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Abstract

In this thesis, we study properties of four-Fermi theories (4FTs) in low-dimensional euclidean

spacetimes. uch models are often employed as eective theories or toy models to study phe-

nomena from particle physics and condensed-matter systems and they are distinguished by their

symmetries and interacting degrees of freedom (DOFs).

Concretely, we focus on 1+1D Gross-Neveu (GN) models which share certain properties,

such as asymptotic freedom and some form of chiral symmetry, with quantum chromodynamics

(QCD). As such they can serve as a testbed to discuss questions that cannot be answered in

full QCD and we do so by investigating spontaneous breakdown of translational invariance at

nite density which has been conjectured to be a feature of the QCD phase diagram (PD). From a

condensed-matter perspective, similar theories are, e.g., of interest for the description of polymer

chains.

We present strong evidence in favor of the theoretical predictions of quasi-long-range order

in these models. Our study reveals a number of similarities with mean-eld (MF) phenomena, in

which however pertinent no-go theorems can be circumvented and inhomogeneous condensates

are found. As such quantum-spin liquid (QL) behavior is conjectured to be a general phe-

nomenon when dealing with spontaneous breakdown of translational invariance, these insights

could prepare for investigations of more realistic models up to QCD itself.

At the end of this thesis, we turn to 1+2D Thirring (Th) models at small avor numbers,

models that have served as a starting point for many conceptual and technical advances. They

are often studied for their close relation to quantum electrodynamics.

We provide multiple evidence that there is no spontaneous symmetry breaking (B) of

chiral symmetry in these models formulated with LAC fermions. Instead, we nd hints on a

new exotic phase transition (PT) that seems to be unrelated to any form of symmetry breaking.

While other modern methods agree on the general trend, the fate of the single-avor reducible

model is still disputed in the literature and numerous open questions with their possible answers

are discussed.
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Zusammenfassung

In der vorliegenden Dissertationsschrift werden verschiedene Eigenschaften von vier-Fermi-

Theorien in niederdimensionalen euklidischen Raumzeiten diskutiert. olche Modelle wer-

den oftmals als eektive Theorien oder pielzeugmodelle verwendet, um Phänomene aus der

Teilchen- und Festkörperphysik zu studieren. ie werden anhand ihrer ymmetrien und wech-

selwirkenden Freiheitsgrade unterschieden.

Konkret fokussieren wir uns auf 1+1-dimensionale Gross-Neveu-Modelle (GN), welche

gewisse Eigenschaften, wie z. B. asymptotische Freiheit und chirale ymmetrie, mit der Quan-

tenchromodynamik (QCD) teilen. In diesem inne können sie dazu verwendet werden, Fragen

zu diskutieren, die derzeit in voller Quantenchromodynamik nicht beantwortet werden können.

Dies werden wir in Form einer Untersuchung von spontaner Brechung der Translationsinvari-

anz bei endlicher Dichte tun. Es gibt MutmaSungen, dass diese im Phasendiagramm der QCD

vorkommen könnte. Aus der Perspektive der Festkörperphysik können diese und ähnliche The-

orien z. B. Polymerketten beschreiben.

Wir präsentieren starke Indizien, die die theoretischeVorhersage von quasi-langreichweitiger

Ordnung stützen. Unsere Untersuchungen haben dabei eine Reihe von Ähnlichkeiten mit der

Molekularfeldnäherung zutage gefördert, wobei letztere allerdings einschlägige No-Go-Theo-

reme umgehen und echte inhomogene Kondensate erzeugen kann. Kürzlich publizierte Argu-

mente, dass dieses sogenannte Quantenspinüssigkeitsverhalten universell anstelle von sponta-

ner Brechung der Translationsinvarianz auftreten könnte, erönen die Möglichkeit, dass unsere

Erkenntnisse die in realistischeren Modellen bis hin zu QCD zu erwartenden Phänomene gut

widerspiegeln.

Am Ende dieser Dissertationsschrift wenden wir uns den 1+2-dimensionalen Thirring-

Modellen (Th) bei kleinen Flavorzahlen zu; Modelle, welche bereits vielfach Ausgangspunkt

von konzeptionellen und technischen Fortschritten waren und häug aufgrund ihrer Nähe zur

Quantenelektrodynamik studiert werden.

Unsere tudien liefern vielfache Hinweise, dass es in der Formulierung dieser Theorie mit

LAC-Fermionen niemals zu spontaner Brechung der chiralen ymmetrie kommt. tattdes-

sen deutet sich ein neuer exotischer Phasenübergang an, der mit keiner ymmetriebrechung in

Verbindung zu stehen scheint. Während sich moderne Methoden in der allgemeinen Tendenz

durchaus einig sind, ist gerade das chicksal des reduziblen Ein-Flavor-Modells in der Literatur

noch umstritten und die oenen Fragen werden mit ihren möglichen Antworten diskutiert.
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Conventions and Symbols

This preamble summarizes conventions and provides a reference for the symbols used through-

out this thesis. They apply if not stated otherwise in the main text. A glossary for the abbrevia-

tions can be found at the end of the text.

Mathematics: We use Einstein’s sum convention without special meaning of the position (up-

per or lower) of an index because in euclidean spacetime the metric is δµν . For example,

aµbµcν =


µ a
µbµcν . We work in natural units where ℏ = c = kB = 1.

Statistics: Monte Carlo (MC) ensembles are analyzed using a binned jackknife approach [1] in

which autocorrelations (ACs) are accounted for by a manually chosen bin size that well includes

the AC time (ACT). The latter is usually analyzed in detail for representative parameters either

by ts to AC functions (ACFs) or by the use of approximation formulae [1], if sucient statistics

are available, and otherwise estimated by manual inspection of MC timelines. tatistical uncer-

tainties are given as one-σ intervals, i.e. we are about 68% sure that the given errorbars, etc.,

include the correct value. Without further knowledge, we assume that all statistical distributions

are normal distributions. In case of tting some model to our data, we use the least-squares

method provided by scipy’s function optimize.curve_fit [2] taking into account the statis-

tical uncertainties, if available, and estimate the condence intervals by sampling the model’s

prediction with randomly drawn normal-distributed parameters according to their covariance

matrix. For tted parameter values, we report their standard deviation as uncertainties. This

might underestimate their true uncertainties in cases where the underlying statistics do not allow

for high-precision inference and we will make sure to correct for that by hand in nal results, if

necessary.

Plots: Plots will include transparent lines connecting the data points in order to guide the eye,

emphasize trends and distinguish dierent data sets. They are not meant as interpolations or the

like unless explicitly stated. Fits always include a shaded region showing the 68% condence

interval as described above. This region might be invisibly small. Phase diagrams will usually

be color-encoded scatter plots. Color mappings must necessarily include reasonable choices

to illustrate the qualitatively dierent regions of such phase diagrams, in particular thresholds

when noisy zero values are to be distinguished. These choices are made in all conscience with

the intent to accurately and faithfully present the data, but they are arbitrary! In such cases, the

precise location of a color transition cannot be given any meaning and only qualitative claims

can be made. These cases are clearly labeled as such in the corresponding captions.
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Conventions and Symbols vii

Quantum elds

ψ Fermion eld

ψ̄ Anti-Fermion eld

∆ Complex scalar eld, see Eq. (2.32)

σ Real (pseudo)scalar eld, see Eq. (2.27)

π Real pseudoscalar eld, see Eq. (2.33)

ρ Absolute value eld of ∆

θ Complex phase eld of ∆

J Fermionic current, see Eq. (2.20)

Lattice parameters

a Lattice spacing

L Linear lattice size in physical units

d pacetime dimension

Λ pacetime lattice

Λs patial lattice

Ns, Nt Number of spatial/temporal points

t, x, y, . . . pacetime coordinates

µ, ν, ξ, . . . pacetime indices

Mathematics and Symmetries

C Complex numbers

N Natural numbers

R Real numbers

Z Integers

C Charge conjugation operator

Z
C
2 Charge conjugation group

P Parity transformation operator

Z
P
2 Parity group

T Time reversal operator

Z
T
2 Time reversal group

/∂ Free Dirac operator, see below Eq. (2.6)

e Euler’s number e = 271828 . . .

γ Euler-Mascheroni constant

τ Generators of SU(Nf)

γµ γ-matrices

γ∗ Generalization of γ5 to arbitrary d

1 Identity matrix

D Functional integral measure

O(N) Orthogonal group

O Order of magnitude or big-O notation

σi Pauli matrices including σ0 = 1

U(N) Unitary group

Observables

Σ Chiral condensate Σ =
⟨
ψ̄ψ

⟩

nB Baryon density

C patial correlator, see Eq. (6.1)

Clong Order parameter, see Eq. (6.5)

CnB
patial nB − σ2 correlator, see Eq. (6.2)

Cshort Order parameter, see Eq. (6.4)

kmax Dominant wave number, see Eq. (6.3)

λχS Wavelength of chiral spirals, see Eq. (3.7)

ξβ Thermal correlation length, see Eq. (3.14)

Parameters

g2χGN χGN coupling

g2NJL NJL coupling

g2
Z2-GN Z2-GN coupling

g2Th Th coupling

g2Th,LAP Th coupling at LAP transition

g2Th,t Th coupling at triple point

D Full Dirac operator, see Eq. (2.26), . . .

mMass

µ Chemical potential

µc Critical chemical potential

µt Chemical potential at the triple point

Nf Number of irreducible avors

a, b, . . . Flavor indices

Nr Number of reducible avors in 1+2D

Nr,c Critical (reducible) avor number

Nr,t Triple point (reducible) avor number

Nspin Number of spinor components

ρ0 χGN scale parameter, see Eq. (4.11)

σ0 Z2-GN scale parameter, see Eq. (4.10)

T Temperature

Tc Critical temperature

β Inverse temperature β = 1
kBT

Tt Triple point temperature
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Chapter 1

Introduction

Physicists strive to describe the world by its most fundamental principles – and they are very

successful in that respect: Despite the fact that we are not yet able to unify the fundamental

concepts of general relativity and quantum theory, either one is capable of predictions of as-

tounding precision in their respective range of applicability, i.e., for astronomically large and

microscopically small scales, respectively.

Unfortunately, on scales much more relevant to our daily experience both theories are way

too complicated to be applied successfully due to a phenomenon called emergence. It basically

says that the relevant degrees of freedom (DOFs) on one scale of interest might be very dierent

from our description of the same system on a dierent scale. They emerge from a microscopic

description without being apparent in the latter.

One of its consequences is that very dierent physical systems can have very similar descrip-

tions on a certain scale of interest. Four-Fermi theories (4FTs) are one such description being

equally applicable to many condensed matter systems, e.g., the famous graphene, and particle

physics scenarios, most prominently quantum chromodynamics (QCD) but also the electroweak

sector. In both use cases, we (nowadays) know that 4FTs are not a description of the microscopic

DOFs but instead yield results in a low-energy regime where one can describe, e.g., conductance

and magnetism of solids [3, 4] or the β-decay [5] and the equilibrium properties of neutron stars

[6].

As early as 1933, Fermi invented an ad-hoc description of the β-decay which can be seen

as the rst instance of a 4FT [7]. Even though, it was later replaced by the gauge theory of

electroweak interactions, it was highly successful and inuential at that time. He was followed

by Thirring in 1958 who studied the famous 1+1D single-avor Thirring (Th) model with its

conformal symmetry as an instance of a completely solvable quantum eld theory (QFT) [8]. At

around the same time (1961), Nambu and Jona-Lasinio (NJL) used a similar formulation [9,

10] in 1+3 dimensions to describe nucleons and mesons in analogy to the recently discovered

Bardeen-Cooper-chrieffer (BC) mechanism of superconductivity [11]. While its original

idea is concerned with an electron-phonon interaction, the latter is eectively described as a

4FT.

1



2 CHAPTER 1. INTRODUCTION

This last instance not only shows the parallel evolution of 4FTs in particle and condensed

matter physics but at the same time beautifully illustrates their cross-fertilization. Unfortunately,

this cross-fertilization did not always happen that promptly in later times: For example, the

phase diagram of theHubbardmodel [12] – a tight-binding approximation for valence electrons

hopping on a crystal lattice – and its lower-dimensional companions [13] has been known for

a long time to exhibit interesting regions of spatially modulated order parameters known as

Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phases [14, 15]. The corresponding discovery

in Gross-Neveu (GN) models – their continuum counterparts – was made as late as the early

2000s [16–18]. That is despite the fact that the invention ofGNmodels as examples of dynamical

symmetry breaking [19] succeeded the Hubbard model by only ten years.

In more recent times, 4FTs are studied systematically as eective theories in particle physics

[6, 20–23], tight-binding models in condensed matter theory [3, 4, 24–28] and generally as a

testbed for conceptual and technical advances [29, 30]. Beyond the traditional Th, NJL and

GN interactions (and their combinations) more exotic formulations are continuously developed,

ranging from more involved couplings between the dierent copies of fermions [31–34], cou-

pling to dynamical and static gauge elds [35–38] and higher-dimensional fermion representa-

tions [39, 40].

The most common way of analyzing 4FTs is by means of mean-eld (MF) theory which

becomes exact in the limit of an innite number Nf of identical fermion copies. We will call

these copies avors although – depending on the context – they could also be thought of as color

DOFs in QCD or even spin components in solid-state physics. The predictions of MF theory

yield a rst intuition for the system’s behavior but on various occasions [37, 41–43] the MF

approximation turns out to show partly or fully dierent physics from the full quantum theory at

realistically small avor numbers Nf . These changes might be accounted for by a perturbative

analysis around the MF solution (as is, for example, successfully done in [44]) but more often

fully non-perturbative methods are needed.

uccessful non-perturbative methods beyond MF include the functional renormalization

group (FRG) [30, 45–50], various tensor network (TN) methods [51–53] and Monte Carlo (MC)

simulations, the latter of which will be themain tool in this thesis. TheMCmethod approximates

the partition function of a system by an average over a nite number of sampled congurations

generated by a computer. In order to do so, the systemmust be broken down to a nite number of

DOFs, most commonly by discretizing the theory on a nite spacetime lattice. A notion of "im-

portance" of a conguration is then dened from the functional integral measure in a stochastic

sense. This necessitates the measure to be real and positive – a condition that on failure entails

the infamous sign problem (P), more precisely called complex action problem. The P is prob-

ably one of the most notorious problem in modern high-energy physics and the only hindrance

for rst-principles simulations of QCD at nite density. As it is NP-hard [54], there is little hope

for a generic solution but a highly active community is concerned with its elevation for specic

(classes of) models [55–57].

Concretely, this thesis applies the above method to a number of (conjectured) instances of
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spontaneous symmetry breaking (B). ymmetries themselves are a notion of utmost impor-

tance for statistical physics andQFT as they allow to categorize theories and particle spectra, con-

strain the form of fundamental equations and simplify computations. According to Noether’s

theorem, continuous symmetries even lead to conserved quantities [58]. Their spontaneous

breakdown – i.e. the realization of a ground state or equilibrium which does not respect such

symmetries – again entails important consequences like dynamical mass generation and the ex-

istence of massless modes, known as Nambu-Goldstone bosons (NGBs) [59–61].

While from a particle physics point of view the chiral symmetry is of main interest, odd

dimensions lack a notion of chirality and fermionic systems instead tend to break parity invari-

ance. Only in a reducible fermion representation, obtained from pairing two irreducible fermion

species from inequivalent representations, chirality can be studied. I will show examples of chi-

ral symmetry breaking (χB) in 1+1D GN models (in MF) and discuss its absence for 1+2D

Thmodels. Instead spontaneous parity breaking can be observed in such systems. Additionally,

fueled by conjectures from 1+3D [6, 62] and analytical ndings in 1+1D [16, 17] a large part

of this thesis will focus on the possibility of a combined breakdown of chiral and translational

invariance.

This thesis is organized as follows: I will rst discuss 4FTs in the continuum in Chapter 2

including their symmetries and fundamental properties. I will then in Chapter 3 review the ana-

lytical precursors to the later numerical studies. A number of results motivating or complement-

ing this thesis will be reviewed and important no-go theorems established. Chapter 4 focuses on

general techniques used in this thesis, followed by a dedicated Chapter 5 for a careful study of

Dirac operators and their discretizations. Turning to the numerical results of this thesis, I will

start with 1+1D GN models in Chapter 6. After a more focused discussion of model-specic

technical aspects in ection 6.1, I will discuss the somewhat easier chiral Gross-Neveu (χGN)

case in ection 6.2 before turning to discrete Gross-Neveu (Z2-GN) models in ection 6.3.

Finally, I will discuss 1+2D Th models in Chapter 7 and conclude in Chapter 8.

AppendixA contains some technical details around numerical dierentiationwhichwas used

in Chapter 7. In Appendix B an overview of the generated ensembles and some technical pa-

rameters is provided. The analysis and visualization code for this thesis containing references to

corresponding data releases is publicly available under [63] but for reference and acknowledge-

ment, Appendix C summarizes the software used.

The results that I compiled in this thesis have been published in [42, 43, 64–69]. But I will

not present exactly reproduced results in this thesis. I will present a reanalysis of the data that

was at some points slightly rened due to the larger experience and broader perspective I can

bring into the projects in retrospection.1 That is why the reader might nd slightly dierent

numbers or minor reinterpretations of the results compared to [42, 43, 64–69]. Of course, the

main results stay untouched. The results of further research during my doctoral studies are not

part of this thesis but are published in [37, 38].

1For crosschecking, I was able to exactly reproduce all the results.



4



Chapter 2

Four-Fermi Theories in the Continuum

The current state-of-the-art description of the microscopic properties of our universe uses the

language of QFT and matter is then described by fermionic DOFs. This chapter will start o

by summarizing the relevant aspects of QFT (ection 2.1) quickly narrowing down to fermions

(ection 2.2) and their symmetries (ection 2.3). The chapter culminates in a list of interacting

fermionic theories in ection 2.6 that are – directly or indirectly – relevant to this thesis but does

so only after establishing some notation and facts around fermionic bilinears (ection 2.4) and

reducible representations (ection 2.5). This chapter is rounded o by a short mentioning and

discussion of external parameters in ection 2.7 the inuence of which on above 4FTs will be

studied in this thesis. This part can be found in any pertinent textbook and the presentation is

mostly guided by the exhaustive review in [70].

2.1 Excerpts From Quantum Field Theory

In our everyday experience, the behavior of physical objects is governed by a single deterministic

behavior that is distinguished by being an extremum of the action of the system. Quantum

theory, then, broadens the perspective understanding this as a limiting case of considering all

possible realizations in a weighted manner. In euclidean eld theory describing the ground-

state and thermodynamic equilibrium properties of quantum systems, the partition function and

expectation values of observables X are realized as a weighted average:

Z =

∫

Dϕ e−S[ϕ], ⟨X ⟩ = 1

Z

∫

Dϕ X [ϕ] e−S[ϕ]. (2.1)

In these equations, ϕ represents a collection of all DOFs (to be specied later on) that are av-

eraged over according to the respective euclidean action S of each concrete realization of ϕ.

All equilibrium properties of the system can now be inferred from (derivatives of) the partition

function Z.

The number of DOFs is often innite, e.g., when ϕ describes elds that are dened in con-

tinuous or innite spacetimes, rendering the above integral innite-dimensional. In such cases,

5
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Eq. (2.1) is meant to convey a physical idea, the mathematical implementation of which is a

delicate issue involving some form of regularization and renormalization.

A convenient scheme of regularization is approximating the continuum spacetime by a -

nite spacetime lattice such that ϕ is dened on nitely many points in spacetime. This idea is

also the basis for many kinds of numerical treatment of such integrals and is devoted an own

Chapter 4. Other approaches use cuto functions in momentum space2, analytic continuation

(in form of dimensional or ζ-function regularization) or the addition of ctitious further systems

counteracting divergences in the original one, known as Pauli-Villars regularization.

The procedures described above will change the result of the integral and, if it was necessary

to introduce a regularization in the rst place, naively removing it will again lead to divergences.

This is tackled by renormalization. Renormalization refers to the process of redening coupling

constants in dependence of parameters of the regularization. In a properly renormalized expres-

sion, one can then undo the changes introduced by the regularization in a systematic manner in

order to assign meaningful values to functional integrals like Eq. (2.1). These values will be

independent of the regularization that was used.

2.2 Free Fermions

In d-dimensional spacetime, fermions (which we will usually denote as ψ) are described by

Grassmann-valued elds of multiple components. For fermions over the eld of complex num-

bers C, the Berezin integral over exponentiated bilinears yields

∫

DψDψ̄ e−ψ̄Dψ = detD (2.2)

where D is a linear operator and ψ̄ = ψ† is the euclidean version of the Dirac conjugate.3

In order to describe fermionic systems, we attach Nspin fermion components to each space-

time point and associate with such tuples the action of a representation of the Clifford algebra

Cld(C), i.e. the algebra generated by d matrices γµ obeying

1

2
{γµ, γν} = δµν1. (2.3)

This relation implies that all euclidean γ-matrices are hermitian. Irreducible representations

of the latter consist of 2⌊ d
2⌋ dimensional matrices. In even spacetime dimensions, all such rep-

resentations are unitarily equivalent and there exists a non-trivial matrix

γ∗ = −i⌊d/2⌋γ0 · · · γd−1 (2.4)

2Depending on their form, they can have eects similar to spacetime lattices.
3One should note the dierence to the lorentzian version ψ̄ = ψ†γ0. We follow [70] while there are much

more detailed discussions of that matter describing several possibilities [71].
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anti-commuting with all γ-matrices and dening a notion of chirality via the chiral projectors

P± =
1

2
(1± γ∗) . (2.5)

In odd dimensions, there exist two inequivalent representations related via γµ ↦→ −γµ and the

would-be γ∗ ∝ 1 is trivial. It follows that we cannot dene a notion of chirality of irreducible

fermions in odd-dimensional spacetimes.

From these building blocks, we can dene the free fermion Lagrangian

L =

Nf∑

a=1

ψ̄a


/∂ +m


ψa. (2.6)

It includes the Clifford structure in the abbreviation /∂ = γµ∂µ and we further added a mass

m coupling to ψ̄ψ that will be discussed in ection 2.4. The formula implies a contraction over

the spinor indices. We furthermore introduced Nf copies of identical fermions that we will call

avors. Their actual meaning depends on the real world system under consideration: In QCD

they describe dierent avors or colors depending on the context; in graphene, these are usually

identied as the dierent spin components of the valence electrons; and so on.

2.3 Symmetries

Free fermions in equilibrium allow for a number of transformations of ψ, ψ̄ such that the action

takes the same form with respect to the new variables. uch symmetries are important for a

number of reasons, e.g., to organize the particle spectrum and simplify computations. In an

attempt to model the equilibrium properties of relativistic QFTs, a careful analytic continuation

from Minkowski spacetime is in order and, particularly for fermions, this intricate issue was

discussed a lot in the literature, e.g. [71–73]. This section closely follows the discussions in [69,

70] but includes some more details from [71].

(Continuous)Euclidean Spacetime Symmetries. pacetime symmetries are one of themost

fundamental concepts in QFT. They allow for a classication of DOFs into bosonic/fermionic4

and (pseudo)scalar, (pseudo)vector, etc. They include rotations SO(d) and translations Rd. The

discrete subgroups of parity and time reversal will be discussed separately.

