of this interval is finite,

the boundaries ¢S are at infinite geodesic distance from the origin.
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B Vector multiplet sector II: ny multiplets

The construction of the In-picture LEEA describing a general conifold transition
in subsection 5.2 required specifying an explicit vector multiplet sector containing
ny vector multiplets. In this appendix we derive the properties of the vector field
and vector multiplet scalar metrics needed in this construction. The calculation is
analogous to the one vector multiplet case considered in appendix A, but due to the

increased number of vector multiplets somewhat more involved.

We start by specifying the prepotential (2.3) to be

3., =
_(30\3 _ 230 T\2 _
V= (h) = Sh ()P =1, (B.1)
r=1
where x,y,z = 1,...,ny counts the vector multiplets. The prepotential is again

given in the standard form [30], but is not the most general one, as we have chosen

Czy> = 0 in order to keep the calculation manageable.

The metric coupling the kinetic terms of the vector fields is obtained from eq.
(2.4)
agy @
ary = 0 0z y (BQ)
QA0 a'wy

with the entries being

2
1 &
— 0 0\2 E: 2\2
app = —2h +3((h)—§z_1(h)> ;

Goe = h*—3ROHT ((h°)2— % ivj(w) , (B.3)

z=1

gy = hO6,y+3(h0)?h*hY.

In order to have an explicit parametrization of the vector multiplet scalar manifold
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we introduce homogeneous coordinates

h.’,C

70 x=1,...,ny. (B.4)

¢ =

Solving these relations for A®” and substituting the resulting expressions into the

prepotential (B.1) the h! become functions of the vector multiplet scalars ¢?:

o= (1-3 g(w)_w, o) = (1 éw) ey

These relations are used to calculate the components of the vector multiplet scalar

metric (2.6)
3(1+5<¢w)2f%22mf)2) for z = y
g — 2(1_%ZZZI(¢2)2) ’ ’ (B 6)
Ty — .
64 ¢¥ for x .
EESAATSDR 7Y

In order to find the mass matrix on the Higgs branch we further need the inverse

vector multiplet scalar metric ¢g*¥ whose components are given by

2 (1-3(¢7)2+1 1Y, (99)?) (1-3 S0V, (99)?)

Ty __ 3 (H—% ZZZ1(¢Z)2) ’ forz = v (B 7)
g - B 4¢ac ¢y (1_% EZZI(¢Z)2) f sé .
I (RS SUATID I rrTY-

The vacuum conditions on the Higgs branch generically fix a subset ¢* o =

1,...,N —r < ny, to be zero (cf. eq. (5.15) for the case r = 1). By virtue of the

relation (B.5) this corresponds to the h* parametrizing the volume of the contracting
cycles being zero. Restricting ¢g*¥ given above to ¢® = 0, the resulting expression

becomes block diagonal

. al(n_ryx(nv—r) 0O
g v ¢*=0 = g ) (BS)
0 g
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where
ny

a;:§ (1 —g 3 (¢Z)2) , (B.9)

z=m+1

and g is to be understood as ¢*¥|ga—o With 2,y = N —r + 1,...,ny. This data
completely determines the vector multiplet sector of the conifold model discussed
in subsection 5.2 and enables us to explicitly calculate the vector multiplet scalar

masses on the Higgs branch.
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C Vector multiplet sector 11I: the i-model

In subsection 4.1 as well as in the sections 6 and 7 we used an explicit example
of a CY threefold X with a flop transition involving a single isolated holomorphic
curve. In this case one charged hypermultiplet becomes massless at the transition
locus. The corresponding CY space is known as the ‘elliptic fibration over the first
Hirzebruch surface’, or Fi;-model for short, and all its relevant properties can be
found in [82, 83]. In order to make this work self-contained, we summarize these

properties in this appendix.

The extended Kahler cone of the IF;-model consists of two Kéahler cones which

were called regions II and III in [83]. In terms of adapted parametrizations, h! > 0

and A! > 0, the prepotentials (2.3) of these regions are given by [82]*°

Vap =6(h°)° +9(h')* +27(h°)*h* + 27h° (h')? + 9(h°)*h* + 9(h')*h? (C.1)
1
+3h°(h?)? + 3h* (h?)? + 18h°h'h? = 1,

and
Vam = 8(A%)% +9(h%)2h! + 3R°(Rh1)? + 6(h%)2h% + 6h°hA% = 1. (C.2)

The flop transition occurs at k! — 0 and h%2 — 0, respectively.

To analyze the transition it is convenient to introduce variables T, U, W, which

can be used in both regions. They are given by

6 =W, 6 =U-W, 61302 =T - 3U,

) ) 1 ) (C.3)
6RO =U, PR =T-U-W, 6PR=W-U.

These formulae also encode the mutual relation between the adapted variables h!

39Note that the t! appearing in [82, 83] are related to the h! by h! = 6=1/3¢1+1,
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and 7. In terms of T, U, W, the prepotentials (C.1) and (C.2) become

3 1 1
Van =§U3 + 5UT2 — 6W3 =1,
1

5 1 1 (C4)
Vam :ﬂU?’ + §U2W - §UW2 + §T2U =1.

The flop line is located at U = W. Comparing these prepotentials, we find that
they differ by
1
Vay — Vamy = E(U - W)3. (C.5)

This discontinuity in the triple intersection numbers C} g exactly matches the con-

tribution arising from integrating out one charged hypermultiplet [5].

To describe the vector multiplet moduli space corresponding to these regions, we

solve the constraints (C.4) for T

24 + 4W3 — U3\ '/

120 ) ’

24 + 12UW? — 12U2W — 503\ /2
120 ) ’

T(II) (U, W) = (
(C.6)

T(III) (Ua W) = (

and take U and W as independent scalar fields which parametrize the vector mul-
tiplet scalar manifolds. The metrics gg(clyl) and gg(cIyH) of these manifolds are obtained
from the relations (2.4), (2.5) and (2.6). Substituting h'(¢) = T(U,W),U, W and

¢* = U, W into these formulae, we find

oUBW35aUS—12w—36—w6 _ W2(9UP-W3-6)
g(n) _ 2U2(9U3 —4W3—24) 2U (9U3—4W3—24) (C 7)
Ty W2(9U3—W3—6) W(9U3—W3—24) ) :
| T 2U(9UB—4W3—24) 2(9U3—4W3-24)
18—15U3 —18U2W +12UW2—4U*W?2 6W —9U +4U3W
g(m) _ UZ(24+12UW2—12U2W —5U3) 24+ 12UW2—12U2W —5U3
- 3
zy 6W —QU+4AUSW 4U (3-U%)
24+12UW2—12U°W —5U3 24+ 12UW?2—12U2W —5U3

These metrics are non-degenerate at the flop line U = W, and can be connected

continuously.
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Figure 13: Comparison between the vector multiplet scalar manifolds in the Out- (left) and
In-picture (right). The gray line labeled “flop” indicates the locus of the flop transition, U = W.
The ‘b1, ‘b2’, ‘b3’ and ‘bs’ denote the other boundaries of the scalar manifolds. The location of
these boundaries is different in the Out- and the In-picture.

The extended Kahler cone of the F1-model is shown in the left diagram of figure
13. Besides the flop line, this diagram displays additional boundaries labeled ‘b,’,

‘by’, ‘b3’ and ‘b,’, which have the following meaning:

e The boundary b; corresponds to A — 0. The metric on the Kihler cone
has an infinite eigenvalue. In the full Kéhler cone this limit corresponds to
the CY volume becoming zero. However, the vector multiplet manifold of
the five-dimensional supergravity theory corresponds to a hypersurface of the
Kéhler cone, obtained by keeping the total volume constant. In this subspace
the singularity takes a different form: while some two-cycles collapse, others

diverge, such that the total volume remains at a fixed finite value [12].

e The boundaries b, and b3 correspond to h° — 0 and h? — 0, respectively.

Here the metric on the Kihler cone degenerates and has a zero eigenvalue.
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In the microscopic picture a surface is contracted to a point and one obtains
tensionless strings. Furthermore, the line A’ — 0 is the fixed volume section
of the Kihler cone arising from the elliptic fibration over IP?. Since one divisor
has been blown down, this space has one K#éhler modulus less. This boundary

component has been called region I in [83]. Its prepotential is given in eq.

(A.2).

e The b, boundary corresponds to A' — 0. The metric on the Kihler cone is

regular. At this boundary one obtains SU(2)-enhancement.*’

We now construct the vector multiplet scalar manifold for the In-picture La-
grangian. The corresponding prepotential is determined by the orbit sum rule (2.38).

Taking the average of the prepotentials V(i) and V), one finds

Vi) =5 (Vay + Vam)

\Il\pl'_‘

3 1 2 1 3 1 2 1 2 (08)
= U+ -UT* — — SUPW - SUW? =1,
o U° + UL = WP+ JUPW — S UW

is obtained analogously to the Out-picture metrics. Solving the

The metric ggyn)

constraint (C.8) for T', we acquire

1 (24—7U3+2W3—6U2W+6UW2)1/2 )

T (U, W) = =
) (U, W) = 3 i

Using the definitions (2.4) and (2.6), the components of the In-picture vector mul-
tiplet scalar metric
(In) guu  gwu

() = (C.10)
gwu 9ww

40This boundary is one of the models where the corresponding In-picture Lagrangian has been
worked out in [23].
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are
_ 1 _ 4772 2 577 2
v = e (144 6WU? 4 48UW? + AWSU — 72U°W
—14UPW? — 1TU*W? — 168U + 24W3 + WG) ,
1
= —— [24UW —36U? — 12W? — W° —4W*U C.11
awu SUK ( ( )
+6UW?2 + 14U W2 + 17U4W> :
1
gww = g3 (48(U + W) + AUW? — 6U°W? — 14UW + W* — 17U*)
where
K :=24 —TU% + 2W3 — 6U°W + 6UW?. (C.12)

The corresponding vector multiplet scalar manifold is shown in the second di-
agram of figure 13. Besides the flop line at U = W where the metric is regular,
this diagram shows two additional boundaries, labeled ‘b;” and ‘by’. These have the

following meaning:

e The boundary b; corresponds to U — 0. Here the metric (C.10) has an infinite

eigenvalue.

e At the boundary b, the metric gﬁ;) degenerates and has a zero eigenvalue.
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D The hypermultiplet sector: X(n — 1)

In this appendix we carry out the superconformal quotient construction [40, 41, 42]
outlined in section 3 to derive the explicit formulae for the metrics, Killing vectors
and moment maps of X (n — 1) given in subsection 3.1. We start by constructing
the family of metrics (3.2) in subsection D.1 while the results on the Killing vectors
(3.6) and moment maps (3.8) are obtained in subsection D.2. An overview of the
spaces and the respective coordinates appearing in the construction is given in table

1.