Parity Z
P
2 . In even spacetime dimensions, parity is typically dened as a simultaneous sign

ip of all spatial coordinates. It is, however, more convenient to dene it as xµ ↦→ Pµ
νx

ν where

Pµ
ν = diag(1, . . . , 1,−1) on the spacetime coordinates, i.e. ipping only the last component,

4or anyonic, depending on the dimension [74]
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because this is a parity transformation in all spacetime dimensions. The fermions transform as

ψ (xµ) ↦→ Pψ (Pµ
νx

ν) , ψ̄ (xµ) ↦→ αψ̄ (Pµ
νx

ν)P−1 (2.7)

for some yet-to-be-determined α ∈ R where P (without euclidean indices) is a matrix acting

in spinor space (as opposed to Pµ
ν acting on the spacetime coordinates). We will adopt this

convention for the following paragraphs. For consistency, we need to ensure that

P−1γµP = α−1Pµ
νγ

ν . (2.8)

By squaring this relation and using Eq. (2.3), we nd α2 = 1. For γ∗, it follows that

P−1γ∗P = −αdγ∗. (2.9)

In even dimensions, we can choose α = +1 while in odd dimensions α = −1.

The latter is reminiscent of the fact that, coming from the even-dimensional spacetime of

dimension d − 1, we can construct an irreducible representation of the Clifford algebra by

reusing the same γ-matrices adding γ
µ=d−1
(d) = γ∗

(d−1). This directly entails that P ∝ γ∗
(d−1)

inherits a lot of properties of the chiral structure from the spacetime of one spatial dimension less.

It is also an intuitive picture that can explain why 1+2D irreducible mass terms and condensates

break parity instead of chirality (see below).

Charge Conjugation Z
C
2 . Charge conjugation C maps

ψ ↦→ Cψ̄⊤, γµ⊤ = ηC−1γµC, η ∈ {±1}. (2.10)

In even dimensions, both signs of η can be realized while in odd dimensions only one of them

can be found in an alternating fashion, i.e. η = −1 for 1+ 4n dimensions and η = +1 in 3+ 4n

dimensions, n ∈ N0. As can be seen, charge conjugation is intimately related to the complex

structure of the Grassmann algebra the fermions live in. It is important to note that this is not

unique and that the complex structures compatible with euclidean and lorentzian spacetime

symmetries are not the same [71]. We choose the above convention for simplicity as it is of

minor importance for this thesis but one should be aware its behavior after analytic continuation

to lorentzian spacetime could look unfamiliar to the reader.

Time reversalZT
2 . In euclidean spacetimes, onemight be tempted to discard the time reversal

symmetry carelessly as "just a rotated parity transformation". However, time is still intimately

related to the notion of particles and anti-particles which generally are to be distinguished for

fermionic DOFs. The above intuition is therefore only correct up to an additional interchange

of fermions and anti-fermions. In fact, this notion is known as CPT -symmetry [75] where the

charge conjugation exactly implements this additional swap.
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Time reversal symmetry T acts as xµ ↦→ T µ
νx

ν where T µ
ν = diag(−1, 1, . . . , 1), i.e.

(t, x) ↦→ (−t, x), on the spacetime coordinates. The fermions transform as

ψ(xµ) ↦→ T ψ̄⊤ (T µ
νx

ν) , ψ̄ (xµ) ↦→ βψ⊤ (T µ
νx

ν) T −1. (2.11)

The coecient β can be worked out from CPT -symmetry and one nds β = −1 in 3 + 4n

spacetime dimensions, n ∈ N0, and β = +1 otherwise [71].

Flavor-Vector Symmetry. TheNf copies of fermions are treated identically in the free-fermion

Lagrangian from Eq. (2.6). We can therefore rotate them into each other via any U ∈ U(Nf)

ψa ↦→ Uabψb, ψ̄a ↦→ ψ̄bU
†
ba (2.12)

where U is trivial in spinor space.

Flavor-Axial/Chiral Symmetry. Whenever we can dene a notion of chirality, the chiral com-

ponents of free massless fermions can actually be rotated among each other independently. This

full avor-chiral symmetryU(Nf)×U(Nf) consists of the avor-vector part above and the avor-

axial part rotating chiral components oppositely. It is again implemented via a U ∈ U(Nf)

ψa ↦→ Uabψb, ψ̄a ↦→ ψ̄bU
†
ba (2.13)

where, however, U = exp (iγ∗ ⊗ u) acts non-trivially in spinor space, u ∈ su(Nf). A mass term

or a condensation of ψ̄ψ breaks this symmetry. An important subgroup of the axial transforma-

tions is the discrete Z2

ψa ↦→ γ∗ψa, ψ̄a ↦→ −ψ̄aγ∗. (2.14)

Pauli-Gürsey Symmetry. The above symmetries are manifest and straightforward to recog-

nize in the formulation Eq. (2.6). It turns out, however, that sometimes there is the signicantly

larger freedom of mixing particle and anti-particle for the chiral components separately. Pauli

[76] and Gürsey [77] were the rst to formulate this for four-component Dirac spinors. The

general transformation reads

ψ ↦→ αψ + βγ∗Cψ̄
⊤, |α|2 + |β|2 = 1 (2.15)

for each avor and can be combined with the other internal and external symmetries. It becomes

particularly transparent in 1+1D where one can nd a chiral Majorana representation, namely

γ0 = σ2, γ1 = iσ1, (2.16)
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which is capable of decoupling chiral components as well as particles from their anti-partners

manifestly. In the kinetic term, the 2Nf Majorana components denoted as ξ

ψa =
1√
2
(ξ2a + iξ2a+1) (2.17)

rearrange into an O(2Nf) scalar under

ξa ↦→ Oabξb, O ∈ O(2Nf) (2.18)

which includes charge conjugation and avor-vector transformations as subgroups.

2.4 Euclidean and Flavor Bilinears and Fierz Transforma-

tions

The euclidean spacetime symmetry dictates that only expressions with a well-dened trans-

formation behavior under the SO(d) rotational symmetry can be physically meaningful. In the

following, we will dene and discuss avor-singlet and -multiplet bilinears that have this prop-

erty. They will be building blocks for interaction terms, interpolating operators, and condensates

later on.

ome relevant euclidean-singlet bilinears are

S(x) =

ψ̄ψ


(x) , P (x) =


ψ̄γ∗ψ


(x) , Pa(x) =


ψ̄γ∗τaψ


(x) (2.19)

where the latter two are, of course, only dened when a γ∗ is available. In there, τa denotes the

generators of the SU(Nf) avor-vector symmetry. In even dimensions, S is a (pseudo)scalar with

respect to euclidean (chiral) symmetry and P vice versa. Thus, an explicit term proportional

to S (P ) or a respective condensate breaks chiral (parity) symmetry. The avor-vector Pa is

pseudoscalar with respect to euclidean transformations. In odd dimensions, only S exists and

it turns out to be pseudoscalar. This implies that the irreducible mass termmψ̄ψ or a respective

condensate breaks parity invariance.

Analogously, euclidean (pseudo)vectors can be dened as

Jµ(x) =

ψ̄γµψ


(x) , Π

µ(x) =

ψ̄γµγ∗ψ


(x) , Π

µ
a(x) =


ψ̄γµγ∗τaψ


(x) . (2.20)

Whenever they can be dened, Πµ
(a) are again pseudovectors. In even dimensions, all of these

are euclidean-rotated under (single-avor) chiral transformations and, thus, they do not break

chiral symmetry if found in euclidean-invariant contractions. In odd dimensions, only Jµ is

dened and it is a pseudovector.

Higher-order bilinears in euclidean and avor indices can be written down analogously but

concerning the construction of fermion interactions, even at this point we have introduced some
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redundancy5: Fierz transformations exploit the completeness relations of the Clifford algebra

to rearrange expressions of the form6


ψ̄aMψb

 
ψ̄cNψd


. (2.21)

In fact, they can be used to transform all combinations of four-Fermi terms into euclidean or

avor singlets at one’s own discretion.

2.5 Reducible Representations of the Clifford Algebra

Irreducible fermions in odd spacetime dimensions do not feature chirality and the correspond-

ing symmetry. However, in many scenarios where odd-dimensional spacetimes are considered,

irreducible fermions are not the natural choice. For example, in graphene – to a very good ap-

proximation amaterial of only two spatial dimensions – one can organize the low-energy electron

modes into four-component Dirac spinors despite the fact that irreducible representations in this

dimension are two-dimensional. Also, when modeling the chiral properties of QCD or the elec-

troweak sector by lower-dimensional models one is interested in exactly the chiral properties.

In such cases, the representation of the Clifford algebra can be chosen reducible by com-

bining two irreducible avors from inequivalent irreducible representations into one reducible

avor with twice the number of DOFs. Given one irreducible odd-dimensional representation,

this reducible representation can be constructed explicitly as

γµ
red = σ3 ⊗ γµ

irred (2.22)

where σ3 acts on pairs of irreducible avors in avor space. It turns out that the generated algebra

is exactly the same that one would get from the irreducible representation in one dimension

higher by discarding one of the γ-matrices.

This immediately implies that it contains at least twomatrices that would qualify as γ∗: either

the discarded γ∗
(d) = γ

µ=d
(d+1) or γ

(d)
∗∗ = γ∗

(d+1). Both are valid choices and, additionally, their

product yields another non-trivial matrix commuting with all γ-matrices. These three further

matrices enlarge the avor-chiral U(Nr) × U(Nr) to a U(2Nr) extended chiral symmetry for

reducible representations, where we have chosen Nr to denote the number of reducible avors

as opposed to Nf reserved for irreducible avors.

This enlargement of the symmetry group can be understood from the perspective of the

irreducible representations: The construction of each reducible avor introduced two irreducible

avors, Nf = 2Nr. Thus, the avor-vector symmetry alone is a U(Nf) = U(2Nr) symmetry.

It was, however, slightly redened into a staggered formulation to account for the alternation of

inequivalent irreducible representations ±γµ.

5in the low dimensions we work in
6M,N are appropriate matrices.
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The two inequivalent irreducible representations behave exactly the same, so we can redene

ψ ↦→ γ∗γ∗∗ψ, ψ̄ ↦→ ψ̄ (2.23)

to align their relative signs. This is necessary for the consistency of the theory7 but aects

fermionic bilinears. In particular, the reducible bilinear ψ̄ψ translates into a avor-staggered

bilinear in the irreducible representations. In fact, the naive reducible mass matrix that one

can write down is not proportional to the identity in irreducible-avor space. That is why all

parity-breaking contributions from the individual irreducible mass terms or condensates can-

cel between the avors, leaving us with a avor-vector breaking pattern (from the irreducible

perspective) instead.

2.6 Four-Fermi Theories

From the bilinears discussed in the previous sections, one can systematically construct fermionic

interaction terms. By power counting, one can expect that four-Fermi terms, i.e. terms of the

form Eq. (2.21), are the most relevant8 terms. One can further deduce that 1+1D 4FT are gen-

erally asymptotically free. In 1+2D, they are no longer perturbatively renormalizable but still

asymptotically safe [45]. In higher dimensions, they are non-renormalizable but can nonetheless

be of interest as eective theories as is discussed in Chapter 1 and ection 3.2.

The various possible interactions are typically constructed from symmetry considerations

and the desired DOFs. The resulting models are then named after their inventors.9 ome prop-

erties of the various models are summarized in Table 2.1.

Discrete Gross-Neveu (Z2-GN) models. The arguably simplest 4FTs are discrete GN mod-

els. In addition to the free-fermion Lagrangian Eq. (2.6), they feature an interaction of the

form

LZ2-GN =
g2
Z2-GN

2Nf

S2 (2.24)

where g2
Z2-GN is a real-valued coupling constant. In even dimensions, S ↦→ −S under discrete

chiral transformations such that this theory generically features a discrete chiral symmetry while

general chiral transformations lead to non-vanishing phase factors. In odd dimensions, S is

pseudoscalar and parity takes over the role of discrete chiral symmetry. It was rst described in

[19] as an example of an asymptotically free theory of interacting fermions.

7Otherwise, euclidean correlators could violate positivity constraints [64].
8in the renormalization-group sense
9This, however, does not yield a one-to-one mapping providing some room for arbitrary choices. We will

use a naming scheme that associates a specic form of the interaction term with a model’s name irrespective of
dimensionality or representation as opposed to other conventions. Expert readers should therefore check if the
following naming scheme matches their expectations.
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Table 2.1: ummary of some 4FTs and their properties (inspired by a similar table in [70]).

Th Z2-GN χGN

Interaction JµJ
µ S2 S2 − P 2

Auxiliary Boson Aµ σ ∆ = ρeiθ = σ + iπ

1+1D
ymmetry O(2Nf)× U(Nf) O(2Nf)× Z2 U(Nf)× U(1)

m breaks axial U(Nf) chiral Z2 axial U(1)

1+2D
ymmetry U(Nf)× Z

P
2 U(Nf)× Z

P
2 -

m breaks parity Z
P
2 parity ZP

2 -

1+2D
(red.)

ymmetry U(2Nf) U(Nf)× U(Nf)× Z2 U(Nf)× U(Nf)× U(1)

m breaks axial U(Nf) chiral Z2 axial U(1)

The fermionic interaction is conveniently handled by aHubbard-tratonovich (H) trans-

formation that introduces an auxiliary bosonic DOF in order to remove the explicit four-fermion

term. By this means, it can be shown that the partition function of GN models is proportional

to partition functions of the following model10

LZ2-GN,H = ψ̄D[σ]ψ +
Nf

2g2
Z2-GN

σ2 (2.25)

where

D[σ] = /∂ +m+ σ. (2.26)

The equivalence follows from the equations of motion (EOMs) on the classical level but is di-

rectly lifted to the quantum level because σ appears at most quadratically in Eq. (2.25) and can,

hence, be integrated out exactly. It turns out that Dyson-chwinger equations (DEs) can be

used to assign a meaning to σ that goes beyond its original "auxiliary" character because

⟨σ⟩ = −g2
Z2-GN

Nf

⟨S⟩ . (2.27)

It is, thus, an order parameter eld for chiral (parity) B in even (odd) dimensions and trans-

forms according to σ ↦→ −σ under the pertinent transformation. Higher-order DEs relate

higher-order expectation values of σ and S with each other such that, for example, correlators

of σ are directly related to correlators of S representing a (pseudo)scalar meson in this setting.

10In the rest of the text we will not explicitly distinguish between 4FTs and their H transformed counterparts.
In particular, we will drop the HS subscript after its rst appearance.
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Chiral Gross-Neveu (χGN) models. A small modication of the Z2-GN interaction term

allows one to study a larger continuous U(1) chiral symmetry,

LχGN =
g2χGN
2Nf


S2 − P 2


. (2.28)

This Lagrangian was actually rst discussed in [10, 78] but due to its close relation to Z2-GN

models and the naming conict with the next model, we will name it after [19] where it was

studied in 1+1 dimensions rst. It is invariant under the U(1) chiral symmetry of simultaneous

phase rotations of all avors due to an intricate cancellation of the transformation behaviors of

S2 and P 2 separately. It can be formulated Fierz-equivalently as [10]

LχGN = −
g2χGN
4Nf

(JµJµ − Π
µ
aΠ

µ
a) . (2.29)

where, oppositely, the full symmetry of JµJµ is reduced by the addition of Πµ
aΠ

µ
a . The gen-

eralization to independent couplings is also studied, recently for example in [79]. But all such

models feature only a discrete symmetry as in Z2-GN models, the realization of which gets

"rotated" between purely chiral and purely parity transformations.

The H transformed version of the purely fermionic Lagrangian is

LχGN,H = ψ̄D[∆]ψ +
Nf

2g2χGN
|∆|2 (2.30)

where (using P± from Eq. (2.5))

D[∆] = /∂ +m+ P+∆+ P−∆
∗. (2.31)

The complex boson ∆ is again an order parameter for χB in the sense that

⟨∆∗⟩ = −
g2χGN
Nf

⟨
ψ̄P+ψ

⟩
, ⟨∆⟩ = −

g2χGN
Nf

⟨
ψ̄P−ψ

⟩
(2.32)

and transforms as ∆ → e−2iα
∆ under chiral rotations eiαγ∗ .

In this formulation, the order parameter ∆ is the particle-physics translation of the super-

conductor’s gap parameter from solid-state physics [62]. Its magnitude ρ = |∆| is the super-

conducting gap while its phase θ in eiθ = ∆

ρ
corresponds to the NGB modes responsible for the

perfect conductivity.

With QCD in mind, one would rather split the order parameter ∆ = σ + iπ into a σ and

a (single) π meson, crudely modeling the corresponding low-energy DOFs in particle physics.

We will use all three formulations

∆ = σ + iπ = ρeiθ (2.33)
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interchangeably as is convenient in the respective situation. One should note, however, that the

functional measure is not invariant under σ, π ↔ ρ, θ, so special care is in order if these are used

as fundamental DOFs in calculations (as opposed to observables as in our case).

Nambu-Jona-Lasinio (NJL) models. NJL models further generalize χGN models to fea-

ture the full avor-chiral symmetry. This was achieved originally by replacing the avor-singlet

pseudoscalar with the avor-vector interaction term

LNJL =
g2
NJL

2Nf


S2 − PaPa


(2.34)

for Nf = 2. From a symmetry perspective, a further term ∝ JµJµ could be added and is,

e.g., included in [70], but historically [9] as well as physically such a term is usually discussed

separately. The technical argument for this was originally that in the often considered large-Nf

limit this term decouples [70].

From a physical perspective, the NJL interaction is usually meant to model the low-energy

behavior of QCD as is best seen in the H language,11

LNJL,H = ψ̄D[σ, π⃗]ψ +
Nf

2g2
NJL


σ2 + |π⃗|2


. (2.35)

One can see that the NJL model can describe three pions and a σ meson (nowadays known as

f0(500) [80]) – the lightest particles relevant for χB in QCD [81] – as composite particles.

Nowadays, the term (generalized) NJL model is used for a variety of dierent models fea-

turing scalar and pseudoscalar interactions usually pertaining a large part of, if not the full,

avor-chiral symmetry [82].

Thirring (Th) models. The chronologically rst 4FT formulated in a modern language fea-

tured an interaction [8]

LTh =
g2
Th

2Nf

JµJµ. (2.36)

It also preserves the full chiral symmetry and was originally discussed as a completely soluble

QFT in 1+1 dimensions (with a single avor). This is due to the large conformal symmetry in

this specic setup. It can be regarded as a gauge-xed gauge theory [83] and is closely related

to (massive) quantum electrodynamics (QED) [84].12 This is best seen in the H formulation

LTh,H = ψ̄ /D[A]ψ +
Nf

2g2
Th

AµA
µ (2.37)

11The precise form of D[σ, π⃗] is not of particular interest for this thesis but can be found in [20].
12Even though QED is not the said hidden gauge theory.
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where

/D[A] = /∂ + i /A+m. (2.38)

One should stress that – while Aµ obeys a similar DE

⟨Aµ⟩ = −g2
Th

Nf

⟨Jµ⟩ (2.39)

as the GN models – it is not an order parameter because (appropriately contracted) Jµ are in-

variant under chiral/parity transformations.

The single-avor model. In 1+1 and 1+2 dimensions, which are predominantly considered

in this thesis, a peculiarity occurs: For a single irreducible avor, i.e. two complex (or four

real) DOFs, there exists only a single non-vanishing combination of four fermion components

∝ ψ0ψ1ψ0∗ψ1∗. Thus, all irreducible single-avor 4FTs must be equivalent up to a rescaling of

the coupling constant and, in fact, the aforementioned Fierz transformations boil down to


ψ̄Mψ

2
= detM ·


ψ̄ψ

2
(2.40)

for this special case. This implies that all (or better "the one") irreducible single-avor 4FTs are

conformal in 1+1 dimensions (because Th is) and spontaneously parity-breaking for suciently

strong coupling in 1+2 dimensions (because Z2-GN is) [70]. upplemented with MF results that

become exact for innite avor number, this provides rst plausible expectations for other nite

avor numbers.

Reduciblemodels. In 1+2 dimensions, one is often led to consider reducible fermion represen-

tations. We will apply the above naming scheme to Lagrangians of the same form regardless of

the representation of the spinors. One should note, however, that the irreducible and reducible

theories with the same name generally dier, even if they contain the same number of DOFs

(i.e. Nf = 2Nr). This is best seen in the (non-)existence of chiral symmetry (and its potential

spontaneous breakdown) as opposed to parity symmetry, but also in the technical detail that in

reducible models the P tends to cancel between the fermions of opposite irreducible represen-

tations. This will be of major interest in Chapter 7.

Yukawa models. The H formulations reveal a strong similarity to Yukawa models which

consist of coupled fermions and bosons that are both dynamical DOFs (as opposed to 4FT where

only the fermions have an explicit kinetic term). Despite this apparent dierence, these models

are usually governed by the same xed points (FPs) [85] and oftentimes discussed in terms of

one another. Their connection is most direct in the limitNf → ∞ which translates to an innite

mass for the bosons such that their kinetic term can be neglected.
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This thesis will be mostly concerned with χGN and Z2-GN models in 1+1D (in Chapter 6)

and Th models in 1+2D (in Chapter 7). But the other models described here play an important

role as extensions or relatives and will be also discussed in Chapter 3.

2.7 External Parameters

We close this chapter with a short description of the thermodynamic control parameters we

consider. In euclidean eld theory, temperature T is realized by a nite temporal extent of

spacetime with (anti-)periodic boundary conditions for (fermions) bosons [70]. More precisely,

T =
1

kBβ
(2.41)

where β is the temporal extent of the system and kB is the Boltzmann constant (which is 1 in

our units). A large temperature prefers entropic contributions to the free energy over energetic

contributions which typically increases disorder and tends to destroy long-range order and re-

stores broken symmetries.13 A nite temperature is quite naturally realized in a lattice setup as

we will use it in the following and we will vary the temporal extent of our system to change the

temperature.

The average particle number is a conserved quantity due to the U(1) subgroup of the avor-

vector symmetry. Its density

nB = ψ̄γ0ψ (2.42)

is often called baryon density in the literature (e.g. [88]) as fermionic bound states in our models

could be seen as a simple model of QCD’s baryons. We will adopt this nomenclature throughout

this work. We can encourage the system to increase the average baryon number by adding a

term µnB to the Lagrangian. The coecient µ is known as chemical potential and is the other

thermodynamic control parameter we will vary in this thesis.

In addition to the above, the literature considers the dependency on a wide range of further

internal and external parameters. Depending on the dimension and representation, one or even

multiple mass terms can be introduced that usually break explicitly one of the previously dis-

cussed symmetries.14 Isospin chemical potential and imaginary chemical potential are popular

parameters to consider in lattice QCD because they mitigate the infamous sign problem [70] but

at least the former has direct applications in heavy ion collisions [90]. An external magnetic

eld can lead to a rich and interesting phase diagram [86, 87] and is found in neutron stars [6],

heavy ion collisions [91] and the early universe [92].

13Interestingly, there are exotic scenarios where moderate temperatures were shown to trigger B while it was
not present at low temperatures. The corresponding eective potential was rst given in [86] but [87] seems to be
the rst to explicitly plot this.