D.1 The metrics of the Wolf spaces X(n — 1)

The starting point: flat complex space C(>"+?)

2n+2)

We start by considering C( with complex coordinates zfr, z., I=1,...,n+1.

The metric is taken to be Kéhler with the Kéhler potential being

X(2n+2) = NrJj Z_I|_ Zi + ’I7U Z_rZ_j. (D.1)

Here n;; = diag|[—, ..., —, +, +] has indefinite signature (p, ¢) with p = n — 1 neg-
ative and ¢ = 2 positive eigenvalues, and an is its inverse. This signature of 7
ensures that the space obtained from the quotient construction is of non-compact
type, as required by supergravity. Later on the coordinates associated with the

negative eigenvalues of 1 will play the role of the hypermultiplet scalars, while the

coordinates with the positive eigenvalues act as gauge compensators.

We now promote €2 to a hyper-Kihler manifold. For this purpose we intro-

duce the coordinates z! := {zfr, Zi, zZ.1, Z_f}, with T =1,...,4n + 4. With respect
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symbol space dimg coordinates
C@nt2) flat complex space 4n + 4 {21,282 1,2_1}
H ) HKC over X (n —1) 4n {2,292 ., 2 .}
Z@n-1) twistor space Ap — 2 {vt, 0%, u;, us, ¢, C}
X(n—1) Wolf space dn — 4 {v, v, uy, u;}

Table 1: Summary of the spaces appearing in the superconformal quotient construction of the
unitary Wolf spaces X (n — 1). The index ranges are given by I =1,...,n+1,a=1,...,n and
1=1,...,n—1.

to these coordinates, the SU(2) triplet of complex structures is taken to be:

0 0 0 1 0 O 0 1
pio_ |0 0 10 pi_ |0 0 il o
J ’ J )
0 -1 0 O 0 —1 0 0
-1 0 0 0 10 0 O
10 0 O
. 0 —1 0 0
JSIJ - ) (D2)
0 0 21 O
0 0 0 —1

Here the entries are (n + 1) x (n 4+ 1) dimensional block matrices and 1 denotes

the corresponding unit matrix. These complex structures satisfy the quaternionic

algebra J'J* = —16™ + €"'J!, with r,s,t = 1,2,3 being the SU(2) index. The

complex coordinates zfr, Zi, z_; and Z_j are defined with respect to the canonical

complex structure J?. The Kéhler metric g;; derived from (D.1) is hermitian with

respect to all three complex structures, g(J" -, J"-) = g(-, ).

Instead of working with the basis (D.2), it is more convenient to use J* :=
5 (J* £1iJ?), since quantities defined with respect to this basis will turn out to be

(anti-)holomorphic with respect to J2. From these complex structures we obtain
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the following SU(2) triplet of Kéhler forms:

w® = —z'mjdzfL A dZ_J; —inljdz_l Adz_ gz,

wt = dzl Adzyg, w o =wt. (D.3)
Their components are given by
Q%j = 9ii Jgkj, Q}l_~ = 9ii J+f(j and Q.. =0t

respectively. Here the “bar” denotes complex conjugation with respect to J3.

Let us now consider the linear action of the U(n — 1,2) isometry subgroup:

J
I

2 = U 2], 2o = (UTY)7, 2og. (D.5)

With respect to this isometry, the sz coordinates transform in the fundamental
representation of U(n — 1,2), while the z_; transform in the complex conjugate
representation. Using U T = nI_K (U _1)NK Ny one finds that the Kéhler potential
(D.1) is invariant under this transformation. In principle the isometry group of (D.1)
contains additional generators. But since these do not descend to tri-holomorphic

(2n)

isometries of the hyper-Kéhler cone H they do not give rise to isometries of

X(n—1),*" and will not be considered here.*?

The Killing vectors of the linearized isometries are given by
klo=idt) 2], kear=—it) 2 ;. (D.6)

Here o numerates the (n+1)? generators of U(n—1,2), t,/ ;. To simplify our notation

41The coset formulation of X (n — 1) indicates that the full isometry group of X (n — 1) is given
by SU(n — 1,2). In our approach this SU(n — 1,2) arises from the U(n — 1,2) above modulo the
U(1) gauged in the hyper-Kihler quotient.

42The fact that only tri-holomorphic isometries give rise to isometries of the quaternion-Kahler
space has been observed in [40].
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we will drop the index « in the following. The action of these Killing vectors is tri-
holomorphic, i.e., the Lie derivative with respect to k satisfies £, J" = 0 for all
three complex structures (D.2). This implies in particular that the Killing vectors
are holomorphic with respect to J3. Hence we can obtain their components with

respect to Zi and z_; by complex conjugation of k% and k_;, respectively.

The condition that the vectors £k are Killing, £rg = 0, as well as tri-holomorphic
implies that they are hamiltonian, Lrw"™ = 0. The last statement provides the
integrability condition for the moment maps associated with these isometries. They
are obtained as the solution of the equation

ou” j
where 7 = +,—,3. Substituting the Killing vectors (D.6) and the Kéhler forms

(D.4), these equations are easily integrated and yield:

po= =zt 2+ 2ty

Z_K
pto= —iz gt zi, poo=pat. (D.8)

Here we omitted the constants of integration, which, in principle, could give rise
to Fayet-Iliopoulous terms. Since these terms appear in neither the superconformal
theory defined on the level of the hyper-Kéhler cone nor in the D = 5 supergravity
action reviewed in subsection 2.1, the moment maps (D.8) will give rise to the most

general moment maps compatible with the action (2.1).