14ee e.g. [88] for a discussion of the massive phase diagram in some Z2-GN models and [89] for a discussion
of the various mass terms in 1+2D Th models.
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Chapter 3

Analytical Precursors

Compared to the fundamentally realized QFTs in nature, like QCD, 4FTs are relatively simple

and oftentimes results of reasonable quality can be obtained even by analytical means. This chap-

ter will collect pertinent analytical precursors to our numerical work. It summarizes common

knowledge as well as recent developments both of which were most recently reviewed in [70].

We will start out from the simplest case, viz. the homogeneous MF solution in ection 3.1.1, and

discuss successively more involved scenarios by dropping homogeneity in χGN (ection 3.1.2)

and Z2-GN (ection 3.1.3) models in 1+1D. Afterwards, we will turn to more realistic scenarios

in higher dimensions in ection 3.2 and nally drop the MF approximation, too, in ection 3.3.

We will conclude with a short review on the interpretation of the discussed facts in the literature

in ection 3.4.

3.1 Mean-Field Results in Gross-Neveu-like Models

chematically, integrating the H form of a 4FT using Eq. (2.2) one arrives at

Z =

∫

Dϕ e−NfSe , Se [ϕ] =

∫
|ϕ|2

2g2
− ln detD (3.1)

wherein ϕ collects all auxiliary bosons (e.g. ϕ = (σ, π⃗) for NJL), D is the Dirac operator

including the appropriate Yukawa couplings (e.g. D = D[σ, π⃗]), g2 is to be replaced by the

pertinent 4FT coupling constant and |ϕ|2 is to be expanded appropriately. The purely bosonic

eective action Se describes the behavior of the auxiliary eld governed by the interaction with

the fermions.

This form is the starting point for most approaches to 4FTs. One of the simplest of such is

the MF approximation or large-Nf limit:15 It starts by expanding the integral around minima

of the eective action. Assuming that there is only a single (global) minimum16 ϕmin, one can

15The following argument would work equally well for approaching the semi-classical limit ℏ → 0 due to the (in
natural units) implicit prefactor 1

ℏ
.

16In order to ensure this, one might have introduced a small trigger explicitly breaking symmetries of the system.

19



20 CHAPTER 3. ANALYTICAL PRECURSORS

approximately compute

Z = e
−NfSe [ϕmin]+O

(

1
Nf

)

≈ e−NfSe [ϕmin] (3.2)

up to deviations of order 1
Nf
. It, hence, becomes exact in the limit Nf → ∞. The absence of a

zeroth order term in Nf is ensured by the extremal condition

δSe [ϕ]

δϕ

⃓
⃓
⃓
⃓
ϕmin

= 0 (3.3)

called the gap equation. This reduces the problem to the minimization of Se . Assuming that a

non-vanishing, constant minimum exists, we canmeasure everything in units of the dimensionful

ϕ0 = ϕmin(T = 0, µ = 0) which yields a consistent renormalization condition.17

3.1.1 Homogeneous Gross-Neveu-like Phase Diagrams

This minimization is still far from trivial and usually not accessible to analytical methods in full

generality. Therefore, it is often supplemented with physically sensible assumptions. The most

common one is constancy of the boson eld(s) which seems to be adequate due to translational

symmetry. Under this assumption, Z2-GN, χGN and NJL
18 models become equivalent and a

non-vanishing expectation value19 of the auxiliary eld has the same eect as amass term, except

for being constrained by the additional conditions imposed by the gap equation, Eq. (3.3).

The phase diagram (PD) of the large-Nf GNmodel in 1+1 dimensions was rst addressed by

[94] from the particle-physics perspective but had already been known in the condensed matter

literature for over twenty years at that point [95]. The corresponding PD in the temperature-

chemical-potential plane is included in Fig. 3.1a. At vanishing chemical potential and su-

ciently strong coupling, the theory allows for a non-vanishing condensate σ0 at vanishing tem-

perature which we will use to set the scale. Increasing temperature, the condensate decreases

monotonically until it vanishes continuously at a temperature

Tc/σ0 = eγ/π ≈ 0.567 (3.4)

wherein γ is the Euler-Mascheroni constant. This second-order phase transition (PT) extends

to small non-vanishing chemical potentials with monotonically decreasing critical temperature.

At

Tt/σ0 ≈ 0.318, µt/σ0 ≈ 0.608, (3.5)

17Theoretically, one should then measure an experimental value for ϕ0 but in many studies – including this one
– the considered scenario is not close enough to any (high-energy physics) real-life system for such a value to be
meaningful. o, we will be content with dimensionless numerical values throughout this thesis.

18For NJL, one usually assumes further that ⟨π⃗⟩ = 0 in order to comply with QCD phenomenology [93].
19In this approximation, the minimizing conguration also constitutes the expectation value.
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(a) Z2-GN PD from [18]. The dotted
line shows the rst-order transition
that is found if the optimization is
restricted to homogeneous cong-
urations.

(b) Representative examples of σ con-
gurations in the mean-eld Z2-
GN model from [18]. The Fermi

momentum kF is roughly µ ≈
πkF for all but the lowest kF =
0.13 which corresponds to µ ≈
2/π.
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(c) χGN PD from [17]. If restricted to
homogeneous congurations, the
PD is identical to Z2-GN with this
constraint. ome example cong-
urations and the eective potential
are sketched.

Figure 3.1: MF PDs and example congurations of Z2-GN and χGN models in 1+1D.

the transition becomes rst order (indicated by the dotted line). This rst order transistion line

reaches vanishing temperature for

µc/σ0 = 1/
√
2 ≈ 0.707. (3.6)

For larger chemical potentials, no condensation takes place. At vanishing temperature, the

fermion number density vanishes for chemical potentials below this value and jumps to a nite,

monotonically increasing value above it.

In 1+2D systems, the PD looks qualitatively very similar with the notable dierence that

there is no rst-order transition but all nite-temperature transitions are of second order [96].

Only at vanishing temperature, the eective potential degenerates into becoming completely

at between ϕ = 0 and ϕ = ϕ0 such that it does not t into the standard classication of rst

and second order transitions. In 1+3 dimensions, 4FTs are generically not renormalizable but

keeping a nite cuto one can again nd qualitatively similar results.

3.1.2 Inhomogeneities in Chiral Gross-NeveuModels

The assumption of constant condensate turned out to be an oversimplication that is not justied

(at least in 1+1 dimensions): In [18], the PD was revised by numerical minimization (later re-

derived by completely analytical means [16]) in a larger subspace of bosonic congurations

allowing for some inhomogeneous congurations. It is shown by the solid lines in Fig. 3.1a for

Z2-GN and in Fig. 3.1c for χGN. It not only diers for the dierent models but also features

inhomogeneous phases in large parts of the nite-chemical-potential region of the PD.

Despite the additional boson eld, it turns out that the large-Nf χGN model is analytically

easier to handle. In [97], the general (constant-in-time) solution of the necessary condition

Eq. (3.3) was found. It consists of a four-parameter family of complex condensates periodically

varying in amplitude and complex phase.20 A minimization in this subspace of boson congura-

20Amplitude and phase variations are governed by two of the four parameters. The other two parameters describe
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tions reveals that for all chemical potentials, the large-Nf χGN model features a so-called chiral

spiral (χspiral) equilibrium

∆(x) = ρ(T )eik(µ)x. (3.7)

The dependence on temperature and chemical potential completely decouples in the sense that

the wave number

k(µ) = −µ (3.8)

is a function of the chemical potential only, while the amplitude ρ(T ) monotonically decreases

with the temperature vanishing at Tc from Eq. (3.4) independent of the chemical potential. The

zero-chemical-potential axis is understood as the degenerate limiting case of innite wavelength,

i.e. constant condensate. ome example congurations can be seen in Fig. 3.1c.

It is no coincidence that the critical temperatures of χGN and Z2-GN (the latter at vanishing

chemical potential) agree. In fact, the nite wave number enters the partition function only in

form of (k + µ) which upon minimization not only yields the above linear dependence but also

removes the dependence on both from the partition function rendering it equal to the (µ = 0)

partition function of the Z2-GN model.

Despite the condensates being space-dependent, the overall conguration is still rather ho-

mogenenous: Most physical properties, like e.g. the mass gap (given by the amplitude) or the

fermion number density, do not depend on the position in space. Intuitively speaking, the system

accommodates the additional fermions enforced by the chemical potential in the least intrusive

way by slightly twisting the condensate avoiding expensive amplitude variations (in terms of

free energy, see ection 3.3).

3.1.3 Inhomogeneities in Discrete Gross-NeveuModels

In retrospection, the optimal solutions for the Z2-GN model found in [16] can be constructed

from the solutions of the χGN model upon constraining to real-valued solutions. While the

potential energy of fermions is lowest in strongly varying condensates [88], amplitude varia-

tions are massive and therefore costly with respect to their free energy (similar to ection 3.3).

This competition cannot be avoided by (massless) phase variations as in the χGN model lifting

the degeneracy of the partition function and leading to the much richer phase structure seen in

Fig. 3.1a.

The PD features a region of homogeneous condensation not unlike the purely homogeneous

PD at low temperature and chemical potential. It does not, however, exhibit any rst-order PTs21

overall amplitude and phase shift.
21Interestingly, the assumption of having a rst-order PT hindered the rst (particle physics) discovery of inho-

mogeneous structures in this model: Already [98] reports nding inhomogeneous congurations inMC simulations
of a Z2-GN model but interprets them as coexistence of phases around what they believed to be a rst-order PT.
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but instead is separated from the rest of the PD by second-order PTs all the way down to T = 0

where it arrives at

µc/σ0 = 2/π. (3.9)

This value matches the analytically-known baryon mass [99] the mismatch of which was a co-

nundrum in the homogeneous version of the PD.

At low temperature and intermediate chemical potential, a transition into a new inhomoge-

neous or "crystal" phase replaces the previously found rst-order transition and unmasks the

latter as an artifact of overconstrained minimization. Close to the transition, the optimal con-

gurations are kink-antikinks (KAKs) exhibiting sharply localized interpolations hosting Nf/2

fermions between large patches of almost constant condensate. Increasing the chemical poten-

tial and thereby the number of fermions to accomodate, these so-called baryons22 are moved

together – barely changing their shape – until at sucient overlap, the KAK structure more and

more resembles simple cosine-like waves.

As in the χGN model, the amplitude and wavelength are predominantly governed by tem-

perature and chemical potential respectively but the strict independence is lost and the transition

temperature at which the amplitude vanishes decreases monotonically with the chemical poten-

tial. everal examples are shown in Fig. 3.1b. The distinguished point (Tt, µt), Eq. (3.5), keeps a

special meaning as the position where the temperature-driven PT between homogeneously bro-

ken and symmetric phase splits up into the homogeneous-inhomogeneous and inhomogeneous-

symmetric transitions.

3.2 Inhomogeneities in (Closer-To) Real-World Systems

Nowadays, there is no doubt that several 4FTs exhibit inhomogeneous phases in 1+1 dimensions

at strictly innite avor number. This particular setting is admittedly very restrictive and it is

widely known that a tendency to infrared (IR) divergencies in low-dimensional systems can lead

to peculiar behavior (see ection 3.3 for more details). In that sense, it has rather served as a

proof of principle and spawned research into more realistic variations of the models although

[16] beautifully summarizes the signicant interest on the condensed matter side from a particle-

physics perspective. Before we will drop the MF approximation in ection 3.3 (and all later

chapters), we will have a look into higher-dimensional large-Nf results and their applicability.

In terms of particle physics, a 1+3-dimensional model is what to aim for. As an intermedi-

ate step there have been several investigations into 1+2D theories [100–103]. As opposed to the

1+1D case, no analytical methods are known that can solve the problem in full generality. There-

fore, several ansatz-based approaches were chosen either using educated guesses from the 1+1D

blueprints or tractability considerations. Additionally, lattice formulations of the theory were

used for less (but still partly) constrained minimizations of the eective action. While none

22The name is chosen following the corresponding particles in QCD although there is no color DOF in our model.
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of the methods so far found inhomogeneous phases in the fully renormalized theory, a small

regularization-dependent inhomogeneous island near the critical chemical potential µc at very

low temperatures as well as a larger inhomogeneous continent for exceedingly large chemical

potentials were found [103]. The latter one is strongly intertwined with the cuto scale23, while

the former – despite vanishing in the continuum limit – seems to feature an independent scale

and is therefore, in addition to its resemblance with other inhomogeneous phases found in 1+1

and 1+3 dimensions, considered more relevant for phenomenology (at least in 1+3 dimensions

[104]). However, there are also regularization procedures that do not produce inhomogeneities

at all. This result is hardened by stability analyses for a broad class of models.

While these ndings are rather disenchanting concerning the possibility of inhomogeneous

phases in QCD, one should note that inhomogeneous phases do not only exist (and even pre-

ceded) in solid-state physics [105] but are actually experimentally measured these days [106].24

The crucial dierence to particle physics is the fact that there is an inherent cuto scale, viz. the

lattice spacing, that is considered natural in such systems.

In 1+3 dimensions, there has been an ongoing eort exploring inhomogeneities in 4FTs [20,

107, 108] and beyond [104]. As such theories are not renormalizable, they are treated as eective

theories with an intrinsic cuto and in that setup again25 an inhomogeneous island and continent

are found.

However, there are a number of open questions that are actively investigated currently. While

the open questions concerning correct scalesetting in the NJL model and its Yukawa extension,

known as the Quark-Meson (QM) model, have been claried recently [109], these corrections

still do not allow for the renormalized limit to be taken in the QM model which from theoretical

considerations should be renormalizable [20]. This could be a truncation artifact (as conjectured

in [104]) but might also signal an incompatibility of QCD phenomenology with the QMmodel’s

FP; after all, QCD is not the QMmodel and there is no reason to believe that the ultraviolet (UV)

limit of the QM model could reproduce the low-energy measurements of QCD. This should, of

course, not be seen as a major limitation because the QM model is either way only meant as an

eective theory; but it prohibits a rst proof of principle in 1+3 dimensions.

Furthermore, after the strong regularization dependence was discovered in 1+2 and 1+3 di-

mensions [103, 108], these results have to be reconsidered. The procedure that is most used, viz.

Pauli-Villars regularization, is among the ones featuring inhomogeneities while other, e.g. lat-

tice, regularizations feature none or very dierent inhomogeneous phases. This casts some doubt

on the reliability of such predictions even when understood as eective theories. To prefer one

result over the other would require a justication in what sense this method is superior.26

23in the sense that chemical potential and dominant wave numbers are of the same order as the cuto
24In the cited studies a magnetic eld, rather then a chemical potential, is used to introduce the necessary im-

balance but this is a typical translation to be made between the relativistic eld-theoretical formulation and the
non-relativistic physical real-life system in condensed matter physics [16].

25More precisely, these studies preceded chronologically and motivated the 1+2D ones.
26With gratitude I remark that the following paragraphs were strongly inuenced by private communication with

L. Pannullo including some helpful pointers to the literature and personal opinions.
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There are two lines of reasoning around this in the literature: First, a sharp cuto (like in

lattice formulations) makes momenta of and above the scale of the cuto inaccessible to the

regularized theory. This will spoil the shape of the phase diagram if such momenta are relevant

as was, for example, commented in [104, 110]. It seems, however, not quite plausible that such

distortions should not be systematically removeable as long as the physically relevant momenta

constitute an own scale independent of the cuto (e.g. given by the chemical potential as above).

The study in [104] additionally nds surface terms arising from sharp momentum cutos. It

remains to be investigated if they could be removed by other means, e.g., explicit counterterms,

and how they aect observables of interest. A similar situation is later discussed in ection 5.5

where an explicit removal was possible but the divergent terms oftentimes did not actually aect

observables of interest in the rst place (see also [66]).

All in all, this question is actively discussed and no denite answer is known yet. Regu-

larization seems to be even more challenging without the clear expectation that all relevant mo-

menta can be considered small and the missing renormalizability lifts the necessity that dierent

schemes yield the same results.

3.3 Beyond Mean Field and No-Go Theorems

Next, we will lift the restriction to innite avor numbers and consider perturbations around the

MF solution. We will focus on χGN models due to their conceptual simplicity.

The saddle-point approximation Eq. (3.2) immediately gives a way to compute corrections

to the MF result. After a rather lengthy, but straightforward, calculation the eective action of

small uctuations δρ, δθ around the χspiral solution

∆ = (ρ+ δρ) eikx+iδθ (3.10)

at vanishing temperature turns out to be

2πδ2Se =

∫

δρK∆ arsinh

(
√
−∆

2ρ

)

δρ

+

∫

δθ

(

ρ2

K∆

arsinh

(
√
−∆

2ρ

)

+
∆

8

)

δθ

(3.11)

=

∫ (

δρ2 +
1

12ρ2
(∇δρ)2 +

1

8
(∇δθ)2

)

+ . . . (3.12)

where, importantly, ∆ denotes the Laplacian and not the complex auxiliary eld and the dots

denote higher-order terms [42]. In there, we used

K∆ =

(

1− 4ρ2

∆

)
1
2

. (3.13)

Before further analyzing the formula, one should note that this result does not depend on
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the chemical potential or the underlying χspiral explicitly. In fact, the expansion Eq. (3.11) was

already given in [44] which was not concerned with nite chemical potential at all. This is only

true if the wave number is allowed to vary freely in order to match the chemical potential exactly.

We will see that the constraints of a nite lattice will lift this degeneracy.

As expected, both bosonic DOFs can propagate via fermion loops as seen from the kinetic

terms in the expansion. The mass term of the amplitude uctuations δρ was already present in

the microscopic action Eq. (2.30).

As opposed to δρ, the compact variable δθ does not acquire a mass. Thus, concerning the

long-range behavior we can safely neglect amplitude uctuations. Dening the thermal corre-

lation length found in [44]

ξβ =
2Nf

πT
α , α = 1 + 2

∑

n∈N

(−1)n(nβρ)K1(nβρ) , (3.14)

wherein K1 is the modied Bessel function of second kind, we nd

C(x) ≈ ρ2e−2ikx
⟨
eiδθ(t,0)−iδθ(t,x)

⟩ x→∞−→ ρ2e−2ikx

⎧

⎨

⎩

x
− 1

Nf T = 0,

e
− x

ξβ T > 0.
(3.15)

Eq. (3.15) shows that there does not exist any long-range order at nite avor number in

1+1D χGN models. Instead, χspirals get disordered over large distances by phase uctuations.

Only if the limit Nf → ∞ is performed before x → ∞, the MF result of B is recovered.

This is in accordance with pertinent no-go theorems. It is common lore by now that IR

divergences tend to destroy long-range order in low-dimensional systems. Originally, several

authors came to the same conclusion [111–113]:

Theorem 1 (CHMW). Continuous symmetries cannot be broken spontaneously in 1+1 dimen-

sions.

The theorem can be understood from dierent perspectives although the underlying math-

ematical ideas are very similar. [113], for example, proved that the massless boson eld has a

non-renormalizable IR divergence in 1+1 dimensions. Thus, the would-be NGB necessitated by

such a broken symmetry cannot exist. [111] instead provided an upper bound for the magneti-

zation in the prototypical example of the Heisenberg model.

Either way, the proof of the theorem hinges on the divergences of pertinent integrals. These

integrals are intimately related to the nature of the low-energy spectrum of the system (e.g. the

relativistic dispersion relation of the NGB). While these particles and their properties are easily

identied for the (would-be) breakdown of internal symmetries, it is – to the best of my knowl-

edge – not clear, if physical systems in which external symmetries, like translational invariance,

are involved in this breakdown could produce exotic low-energy dispersion relations that are not

captured by the above assumption.
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In particular, the standard NGB counting from relativistic systems does not apply in non-

relativistic systems, like systems at nite density, and even non-standard dispersion relations

can occur in such scenarios [114, 115]. For example, in supersolids exhibiting inhomogeneities

at least part of the low-energy spectrum does not exhibit a relativistic dispersion relation [116].

It is therefore not clear if the possibility of strict long-range order can be disregarded purely on

grounds of Theorem 1 if external symmetries are involved and we were not able to answer this

question in Z2-GN models.

One should note that this theorem is circumvented in the large-Nf limit by decoupling the

divergent mode from the theory [41]. This explains how the limit of Eq. (3.15) can become

a constant at vanishing temperature. Intuitively, one can picture Nf as acting like a further

spacetime dimension in that it provides additional weight to the integrand of the path integral

fostering its localization in one of the degenerate minima. This intuitive argument as well as the

explicit results in [41] make clear that this mechanism is an artifact of the large-Nf limit. till,

we cannot a priori exclude the possibility of decoupling the (would-be) NGB by some other

mechanism.

Nevertheless, concerningχGNmodels overwhelming evidence frommultiple sources is now

available to support a scenario of quasi-long-range order: Besides the abstract application of

Theorem 1, Eq. (3.15) from the analytical side and the numerical simulations later on provide

multiple ways to arrive at the same conclusion (see Chapter 6). This scenario allows for arbitrar-

ily large, but necessarily nite, correlated regions, in a sense that there is no length scale at all

related to the decorrelation over large distances. ThisBerezinski-Kosterlitz-Thouless (BKT)

scenario, named after [117–119], boils down to a competition between the pair-production en-

ergy penalty and the growth in phase-space volume associated with the latter. The original work

is concerned with 2-(spatial-)dimensional gases at nite temperature but the argument works

similarly when replacing the thermal partition function by a functional integral from quantum

theory. This competition results in rationally decaying correlations as seen for vanishing tem-

perature in Eq. (3.15).

The general entropy-vs-energy argument is, however, much older. In a short paragraph at the

end of [120],27 it is proven that:

Theorem 2 (LL). There is no SSB at nite temperature in systems of one spatial dimension.

This stronger statement implies all kinds of symmetries. Its application gives rise to the

complete loss of scale-free correlation of (either strict or quasi-)long range at nite temperature.

Instead, we nd a thermal mass that continuously vanishes for T = 0. In that sense, T = 0 can

be regarded as a critical line.

27Even that work was preceded by less formal argumentation with the same idea, e.g. [121].



28 CHAPTER 3. ANALYTICAL PRECURSORS

3.4 Applicability and Quantum-Spin-Liquid Conjecture

The previous discussion might have raised some doubts about the applicability of these low-

dimensional results to full-etched physical systems. Therefore this nal section will highlight

two important ideas from the literature.

First, correlated patches of spacetime are probably very large compared to the spatial regions

of high density in which our models are applicable. In one of the original works it reads [122]:

"Note that the exact bound [...] may well be so weak as to allow two-dimensional systems of

less than astronomic size to display crystalline order." o, even in case of a neutron star – the

prototypical example of a system of high density – correlations might be sucient to give rise

to mostly crystalline behavior.

This is probably also true for most tabletop experiments in solid-state physics where these

(or very similar) models are applicable. Although there seems to be experimental evidence

for Coleman-Hohenberg-Mermin-Wagner (CHMW)-induced disorder [123], for the popular

low-dimensional system of graphene the necessary size of the sample is estimated to be of the

order of 1030 meters and, thus, practically irrelevant [124].

econd, the quasi-long-range behavior discovered in χGN models could be representative

for all conjectured crystalline structures in particle physics: [125] analyzed a simple eective

model of uctuations around an inhomogeneous order. Interestingly, they nd a double-pole

structure that entails IR divergences in arbitrary dimensions. The system, thus, exhibits very

similar behavior to what we will nd in χGN models; namely, inhomogeneities on (at least)

intermediate scales that are damped for large separations. They call this a quantum-spin liquid

(QL) and conjecture that the found double-pole structure could be a generic feature in such

systems.