The hyper-Kihler quotient construction of #®%

We now perform the hyper-Kihler quotient construction of H(*™ by taking the
quotient of C®"*?) with respect to the U(1) isometry which acts on 2! and z_; by

opposite phase transformations. The infinitesimal generator of this isometry is given
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by t!, = 67,. Substituting this generator into (D.8) we find:
7 7

_— + T - _

pw=—npizl 40z, pt =iz, pT=p" (D.9)

The quotient is performed by first introducing U(1) invariant coordinates 2,7, 2’ ;

on C®"*2) and substituting these into the moment maps (D.9). We then set the

resulting moment maps to zero and solve these constraints in terms of 2’ "H, A

!

and their complex conjugates. The remaining unconstrained coordinates 2/, ¢, 2’

with @ = 1, ..., n provide coordinates on %" . In practice, we choose the primed

coordinates as

z

. Pt n+1

%= 2=z (D.10)
+

In terms of these coordinates the moment maps (D.9) become

= o () 4 2 ()
pt o= =itz po=put. (D.11)

Setting the moment maps to zero and solving the resulting constraints in terms of

zﬁr”H, 2! 1 and their complex conjugates yields
gl o7 1/2
n+1 n+l r=—J ! n+1 ! _ta
(zpt ) = T , 2t =1, 2L =—2"2 (D.12)
Nrjz4 Z%

Substituting the new coordinates (D.10) into the Ké#hler potential (D.1) and

performing the gauge fixing gives the Kihler potential for the metric on # "

a za

X’H(z+az+az—aa ) - 2X+ X-- (D13)

Here we introduced

r It J 1/2 7 1 -t 1/2
X+ = (77[J Ry Ry ) ) X- = (77 Z_g Z?j) , (D.14)
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where it is understood that we have performed the gauge fixing (D.12).

In view of the later steps in the construction we also calculate wy,. Substituting

the primed coordinates into (D.3) and performing the gauge fixing gives

wy =dzl* A d2, . (D.15)

The superconformal quotient: Going to twistor space Z(*~1)

(2n—1)

We now descend to the twistor space 2 . Here we follow [40] and introduce the

coordinates

z’i:ezzui’ z’ :eZZ, izl,...,n—l. (D16)

We next single out another coordinate, (, which will be gauged when going to
X(n —1). To this end, we substitute the coordinates (D.16) into wy, given in eq.
(D.15):

wh =¥ (2d2," + 2u;d2}") A dz +e* d2," A du;. (D.17)

Following the general construction of the superconformal quotient, the components

of this 2-form should be compared to

wiz(u, 2 X;(u, 2
QZE (u,2,2,) = e?? 3t 24) (v, 2) ) (D.18)
—Xj5(u, ) 0

From this comparison, we obtain the explicit form of X;:

X;=10,...,0,2u,...,2up 1,2 . (D.19)
————

(n—1)times

We then determine ¢ by first finding a Y?, subject to X;Y? = 1 and independent

of the coordinates 2/, *, u;, 2. The coordinate ¢ is obtained as the solution of the
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differential equation
; 0 0

azi:a_g'

(D.20)

Choosing Y* = [0,...,0,1/2], which is natural but not unique, we find ¢ = 2z,

This motivates to introduce
I 1 I'n 1
z' =", 2l =§C. (D.21)

The v*,u;,¢ and their complex conjugates then provide coordinates on the twistor
space 227~ In order to obtain the Kéhler potential of Z(27=1 we first substitute

these new coordinates into x, and y_:
1 AW
X+ = <1+nijvzﬁj+z<C> :
) B ' 1 i 1\ /2
X* = eZ+Z (1 + 771] U/’L/H’j + </UZUZ' + 54_) ('I_jz ’[TLZ —|— 5()) . (D.22)

The Kihler potential of 22"V K (v,u,(,,4, (), can be deduced by comparing

X# given in (D.13) to the following expression:

oy = e HFHE@uCoa0) (D.23)

From this we read off
K,u,(,9,4,() =In(xs)+In(x ) +In(2), (D.24)

where x; and y_ are taken at z = 0.
In order to calculate the SU(2) compensators appearing in the construction of
the metric of X(n — 1), we also need w in terms of the coordinates v*, u;, z,{. By

substituting these coordinates into (D.17) we obtain

wh =¥ (d¢ + 2u;dv’) Adz + e dv’ A du;. (D.25)
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The superconformal quotient: The metric on X (n — 1)

We now descend to the quaternion-Kéhler space X (n — 1) by setting ¢ = 0. The
Kaéhler potential K becomes

1 1
K(u,v,0,4,7,0) = 3 In (¢4) + 5 In(¢_) +1n(2), (D.26)
where we introduced
br =1+n;0'0, ¢ =1+ n7uii; + (v'u;) (07 4;) . (D.27)