Chapter 4

Lattice Quantum Field Theory

Regularizing QFTs on a nite spacetime lattice is a particularly successful approach because it

allows to exploit modern computer hardware. Leveraging high-performance computing, rst-

principle QCD simulations nowadays produce some of the most precise predictions in modern

physics. This chapter explains our take on lattice-eld theory and MC simulation techniques

(ection 4.1) before discussing the lattice-fermion-specic lattice artifact phase (LAP) (ec-

tion 4.2) and introducing some notation (ection 4.3). It concludes with some words about

scalesetting in ection 4.4.

4.1 Lattice Quantum Field Theory and Monte Carlo Tech-

niques

tarting from a d-dimensional continuum QFT in innite volume described by its Lagrangian

Lcont, we can introduce a set of nitely many spacetime pointsΛ on which we choose to approxi-

mate our system. Unless stated otherwise, we will assumeΛ to be a regular lattice withNt points

in temporal direction and Ns points in each spatial direction amounting to |Λ| = Nt × Ns
d−1

points in total separated by an isotropic lattice spacing a. This is not strictly necessary, and there

are interesting alternatives, but such setup is employed in the overwhelming majority of studies

in this area due to its simplicity.

In order to describe continuum and innite-volume physics, we are interested in a lattice

Lagrangian LΛ formed from elds ϕ : Λ → R or C that obeys LΛ → Lcont in the limiting

cases where aNs → ∞ while a → 0. The euclidean temporal extent aNt plays the role

of an inverse temperature that should be kept xed in order to describe a xed temperature in

these limits. The choice of LΛ is, by far, not unique and, while all valid discretizations are

required to show the correct limiting results, their approach to this limit can be very dierent.

The particularly intricate issue of choosing an appropriate LΛ for fermionic DOFs is devoted a

separate Chapter 5.

As in the analytical approaches in Chapter 3, fermionic interactions are usually replaced by

auxiliary H elds such that our lattice studies amount to investigations of the bosonic systems

29
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Eqs. (2.25), (2.30) and (2.37). The corresponding high-dimensional integrals can be evaluated

by MC methods, i.e. stochastic sampling, in case that the weight exp (−NfSe) is real and pos-

itive, where

Se = ln detD[ϕ] + U(ϕ) (4.1)

denotes the eective bosonic action wherein ϕ collects all the relevant bosonic DOFs, e.g., ϕ = σ

for Z2-GN, and so on, and U(ϕ) is the quadratic potential term, e.g., ∝ σ2 in Z2-GN models.

If exp (−NfSe) is negative or even complex for some congurations of ϕ, the stochastical

interpretation breaks down and all known, generally applicable ways to recover strictly non-

negative weights become infeasible in the thermodynamic limit. This is the infamous P, a

general solution of which is likely to not exist [54]. It hinders, for example, simulations of lattice

QCD at non-vanishing baryon density but is also a hurdle for many applications in condensed

matter physics.

Concretely, the importance samplingMCmethod drawsNMC random congurationsϕn, n =

1, . . . , NMC, distributed according to exp (−NfSe) and approximates the expectation value of

an observable as

⟨X ⟩ ≈ 1

NMC

NMC∑

n=1

X [ϕn]. (4.2)

For the generation of congurations, the method of choice is usually a Markov chain for which

one generates the next eld conguration from the current (and only the current) conguration.

tarting from an initial (probability distribution of) conguration(s), aMarkov chain with tran-

sition probability p is guaranteed to converge to the desired probability distribution Peq(ϕ) under

the following conditions [1]:

Positivity. For all congurations ϕ,ϕ′: p(ϕ → ϕ′) ≥ 0.

Normalization. For all congurations ϕ:


ϕ′ p(ϕ → ϕ′) = 1.

Balance. For all congurations ϕ′:


ϕ Peq(ϕ)p(ϕ → ϕ′) = Peq(ϕ
′).

The rst two basically ensure that p(ϕ → ·) actually is a probability distribution. The non-trivial

condition is Balance which ensures that Peq(ϕ) is a FP of the Markov chain. For practical

purposes, it is usually replaced by the somewhat simpler sucient detailed balance

Peq(ϕ)p(ϕ → ϕ′) = p(ϕ → ϕ′)Peq(ϕ
′). (4.3)

For the concrete update step that generates the next conguration, a variety of proposals

are available in the literature [1, 90]. tate-of-the-art simulations of lattice fermions typically

use the hybrid MC (HMC) algorithm. It proposes a global update of the current congura-

tion by solving a ctitious molecular dynamics system that simulates moving the conguration
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through a potential-landscape dened by the eective action with randomly drawn initial mo-

mentum. This approach signicantly reduces the unavoidable autocorrelations (ACs) between

successively drawn congurations as long as the eective action is suciently well-behaved. In

particular cases where the eective action is ragged and contains several (almost) degenerate

minima that are separated by high ridges, the HMC struggles because – pictorially speaking –

it cannot tunnel through such ridges and instead needs large initial momentum as well as long

trajectories to climb them and arrive in the new valley.

As in many other MC algorithms, a Metropolis-accept/reject step after a short trajectory

ensures convergence to the correct distribution, i.e. we accept the proposed update with proba-

bility

p(ϕn → ϕn+1) =

⎧

⎨

⎩

1 if S(ϕn) > S(ϕn+1)

e−(S(ϕn+1)−S(ϕn)) else
(4.4)

and otherwise revert to the conguration ϕn+1 = ϕn we started with.

More specically, we use the rational HMC (rHMC). The "rational" part in rHMC refers to

the treatment of the fermion determinant. Given a Dirac operator (see Chapter 5), we approx-

imate the fermion determinant by so-called pseudo-fermions. These are Npf bosonic elds the

dynamics of which is governed by (some power of) the inverse Dirac operator

(detD)Nf = (detD†D)
NfNpf

2Npf ∝
∫

Dϕ exp

⎡

⎣−
Npf∑

p=1

ϕ†
p


D†D

−
Nf

2Npf ϕp

⎤

⎦ (4.5)

where D refers to the single-avor Dirac operator. The rst equality assumes detD to be real

(and non-negative if Nf is odd). The proportionality constant drops out in expectation values.

An exact computation of the rational power of D†D would still be prohibitively expensive, so

we approximate this by k rational functions on an interval via


D†D

n ≈ r

D†D,n


= α0(k) +

k∑

i=1

αi(n)

D†D + βi(n)
. (4.6)

The individual terms together can be evaluated with almost no overhead using a multi-shift

conjugate-gradient solver [90]. The values of αi(n), βi(n) are computed using the Remez algo-

rithm in the implementation of [126] to obtain optimal approximations of xn over a xed interval

chosen to include the whole spectral range of D†D for typical eld congurations.

The simulations for this thesis were performed with the code that was also used in [127] and

was adapted to the new research questions during the work on this thesis. Many more imple-

mentation details can be found there. Tables providing a high-level overview over the parameter

sets used during the simulations can be found in Appendix B. More details are available in the

code and data releases [63].
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4.2 The Lattice Artifact Phase

Interacting fermions on the lattice generically feature a strong-coupling phase that is usually not

related to continuum physics. It was realized in [22] that this is related to an additive renormal-

ization of the coupling constant that shifts the point of innite renormalized coupling strength

to a strictly positive value of the inverse bare coupling.

In [128], the origin of this phase was explained quite intuitively:28 On a nite lattice, one can

integrate out the fermion interaction directly, thereby trading the path integral for a combinatorial

sum over occupation number congurations that indicate if an interaction is happening at some

lattice point in this conguration.29 This divides each conguration into a set of sites at which

the fermions move freely and its complement where the fermions take part in the interaction.

The typical proportions of free and interacting sites are governed by the coupling strength and

increasing the coupling strength will at some point lead to a situation where on average (almost)

all sites are occupied by interactions. In such congurations, the dynamical part described by

the free moving fermions is no longer represented faithfully.

This problem originates purely from the nite lattice spacing because in a continuum rep-

resentation we would always have an innite number of fermion states available such that it is

not possible to prohibit all dynamics by Pauli blocking. In fact, reducing the lattice spacing in

the above case would be achieved by reducing the bare coupling implying to move out of this

artifact region again.

This extremely-strong-coupling region goes under dierent names in the literature but we

will call it the LAP, indicating that we consider it an artifact of the discretization that does not

aect the continuum limit. This perspective is, e.g., taken in [22, 89, 128]. In condensed matter

theory instead, this is a valid phase in the phase diagram of pertinent models [130, 131] because

there, a nite lattice spacing is an intrinsic property of the system.

It is often found to be separated from the continuum phases by a rst-order PT, e.g. in [130],

that does not allow for a continuum limit to be constructed which again emphasizes the lattice-

only character of this phase. However, in [96] data consistent with a second-order percolation

transition were presented which would match well with the above explanation and also [131]

speculates for this to be of second order. It is not unlikely that the order of this transition is

model dependent.

One of the typical consequences of entering this phase in lattice simulations is found to be

a (usually rapidly) decreasing condensate with increasing coupling. As this is the opposite to

typical behavior in continuum phases, it manifests in a non-monotonic behavior of pertinent

condensates. Consequently, some authors locate this transition via the maximum of a measured

condensate [89]. In Chapter 7, we will use a more tailor-made approach in line with the above

description and will, in fact, nd that a maximum in the condensate is not related to the entrance

into the LAP if the continuum phase from which one is entering the LAP does not feature a

28The following description is vastly simplied not including multiple avors or avor-multiplet interactions.
29This procedure is inspired by the fermion-bag algorithm [129].
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condensate beyond numerical noise.

For all results in this thesis, we made sure to simulate outside of the LAP unless explicitly

stated.

4.3 Notation

For the rest of this thesis, we will adopt some common notation: First and most importantly, we

will use the same symbol for the expectation value of an observable ⟨X ⟩ and its lattice estimator

⟨X ⟩, i.e. the left-hand and right-hand side of Eq. (4.2). Unless explicitly stated otherwise, we

will average an estimator over the whole spacetime lattice Λ of |Λ| points – in order to increase

statistics while carefully preserving relations between lattice points. o, if X (δx) depends on

ϕ(x) and ϕ(x+ δx), we imply the following

⟨X (δx)⟩ = 1

NMC

NMC∑

n=1

1

|Λ|

∑

x∈Λ

X [ϕn(x),ϕn(x+ δx)]. (4.7)

ome care is in order if dealing with non-linear operations within this convention. Most

prominently, this includes taking the absolute value in the estimation of condensates. We will

imply such an absolute value for condensates in fermionic, e.g.
⟨
ψ̄ψ

⟩
, as well as bosonic repre-

sentation, e.g. ⟨σ⟩, in between the spacetime and the MC average unless stated otherwise, i.e.

⟨σ⟩ = 1

NMC

NMC∑

n=1

⃓
⃓
⃓
⃓
⃓

1

|Λ|

∑

x∈Λ

σ(x)

⃓
⃓
⃓
⃓
⃓
. (4.8)

We will denote by F [f ] the Fourier transform (FT) of a function f . Depending on the context,

this should be interpreted as a continuous or discrete form as appropriate.

For correlation functions, we dene the connected correlator

⟨ϕ(x)ϕ(y)⟩c = ⟨ϕ(x)ϕ(y)⟩ − ⟨ϕ(x)⟩ ⟨ϕ(y)⟩ . (4.9)

We will sometimes refer to the spatial lattice Λs only.

4.4 Scalesetting

It is usually convenient to work in so-called lattice units in which everything is measured in units

of the lattice spacing. In order to extract results in physical units or even just compare between

dierent parameter sets, we have to express the lattice spacing itself in terms of a known physical

observable which is typically the experimentally measured mass of some particle. This is less

relevant for the study of critical properties without external parameters due to the expected scale

invariance in the vicinity of a second-order PT but is of utmost importance if external parameters

and, obviously, explicit length scales like spatial inhomogeneities are considered. The former
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applies to our studies of Th models and we will spare us the trouble of setting a scale there but

instead focus on the Z2-GN and χGN scalesetting here.

Our models of interest are suciently far away from real-world physical systems that no

experimental data exist to which we could t our model. Instead, we will optimize for com-

parability with the MF prediction. In Z2-GN models, we can set the scale by measuring the

dimensionless

aσ0 = ⟨σ⟩T=0,µ=0 . (4.10)

Thus, if we are interested only in quantities made dimensionless by comparing them to σ0, e.g.

T/σ0,Lσ0 or ⟨σ⟩ /σ0, we can immediately translate between lattice units and such physical quan-

tities by multiplying/dividing by the respective power of the above numerical value. Physically,

one could imagine that we are able to measure the real-world value of the condensate and build

our whole system of units on top of that. We will take over the values from [65] here as the same

ensembles are used.

We can do the equivalent procedure for χGN models by measuring

aρ0 = ⟨ρ⟩T=0,µ=0 . (4.11)

One should note that this is a valid scale whenever there is a non-trivial global minimum in

the eective action for ρ. This does neither imply nor assume any form of symmetry breaking

because the crucial aspect of B is that the complex phase θ spontaneously chooses a xed

value. Nevertheless, the measurement of this number poses signicant problems as is laid out in

detail in [42]. Although the methods described there have signicant shortcomings, I have not

found a better method and will, hence, proceed using the values stated there.



Chapter 5

The Dirac Operator and its

Discretizations

In order to study fermionic theories in MC simulations, one has to discretize the Dirac operator

/∂ on a nite set of points. In ection 5.1, I will rst gather important properties of the Dirac

operator in the continuum the preservation of which in a discretized setting is desirable. Unfor-

tunately, it turns out that the no-go theorem of Nielsen and Ninomiya [132, 133] forces one

to compromise in this respect. I will then describe the various formulations of fermions on the

lattice (ections 5.2 to 5.4) relevant to this thesis. I will shortly introduce a method to couple

a chemical potential to LAC fermions in ection 5.5 and discuss the P in ection 5.6. This

chapter mostly contains commonly known facts that can be found in pertinent textbooks (e.g.

[70, 90]). As introduced before, we will work in units of the lattice spacing such that a = 1

unless otherwise stated.

5.1 Properties of the Continuum Dirac Operator

In the continuum, the Dirac operator is an anti-hermitian30 operator

∂†
µ = −∂µ ⇒ /∂† = −/∂ (5.1)

where the conclusion about /∂ follows from the fact that the γ-matrices are hermitian in eu-

clidean spacetime. Whenever there exists a γ∗, it anti-commutes with them

γ∗/∂γ∗ = /∂† (5.2)

30trictly speaking, one has to be careful about the domains at this point but I will only use the following algebraic
relation, so I will be slightly sloppy in this regard.

35
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which realizes the chiral symmetry of freemassless fermions. Parity and time-reversal symmetry

are similarly implemented as

T −1/∂(x)T = /∂(T µ
νx

ν), (5.3)

P−1/∂(x)P = /∂(Pµ
νx

ν) (5.4)

and /∂ is translationally invariant. It is a local operator in the sense that /∂f(x) depends on the

function f only in some neighborhood of x. Its eigenfunctions31 are plane waves

∂µe
−ipx = −ipµe

−ipx (5.5)

such that it is diagonal in momentum space. The relation between the momentum p enumerating

the eigenfunctions and the corresponding eigenvalue is linear and I will call this a dispersion

relation, thereby slightly generalizing from its usual meaning relating momentum to (kinetic)

energy. It has exactly one root which is at p = 0 and corresponds to a pole of the propagator for

the single massless fermion it describes.

5.2 Ultralocal Discretizations

The most naive approach to formulate fermions on the lattice is the use of a simple nearest-

neighbor derivative stencil. While forward and backward derivatives are not anti-hermitian,

the central derivative

/∂xy =
d∑

µ=0

γµ (δxµ+1,yµ − δxµ−1,yµ)
d∏

ν=0,
ν ̸=µ

δxνyν (5.6)

allows for a consistent implementation of fermions on the lattice. It is ultralocal because it only

depends on a constant nite number of neighboring points independent of the lattice size and it

is chiral in the sense of Eq. (5.2). Its dispersion relation is indeed linear around the origin (de-

scribing one fermion here as desired) but has further roots whenever at least one of the momenta

is ±π. These correspond to additional fermions that are described in this discretization. They

are called doublers because the total number of fermionic DOFs described via this prescription

doubles for each spacetime dimension. This is a serious problem if one is interested in a par-

ticular number of fermions but, if it is acceptable to work with multiples of 2d fermions, one

can use the doublers as physical DOFs. It is then, however, necessary to carefully check that all

couplings with other elds and external parameters have the correct form for all doublers. This

problem was rst realized in [134] and we worked out two formulations for the interaction term

of the GN model in [65].

It turns out that the operator from Eq. (5.6) only couples half of the doublers among each

31ince I did not specify the Hilbert space to work on, these might be improper eigenfunctions.
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other. By a (local) redenition of the eld variables the operator becomes diagonal in the (re-

dened) spinor space. The so-called staggered formulation reduces the doublers to 1/2⌊d/2⌋

their original number by keeping only one such component. It is widely used – particularly in

QCD [90] – despite its reduced symmetry group. The continuum theory arising from staggered

fermions is the Kähler-Dirac theory [135]. In the perturbative weak-coupling regime, one can

show that the original symmetry is recovered but for the non-perturbative case of the 1+2D Th

model, [136] showed that this theory diers from the standard Th model. imilar dierences

are likely to appear in other strongly coupled theories, too, and thus we did not use staggered

fermions for this thesis.

Another famous and ubiquitous approach to the reduction of doublers is the Wilson for-

mulation. It gaps out the doubler DOFs by a momentum dependent mass that diverges in the

continuum limit. This comes at the expense of breaking chiral symmetry explicitly which, in

turn, allows for an additive mass renormalization. A chirally symmetric continuum limit is,

hence, only reached via netuning of at least one parameter [137] and chiral symmetry is, at

best, approximately realized at nite lattice spacing. ince chiral properties are essential in our

studies, we did not use Wilson fermions in this thesis either.

This ubiquitous failure of translating all properties of the continuum Dirac operator to the

lattice is a general principle formalized by the Nielsen-Ninomiya theorem [132, 133]:32

Theorem 3 (Nielsen-Ninomiya). There exists no translationally invariant Dirac operator that

fullls the four following properties:

1. locality: |/∂xy| ≲ e−const|x−y| asymptotically for large |x− y|

2. continuum limit: lima→0 /∂pq = δpqγ
µpµ

3. no doublers: /∂pq is invertible on the subspace p, q ̸= 0

4. chirality: {γ∗, /∂} = 0.

In one dimension, its proof boils down to the necessity of (at least) one further root in any

dispersion relation that is linear through the origin and periodic. In general dimensions, the

intuition is the same but the formulation uses a more precise but abstract topological language.

After all, the question is not if, but only which, property will be violated on the lattice.

Results with naive fermions were used during the studies as a crosscheck to rule out common

pitfalls with more elaborate approaches. These results are not presented in this thesis but can be

found in the corresponding publications [65, 67, 68].

32The formulation is taken from [70]. The reader should note that there are further (presumably) independent
studies from that time coming to the same conclusion [138].



38 CHAPTER 5. THE DIRAC OPERATOR AND ITS DISCRETIZATIONS

5.3 Nonlocal Discretizations

A complementary approach to ultralocal derivatives is the LAC33 derivative [139, 140]. It

starts from the desired dispersion relation, Eq. (5.5), and equidistantly discretizes it up to a nite

box cuto

/∂pq = −i/pδpq (5.7)

in momentum space. In position space, this yields a non-local coupling along the axes that falls

o asO(1/|x−y|).34 By denition, it is the most precise lattice approximation of the continuum

Dirac operator in momentum space, it has no doublers and it is chiral. Unfortunately, non-

locality is unacceptable in gauge theories where it yields non-Lorentz-invariant counter terms

[138, 142, 143] and, thus, after some attempts to cure this the interest in the LAC derivative

waned over the years. However, in theories without local symmetries (and even after complete

gauge-xing) many studies found it not only to produce correct results [42, 43, 64–68, 96, 141,

144–149] but also to be superior to other formulations, e.g. in terms of discretization errors [65].

It is, hence, the discretization of choice for this thesis.

But the LAC derivative is conceptually much richer: It is a simple example of a pseu-

dospectral discretization. This approach describes an operator in terms of its spectrum (includ-

ing the corresponding eigenfunctions) and afterwards introduces a cuto there. It captures the

DOFs of the continuum theory that are most important with respect to the operator in question.

These can dier signicantly from the ones easily described on common lattice structures, e.g.

hyper-square or hexagonal lattices.35 Consequently, in a pseudospectral approach usually a much

smaller cuto yields precise results as was observed for the LAC derivative above.

Thus, there is an obvious explanation for the failure of the LAC derivative in gauge theories:

The freeDirac operator is not gauge-invariant and neither is a cuto of the freeDirac operator’s

spectrum. Instead, a pseudospectral discretization of the covariant derivative is a valid formu-

lation of gauge-theories on the lattice. This could be an advantageous formulation of fermions

in static background elds. Unfortunately, this is not a practical approach for dynamical gauge

elds because the discretization would not only change after every update, its calculation for a

general gauge conguration will generically also require lots of resources.

33after the tanford Linear Accelerator Center where the respective ideas were developed
34A very explicit description of the position space formulation is given in [141].
35Coincidentally, they do not in the case of the LAC derivative because the hyper-square momentum grid trans-

forms to a hyper-square position grid.
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5.4 Local Discretizations

It turns out that while Theorem 3 requires some violation of the desired properties, these can be

chosen to be very small. The Ginsparg-Wilson relation [150]

{

/∂, γ∗
}

= a/∂γ∗/∂ (5.8)

describes an alternation of the chiral symmetry that is of O(a) and vanishes in the continuum

limit. One solution to this equation is the overlap formulation36

a/∂ = 1+ A
√

A†A
−1

, A = a/∂(Wilson) − 1. (5.9)

While Eq. (5.8) is only dened if γ∗ exists, Eq. (5.9) can be written down in any dimension

and gives rise to fermions on the lattice, even if there is no γ∗ [152]. The overlap formulation

inherits the gapped-out doublers from the Wilson formulation and is local but not ultralocal.37

It features a non-local lattice version of chiral symmetry [155]

δψ = iαγ∗



1− a

2
/∂


ψ, δψ̄ = iαψ̄


1− a

2
/∂


γ∗, (5.10)

wherein α is a small parameter, that converges to the standard continuum chiral symmetry.

The closely-related domain-wall (DW) formulation at the same time serves as a computa-

tional tool and an intuitive interpretation of the overlap formula: The chiral fermions are inter-

preted as edge modes of a bulk (Wilson) theory in a space with one additional spatial dimension

[156]. If the separation of the domain walls on which the physical fermions live tends to innity,

Eq. (5.9) is recovered. A discretization of the bulk theory with a nite domain wall separation

yields an approximation with a controlled limit. This is the standard approach taken in gauge

theories [90]. Without dynamical gauge elds the overlap operator can be precomputed and its

exact application becomes feasible on reasonably large lattices [37, 38, 87].

Overlap and DW fermions were not directly used in this work. But the former was used in

other publications during my doctoral research [37, 38, 87] and the latter was the method of

choice in [29, 84, 89, 136, 154, 157, 158] which will be discussed in great detail in relation with

our own results on 1+2D Th models.

36The original reference is [151] but we use a formulation from [152] that does not refer to γ∗ and is, hence,
better suited for our general spacetime dimensions and fermion representations.

37This is true for the free operator. With additional eld content, its locality properties can be proven under mild
conditions [153]. Pertinent numerical results are found, e.g., in [154].
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5.5 Chemical Potential on the Lattice

In the continuum language, the (particle number) chemical potential couples to the (particle

number) conserved charge, i.e.

µ

∫

dd−1x ψ̄γ0ψ. (5.11)

On the lattice, the given operator is no longer a conserved charge and thereby lacks its distin-

guished meaning. Instead, there are various prescriptions giving rise to the correct chemical

potential in the pertinent limits. In [159], a conserved current was constructed for nearest neigh-

bor discretizations and – supplemented with an arbitrary choice of a regularizing function – this

yields a family of couplings the most prominent of which is [90]

/∂xy =
d∑

ν=0

γν

eµδν0δxν ,yν+1 − e−µδν0δxν ,yν−1


d∏

ξ=0,
ξ ̸=ν

δxξyξ . (5.12)

In the above prescription the chemical potential acts like an imaginary part to the temporal com-

ponent of a gauge eld which is the same as in the continuum. It was widely adopted and we

have used this prescription due to its established status for naive fermions.

In fact, translating the linear coupling prescription from the continuum to the lattice yields

additional terms for some observables that are nite in 1+1D but diverge in higher dimensions

with increasing powers of a−1 [66, 159]. This was originally taken as an exclusion reason but it

turns out that it is a feature of the continuum theory as well although it is usually hidden by the

particular ordering of limits. They can be corrected for order by order yielding highly accurate

discretizations [66]. We will use such a prescription for LAC fermions which conceptually do

not lend themselves well to a hopping formulation.38

5.6 The Sign Problem

Whichever lattice realization was chosen, we need its determinant for all possible eld cong-

urations to be real and positive in order to use it in MC simulations. If this is not the case, the

stochastic interpretation of the path integral’s weight is no longer valid and the importance sam-

pling approach (see ection 4.1) breaks down. There is a plethora of ideas for tackling such a

problem [55–57] but it is no coincidence that each and every such idea either introduces new

but equally hard problems or lacks a certain generality; in fact, under mild assumptions it can be

proven that solving the general P is NP-hard [54].

In practice, this means that each model under consideration has to be tested for the existence

38Attempts on the interpretation as a peculiar form of hopping in the early days failed [142, 143] which is gen-
erally expected from the perspective taken above. We did not investigate if the formulation in [143] which fails for
dynamical gauge elds could work for the special case of a chemical potential acting as such.
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of a P. Oftentimes, the symmetries of the Dirac operator are enough to prove its absence and

we have carefully chosen our models and parameters to ensure this. If not, one has to generally

expect a P and measures have to be taken to deal with its consequences. till, a P can be mild,

vaguely referring to the circumstances when the additional computational eort introduced by

the P is aordable in the desired parameter ranges, e.g. lattice sizes.

Our 1+1D LAC and naive Dirac operators have provably real determinants. As they are

both real-valued matrices, we can apply complex conjugation and relate the result to the charge-

conjugated version

D∗ = γµ∗∂µ + σ − i(γ∗)
∗π + µγµ∗ = C−1DC (5.13)

where we have used that the γ-matrices and γ∗ are hermitian as well as Eq. (2.10) and the

resulting property

γ∗
⊤ = −C−1γ∗C. (5.14)

After taking the determinant, the two factors of charge conjugation cancel such that detD equals

its complex conjugate. Being diagonal in avor space, even avor numbers ensure that the single-

avor determinant occurs in even powers only casting it non-negative.

For our 1+2D reducible Th simulations, the argument even simplies a little. In an appro-

priate basis, the Dirac operator is block-diagonal with two identical blocks up to a sign in the

(irreducible) γ-matrices. As the mass term is hermitian and the LAC derivative (including

the auxiliary vector eld) is anti-hermitian (and they commute), the two blocks are hermitian

conjugates of each other. Thus, the determinant is real and non-negative as a product of complex

conjugated eigenvalue pairs.
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Chapter 6

Gross-Neveu Models in 1+1 Dimensions

This chapter is devoted to a detailed study of 1+1D GN models at nite avor number. As dis-

cussed in Chapter 3, their MF approximation predicts the exciting possibility of inhomogeneous

condensates at nite density. At the same time, such low-dimensional models are generically

plagued by IR divergences that prohibit most kinds of long-range order if uctuations are present

(irrespective of their nature, quantum or thermal). While this seems to render these models a

special case, in recent years conjectures arose that the phenomenon of a QL which we will

encounter instead of actual long-range order might be quite generic (see ection 3.4). We will

discuss χGN models in ection 6.2 and Z2-GN models in ection 6.3 after giving a brief sum-

mary of rather technical concerns in ection 6.1.

6.1 Technical Overview

6.1.1 Observables

One of the most important properties of a MC algorithm is ergodicity (cf. Chapter 4). In a

nite volume – hence, in every MC simulation – it implies that congurations that are related

by a symmetry of the action are equally likely to be generated, even if this symmetry might be

spontaneously broken after taking the innite-volume limit. Therefore, it is common practice in

MC simulations to use estimators of the innite-volume physical observables that are invariant

under all symmetry transformations [1]. For example, the magnetization in an Ising-type model

is usually averaged in MC time only after taking its absolute value because otherwise it would

vanish exactly in the limit NMC → ∞. This technique was also used to dene σ0 in Eq. (4.10).

Normally, translational invariance is not among the symmetries that must be taken care of

explicitly because in most scenarios observables of interest do not depend on spacetime coordi-

nates in equilibrium. This is dierent in theMF predictions andwewill use a similar technique as

described above to arrive at spacetime-independent observables that can probe inhomogeneities.

To this end, we will be careful to only consider relative spatial relations for all local observables,

i.e. instead of asking "what happens at point x?" we will be concerned with questions like "what

43
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happens in a distance x from a maximum?".39 While the answer of the former is trivial due to

the exactly implemented symmetries, the answer to the latter is invariant under all symmetry

transformations and can therefore yield a non-vanishing result.

Concretely, this means that instead of the local order parameter eld ∆x or σx we will con-

centrate on

C(x) =
1

|Λ|

∑

(t,δx)∈Λ

⎧

⎨

⎩

⟨∆∗(t, x+ δx)∆(t, δx)⟩ in χGN

⟨σ(t, x+ δx)σ(t, δx)⟩ in Z2-GN
(6.1)

and instead of the baryon density nB in the Z2-GN

CnB
(x) =

1

|Λ|

∑

(t,δx)∈Λ

⟨
nB(t, x+ δx)σ2(t, δx)

⟩
. (6.2)

The use of the squared order parameter eld in the latter case is owed to the fact that nB has

twice the wave number of the order parameter itself (see Chapter 3). The additional averaging

in form of the sums only improves the statistical properties of these estimators.

The reader should be aware that we consider the use of correlators as a translationally invari-

ant description of a local observable and will often loosely speak of the latter when we mean

the former. This is to be interpreted in the sense that the predominant congurations of the local

observable will have the same properties as the correlator in these particular cases.40

From the above correlators, a number of properties can be extracted. First of all, Eq. (3.7)

shows that if

kmax =
1

2
argmax

k
F [C](k) (6.3)

is half the dominant wave number of C in MF, then the dominant congurations of the order

parameter in the χGN (Z2-GN) are χspirals (cosine-like) with wave number kmax. We will see

that this quantity remains meaningful after the inclusion of quantum uctuations because the

MF result will still dominate the congurations.

In order to characterize the dierent phases of the MF phase diagram in the innite-volume

limit, one can use the following quantity

Cshort = min
x

ℜC(x)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

> 0 homogeneous χB,

= 0 symmetry restored phase,

< 0 inhomogeneous χB.

(6.4)

39Of course, the term "maximum" could be replaced by any other distinguished eld value.
40For example, we will later talk about the dominant wave number of the order parameter eld when evaluating

the corresponding property of its correlators because this property does translate directly to most congurations in
an ensemble. In contrast, we will never talk about a decay of the order parameter (but always explicitly in relation
to the correlator) because this is not a property of the eld itself.
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The name is chosen to stress that after the inclusion of uctuations this quantity will be dom-

inated by the short-range behavior of the system (see ection 3.3). In that case, one should be

careful with the terms "phase" and "symmetry breaking". Instead, the case distinction should

be interpreted as "dominated by" homogeneous, symmetric or inhomogeneous congurations,

respectively, and the question of B has to be decided separately.

uch a decision crucially depends on the long-range behavior of the system. To probe the

latter, one has to perform a careful study of the decay properties of spatial correlations. This is an

intricate endeavor for Z2-GN models where one can extract the amplitude of the correlator only

on discrete extremal values. It is devoted a dedicated ection 6.3.3 later on. In χGN models

instead, it turns out that spatial correlations split up into a monotonically decaying amplitude

and a single dominant χspiral. The former is then easily extracted taking the absolute value of

C and the behavior on the largest scales on the lattice is given by

Clong = min
x

|C(x)|

⎧

⎨

⎩

> 0 long-range order (with respect to Ł),

= 0 short-range order.
(6.5)

This quantity, however, cannot distinguish between homogeneous and inhomogeneous regimes.

6.1.2 Further Stumbling Blocks

During our studies, we have identied a number of further stumbling blocks the details of which

can be found in the corresponding papers [42, 43, 65, 66]. Here, I will present a summary

focussing on the essential aspects for the later interpretation of the results.

As is often the case in theories that have topologically distinct sectors41, our simulations

on nite lattices encounter exorbitantly large AC times (ACTs) that are caused by the inability

of the rHMC algorithm in use to sample eciently from varying winding numbers. In [42],

we were able to beautifully illustrate that – with our choice of HMC parameters – uctuations

within one topological sector are almost uncorrelated with ACT on the order of O(1) while

inter-sector jumps happen on much larger MC timescales. The latter still seem to be mostly

captured by our extensive ensembles but the properties of the HMC algorithm and the physical

system at hand render it inadvertible that they exceed our computational resources at suciently

small temperatures. We cannot exclude that this happened for our smallest temperatures. Most

importantly, our general conclusions do not depend on this parameter regime and remain valid

even if these temperatures were not suciently sampled.

We have further found that this tendency for topological freezing can lead to excessive ther-

malization periods at the beginning of the simulation such that the choice of initial conditions

can make a signicant dierence in terms of required computational resources. In [66], we al-

ready became aware that we lacked the computational resources to reconcile a hot and a cold

start for the most challenging regions in the phase diagram. Being aware of this, I have stripped

41In our case, the topological invariant distinguishing these sectors is the number of oscillations in nite volume.
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the unreliable data from the plots of this thesis. Plots including some data that were found to be

unreliable after the fact can be found in the corresponding publications [65, 66].

For our later simulations of χGNmodels, we employed a freeze-out technique to reduce ther-

malization eorts. We started our simulations at some suciently large temperature such that

AC and thermalization were easily overcome. We then froze out some thermalized conguration

to a lower temperature in order to nd a good initial conguration to start with. Of course, we

carefully checked that this proceedure does not introdce a bias by itself. Details of this can be

found in [42].

The discretization of fermions is a delicate issue that was in detail discussed in Chapter 5.

It can introduce various kinds of artifacts that might or might not go away when taking the

continuum limit, for example doublers or distortions of the internal and external symmetries.

Due to the LAC discretization’s discontinuity in momentum space a valid concern might be

that this could trigger inhomogeneities in a Gibbs’ phenomenon fashion that are purely articial.

In order to tackle such concerns and, at the same time, have a crosscheck for our results, we

also implemented naive fermions and used them to simulate Z2-GN models whenever possible.

As described in ection 5.2, they are tainted by 2d doublers that can be regarded as physical elds

in free eld theory. For this procedure to yield the correct continuum limit in an interaction

theory, it is of vital importance that all doublers couple to the bosonic elds correctly. Our

earliest proceedings [67, 68] contained naive implementations that did not take care of this, while

later work [65] introduced an additional weight function to suppress unwanted interactions.

For this thesis, results with naive fermions are not shown but the reader may rest assured that

the LAC results that are shown can be crosschecked with other, more conventional discretiza-

tions.

6.2 Chiral Gross-NeveuModels

Despite its seemingly more complicated Lagrangian, it turns out that χGNmodels are concep-

tually much simpler than Z2-GNmodels. This is already seen in the MF phase diagram Fig. 3.1c

which instead of a complicated competition of homogeneous and inhomogeneous phases includ-

ing a critical chemical potential (cf. Fig. 3.1a) shows a very clear picture: There is a single critical

temperature below which the MF order parameter is a χspiral for all parameter choices. In MF,

their wave numbers and amplitudes are completely independent and governed only by chemical

potential and temperature, respectively. This simplicity is due to the continuousU(1) symmetry

group which further allows for a simple perturbative analysis identifying the relevant modes in

the IR and renders all the no-go theorems, Theorems 1 and 2, straightforwardly applicable. From

this strong analytical toolkit, we have a clear expectation about the phase diagram that will be

mostly conrmed in the following.



6.2. CHIRAL GROSS-NEVEU MODELS 47

Figure 6.1: Finite-volume phase diagram of the Nf = 2 χGN model for (/a, aρ0) ≈ (63, 0.46) as mapped
out via Clong. The gray line indicates the large-Nf critical line. On the left, histograms of the spacetime-
averaged ∆ in the complex plane are shown for the temperatures T/ρ0 ∈ {0.030, 0.091, 0.183, 0.274}.
The colormap is linear in the blues and in the reds but with dierent slopes changing at 0.05 which is
considered as a reasonable threshold for noise. The green dashed lines show the thresholds L/ξβ = 2, 3, 4
for later reference (ection 6.2.2). The given colormap will be used for all Clong plots in this thesis.

6.2.1 The Finite-Volume Phase Diagram for Two Flavors

As it turns out, in a nite volume the nite-avor phase diagram as mapped out via the various

quantities discussed in ection 6.1 is remarkably similar to the MF result up to some rescaling.

In Fig. 6.1,Clong is shown for (/a, aρ0) ≈ (63, 0.46). Apart from a small low-chemical-potential

region, the values of Clong are signicantly non-vanishing only below a threshold temperature

which appears to be largely independent of the chemical potential for a wide range of chemical

potentials. This threshold temperature is signicantly lower than the critical temperature of the

MF phase diagram but as we introduced further uctuations by lowering the avor number an

overall reduction of ordering is expected.

At vanishing density, one can clearly see a non-vanishing condensate42 in the histograms on

the left. For various temperatures, they show ∆ averaged over the whole spacetime lattice on

a (/a, aρ0) ≈ (63, 0.46) lattice. One should stress that on this small lattice all congurations

are clearly dominated by a homogeneous background either of (would-be) symmetry-breaking

or symmetric type. The histograms additionally ensure us that we are very well sampling the

wholeU(1) symmetric space of congurations. This is no longer true for larger lattices due to in-

sucient statistics but all observables are carefully designed to be invariant under this symmetry

(see ection 6.1.1).

42in nite volume



48 CHAPTER 6. GROSS-NEVEU MODELS IN 1+1 DIMENSIONS

Figure 6.2: Representative examples of C in the
Nf = 2 χGN model on a (/a, aρ0) ≈ (63, 0.46)
lattice.

Figure 6.3: Dominant winding number from
Eq. (6.3) for avor numbers Nf = 2, 8,∞. The
gure shows simulation data (markers), tted
slope (dashed) and tted staircase (solid) with
T ≈ 0.030 for Nf = 2, 8 on (/a, aρ0) ≈
(63, 0.46) resp. (/a, aρ0) ≈ (63, 0.41). The val-
ues for the ts are given in Table 6.1.

Figure 6.2 shows some of the correlators that lead to Fig. 6.1. One can see the clear overall

resemblance with Fig. 3.1c showing theMF results for∆. This includes the following non-trivial

facts: The correlators at vanishing chemical potential as well as suciently large temperature

are real and monotonically decaying. This is reassuring because the former indicates that exact

chiral symmetry holds in our simulations (cf. Chapter 4) while the latter must provably hold if

full euclidean symmetry holds (so, at least at zero temperature).43

The height of the plateau where low-temperature correlators level is easily understood from

our scalesetting convention: Assuming that cluster decomposition [160] holds at (T/ρ0, µ/ρ0) ≈
(0, 0) we expect

C(x) ∼ ⟨∆∗(x)∆(0)⟩c
 ⏟ ⏞

→0, x→∞

+ ⟨∆∗(x)⟩
 ⏟ ⏞

=⟨∆(0)⟩∗

⟨∆(0)⟩
 ⏟ ⏞

=ρ0eiconst

x→∞→ ρ0
2 (6.6)

where we ignored the additional averaging of Eq. (6.1) for the sake of simplicity. As the am-

plitude is mostly independent of the chemical potential, this should also hold for χspiral-like

regions at nite chemical potential. This is, however, true mostly by denition and one should

not interpret this as a non-trivial result.

The remaining example correlator clearly indicates a predominance of χspiral-like congu-

rations at non-vanishing density. The wave number increases with increasing chemical potential

while the amplitude decays with temperature. This behavior is again reminiscent of the MF

result.

As expected from ection 3.3, beyond this qualitative agreement there are minor dierences:

43It is well-known that euclidean-time correlation functions decay monotonically [75]. Using euclidean sym-
metry, the same must hold for spatial correlations. One should note that we are concerned with bosonic correlators
in innite volume and zero temperature such that temporal and spatial directions are large and have the same bound-
ary conditions. This is no longer true with a non-vanishing chemical potential explicitly breaking this rotational
part of euclidean symmetry.



6.2. CHIRAL GROSS-NEVEU MODELS 49

Table 6.1: Proportionality constant between µ and kmax for all parameter settings at low temperatures. The
"linear" and "staircase" t are explained in the text (see Fig. 6.3 for a visual representation). It is important
to stress that the staircase’s uncertainty is not comparable to a statistical uncertainty. The quality of t
is much better assessed by the number of outliers in the staircase t. There were 16 µ values for each
parameter set.

Nf (/a, aρ0) T/ρ0 linear staircase outliers

2 (63, 0.46) 0.030 0.8(1) 0.759(2) 4

2 (127, 0.46) 0.030 0.7(1) 0.738(9) 8

2 (255, 0.46) 0.030 0.7(1) 0.733(9) 9

2 (127, 0.19) 0.036 0.8(1) 0.806(2) 6

2 (255, 0.08) 0.087 0.9(1) 0.838(2) 5

8 (63, 0.41) 0.030 1.0(1) 0.95(1) 2

∞ - 0 1 - -

The amplitude of all correlators is signicantly enhanced for small separations x. This is due to

excited states that can get populated due to uctuations. Their existence is hidden in the higher

order terms in the perturbative result Eq. (3.15) that focusses on the limit of large distances.

Furthermore, the χspirals have dierent wave number as compared to their MF counterparts.

A closer look at suciently low temperature (see Fig. 6.3), reveals that the wave numbers are

generally lower compared to the MF values but equally well described by proportionality to the

chemical potential. We will have a closer look at this in ection 6.2.5. These wave numbers

always t the box size without any ne-tuning which is a commensurability eect that will be

discussed later.

6.2.2 Cshort and the Competition of Scales

Unexpectedly, the same phase diagram plotted via the quantity Cshort as shown in Fig. 6.4 does

not corroborate this great qualitative agreement with MF. While the gure exhibits the same

regimes described by MF – homogeneously non-vanishing, inhomogeneous and vanishing con-

gurations – in roughly similar parameter regions, the transitions between these regimes are

signicantly distorted: Predominance of homogeneous congurations extends to nite chem-

ical potential where in MF there is always a non-degenerate χspiral. Even more severe, the

transition temperature from inhomogeneous to mostly vanishing (i.e. symmetry-restored phase

in MF) congurations is far from µ-independent in contrast to that in MF but also via Clong.

However, these ndings are well-explained as resulting from a competition of scales. To this

end, we rst list the length scales relevant to the system:

1. the lattice spacing a,

2. the system size Ł,
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Figure 6.4: ame as Fig. 6.1 but with Cshort instead of Clong. In this case, the green dashed lines indicate
log2 (λχS/ξβ) = 1, 2, 3. The given colormap will be used for all χGN Cshort plots in this thesis.

3. the (inverse) temperature 1/T = β and

4. the (inverse) chemical potential 1/µ.

From these, a will probably not be relevant for the IR physics.44 This leaves us with three scales

to consider: Łserves as an IR cuto. To describe the thermodynamic limit, we intend to remove

this cuto systematically and a competition between Łand another physical scale is a nite-size

(F) eect. On the one hand, F eects are particularly important due to the ill-behaved IR

limit; on the other hand, a large but nite system might be of greater physical relevance after all

because the, in part, very dense matter that is described by this model will usually be conned

in comparably small objects like neutron stars.

The perturbative analysis from Chapter 3 suggests that the temperature’s length scale mani-

fests itself in a nite correlation length ξβ that is given in Eq. (3.14) to leading order (LO). We

assume in the following that the same length scale also governs the decay of spatial correlations,

similar to a screening mass. The chemical potential is proportional to the wave number of the

dominant χspirals. In MF, this relation is exactly known, Eq. (3.8); at nite avor number, this

proportionality still holds to a high precision but the coecient experiences quantum corrections

that can be extracted from a t to Fig. 6.3.45 As the dominant wave number is discretized on a

nite lattice, we also tted a staircase function of constant step width and a step height of one

44a posteriori veried in ection 6.2.3
45The reader should note that in that gure there is a volume factor involved and due to the slightly dierent

lattice spacings the data for dierent Nf are not exactly comparable. The current normalization emphasizes the
integer-valuedness of the wave number to illustrate the staircase-like behavior.



6.2. CHIRAL GROSS-NEVEU MODELS 51

to the data. While in the Nf = 8 case (discussed later in ection 6.2.5) such a t can achieve

almost perfect agreement, the Nf = 2 data can at best be tted to have four outliers. As they all

appear at small chemical potential they might be related to statistical or thermalization problems

similar to those encountered later on in the Z2-GN models. One should note that the continuous

and the staircase function are tted independently but their slopes agree within errorbars. As

tting the discontinuous staircase function does not allow for standard algorithms to be used, the

problem was solved analytically and the error is chosen as half of the width of the minimum.46

We already encountered one competition of scales, maybe the most intuitive one: An equi-

librium χspiral has to t into the nite box of length Ł. Otherwise, it will destructively interfere

with itself via the periodic boundary conditions. This leads to a discretization of the allowed

wave numbers kmax because the winding number has to be integer-valued. This is clearly illus-

trated by the step-like behavior in Fig. 6.3. It is also the cause of homogeneously dominated

(red) points at nite chemical potential in Fig. 6.4. A related form of F eects that was neither

encountered in χGN nor Z2-GN models during this study was observed in Z2-GN models in

[161].

The traditional description of F eects is also given in terms of a competition of scales: A

system is usually considered plagued by F eects if the largest correlation length in the system

is of the same order as the nite system size Ł. Although this is a rather vague statement, one

can base a qualitative comparison on this after giving some reasonable meaning to "same order".

We will successfully do so in the following but the reader should be aware that the – after all

arbitrary – choices going into such an estimate can have signicant impact on the quantitative

agreement.