However, since ( is not parallel to the Killing vector k™ given in (3.1), the condition
¢ = 0 is not preserved. In order to obtain the metric G,5 on X (n — 1) we need to

include an additional compensating transformation. Explicitly we have
Gos =K,5— e X, X5, (D.28)

where K3 is the Kihler metric obtained from (D.26) and o = 1,...,2n — 2 enumer-

"1 g, ..., U, 1}. In order to determine the explicit

ates the coordinates {v!,... v
from of the X, appearing in the compensating transformation, we compare the

components of w3 given in (D.25) to the general form of w7 given in [40]:

wep(v,u) 0 X,(v,u)
OF, =e* 0 0 1 : (D.29)
—Xg(v,u) —1 0

From this we read off

Xa: 2u1,...,2un_1, 0,...,0 . (D?)O)
——

(n—1) times
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Having all these ingredients at hand, we can now write down the metric (D.28)
explicitly. Arranging our indices as X,Y = {v’,0",u;, %} the components of G 3

can be read off from the following matrix:

0 Gw 0 Gu

Gz‘w 0 Gz‘;u 0
Gxy = . (D.31)
0 Gm‘) 0 Guﬁ

Gaw 0 Gag 0

The entries of this matrix are given by

o, = % (174 70") = 5z P+ 9 (') (1'5-+ 0 (0100
Gy, = # (ﬂzvj (1 +77kl_ukﬂl-> — ﬂmﬂﬂl— (vlul)> , (D.32)
1 1 7 1 _
Goigp = M iz — % (Uii“l) (773‘1 Ul) - M U; Uz
1 1 7
+ ﬂ U; ﬂj — MfQ_ U; ﬂj (Ul ul) (T)lﬂl‘) .

The other non-vanishing entries of the matrix can be obtained from the condition
that G xy is hermitian with respect to J2. This result establishes that the family of

metrics (3.2) are indeed metrics on X (n — 1).

D.2 The isometries of the Wolf spaces X(n — 1)

After obtaining the metric on X (n — 1), we will now derive the second ingredient
needed in the construction of the LEEA and derive the Killing vectors and moment
maps of the unitary Wolf spaces. We follow the calculation of [41] and extend these

results.

The Killing vectors of flat C?"*2) are given in (D.6). In order to find the Killing

vectors on the hyper-Kihler cone H(®") we perform a coordinate transformation to
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the primed coordinates (D.10). The resulting Killing vectors read:

B =it 2l — a0t K =i M =it (D.33)

Here we have implicitly performed the gauge fixing (D.12).

To obtain the Killing vectors on X (n — 1) we first transform (D.33) into the

coordinates v*, u;, z, ¢ given by
2=, z;”:%g“, 2 =e*uy, 2 =e*. (D.34)
Fixing ( = 0, the resulting vectors £ read:
B =it ol it it — it
k=210 (o' +1% ),
_

2

kui = ZU,Z (tn—i—; Uj + tn+7ll_|_1) - ztjzu] - Ztnz + Ztn—i—zl (Uj Uj) —2 U; kz .

(D.35)

k, ("t + " = — T v )

However, these vectors do not preserve the gauge ( = 0. In order to get the Killing
vectors k% on X (n — 1) we have to implement an additional compensating transfor-
mation [41]:

ra a2 ¢
B = ke = ok (D.36)

According to [40], X%, X¢ can be determined from the equations
X = (0K + Z2* K;) ¥, X¢=(1-Z°K,) e, (D.37)
with &*# and Z® given by

Owyg =—6%,  Z°=-0"Xp. (D.38)



D The hypermultiplet sector: X (n — 1) 121

Here K is the Kahler potential (D.24), K, and K, denote its derivative with respect
to v%,u; and ¢, respectively, and X, is given in (D.30). The w,g is determined by
comparing w} given in (D.25) with the general expression (D.29) and &*? is obtained

from eq. (D.38). Explicitly, we find

0 1 0 1
Wap = , %= , (D.39)
-1 0 -1 0
where 1 denotes the n — 1-dimensional unit matrix. Substituting X, into (D.38)

gives
T

Z=10,...,0,2uy, ..., 2u, 1| . (D.40)
——
n—1times
With these results at hand, it is now straightforward to write down the explicit form

of the compensating transformation appearing in (D.36):

i

XU 1, . Xt - -
< = § (77” Uz + vt (UJUJ-)) , ? = — ﬂ 771‘]‘1)] . (D.41)
The Killing vectors of X (n — 1) then read:
Lo A B codgntl ) § g gntl kS (i i ki
Ko o= ot vl it —aut T 0] — ittt — 5(77 Uy + v u,;) ,
BU = duy (T L) — ity — it 4 it (0 uy) (D.42)

o .
—2u; k, + —— kS miy 07
Uik, + 2, iz v

Here k¢ and k, are given in (D.35).

We will now derive the moment maps associated with these Killing vectors,

2n+2)

starting from the moment maps on flat C( given in (D.8). Rewriting them in
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terms of the primed coordinates, the corresponding moment maps on H?™ are:

2 ~ I __
pt=— (xz_ Zinpt’y 25 =G 2Lty I—) :
X(2n) (D.43)
,U_l—:—izl—ItIszr]a pm=pr.

Again, it is understood that these expressions implicitly contain the gauge fixing

(D.12).