Due to the use of periodic boundary conditions, the furthest separation between two points

is /2, so we are surely observing F eects if /ξβ = 2. But more conservatively, one would not

expect to describe an innite volume if the lattice size is only three or four times the correlation

length. In our case, we have a concrete prediction for the largest correlation length being ξβ .

Plugging in the parameters for the system under investigation, we can compare this would-be

innite-volume scale with the system size Ł. The result is shown in Fig. 6.1 for /ξβ = 2, 3, 4.

It is in great qualitative agreement, i.e. obviously horizontal because the perturbative formula

Eq. (3.14) does not depend on µ but also of the same order of magnitude as the transition temper-

ature. One should stress at this point that the threshold of Clong/ρ
2
0 = 0.05 to change from red to

blue colors is a reasonable but in the end arbitrary choice to distinguish noise around vanishing

values from signicant ones. The coincidence of the color border and the order-of-magnitude

borders should, thus, be regarded as a beautiful illustration of the qualitative statement and not

as quantitative agreement.47

46Due to the discontinuous nature of the staircase function, the cost function is piecewise constant. Thus, the
"width" is well-dened. The "half of" accounts for the fact that the interval [c− δc, c+ δc] shall coincide with the
minimal piece where c is chosen as the center of this interval and δc is the provided error.

47This perspective is further corroborated when diving deeper into this estimation: Assuming that the correlators’
amplitudes would be given by a single cosh(x/ξβ), we can plug in x = /2 to get a quantitative prediction forClong.
This turns out to be in astonishing quantitative agreement for homogeneous backgrounds for the parameters of
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Both of the above eects are strictly speaking nite-size eects because they involve a nite

box size that should be removed to obtain the thermodynamic limit. However, there is one

interesting pair of scales that is present even after removing all cutos: temperature and chemical

potential. Their competition is already relevant at the MF level where the temperature dictates

the amplitude while the chemical potential enforces the winding. At nite avor number, this

competition is taken one step further because the correlation length ξβ is relevant in the spatial

direction, too:

Clearly, ifλχS ≪ ξβ , wewill nd a large number of oscillations before a notable decoherence,

i.e. decay of C, sets in. If this is realized by ξβ being large, which can very well happen at low

temperatures, there are large coherent patches of space where the system behaves like a rigid

crystal (or at least a very viscous uid). As Cshort is concerned, it will clearly indicate such

inhomogeneity by a large negative value.

Oppositely, if ξβ ≪ λχS, the amplitude is damped and vanishes before a notable oscillation

can build up. Instead, the additional decay due to the cosine at small argument eectively even

shortens the correlation length further. uch a system will behave like a gas of massive fermions

without much inuence from the oscillations. Cshort will vanish here.

In between, there is a regime where ξβ and λχS are of the same order of magnitude. In this

case, one can identify λχS as a dominant scale of oscillations but coherent patches of the latter are

only of the order ξβ , i.e. as short as only a few wavelengths. This behavior is typically found in

liquids [162]. They also tend to have a preferred nearest-neighbor separation stemming from the

competition of attractive and repulsive forces. The liquid constituents are, however, still moving

around prohibiting larger coherent patches that would occur in a crystal. In the Z2-GN model

later on, we will be able to concretely identify these "liquid constituents" to be localized baryons.

In the χGN model without localized DOFs this correspondence remains more abstract but, of

course, the physics is still the same. Cshort will have negative but smaller values in magnitude

than in the rst case.

Of course, there is no strict separation between these regimes. till, the described compe-

tition between correlation length and wavelength is capable of describing even the crossover

between the Cshort < 0 to the Cshort ≈ 0 regime. Again, we have to dene "the same order of

magnitude" which includes some arbitrary choices. As the rst minimum appears at a quarter

of the wavelength λχS, λχS/ξβ = 2 should still have a signicant, though diminished, amplitude

at the rst minimum. λχS/ξβ = 4 would thus be the regime where ξβ becomes smaller than

the distance to the rst minimum and λχS/ξβ = 8 would be expected to have its rst minimum

disappearing into the noise after diminishing the amplitude over twice the correlation length

before arriving at the rst minimum. This estimate – again to be taken with a grain of salt due

to the arbitrariness of scale comparisons – nevertheless yields quite reasonable agreement with

the crossover regime in Fig. 6.4 and can be considered a plausible explanation for the data.

To summarize, we have identied all noteworthy features of the phase diagrams Figs. 6.1

Fig. 6.1 but predicts signicantly higher values for most inhomogeneous backgrounds. A number of technical and
physical reasons spring to mind as candidates to explain this observation but we did not proceed this further.
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(a) (/a, aρ0) ≈ (63, 0.46) (zoom into
Fig. 6.1).

(b) (/a, aρ0) ≈ (127, 0.19). (c) (/a, aρ0) ≈ (255, 0.08).

Figure 6.5: Finite-volume phase diagrams of theNf = 2χGNmodel for successively smaller lattice spacings
with approximately constant lattice volume as mapped out viaClong. For comparability the colormap from
Fig. 6.1 is used for all plots.

(a) (/a, aρ0) ≈ (63, 0.46) (same as
Fig. 6.4).

(b) (/a, aρ0) ≈ (127, 0.19). (c) (/a, aρ0) ≈ (255, 0.08)

Figure 6.6: ame as Fig. 6.5 but with Cshort instead of Clong. For comparability the colormap from Fig. 6.4
is used for all plots.

and 6.4 as arising from competing external scales. While the competition with Łis traditionally

rather considered an artifact to be removed by extrapolation, the competition between temperature-

and density-induced scales is physical and allows for an interpretation of the inhomogeneous

regions in terms of a liquid regime. We will strengthen the case for this interpretation in the next

sections.

6.2.3 Physical Limits

Before we study the IR behavior of the system to conrm our assertions about some features

being F eects, we will rst verify the above assumption that a is not a relevant length scale for

our further discussion. Figs. 6.5 and 6.6 show Clong and Cshort for successively smaller lattice

spacings. Although the troublesome scalesetting does not allow for precise quantitative claims,

the long-range behavior (Fig. 6.5) does not show a signicant shift in the transition from non-

vanishing long-range amplitude to (noisy) vanishing long-range amplitude.48

imilarly,Cshort in Fig. 6.6 exhibits very little variation between the dierent lattice spacings.

Most importantly, for each lattice spacing a clearly (short-range) inhomogeneous region can be

identied. As shape and intensity of this region are very similar,49 we can safely conclude that

48Admittedly, the data for low-temperatures are pretty sparse for the nest lattice spacing because the large tempo-
ral extent needed for small temperatures became prohibitively expensive at some point. till, even at the moderately-
small temperatures simulated, χspirals can be identied which hints on a similar transition temperature.

49One should note that the rst non-vanishing value of the chemical potential is µ/ρ0 ≈ 0.125 for the nest
lattice spacing while it is only µ/ρ0 ≈ 0.087 for the coarsest lattice. This shift – together with the slight change in
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(a) (/a, aρ0) ≈ (63, 0.46) (zoom into
Fig. 6.1).

(b) (/a, aρ0) ≈ (127, 0.46). (c) (/a, aρ0) ≈ (255, 0.46).

Figure 6.7: Finite-volume phase diagrams of the Nf = 2 χGN model for successively doubled system
size at approximately constant lattice spacing as mapped out via Clong and zoomed into the relevant low-
temperature region. For comparability the colormap from Fig. 6.1 is used for all plots.

(a) (/a, aρ0) ≈ (63, 0.46) (same as
Fig. 6.4).

(b) (/a, aρ0) ≈ (127, 0.46). (c) (/a, aρ0) ≈ (255, 0.46).

Figure 6.8: ame as Fig. 6.7 but with Cshort instead of Clong. For comparability the colormap from Fig. 6.4
is used for all plots.

inhomogeneities are hardly aected by a decreasing lattice spacing. Nevertheless, one should

mention that Cshort shows more irregularities than Clong. Most prominently, there seem to be

inhomogeneities at vanishing chemical potential. We strongly suspect that these are caused by

thermalization problems. But despite this, there is no doubt that suboptimal χspiral backgrounds

are still local minima of the eective action which will contribute to the partition function. In

that sense, the nding should not be disregarded in totality but only seen as an overestimation

due to insucient statistics.

The interpretation of the previous section has further corroborated the dependence of our

results on the system size Ł. Figs. 6.7a and 6.8a show the same data as Figs. 6.1 and 6.4 while

the remaining data in Figs. 6.7 and 6.8 are taken in successively doubled volume.

As one can see, all features that were already identied as F eects indeed tend to disappear

in the limit of large system size. These include the temperature extent of the non-vanishing

Clong region, but also the temperature extent of the homogeneously dominated region in Cshort–

as a competition of Łwith the thermal correlation length ξβ–, as well as the µ-extent of the

homogeneously dominated region in Cshort stemming from λχS compared to Ł. In contrast to

that, the crossover between the regions of Cshort < 0 and Cshort ≈ 0 is not at all aected by the

change in volume. This was already predicted in ection 6.2.2 because neither of the involved

scales is related to the system size.

volume – is likely responsible for the change of sign in the low-temperature values for those values of the chemical
potential.
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(a) Masses (b) Exponents

Figure 6.9: Physically relevant parameters extracted from ts to temporal correlators for all available lattice
setups as described in the text. The parameter tuple in the legends is of the form (Nf , /a, aρ0). The
corresponding t parameters are found in Table 6.2. The t range is indicated by the extent of the dashed
lines.

That the dominant wave number constitutes a scale independent of other externally induced

scales of the system is a non-trivial observation. This independence should be regarded in con-

trast to various other scenarios, ranging from systems subject to constraints [163] that can also

exhibit inhomogeneities in an attempt to conform to a suboptimal average value of the order

parameter to MF results in 1+2 dimensions [101, 103] where the existence of inhomogeneities

depends on the cuto and regularization details.

6.2.4 Temporal Correlators

At this point, we have already established a signicant amount of evidence pointing towards

perturbation theory (PerT) being an accurate description of the system. But there is a direct way

to establish this: spectroscopy. Instead of spatial correlators, we will now consider temporal

correlations of the order parameter eld. PerT predicts a nite thermalmass for all non-vanishing

temperatures that, however, vanishes in the T → 0 limit. At vanishing temperature, the system

nally becomes critical.

I have measured temporal correlators dened analogously to Eq. (6.1) for further analysis.

In order to determine the thermal mass, I have tted a double-cosh ansatz given by

C(t) = A1 cosh [m1/ρ0 · ρ0(t− tcenter)] + A2 cosh [m2/ρ0 · ρ0(t− tcenter)] (6.7)

at vanishing chemical potential for all temperatures. This ansatz results in plausible ts over a

wide range of low and moderate temperatures. The lower of the two masses is shown in Fig. 6.9a

for all lattice setups available.

One can clearly see that all masses decrease for decreasing temperature. A linear extrapola-

tion from a plausible range of temperatures is shown to give an idea of the expected y-intercept

(see Table 6.2 for the parameter values). All extrapolate linearly to very small but non-vanishing

masses – except for Nf = 8 which is zero within errors. This is expected as a F eect: In a
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Table 6.2: Fit parameters for linear ts in Fig. 6.9. These ts are to be understood on a qualitative
level due to the very sparse data basis. The uncertainties presented in the table are those reported by
scipy.optimize.curve_fit [2]. They very likely underestimate the true uncertainties due to a lack of
data to estimate them and possible systematic eects. They are only presented for completeness.

Nf /a aρ0
Masses Exponents

lope y-intercept lope y-intercept

2 63 0.46 1.62(3) 0.0115(9) 4.63(5) 0.481(1)

2 127 0.46 1.7(2) 0.007(7) 4.9(1) 0.470(2)

2 255 0.46 1.6(2) 0.012(6) 4.3(2) 0.485(3)

2 127 0.19 2.70(4) 0.004(1) 32.4(8) 0.519(4)

2 255 0.08 3.2(1) 0.033(8) 278(13) 0.37(2)

8 63 0.41 1.14(5) -0.002(2) 6.4(1) 0.145(2)

nite volume and at suciently low temperature, the spatial extent takes over as the smallest IR

scale in the system and provides a lower bound for the realizable correlation length.

The reader should note, however, that the theoretical prediction is that masses between

Nf = 2 and Nf = 8 should dier by about a factor of 1/4 which is clearly not the case. I have

not fully understood why that is – particularly in conjuction with the excellent extrapolation to

zero of the latter – but considering the mass scale of O(10−2) which even becomes O(10−3)

in lattice units it is very unlikely that the given lattices of at most Ns = 63 and Nt = 80 were

capable of resolving such masses.

At suciently small temperature, it is also plausible for the correlations to show rst signs

of the expected rational decay at vanishing temperature. That is why I have also tted a sym-

metrized rational ansatz of the form

C(t) = B

[

1

xE
+

1

(− x)E

]

(6.8)

with E > 0 an exponent free to t. This also results in plausible ts. Interestingly, the extracted

exponents systematically overestimate the expected value of 1/Nf and seem to extrapolate lin-

early to approximately the expected value. It should be stressed that these ts are meant to guide

the eye and should not be understood as quantitative results given the sparse data to t to.

ForNf = 2 and the largest lattice spacings aρ0 ≈ 0.46 the extrapolations seemmost reliable.

The y-intercept in these cases systematically underestimates the naive value of 1/Nf . However,

a rened analysis was recently published in [164]. Their exponent is

E = 2 ·
1

Nf(1 + λ′/2πNf)
(6.9)

with λ′ = 1/2g2χGN up to lattice artifacts. This diers from our ndings and expectations by a

factor of two which might be a dierence in conventions or a mistake on either side. But the
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(a) Clong (b) Cshort

Figure 6.10: Finite-volume phase diagrams of the Nf = 8 χGN model as mapped out via Clong and Cshort

for (/a, aρ0) ≈ (63, 0.41). For comparability the colormaps from Fig. 6.1 resp. Fig. 6.4 are used.

general structure suggests thatNf is to be replaced by an eectiveNf
′ = Nf(1+λ′/2πNf)which

for the case under consideration amounts to

Nf
′ ≈ 2.168, 1/Nf

′ ≈ 0.461 (6.10)

and in general lowers the expected exponent. This trend is also seen in the extrapolated exponents

as discussed above and the numerical value is of a comparable order of magnitude.

6.2.5 Notes on Eight Flavors

Finally, we took some samples for larger avor number. A rst glimpse of this was presented in

Fig. 6.3 where the dominant wave number of the eight-avor model was shown for comparison.

Already there, we found hints of a rapid convergence to the MF result that becomes exact at

Nf = ∞.

Fig. 6.10 shows the nite-volume Clong and Cshort phase diagrams at (/a, aρ0) ≈ (63, 0.41)

similar to Figs. 6.1 and 6.4 forNf = 8. One can immediately see that the qualitative conclusions

from before still hold – which is only reasonable because we already found strong ties to the MF

result at Nf = 2 and with the current choice Nf = 8 we are only moving closer. The general

trend is towards more order and coherence which suggests that the approach Nf → ∞ will

probably be monotonic in that regard. This is reected in a larger temperature extent of regions

with non-vanishing Cshort and Clong.

6.3 Discrete Gross-NeveuModels

Due to their continuous symmetry group, χGN models manage to be, in a sense, only weakly

inhomogeneous: While the phase of the condensate is surely position-dependent (in MF), most

physically relevant quantities like, e.g., the mass gap or the baryon number density are com-

pletely homogeneous. Opposed to that, the discrete symmetry group of Z2-GN models does not
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Figure 6.11: Finite-volume phase diagram of the
Nf = 8Z2-GNmodel for (/a, aσ0) ≈ (63, 0.41)
as mapped out via Cshort.

Figure 6.12: Representative examples of C in
the Nf = 8 Z2-GN model on a (/a, aσ0) ≈
(63, 0.41) lattice.

allow such a homogeneity. If they are forced by a chemical potential to have a nite-particle-

number equilibrium, they produce localized clumps of fermions, so-called baryons, and move

them away from each other as far as possible. The CHMW Theorem 1 is not applicable at small

chemical potentials due to the discrete symmetry breaking pattern and it is not straightforward

to apply it to the nite density case either because of the external symmetries involved, as dis-

cussed in ection 3.3. All these properties render Z2-GNmodels more interesting but also more

challenging.

6.3.1 The Finite-Volume Phase Diagram for Eight Flavors

For Z2-GN models, Clong is of little use because the real order parameter eld has zeros when-

ever there exist inhomogeneities such that an inhomogeneously dominated regime could not be

distinguished from a symmetrically dominated one. Therefore, we directly turn to the quantity

Cshort for a rst parameter scan.

Fig. 6.11 shows the Cshort-nite-volume phase diagram for (/a, aσ0) ≈ (63, 0.41). As in

χGN models it shows qualitatively the same structure as its MF counterpart, i.e. a homoge-

neously dominated regime at small temperature and chemical potential, a symmetrically domi-

nated regime at suciently high temperature and an inhomogeneously dominated region at low

temperature and chemical potentials larger than a threshold µc. As in χGN models, quantita-

tively the respective non-trivial regions shrink due to further uctuations working to disorder

the system. It is interesting to note that just like in MF, the transition temperatures at vanishing

chemical potential for Z2-GN and χGN models are very similar, roughly around T/σ0 ≈ 0.3

for Nf = 8 (compare Figs. 6.10b and 6.11) and T/σ0 ≈ 0.15 for Nf = 2 (see Fig. 6.4 for χGN

and [65] for Z2-GN).

Representative correlators C for a sample of ve pairs of thermodynamic parameters are

shown in Fig. 6.12. They should be compared to the shapes of MF σ elds in Fig. 3.1b. Again,

there is great qualitative agreement with basically the same distortions as described for χGN

models. One detail worth noting is that we were not able to resolve KAK structures that are

distinguishable from cosine-like condensates. While we expect this to be due to insuciently
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(a) Fixed chemical potential. (b) Fixed temperature.

Figure 6.13: Cshort in the Nf = 8 Z2-GN model on a (/a, aσ0) ≈ (63, 0.41) lattice in dependence of one
parameter while the other is kept x.

large system sizes, it could also be a hint that uctuations might smoothen out these structures

generically. It is also possible that this is purely an artifact of long ACTs. Further data on larger

lattices would be needed to answer this question.

A more detailed way to illustrate these results is in terms of slices of Fig. 6.11 at xed tem-

perature or chemical potential which is shown in Fig. 6.13. At vanishing chemical potential

Cshort very accurately mimics a second-order PT, although the Landau-Lifshitz (LL) argu-

ment (Theorem 2) would forbid B at nite temperature. By use of cluster decomposition

[160], one could again argue that at vanishing temperature Cshort should be equivalent to the

chiral condensate squared (see Eq. (6.6) and the discussion around that). We will see that this is

very stable with respect to the IR limit which is due to the fact that we are working at comparably

large avor number Nf = 8.

At nite chemical potential, the temperature-dependent behavior of Cshort is smoother but

still very much resembles a phase transition. Again, as we can see by comparison with Fig. 6.12

not all data points of negative Cshort can be interpreted as inhomogeneities on scales (at least)

comparable with the system size Ł. Instead, in some intermediate temperature parameter region

Cshort < 0 can mean again a rapid decay of oscillations. However, also in this respect the larger

avor number leads to more pronounced structures.

We could also verify that the transition between homogeneously and inhomogeneously dom-

inated regions is smooth, as seen in Fig. 6.13b. Also, the amplitude of the inhomogeneities is

much smaller than the homogeneous condensate over most of the homogeneously dominated

region. This, as well as the decaying amplitude for larger chemical potentials is predicted by

the MF approximation but it is much more pronounced in our simulations. Particularly, the

sharp drop in amplitude around the transition is not predicted. This is probably due to the newly

acquired (would-be) phonon modes that are available to induce large disordering in the inhomo-

geneously dominanted regime.

The above ndings are very stablewith respect to both, the innite-volume and the continuum

limit, as seen in Fig. 6.14.50

50One should note that, while there are objectively fewer points with Cshort < 0 for larger number of lattice
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Figure 6.14: Finite-volume phase diagrams in the Nf = 8 Z2-GN model mapped out via Cshort for various
lattice sizes and spacings.

6.3.2 Baryonic Liquids

InZ2-GNmodels, as opposed toχGNmodels, a nite-density equilibrium is realized by an array

of localized baryons in MF as well as in a nite volume. This can be seen in terms of CnB
(see

Eq. (6.2)) in Fig. 6.15b for (/a, aσ0) ≈ (63, 0.41) at (T/σ0, µ/σ0) ≈ (0.038, 0.7). Fig. 6.15a

shows theMF expectation which beautifully resembles the numerical results, Fig. 6.15b. Indeed,

we nd that any root of the correlator C comes with half a localized baryon. As governed by

the periodic structure of C, they organize in an array maximizing the distance between nearest-

neighbor (NN) baryons.

The array of baryons is stabilized by the nite volume due to the quantization of the number

of oscillations analogously to the discussion of winding number discretization in ection 6.2.2.

The existence of localized baryons, however, admits a heuristic interpretation of the inuence of

periodic boundary conditions on this: In a one-dimensional innite chain, Peierls argued that

stochastically independent uctuations of the individual components’ positions will add up to

disorder on large scales (see the discussion in Chapter 3) [121]. The introduction of periodic

boundary conditions now invalidates the assumption of independence of the uctuations. In-

stead, the uctuations repeat after the system size is exceeded and, thus, a long-range correlation

is enforced on the system. It is this long-range correlation that stabilizes the innite-volume bary-

onic liquid into a baryonic crystal in nite volume. Of course, this still admits the possibility that

points, this has to be attributed to our limited compute resources. The estimated-by-eye boundary between in-
homogeneously dominated and symmetric regions stays roughly constant; only, it is much more computationally
demanding to simulate small temperatures, i.e. large temporal extent, with more spatial points.
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(a) MF. (b) Nf = 8 on a (/a, aσ0) ≈ (63, 0.41) lattice.

Figure 6.15: CnB
(top) and C (bottom) in Z2-GN models at innite and nite avor number for

(T/σ0, µ/σ0) ≈ (0.038, 0.7).

Figure 6.16: Baryon number in the Nf = 8 Z2-GN
model on a (/a, aσ0) ≈ (63, 0.41) lattice at tem-
perature T ≈ 0.076 compared to

⟨
σ2

⟩
/σ0

2 and the
(conguration-wise) number of oscillations.

correlated patches inside the given volume

are small, i.e. the correlation length is much

smaller than the system size Ł. In this case,

the revival of correlations after a distance of

/2would be clearly identiable as a F eect.

till, the putative mechanism for circumvent-

ing B realizes a QL at nite temperature

with diverging correlation length for vanish-

ing temperature. o, at some suciently low

temperature, every nite-size system would

again crystallize.

The correspondence of roots of C and the

baryon number is established systematically

for all51 chemical potentials in Figs. 6.16 and 6.17 for (/a, aσ0) ≈ (63, 0.41) at temperature

T/σ0 ≈ 0.076. Fig. 6.16 shows that the sharp drop of the squared σ-eld ⟨σ2⟩ /σ0
2 occurs at

the same value µc of the chemical potential at which the baryon number rises. As we already

established that at this temperature the transition happens into an inhomogeneously dominated

regime, this implies that a non-vanishing baryon number is intimately related to the appearance

of inhomogeneities.

It should further be noted in this gure that the baryon number at nite Nf = 8 very much

resembles the MF prediction qualitatively. Quantitatively, there are minor dierences, e.g., the

fact that µc is somewhat smaller and the systematic oset in the asymptotic behavior.

Even more precisely, we can measure the dominant wave number of each conguration indi-

vidually, i.e. we denote by k̃max the result of Eq. (6.3) if one pulls the application of ⟨ · ⟩ (hidden
in C) out of argmax. This results in a non-quantized version of kmax that can take values not

quantized to multiples of π realized by averaging over two (or more) commensurate cosine-like

congurations.

51In the sense, that seeming deviations from this relation are explained below.
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(a) T/σ0 ≈ 0.038. (b) T/σ0 ≈ 0.076.

Figure 6.17: MC timelines of baryon number and conguration-wise number of oscillations in the Nf = 8
Z2-GN model on a (/a, aσ0) ≈ (63, 0.41) lattice at µ/σ0 ≈ 1.1.

Fig. 6.16 now shows the direct correlation between the number of oscillations and the baryon

number. There is excellent agreement at small and intermediate values of the chemical potential.

The only minor dierence between the two curves in that regime is that the baryon number seems

to be a tiny amount greater than k̃max in general. We attribute this to the subtraction scheme (see

ection 5.5) being only a rst order correction.

This is also seen in Fig. 6.17a where besides this tiny overall oset, we nd that this corre-

spondence is realized even on the conguration-wise level. That implies that the system domi-

nantly uctuates between two semiclassical inhomogeneous backgrounds with only minor per-

turbations on top.

However, in Fig. 6.16 there is a sizable deviation for large chemical potentials. What goes

wrong, is shown in Fig. 6.17b. This MC timeline at (T/σ0, µ/σ0) ≈ (0.076, 1.1) clearly shows

that most of the congurations indeed have a very precise correlation between baryon number

and dominant wave number. What spoils the nal average are those congurations that due to

some uctuation coincidentally have a much smaller wave number. We regard this as rather a

problem of noisy signal processing than physically relevant because the overwhelming peak of

both distributions is very consistent.

6.3.3 A Detailed Study of the Infrared Behavior

As discussed in Chapter 3, the applicability of the CHMW theorem is still disputed in the case of

Z2-GN models where the internal symmetry is only discrete. In an attempt to clarify this issue,

we performed simulations on lattices up toNs = 725 with the largest lattice spacing aσ0 ≈ 0.41

at one xed parameter pair (T/σ0, µ/σ0) ≈ (0.030, 0.5).

Fig. 6.18a shows the results for C in successively larger systems. For starters, one can see

clearly that the correlators for dierent system sizes match quite well up to commensurability

eects. That the mismatch in wave number is really only an issue of commensurability is clearly

seen in Fig. 6.18b showing the FT of the same data. In general, the FTs are close to identical.

However, the inset shows that Ns = 65, 525, 725 have a maximum at k/σ0 ≈ 0.70 where there
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(a) Correlators C. (b) FTs of C.

Figure 6.18: Correlators C and FTs thereof in the Nf = 2 Z2-GN model for (T/σ0, µ/σ0) ≈ (0.030, 0.5)
on lattices with /a ∈ {65, 125, 185, 255, 525, 725} and lattice spacing aσ0 ≈ 0.41.

(a) Detailed account of C on the largest lattice including an ex-
ample for the extracted extremal values and ts to several
plausible scenarios. The SSB’ t is lacking an error sleeve
because the error is o the charts as soon as it leaves the t-
ted area. The inset shows the reducedχ2 value for ts starting
from dierent x values.

(b) Amplitude values extracted from the peaks as exemplied in
Fig. 6.19a for varying number of spatial lattice points /a.

Figure 6.19: Figures concerned with the extraction of oscillation amplitudes from C in the Nf = 2 Z2-GN
model for (T/σ0, µ/σ0) ≈ (0.030, 0.5) at lattice spacing aσ0 ≈ 0.41.

are no commensurate wave numbers for the other lattices. They instead have their maxima

slightly shifted to the left or right depending on which discrete Fourier mode is closer to the

optimal (innite-volume) value.

More importantly, however, we nd a small but statistically signicant amplitude over the

whole range of each lattice that does not seem to decrease much further in the IR. In an attempt

to resolve this contradiction with the CHMW theorem which would allow for at most a rationally

decaying amplitude, we will now study the long-range behavior of the data in more detail.

As opposed to χGN models, the extraction of the amplitude is not a trivial mathematical

operation but involves advanced signal processing techniques. We use the scipy.signal’s

find_peaks function52 [2] to extract the extrema of the correlators as illustrated in Fig. 6.19a.

These give us the amplitude53 of the correlator at discrete spatial separations. The extracted

values for all lattices sizes are plotted in Fig. 6.19b. Again, one can clearly see that there is a rapid

52with prominence=0.01
53formally only a lower bound due to the nite lattice spacing
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decay of correlations for small spatial separations but in the long-range regime the amplitude

never quite drops to zero and does not even show such tendency. In fact, most of the extracted

long-range amplitudes are consistent with each other. To be more precise, we will make some

educated guesses on how to model the amplitude behavior in the following and try to t the

models to the data.

In the case of actual B the amplitude would drop to a nite value while the phonon modes

on top of that crystal would be NGB that are massless and have a rationally decaying correlator.

We will refer to this scenario as SSB’. Thus, in this case54

amplitudeSSB’[C] = A0 + A1

[

1

|x|B
+

1

|− x|B

]

(6.11)

for parameters A0, A1, B > 0 to be determined by a tting procedure, should be a reasonable

description of the correlator C as soon as higher excitations die o, i.e. in the IR.

The CHMW theorem tells us that SSB’ should not be possible due to the incurable IR di-

vergences of massless modes in the system. The standard resolution to this is to restore the

symmetry in the IR limit. This scenario, we call it BKT, would be realized by A0 = 0. The

reader should be aware that in this scenario there is one free parameter less to t and thus one

would generally expect this to be less exible in describing the data. However, this scenario

would also be conrmed if a t of the SSB’ yielded A0 ≈ 0.

However, it might be possible that the phonon somehow decouples from the rest of the system

such that the IR divergence can be ignored. A similar scenario in closely related models where

the NGBs decouples is described in [41]. There, it turns out that the condensing degrees of

freedom are not actually charged under the would-be broken symmetry. After decoupling the

massless mode, the leading uctuations on top of a condensate would all be massive and for

suciently large distances described by

amplitudeSSB[C] = A0 + A1 [exp (−B|x|) + exp (−B|− x|)] . (6.12)

Although it is not clear how this would be physically realized for translation symmetry, in the

light of CHMW theorem it is more realistic than SSB’ and we will consider such a scenario as

SSB in the following.

Our best attempts to t the respective models to the /a = 725 correlator data are shown in

Fig. 6.19a. As the denition of IR is somewhat arbitrary without detailed knowledge of the mass

spectrum of the system, we tted the models for a varying number of points in the long-range

tail of the data and used the description with minimal χ2 value as nal answer. All χ2 values are

54One should note that the periodic boundary conditions induce additional contributions from crossing the bound-
ary any number of times in both directions. The largest such contribution is included by the addition (x → − x).
However, the further contributions (x → n± x) for n ∈ N do not sum up to a nite contribution. This problem
is well-known in low-dimensional eld theories. For B = 2, the so-called Weierstrass elliptic function [165]
provides a regularized version of such sums and any elliptic function can be expanded in terms of this function and
its derivative. This theory could maybe be used (directly or as an inspiration) to write down a better behaved model
for such correlations but we stick to the largest two contributions for simplicity here.
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Table 6.3: Fit parameters for the three ts shown in Fig. 6.19a and given by Eqs. (3.15), (6.11) and (6.12).
One should note that B is a mass for SSB, so we imply a correct normalization B/σ0.

A0/σ0
2 A1/σ0

2 B χ2 σ0xmin

BKT - 0.12(7) 0.7(1) 0.254 37

SSB 9.4(4) · 10−3 0.23(3) 0.090(5) 0.232 15

SSB’ 9.1(5) · 10−3 1(2) · 103 3.3(5) 0.226 25

shown in Fig. 6.19a where the used one is highlighted. The corresponding values for A0, A1, B

can be found in Table 6.3.

The best t, in terms of χ2 as well as range of applicability and stability with respect to the

number of included points, is the SSB scenario. The value of the constant oset is small but

statistically signicantly non-vanishing which, at the same time, entails that the BKT scenario is

the worst t, not so much in χ2 but surely in range of applicability. One should again stress that

the BKT has one fewer free parameter and is therefore not expected to t as well. Furthermore,

all three ts are surely dominated by tting the close-to-constant behavior that sets in around

xσ0 ≈ 40 and at most (for SSB) t to a handful of signicantly decaying points. This also

explains why SSB and SSB’ are in such excellent agreement about the constant oset.

However, it is worth noting that the exponent B ≈ 0.66 ± 0.13 is reasonably close to the

expectedB = 1
2
forNf = 2 in case of a BKT phase. While it is not as close as in theNf = 2χGN

model, the ndings from there are similar: The BKT yielded a slightly larger exponent and the

massive correlators amounted to essentially an approximation of a constant and an exponential

decay on top of that. In the χGN model, this was predicted by PerT.

Furthermore, accounting for boundary conditions in a more reliable way would probably

raise the prediction for the long-range tail of the model signicantly allowing for a smaller expo-

nent at intermediate distances.55 This renders the possibility of a BKT phase at low or vanishing

temperature rather plausible.

Another open question concerns the ACT of the data. While we did not nd an artifact

region as shown in [65] for Nf = 2, the MC timeline of the conguration-wise kmax does not

show any jumps after thermalization for Nf = 2. The opposite behavior was interpreted in the

Nf = 2 χGN model as a further indication for a BKT phase. One could argue that the absence

of such jumps is physical, in the sense of being suciently close to the innite-volume limit

where there would be no jumps in case of actual B. In any ever-so-large nite volume at nite

lattice spacing we know for a fact that there are (potentially very small) contributions from all

possible congurations including such with diering dominant wave numbers. In that sense,

ergodicity is only truly achieved if such jumps are seen frequently56 in the MC timeline. The

best-founded conclusion, hence, seems to be that this question is undecidable with the available

computational resources in conjunction with the algorithmic setup.

55At least, this is the case if one compares theWeierstrass elliptic function (regularizingB = 2) in comparison
to a simple x−2 decay.

56compared to the number of congurations
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Chapter 7

Thirring Models in 1+2 Dimensions

By the time I joined the research group, it had already been established that 1+2D Th models

do not feature χB for any avor number Nr ≥ 2 which contradicts a large number of previous

claims. This chapter is devoted to an in-depth study of Nr = 1 and an analytically continued

neighborhood of it. We will clarify the status ofNr = 1 as being chirally symmetric for all cou-

pling strengths outside the LAP and in doing so discover an exotic non-symmetry-breaking PT

that could allow us to construct non-trivial strongly-coupled continuum Th models. For com-

pleteness, we will start out in ection 7.1 with a small summary of previous results excluding

χB for Nr ≥ 2 and establishing parity symmetry breaking for odd Nf ≤ 9. Afterwards, we

will gather evidence against χB in the Nr = 1 Th model in ection 7.2 and instead establish

the existence of the new PT in ection 7.3. This eort will culminate in a revised phase di-

agram of non-symmetry-breaking strongly-coupled Th models in ection 7.4. We will nally

discuss some thoughts on discrepancies with concurrent studies ofNr = 1with DW fermions in

ection 7.5. The reader should note that we refrain from setting a scale for these investigations

because we are interested in critical behavior that is by denition scale-invariant.

7.1 Precursors About Other Flavor Numbers

As was discussed in ection 2.5, Thmodels formulated with reducible and irreducible fermions

species are fundamentally dierent due to the non-existence of chirality in 1+2 dimensions.

While an even number of irreducible avors can be rearranged into an equivalent description in

terms of reducible fermions, this is not the case for oddNf that behave fundamentally dierently.

Prior to the work in our group, there had already been a long-standing interest in 1+2D Th

models. imilar to other 4FTs in 1+2D, Th models are perturbatively non-renormalizable and

can only yield nite predictions in an expansion in 1/Nf . As opposed to its relatives however,

the MF approximation does not feature dynamical mass generation or B because the corre-

sponding diagram is suppressed by Furry’s theorem [166] as the calculation in [167] shows.

This leads to the unintuitive situation that introducing more quantum uctuations when de-

creasingNf could actually inducemore order through the formation of a condensate. This is quite

67
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the opposite of the previous chapter where the suppression of uctuations lead to a stronger and

stronger tendency to (almost) condense.

While from the early days there was general consensus about the existence of a critical line

in the 1/2g2
Th
-Nr plane, predictions about its location never managed to converge until recently.

Predictions for the onset of this line reached from Nr,c = 2 to Nr,c = ∞ coming from a variety

of methods including DEs, FRG and lattice simulations. Historical overviews of these results

have been collated multiple times by now, see e.g. [69, 145].

The results to be discussed here are in stark contrast to older results. Only in recent years, a

convergence of dierent methods is observed and the technical subtleties become apparent. FRG

studies, for example, need to consider higher-order momentum contributions to be successful

[30] while previous lattice studies with staggered fermions are nowadays known to give rise to

Th models of Kähler-Dirac fermions in the continuum [136] which are theories distinct from

the one studied in this thesis. Recent studies are consistent concerning their general trend –

namely thatNr,c is likely to be smaller than two – but disagree concerning the prediction of χB

in the Nr = 1 Th model with a series of papers utilizing DW fermions suggesting its existence

in contrast to this thesis [29, 84, 89, 136, 154, 157, 158].

B in Th models is hard to study on the lattice because the fermionic determinant in the

vector formulation of Thmodels is parity/chirally symmetric for each conguration of the vector

eld individually [128] on a nite lattice. Only after the introduction of a small trigger source,

usually a mass m, a non-vanishing chiral condensate can be measured that requires a careful

extrapolation to the chiral limit (m → 0) after taking the thermodynamic limit (|Λ| → ∞). We

will resort to this technique later on to corroborate the rst hints stemming from a complementary

approach working directly in the chiral limit.

This complementary approach starts by reformulating a Th model of Nf avors via a Fierz

transformation

LTh = ψ̄i

(

/∂ + T +
1

2
trT

)

ψ +
Nr

2g2
Th

(

1

2
(trT )2 + trT 2

)

, ⟨Tab⟩ ∝
⟨
ψ̄aψb

⟩
(7.1)

where T is a Hermitian (matrix) auxiliary boson eld transforming as T ↦→ UTU † under a

chiral transformation U from Eq. (2.13). As opposed to the vector formulation, this formulation

includes all possible order parameter elds for B into two separate unitary groups. For even

numbers of irreducible avors, the expected χB followsU(2Nr)⊗Z
P
2 → U(Nr)⊗U(Nr)⊗Z

P
2 .

For an odd number of irreducible avors, it is not possible to break theU(Nf)⊗Z
P
2 in a χB-like

pattern and instead the relevant direction in the space of order parameters turns out to be related

to parity breaking, i.e. U(Nf)⊗ Z
P
2 → U(Nf).

This formulation unfortunately has a strong P and cannot be used for simulations. It did,

however, inspire the formulation of a fermion-bag-like [129] occupation number algorithmwhich

has been used directly forNf = 1 [96]. Furthermore, these occupation numbers allow for the re-

construction of an eective potential for the pertinent local order parameter and can be measured

in other formulations like the vector formulation due to their relation to thermodynamic observ-
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(a) Odd Nf in parity-breaking direction. For the inset, the data
are scaled by a factor of 104.

(b) EvenNf = 2Nr (equivalent to reducible models) in the two
pertinent directions.

Figure 7.1: Eective Potential for symmetry-breaking order parameters in Th models on a 16 × 15 × 15
lattice at strong couplings outside the LAP (see values in Table 7.1). Data were produced and rst used in
the context of [128].

Table 7.1: Values of the coupling constants 1/2g2
Th

at which the data in Fig. 7.1 were taken. For comparison,
the two lattice phase transitions (LAP transition and parity-breaking transition) found in [128] are given.

Nf 2 3 4 5 7 9 11

LAP 0.208(4) 0.146(4) 0.112(3) 0.091(2) 0.067(1) 0.054(1) 0.045(1)

Fig. 7.1 0.214 0.154 0.114 0.098 0.070 0.054 0.050

Parity - 0.172(2) - 0.110(4) 0.077(1) 0.054(2) -

ables. These developments culminated in a hybrid technique using simulations in the P-free

vector formulation with the purpose of determining the eective potential of the parity/chiral

order parameter [128].

For our purposes, we only dene the total lattice lling factor (LFF)

k = −1/2g2
Th

Nr|Λ|
∂1/2g2

Th
lnZ(1/2g2

Th
) + const ∝ ⟨JµJ

µ⟩ (7.2)

varying between 0 and 1 but more ne-grained information is necessary for the reconstruction

of all potentials. It can be shown to be exactly 1 in the LAP in the innite-volume limit and will

exactly vanish at vanishing coupling constant. It is, however, to the best of our knowledge no

order parameter in the sense of (non-)vanishing if and only if B occurs.

Fig. 7.1 shows the eective potential in the pertinent direction for various avor numbers

of reducible and irreducible models at representative values of the coupling constants. In the

irreducible models, Fig. 7.1a, one can clearly identify non-trivial global minima for Nf ≲ 9

while all reducible models, Fig. 7.1b, have their global minima at vanishing condensate. One

should note that all these potentials are perfectly symmetric as it should be in the chiral limit.

A detailed study in [128] determined the critical coupling constants for odd irreducible avor

numbers by examination of the curvature of the local extremum for vanishing condensate.

The same technique was also used to exclude second-order chiral PTs in reducible Thmodels
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for all avor numbers Nr ≥ 2. Only for Nr = 1 the curvature becomes very small around the

transition into the LAP such that a tiny regime of χB could not be fully excluded from the data.

This will be subject of the following sections.

7.2 Absence of Chiral Symmetry Breaking

We will now focus our discussion on the case Nr = 1 and a small analytically continued

neighborhood around this value. In order to do so, we consider the prefactor Nr of the single-

(reducible-)avor eective action, Eq. (3.1), as a continuous parameter, allowing it to take any

real value Nr ∈ [0.5, 1.1].

To the best of our knowledge, the resulting theory does not describe a local QFT with a

reasonable continuum limit (at least for Nr /∈ N/2). Nevertheless, this approach is common

in analytical studies [30, 45, 46, 83, 167–169] and was also used on the lattice before [170,

171]. The following study is instead intended to establish a non-negligible dierence between

the hypothetical critical avor number Nr,c for χB and Nr = 1 in order to derive convincing

conclusions about the single-avor model.

Furthermore, it is important to realize that extrapolating to half-integerNr does not give rise

to the irreducible models as one might naively expect. This can be understood from various

perspectives: Most prominently, the above procedure yields models that always have a notion of

chirality and that can never break parity symmetry. More technically, the above recipe describes

P-free models for allNr which is again dierent from irreducible ones. In that sense, it is closer

to a phase-quenched version of the irreducible model.

7.2.1 The Chiral Condensate

The Th eective action is chirally symmetric on every single vector-eld conguration, so we

have to trigger a chiral condensate by the introduction of a small explicit breaking of chiral

symmetry. We choose this trigger to be a small mass

m =
m0

(7.3)

vanishing in the innite-volume limit → ∞ with a free dimensionless parameter m0 > 0 that

we will keep xed at m0 = 0.1 during the main simulation runs later on. Qualitatively similar

results to what follows were also found for smaller masses m0 = 0.04 but the ill-conditioned

Dirac operator hinders extensive studies in this parameter regime.

Before we do so, however, we show the dependence of the chiral condensateΣ onm0 for three

lattice sizes Nt = 8, 12, 16 for one representative value Nr = 0.70 in Fig. 7.2a. Here and in the

following, we will consider almost-cubic57 lattices withNt× (Nt − 1)2 points unless otherwise

stated. The gure shows the expected behavior in case of B: Due to the exact symmetry at

57in order to achieve a convenient formulation of the LAC derivative, see [Wipf2021mns]
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(a) Chiral condensate Σ in theNr = 0.70 Th model on various
lattices for dierent values of the dimensionless mass param-
eterm0.

(b) Overview of the chiral condensate Σ in Th models on an
Nt = 16 lattice. The red dots show the parameters where
simulations were performed.

(c) Maximal value of the chiral condensate for various lattices.
The solid, dotted and dashed-dotted lines show the ts ac-
cording to Eq. (7.5) with parameters given in Table 7.3.

(d) Finite-size scaling (F) ts of the maximal value of the chi-
ral condensate for various reducible avor numbers according
to Eq. (7.4). The corresponding parameters can be found in
Table 7.2.

Figure 7.2: Chiral condensate in Th models.

m0 = 0, there is an exactly vanishing condensate. For small masses, it exhibits a steep rise

that attens for large masses. The features at non-vanishing mass become more distinct with

increasing volume and the standard theory of B tells us that this will continue until the chiral

condensate becomes discontinuous at m = 0 for |Λ| → ∞ such that Σ(m ↘ 0) > 0 whereas

Σ(m = 0) = 0. Although on a qualitative level, this gure already establishes the fact that

there exists χB for suciently smallNr, our further investigations will show thatNr = 1 is not

"suciently small" in that regard.

Fig. 7.2b shows the chiral condensate on anNt = 16 lattice varying the two free parameters,

Nr and 1/2g2
Th
. It has a pronounced maximum at the smallest avor number Nr = 0.50 and

an intermediate value of the coupling 1/2g2
Th

≈ 0.36. For larger coupling, i.e. smaller 1/2g2
Th
,

there is a sudden fall while reducing the coupling leads to a smooth decrease of the conden-

sate. Increasing Nr the sudden drop wanders to smaller coupling while the rest of the features

shows little change which eectively leads to a shift of the maximum to smaller couplings. At

Nr = 1.00, the signal is very small compared to the maximum at Nr = 0.50. However, it still

has a small maximum.

The shape of this condensatemight look a little unexpected. Indeed, as discussed in Chapter 4

the non-monotonic behavior at strong coupling is due to the LAP producing the sudden drop.
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Table 7.2: Parameter values obtained from tting Eq. (7.4) to the data in Fig. 7.2d including the reduced
χ2. The sign, S, was determined from the trend between the rst and last data point. The Nr = 0.95 data
(marked with an asterisk) are basically at and are not well described by the ansatz.

Nr 0.70 0.80 0.85 0.90 0.95 1.00

B 0.155(9) 0.08(1) 0.11(3) 0.20(7) 3* 0.03(2)

C 0.56(3) 0.87(3) 0.95(9) 1.4(4) 5* 0.0(7)

χ2 0.22 0.57 0.90 0.49 2.51 1.14

The smooth decay at smaller couplings is the region related to continuum physics and a rst

naive estimate of the onset of the LAP is given by the maximum for every xed avor number.

This approximation is used, for example, in [29, 84, 89, 136, 154, 157, 158] while we will be

more precise later on and show that this is not an adequate way to localize the transition into the

LAP phase.

An upper bound for the chiral condensate for some given avor number Nr is its maximum

with respect to 1/2g2
Th
. For various volumes, this is depicted in Fig. 7.2c. One should stress

again that our denition of the mass couples the chiral limit to the innite-volume limit such

that larger volume implies approaching the chiral limit.