In [41] it was found that the moment maps on the hyper-Kéhler cone, y", and

the moment maps on the underlying quaternion-Kéahler manifold, /i, are related by

1= xeny i*,  pt=TFxen i, AT =p4". (D.44)

Substituting in the coordinate transformation (D.34) and gauging ¢ = 0, we obtain

the following expression for the moment maps on X (n — 1):

1 B . . , .
/13 - ﬂ {771 U] tjk vF + thrz1 v+t + tn+7lz+1} (D-45)

1 . . . B ~
+ﬁ{ui i g +u bt + 7+t — (ut' 1) (GD°)
= (i g+ ) (ue®) + 0 () (@07) 1
i

BT = g (w0 0 T ()

+t" =t (ui')

Together with eq. (D.42) this result completes the derivation of the formulae stated

in subsection 3.1.
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E Initial values for numerical solutions

Traj. U U 144 144 1% v o 5! B
a 0.6 —0.1 0.2 0.1 1 0.1 0 0.1 0
b 0.8 —0.1 0.5 0.1 1 0.1 0 0.1 0
c 0.85  —0.1 0.7 0.1 1 0 0 —0.2 0
d 0.1 —0.1 0.8 0.1 1 0.2 0 0.2 0
e 0.1 —0.1 145 0.1 1 0.2 0 0.1 0
f 0.7 —-0.1 1.5 0.1 1 —02 0 —0.05 0
L 0.8 —0.1 1 0 1 —02 0 0.1 0

Table 2: Initial conditions for the numerical solutions of the Qut-picture equations of motion
discussed in subsection 6.2.

Traj,. U U W W Q Qi Qv @ G
b’ 0.8 —0.1 0.5 0.1 0 —0.05 0 0.1 0 0.1
1 0.3 0 3 0 0 0 0 0.07 0.02 0.1
g 0.6 0 0.6 0 —-0.2 0 0.5 —0.05 0.3 0.2

Table 3: Initial conditions for the numerical solutions of the In-picture equations of motion
discussed in subsection 7.3. Additionally we take ¢, = go = Qo = 0, @ = 8 = 0 for all three
solutions.

Traj. ¢ ¢ q q a é B
cf 0 0.09 0.65 0 0 0.1 0

Table 4: Initial conditions for the numerical solution undergoing a dynamical conifold transition
presented in subsection 8.2. Additionally we take a = 8 = 0. The initial values of the other hyper-
multiplet scalars fields follow from restricting the hypermultiplet scalar manifold to the subspace
(8.1).
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Zusammenfassung

Unser derzeitiges Verstédndnis der fundamentalen Wechselwirkungen der Natur ba-
siert auf dem Standardmodel der Elementarteilchenphysik und der Allgemeinen Re-
lativitatstheorie. Diese beiden Theorien lassen sich im Rahmen von zehn-dimensio-
nalen Superstringtheorien konzeptionell vereinheitlichen. Dariiber hinaus wird ver-
mutet, dass sich alle konsistenten Superstringtheorien in einer elf-dimensionalen
fundamentalen Theorie, der M-Theorie, vereinigen lassen. Neben einem masselosen
Sektor, der durch die elf-dimensionale Supergravitation gegeben ist, enthélt das M-
Theorie-Spektrum ausgedehnte Objekte, welche als geladene, stationdre Losungen
der Bewegungsgleichungen auftreten, sogenannte M2- und M5-Branen. Um die elf-
dimensionale Raumzeit der M-Theorie (Mikrophysik) mit unserem vier-dimensionalen
Universum (Makrophysik) zu verbinden, kompaktifiziert man die Extradimensio-
nen auf einer kompakten Mannigfaltigkeit, deren L#ngenskalen unterhalb der in
Beschleunigerexperimenten untersuchten Abstidnde liegen. Die Makrophysik wird
dabei durch eine effektive Niederenergiewirkung beschrieben, die nur die leichten

Moden der mikroskopischen Theorie beinhaltet.

In diesem Rahmen beschéftigt sich die vorliegende Arbeit mit effektiven Nie-
derenergiewirkungen fiir Calabi-Yau (CY) Kompaktifizierungen von M-Theorie, die
bestimmte Windungszustdnde von M2-Branen explizit beriicksichtigen. Die resul-
tierenden fiinf-dimensionalen effektiven Wirkungen bieten gegeniiber einer direkten
Kompaktifizierung nach vier Dimensionen den Vorteil, dass der Vektormultipletsek-
tor exakt behandelt werden kann. Zusétzlich gleicht ihr Hypermultipletsektor dem
von CY Kompaktifizierungen der Typ ITA Stringtheorie, so dass die hier gefundenen

Ergebnisse auf vier-dimensionale effektive Wirkungen iibertragen werden kénnen.

Ohne Hinzunahme von Windungszusténden ist die gewohnliche effektive Wir-
kung (GEW) einer M-Theorie-Kompaktifizierung auf einer glatten CY Mannigfal-
tigkeit X mit Hodgezahlen h??(X) eine N' = 2, D = 5 Supergravitationswirkung
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mit ny = h'!'(X) — 1 abelschen Vektor- und ny = h'*(X) + 1 neutralen Hypermul-
tiplets. Die Kopplungskonstanten der GEW sind durch die geometrischen Daten
von X vollstindig bestimmt. Der Moduli-Raum der Vacua der Wirkung entspricht
den Deformationen der CY Mannigfaltigkeit und der M-Theorie Hintergrundfelder.
Dieser Raum enthilt spezielle Punkte an denen holomorphe Untermannigfaltigkeiten
von X kollabieren, wodurch X zu einem singulidren CY Raum X wird. Lassen sich
die so entstehenden Singularititen auf zwei (oder mehr) topologisch unterschiedliche
Weisen glatten spricht man von einem topologischen Phaseniibergang.

Die GEW wird wihrend eines solchen Phaseniibergangs unstetig oder singulér.
Im Rahmen der vollstindigen M-Theorie-Beschreibung ist dieses Verhalten jedoch
ein Artefakt der GEW, welches durch Ignorieren der auf den kollabierenden Un-
termannigfaltigkeiten lokalisierten Windungszustinden entsteht. Die Masse sol-
cher Zusténde ist proportional zum Volumen der schrumpfenden Untermannigfal-
tigkeit, so dass an den singuliren Punkten zusitzliche masselose Moden (Uber-
gangszustinde) auftreten. Die Singularititen der GEW koénnen dann durch das
unberechtigte Ausintegrieren der zusétzlichen masselosen Moden erklirt werden.

Diese Behandlung der Ubergangszustinde ist jedoch unbefriedigend, da eine
vollstdndige Beschreibung der Makrophysik in der Nidhe des Phaseniibergangs alle
leichten Moden ezplizit beriicksichtigen sollte. Daher befaf3t sich der erste Teil der
vorliegenden Arbeit mit der Konstruktion von erweiterten effektiven Wirkungen
(EEW), die solche Moden beinhalten. Hierbei konzentrieren wir uns auf eine be-
stimmte Klasse von singuldren CY Riumen X, némlich solche mit N Doppelpunk-
ten. Diese entstehen durch Deformationen von X in denen N holomorphe Kurven
Ci,i = 1,..., N, (dimg(C;) = 1) zu Punkten schrumpfen. In diesem Fall gibt es
zwei topologische Phaseniiberginge, die glatte, aber topologisch unterschiedliche

CY Mannigfaltigkeiten X und X verbinden:

1. Bei einem Flopiibergang liegen alle holomorphen Kurven C; in der gleichen

Homologieklasse C' € Hy(X,Z). Durch das Schrumpfen der C; zu Doppel-
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punkten und anschlieBender Expansion zu holomorphen Kurven C; in der Ho-
mologieklasse C = —C' gelangt man zu einer topologisch indquivalenten CY

Mannigfaltigkeit X mit gleichen Hodge- aber anderen Tripelschnittzahlen.

2. Erfiillen die N kollabierenden Kurven N > r > 0 Homologierelationen, gibt
es zusitzlich die Moglichkeit von Conifoldiibergéngen. Hier konnen die resul-
tierenden Doppelpunkte auch durch das Einfiigen von drei-Sphéiren gegléittet
werden. Die Hodgezahlen der neuen glatten CY Mannigfaltigkeit X sind dann

RYY(X) =AY(X) = (N —=7), AY3(X)=hY2(X) -7, (1)

so dass sich die Eulerzahlen der beteiligten CY Mannigfaltigkeiten um x(X) =
X(X) — 2N unterscheiden.

Die zusétzlichen leichten Moden am Phaseniibergéing ergeben sich aus den auf den
Kurven C; lokalisierten Windungszustdnden von M2-Branen. In der feldtheoreti-
schen Beschreibung entsprechen diese Zustinde N geladenen Hypermultiplets, deren

Masse proportional zum Volumen der Kurven C; ist.

Unser Ziel ist es, diese zusétzlichen Hypermultiplets in eine EEW zu integrie-
ren. Aufgrund der zusétzlichen geladenen Zusténde ist die EEW dann eine geeichte
N = 2, D = 5 Supergravitationswirkung mit ny Vektor- und ng = ny + N Hy-
permultiplets. Bei der expliziten Konstruktion der Wirkungen kombinieren wir die
mikroskopische M-Theorie-Beschreibung der Ubergiinge mit der Form der allgemein-

sten geeichten N’ = 2, D = 5 Supergravitationswirkung.

Dabei stellt sich heraus, dass der Vektormultipletsektor der EEW exakt bestimmt
werden kann. In der GEW wird dieser Sektor vollstindig durch die Tripelschnitt-
zahlen der CY Mannigfaltigkeit X festgelegt. Aufbauend auf einem Resultat von
E. Witten fiir die durch Ausintegrieren der geladenen Hypermultiplets entstehenden
Schwellenkorrekturen, ergibt sich eine explizite Relation zwischen den Tripelschnitt-

zahlen von X und dem Vektormultipletsektor der EEW.
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Im Hypermultipletsektor ist die Situation jedoch schwieriger. Die ny Hypermul-
tiplets der EEW parametrisieren eine quaternion-Kéhler Mannigfaltigkeit. Diese
ist im Allgemeinen weder Kéhler noch komplex, tragt jedoch eine quaternionische
Struktur. Da Rechnungen mit solchen Mannigfaltigkeiten sehr kompliziert sind, lei-
ten wir die quaternion-Kéahler Mannigfaltigkeiten der EEW nicht aus der Kompak-
tifizierung ab, sondern approximieren den Hypermultipletsektor durch die Familie

der unitiren Wolfraume,

U(N +1,2)
UN+1)xU(2)’

X(N+1)=

fiir N + 1 Hypermultiplets.

Die Konstruktion einer geeichten Supergravitationswirkung basierend auf diesen
Mannigfaltigkeiten erfordert explizite Ausdriicke fiir die Metrik, Killingvektoren und
Impulsabbildungen auf X (/N + 1). Diese leiten wir mittels superkonformer Quoti-
entenbildung aus den entsprechenden geometrischen Gréflen des Hyperkéhlerkegels
iiber X (N + 1) her. Die verwendete Methode ist dabei nicht auf die Wolfrdume
beschrinkt, sondern kann auf jede quaternion-Kahler Mannigfaltigkeit angewendet
werden. Die so erhaltenen Resultate beschreiben den allgemeinsten auf X (N + 1)
basierenden Hypermultipletsektor einer geeichten A/ = 2 Supergravitationswirkung
in 3 < D < 6 Dimensionen.

Aufbauend auf diesen Ergebnissen konstruieren wir zwei Familien von EEW mit
allen zur Beschreibung eines Flop- oder Conifoldiibergangs benétigten Eigenschaf-
ten. Die resultierenden EEW sind nach der Wahl der skalaren Mannigfaltigkeit im
Hypermultipletsektor eindeutig durch die M-Theorie-Beschreibung bestimmt. Die
Massen der Ubergangszustinde werden durch das skalare Potential der Wirkung
kontrolliert und stimmen mit den Erwartungen aus der M-Theorie-Beschreibung
iiberein. Weiter bilden die Minima des skalaren Potentials eine Familie supersym-
metrischer Minkowski-Grundzusténde, die den Moduli der CY Kompaktifizierungen

auf X und X entsprechen. Im Gegensatz zur GEW sind die neuen EEW am topolo-



128 Zusammenfassung

gische Phaseniibergang glatt, d.h. physikalische Groflen entwickeln keine Unstetig-
keiten oder Singularititen am Ubergangspunkt.

Der zweite Teil der Arbeit untersucht das Verhalten der Ubergangszustéinden in
fiinf-dimensionalen Kasner Kosmologien anhand spezifischer Beispiele. Dazu wihlen

wir die Raumzeit-Metrik als
ds” = —d¢” + 0d” + Vdy” . (3)

Die rdumlichen Dimensionen sind dabei durch die drei Koordinaten Z = (z!, 22, z3)
des z-Raums und einer Extradimension mit Koordinate y gegeben. Obwohl fiinf-
dimensionalen Kosmologien a priori keinen Vergleich mit den physikalischen Ob-
servablen des beobachtbaren Universums erlauben, ermdglicht dieser Ansatz eine
dynamische Untersuchung der qualitativen Eigenschaften der Phaseniibergiinge.

Bei Verwendung der GEW, in der die Ubergangszustinde nicht explizit beriick-
sichtigt werden, sind die physikalischen Observablen wihrend eines Flopiibergangs
stetig. Conifoldiibergiinge hingegen kénnen nicht dynamisch realisiert werden. Wei-
ter schliefen die Bewegungsgleichungen eine beschleunigte Expansion des z-Raum
aus. Die Moduli besitzen typischerweise ein Weglaufverhalten, d.h. die Lésungskur-
ven der Skalarfelder laufen durch die entsprechenden skalaren Mannigfaltigkeiten bis
sie einen Rand erreichen.

Werden die Ubergangszustinde ebenfalls dynamisch behandelt, kénnen sowohl
Flop- als auch Conifoldiibergéinge dynamisch erfolgen und alle physikalischen Obser-
vablen sind am Ubergangspunkt glatt. Dies ist insbesondere bei Conifoldiibergéingen
bemerkenswert, da diese CY Kompaktifizierungen mit einer unterschiedlichen An-
zahl von masselosen Vektor- und Hypermultiplets verbinden. Weiter hat das skalare
Potential der EEW tiefgehende Konsequenzen fiir die Stabilisierung der Moduli und
eine beschleunigte Expansion des z-Raums.

Bei Anregung aller leichten Zustinde werden die Moduli dynamisch in der Uber-

gangsregion eingeschlossen, d.h. die Skalarfelder oszillieren im Ubergangsbereich.
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Daraus folgt, dass die “fast singuldren” Mannigfaltigkeiten in der Ndhe des Pha-
seniibergangs dynamisch bevorzugt sind. Zusidtzlich ermoglicht das skalare Poten-
tial eine beschleunigte Expansion des z-Raumes. Obwohl die Slow-Roll Bedingungen
nicht erfiillt sind, ergeben sich typischerweise mehrere kurze Episoden beschleunig-
ter Expansion, die zur Erklirung der heutigen, moderat beschleunigten Expansion

des Universums interessant sein konnten.

Zusammenfassend zeigt die vorliegende Arbeit, dass Ubergangszusténde in Flop-
und Conifoldiibergéingen einen wichtigen Beitrag zur Stabilisierung der Form der
internen Mannigfaltigkeit leisten konnen. Die hier konstruierten Potentiale bieten
somit eine Alternative zu skalaren Potentialen aus hyperbolischen Kompaktifizie-
rungen oder M-Theorie-Kompaktifizierungen mit Hintergrundfliissen. Im Rahmen
eines zukiinftigen Projekts wire es interessant zu untersuchen, ob das Zusammen-
spiel von Ubergangszustinden und Hintergrundfliissen oder Quantenkorrekturen im
Hypermultipletsektor zu einer nachhaltigen beschleunigten Expansion des Univer-

sums fiihrt.
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