Qualitatively, we make the same observation as before: Increasing the avor number quickly

lowers the condensate and all volumes consistently show an inection point around Nr ≈ 0.80.

Furthermore, it is clearly growing with the volume for Nr ≤ 0.80 which signals a symmetry-

broken phase in that regime. Oppositely, it is clearly decreasing with the volume forNr ≥ 0.95.

The inset shows a detailed view of the region in between. There is a reversal of the trend around

Nr ≈ 0.93.

The rising behavior with the volume at small avor numbers is rapid and surely extrapolates

to a non-vanishing value. Modeling the F in an explicitly massive system via58

Σ(Nt)

Σ(Nt = 6)
= S exp (−BNt) + C, S ∈ {±1}, B, C > 0, (7.4)

we can also conclude that the maximal condensate for Nr = 1.00 extrapolates to a vanishing

innite-volume limit Σ(∞) = C = 0.0(7) as seen in Fig. 7.2d and Table 7.2. In between,

there is a region where such ts become unreliable because the data are close to constant and

sometimes even non-monotonic. While this is strong evidence that Nr = 1.00 does not show

B, this analysis is inconclusive about its immediate neighborhood. It does not exclude the

possibility that Nr = 1.00 is critical.

A rst hint that the critical avor number is far below Nr = 1.00 can be obtained from

the following observation: The data below the inection point59 are well described by a criti-

58We excluded Nt = 14 from the ts due to thermalization problems in the ensembles that would have been too
expensive to overcome in a second run.

59We use Nr = 0.80 for simplicity for all volumes.
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Table 7.3: Parameter values obtained from tting
Eq. (7.5) to the data in Fig. 7.2c including the reduced
χ2.

Nt 8 12 16

A 0.36(1) 0.316(6) 0.327(9)

Nr,c 0.82(1) 0.789(7) 0.81(2)

β 0.56(4) 0.26(2) 0.25(3)

χ2 0.29 0.53 1.46

cal behavior of the form

Σ(Nr) = A (Nr −Nr,c)
β (7.5)

where Nr,c is the critical avor number, β is

a critical exponent and A > 0 an overall am-

plitude to t to the data. The resulting val-

ues, given in Table 7.3, are largely consistent

in terms of the critical avor number

Nr,c = 0.797(6) (7.6)

which we estimated as the weighted average of all three ts.60 Below this value, the data are

indeed very well described by Eq. (7.5) while larger Nr are inconsistent with these ts beyond

the typical F eects encountered in MC simulations. We will later see that this phenomenon

is well understood after we have answered the question of what Th models above this critical

avor number look like.

As a side remark, we note that the critical exponent

β = 0.26(2) (7.7)

is consistently tted on the larger two lattices but far o from the rst estimate as well as other

values in the literature, e.g., 0.44 [46] from FRG or 1 [172] from DEs, which are, however,

themselves not very consistent across methods.

7.2.2 Spectral Investigations for Nr = 0.80 and Nr = 1.00

Before we turn to the broader picture, we will further strengthen the qualitative dierence be-

tween the χB phase for unphysically small avor numbers and the symmetric phase that we

found for Nr = 1.00. To this end, we choose two exemplary points (Nr, 1/2g
2
Th
) = (0.80, 0.46)

and (1.00, 0.55) where the respective condensate is maximal with respect to 1/2g2
Th
.

We will rst inspect the spectral density of the Dirac operator. Via the Banks-Casher

relation (BCR) [173], the spectrum of small eigenvalues is intimately related to χB.We average

the spectral density ρ over all auxiliary eld congurations and arrive at the expression

Σ =
2m

|Λ|

∞∫

0

ρ(E)dE

E2 +m2
. (7.8)

One can clearly see that a nite chiral condensate in the chiral limit m → 0 is only possible if

ρ(E → 0) stays nite.

60Due to the non-monotonicity of these values, an extrapolation was infeasible without more extensive data.
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Figure 7.3: pectral density according to Eq. (7.8) in
1+2D Th models with (Nr, 1/2g

2
Th
) = (0.80, 0.46)

and (1.00, 0.55) for various lattice sizes Nt =
8, 12, 16. The lled markers show the data for Nr =
0.80, the empty ones for Nr = 1.00. The inset shows
in solid (dotted) lines the Nt = 16, Nr = 0.80 (1.00)
data for a larger range.

Fig. 7.3 shows the spectral density for our

two sample points. While the data for in-

termediate and large eigenvalues ≥ 0.08 are

independent of the volume within errors in

agreement with the discussion in [174], the

data show a strong volume dependence in the

low-energy spectrum. Indeed, Nr = 0.80 –

predicted to break chiral symmetry in the pre-

vious analysis – exhibits a non-vanishing and

increasing spectral density around eigenval-

ues E = 0 as necessitated by the BCR. In

contrast, the low-energy spectral density stays

close to zero for all volumes at Nr = 1.00.

The massless modes responsible for the

above behavior of the low-energy spectrum are related to the NGBs that occur as a consequence

of B.61 In the following, we will identify and measure them directly for Nr = 0.80 and show

that these modes remain massive for Nr = 1.00.

In the reducible representation, there are four independent (pseudo)scalar mesons. ForNr =

1, interpolating operators at vanishing momentum are

scalar: M0(t) =
∑

x∈Λs

ψ̄(t, x)1ψ(t, x), M3(t) =
∑

x∈Λs

ψ̄(t, x)γ∗γ∗∗ψ(t, x), (7.9)

pseudoscalar: M1(t) =
∑

x∈Λs

ψ̄(t, x)iγ∗ψ(t, x), M2(t) =
∑

x∈Λs

ψ̄(t, x)iγ∗∗ψ(t, x). (7.10)

As they are avor-vector symmetric, it suces to consider the case Nr = 1. In the reducible

representation suggested in ection 2.5, the properties of the Paulimatrices turn the correlation

matrix into

Cij(t) = ⟨Mi(t)Mj(0)⟩c = Ci(t)δij (no sum convention), (7.11)

i.e. diagonal in this operator space (see [64] for a proof of this and an explicit formula).

For a symmetric ground state in the chiral limit, one can prove that M0 transforms as a

singlet under the U(2) chiral symmetry while the others form a triplet and thus C1 = C2 = C3.

In case of χB, theM3 direction62 has a non-vanishing expectation value lifting the degeneracy

to M1 and M2 which, in case of B, become the massless NGBs. Due to the small explicit

breaking, we do not expect perfect degeneracy or exactly vanishing mass but, at least, a good

61To the best of my knowledge, this is intuitive but not widely known. However, [175] derives the NGB pole as
the chiral condensate which is, by use of the BCR, a direct consequence of the low-energy spectrum of the Dirac
operator.

62Remember that we redened ψ ↦→ γ∗γ∗∗ψ, see Eq. (2.23).
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(a) Nr = 0.80. The data for C0 are missing in the main plot
because it is compatible with zero everywhere and cannot be
normalized reliably.

(b) Nr = 1.00.

Figure 7.4: Temporal correlators according to Eq. (7.11) in 1+2D Th models at the representative sample
points (Nr, 1/2g

2
Th
) = (0.80, 0.46) and (1.00, 0.55). The main plot shows the data normalized at t = 1

including ts according to Eq. (7.12) over half the temporal extent with values given in Table 7.4. The
inset shows 104 times the unnormalized data over the full temporal extent.

approximation. Furthermore,M1 and M2 are provably equal in our setup, see [64].63

Fig. 7.4 shows the described correlators at our two sample points for Nt = 24 and Ns =

11, 15. All of them are well modeled by a double-cosh ansatz

C(t) = A1 cosh(m1(t−Nt/2)) + A2 cosh(m2(t−Nt/2)) (7.12)

where A1/2,m1/2 > 0 are to be tted to the data. The main gures show the data normalized for

t = 1. The insets show the unnormalized data in order to emphasize when correlators are (close

to) equal even beyond their masses.

This does indeed occur for C1/2 ≈ C3 for Nr = 1.00 which conrms the expected triplet

structure of unbroken symmetry. TheM3 meson is slightly heavier because of the small explicit

mass lifting the degeneracy. The avor singlet is heavier as can be seen from Table 7.4.

This situation is dierent forNr = 0.80: As seen in the inset, the correlatorsC1/2 andC3 split

up and their tted masses are dierent. This is consistent with the appearance of two almost-

NGB that are massless up to corrections from F eects. The scalar meson seems to become

very heavy such that C0 does not yield a non-vanishing signal for any temporal separation t.

We conclude that the spectral properties are consistent with χB for Nr = 0.80 but not for

Nr = 1.00. The remainder of this chapter will nally present evidence against Nr = 1.00 being

critical.

7.3 The New Phase Transition

The previous sections have established the existence of a critical avor number well below

Nr = 1.00. We will now present evidence that points to an exotic previously unknown PT that

63also checked numerically
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Table 7.4: Parameter values tting the double-cosh ansatz Eq. (7.12) to the data depicted in Fig. 7.4. Due
to the normalization, we could additionally x A1 = 1 and only t A = A2 afterwards, normalizing the
result. For Nr = 0.80 the correlator C0 was compatible with zero everywhere and could therefore not be
tted reliably.

Nr = 0.80 Nr = 1.00

C1/2 C3 C0 C1/2 C3

Ns = 11

A · 104 0.05(3) 2(1) 0.4(2) 0.5(2) 0.3(1)

m1 0.1042(7) 0.110(2) 0.21(1) 0.134(2) 0.138(2)

m2 1.08(6) 0.81(5) 1.27(5) 1.03(4) 1.08(4)

χ2 0.018 0.066 0.103 0.172 0.302

Ns = 15

A · 104 0.2(1) 3(1) 0.4(3) 0.5(2) 1(3)

m1 0.0950(9) 0.127(2) 0.21(1) 0.128(2) 0.132(2)

m2 0.95(5) 0.82(3) 1.22(6) 1.03(3) 0.99(3)

χ2 0.008 0.008 0.068 0.048 0.052

is – to the best of our knowledge – not related to any broken symmetry.

Fig. 7.5a shows the LFF, dened in Eq. (7.2), over a large scan in the avor number and

coupling constant. As expected, the LAP appears as a at region k ≈ 1 at strong coupling that

is separated by a sudden drop from a phase related to continuum physics. A comparison with

the ridge in Fig. 7.2b reveals, however, that the naive expectation that the maximal condensate

would follow this line is not fullled: While they indeed unite for small avor numbers roughly

below Nr ≈ 0.80, the LAP transition line shows only a mild dependence on avor numbers

above Nr ≈ 0.80 as opposed to the position of the maximum which shifts from 1/2g2
Th

≈ 0.40

to 1/2g2
Th

> 0.50 while going from Nr = 0.80 to Nr = 1.00.

Instead, it seems that the maximum follows a second drop of the LFF that was not studied

before.64 Attempting a quantitative analysis of this observation, we computed the lattice lling

susceptibility (LF) χ = ∂1/2g2
Th
k shown in Fig. 7.5b by numerically dierentiating the k data,

see Appendix A for details. In fact, Fig. 7.5b clearly shows that there is a single large peak

related to the LAP transition forNr = 0.60 that, however, splits up at aroundNr = 0.80 and has

resolved into two well-separated peaks at Nr = 1.00. One should stress again that the LAP –

unambiguously signaled by k ≈ 1 – is to the left of the left-hand-side peak while the maximal

condensate is measured slightly to the right of the right-hand-side peak (see Fig. 7.6 later on).

Another interesting property of these peaks is their volume dependence depicted in Fig. 7.5c

forNr = 1.00.65 For small volumes, both peaks grow andmove apart. The left peak signaling the

entrance into the LAP stays rather broad while the right peak seems to sharpen with increasing

64Although it was already present in the data presented in [128].
65This analysis was rened with respect to the published one. Readers familiar with [64] should consult Ap-

pendix A for a description of the new method.
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(a) Overview over the LFF for varying 1/2g2
Th

and Nr. (b) LF for representative avor numbersNr. The markers indi-
cate the result of the naive derivative stencil Eq. (A.1) while
the lines show the result of the total-variation-regularized
ansatz [176] (see also Appendix A).

(c) LF volume dependence for Nr = 1.00 with the total-
variation-regularized derivative [176] (see also Appendix A).

(d) Magnitude of the LF peaks overNt.

Figure 7.5: Figures on various aspects of the LFF and its derivative, the LF.

volume. For large volumes, the growth becomes slow and magnitudes of the peaks seem to

approach each other, see Fig. 7.5d.

Peaks of susceptibilities signal rapid changes in the physical properties of the system, often

related to PTs or crossovers. While rst-order PTs tend to have a peak of constant height, perti-

nent susceptibilities diverge at second-order PTs in an innite volume [1]. The data of Fig. 7.5d

could, thus, be interpreted as evidence for two rst-order PTs because the peak height seems to

become constant for large volumes. This would greatly enhance the possibility of a duality be-

tween the strong and the weak coupling regime. It would, however, disconnect a region of nite

bare lattice coupling from any second-order PT where a continuum limit could be constructed.

On the other hand, the above analysis relies on a weak spot of the total-variation-regularized

derivative that was used: It is particularly designed to smoothen noise while retaining as much

information about qualitative features (including sharp ones as drops and peaks) as possible

[176]. till, in numerical experiments we found that the height of a sharp peak is generically

underestimated. If one instead focuses on the width of the peaks, the right one becomes very

sharp while the left one is and seems to stay much broader. It is therefore likely that the two PTs

are qualitatively dierent. If so, we expect the left-hand-side one to be rst-order separating the

LAP from continuum physics while the right-hand-side one would probably be second order.

The latter scenario features a strongly-coupled continuum Th model that could be con-
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Figure 7.6: Rough sketch of the lattice phase diagram of 1+2D Th models in the 1/2g2
Th
-Nr plane on a

Nt = 16 lattice. The background color indicates the value of the lattice lling factor. The blue solid and
orange dashed lines give the estimated positions of the transition into the LAP and the new PT, respectively.
The triple point where these two transitions split up is magnied in the inset. The hatched red area indicates
our conjecture where χB occurs. The pink crosses show the positions of maximal (in 1/2g2

Th
) values of

the chiral condensate.

structed from the lattice model by approaching the new transition from the left and we will

assume that to be the case in the following. One should note that the present analysis comes

to a slightly less conclusive result than the published one in [64] due to reasons laid out in Ap-

pendix A.

7.4 The Phase Diagram

The above ndings suggest that the phase diagram of discretized Th models in the 1/2g2
Th
-Nr

plane looks as sketched in Fig. 7.6. For lattice couplings exceeding a value g2
Th,LAP, we nd the

theory in the LAP where there is no fermionic dynamics left because most of the nitely many

lattice sites are blocked by interacting fermions. This phase makes up roughly the left third

of Fig. 7.6 bordered by the LAP transition line. At very small coupling strength, the system’s

behavior is governed by a weakly-coupled FP. This phase constitutes the outer right region of

the gure.

In between these two anticipated phases, we nd regimes of strongly-coupled interacting

physics that are probably governed by non-trivial continuum FPs. As already shown in the

beginning, for suciently small avor numbers we nd a sizeable chiral condensate. It quickly

drops for avor numbers above Nr > Nr,c ≈ 0.80. The remnant condensates above this value
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will be understood in a way unrelated to χB later on.

Unfortunately, our data lack the statistics to compute higher-order moments of the chiral

condensate, e.g., a susceptibility, Binder cumulant [177], or the like. Therefore, we have no

quantitative means for estimating the transition line to the weakly-coupled region. As a rough

sketch, the hatched region in Fig. 7.6 contains chiral condensates larger than 40% of the maxi-

mally measured condensate. This beautifully illustrates our conjecture for the shape and extent

of the χB region. But it is not a result, only a conjecture, and further computational resources

would be required to map out this area precisely. We can, however, comfortably claim that any

quantitative estimate of this region will stay signicantly away from Nr = 1.00 indicating the

absence of χB in all reducible 1+2D Th models.

In the small-avor-number region discussed above, the LF shows only a single peak. Around

the triple point

Nr,t ∈ [0.77, 0.81], 1/2g2
Th,t ∈ [0.41, 0.43] (7.13)

this peak splits up. The avor range in Eq. (7.13) neatly includes the critical avor number in-

ferred from the chiral condensate Eq. (7.6) and we conjecture thatNr,c andNr,t can be identied.

The only signicant measurements for the chiral condensate aboveNr,t are found to the right-

hand side of the right-hand side transition. As it seems rather unlikely that the chiral condensate

could show a non-monotonic behavior in a physical regime, we instead interpret this as a purely

statistical artifact: Close to a second-order PT (as conjectured for this transition), uctuations

increase and govern the statistical properties of all random variables. A strictly non-negative ob-

servable like the chiral condensate is biased in this setup to larger values when uctuations are

large because there are no negative contributions to cancel positive outliers. Thus, from interpo-

lating a monotonic behavior between the weak- and strong-coupling (but not LAP) regimes, we

expect the chiral condensate to vanish even in regimes where the innite-volume extrapolation

was inconclusive or pointing to slightly positive values on our small lattices.

The 1+2D Th model of a single reducible avor as well as its analytically continued neigh-

borhood in the above sense instead feature a strongly-coupled phase. This phase exhibits a strong

dependence of the LFF on the coupling strength without (to the best of our knowledge) break-

ing any symmetry. It is tempting to conjecture that the innite-volume limit could bring the

LFF down to zero in the perturbative regime which would render it an order parameter for this

transition and would further allow for a simple duality to the LAP in the spirit of k ↔ 1 − k.

Unfortunately, our data are not capable of supporting this conjecture, although it would be con-

sistent as the LFF indeed shrinks with increasing volume. Much larger lattices and a dedicated

scan would be needed.

The nature of the new phase and phase transition is largely unknown at the time of writing.

A dedicated study is needed to explore critical exponents and physical properties. Another inter-

esting question is what happens around the triple point (1/2g2
Th,t, Nr,t). It is mainly of academic

interest because non-integer avor numbers as used here most probably do not dene a local
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QFT. till, many other methods are capable of treating Nr as a continuous parameter like FRG,

DE and large-Nr expansions [30, 45, 46, 83, 167–169]. It would be interesting for methodolog-

ical reasons to harmonize the descriptions of this point (including its position). Theoretically,

there are three possible scenarios: The triple point and the end point for χB might either co-

incide or allow for a gap between or an overlap of both phases. And if there are (non-integer)

avor numbers exhibiting both, χB and the new phase, are they mutually exclusive, i.e. will

there exist more than one PT, or do we nd a regime where χB occurs inside the new phase?

As our data do not allow for a quantitative analysis of the χB phase at this point, it would be

compatible with either scenario.

7.5 On the Discrepancies of Modern Lattice Approaches

The above PD is still debated and concurrent studies with DW fermions do provide evidence

in favor of χB for Nf = 1 in what is called the bulk formulation [29, 84, 89, 136, 154, 157,

158]. This formulation emphasizes the Th interaction as a coupling of conserved currents and

sacrices the validity of the DE, Eq. (2.39), to this goal. It thereby loses its direct translation

into a purely fermionic theory as well as its exact chiral symmetry. But it retains the conserved

current that is crucial to renormalizability of the theory in the 1/Nf expansion [178].

Interestingly, another formulation which was explored in early stages of said eort [89] ex-

hibited phenomena much closer to what we found, particularly the absence of χB. If one inter-

preted DW formulations as simply a means to construct chiral fermions, this so-called surface

formulation directly translates the fermion-boson interaction term to the lattice by coupling the

vector eld to the physical fermion modes only. This vector eld is no longer conserved on the

lattice which is the same for our direct formulation in terms of LAC fermions.

At the time of writing, it seems that both of these modern lattice approaches are thoroughly

vetted and it is unlikely to reconcile the dierences on a supercial level, e.g., by coming to new

conclusions on the basis of more data. It seems more likely that the various lattice formulations

are governed by dierent FPs, i.e., describe dierent continuum theories. This is also conjec-

tured in [84] where the author describes the DW bulk formulation as closer to a gauge theory.

Whether this is a desired property, depends on the very subtle question of what we actually mean

by Th model. I will not attempt to answer this question here, but I will give some ideas on what

the approach used in this thesis is capable of describing as a Th model.

The LAC formulation is a superior formulation in a number of straightforward ways: It is

the best approximation of the continuum dispersion relation of free fermions on a nite lattice.

It retains exact chiral symmetry as well as the exact DE Eq. (2.39). The latter point ensures that

at any point in time the model can be interpreted as the purely fermionic theory it is typically

written down as. Finally, on a more practical note, it is comparably easy to implement and very

fast for simulations. However, beyond these very appealing properties it falls short on a more

subtle level: Its non-locality is itself not immediatly troublesome but still seems unnatural for
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describing local QFTs and it fails to describe gauge theories completely (for reasons described

in Chapter 5). Furthermore, it lacks conserved currents.

Therefore, I would conclude that the LAC fermion formulation is capable of – and poten-

tially the best choice for – describing a Th model as a purely fermionic theory with an exact

chiral symmetry that is left intact by the strictly point-like interaction it is formulated with. This

is a very explicit – maybe even supercial – interpretation of a Th model. It assumes that any

other important properties these models are studied for, e.g. the interaction of conserved cur-

rents or the similarity with gauge theories, are emergent and/or coincidental phenomena and not

dening properties. And, more importantly, they might not be emergent in this model after all

if the above conjecture holds true.

Accepting this, it would be interesting to see if such a model can be constructed from our

lattice action, recalling that the conserved current was a necessary condition during the renor-

malization in the large-Nf limit, and the above PD is a rst step in this direction.
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Chapter 8

Conclusions

In this thesis, I presented our research ndings on interacting fermionicmodels in low-dimensional

spacetimes. As described in Chapter 1, these theories are not fundamentally realized in nature

but emerge asmodels or eective theories in various branches of (quantum) physics, most promi-

nently high-energy and condensed-matter physics.

While the main approach to study the chosen systems was lattice MC simulations, I rst

collated and reviewed the analytical precursors to our studies on B of translational invariance

in and beyond low-dimensional systems. One of the main conclusions was that almost-long-

range order, also known as BKT phase, is inevitable in 1+1D systems. While this seems to

render such low dimensions special, I also pointed to conjectures that the resulting QL behavior

could be far more general and argued that as such the models under consideration provide a well-

controlled example to study its realizations.

For 1+1D χGN models with small avor numbers, our simulation results are in good agree-

ment with analytical predictions: We have established multiple evidence supporting the claim

that the nite-temperature model is in a massive phase of restored symmetry for all temperatures

and chemical potentials becoming critical and turning into a BKT phase for T = 0.

These evidence include spectroscopic data (see Fig. 6.9) as well as scaling behavior of vari-

ous non-local order parameters (see Figs. 6.5 to 6.8). On a qualitative level we were able to link

all the features of the nite-temperature (would-be) PD to external length scales as induced by

temperature, chemical potential and nite spatial extent.

That is not to say that the intriguing MF phenomena become irrelevant at nite avor num-

ber. In contrast, even down toNf = 2 they still dominate the behavior of the system at small and

intermediate length scales. This was concluded from the example correlators shown in Fig. 6.2,

their linearly-in-µ increasing dominant wave number and the general shape of the nite-size

(would-be) PDs. Already at Nf = 8, the behavior was hardly distinguishable from actual sym-

metry breaking, at least for the system sizes used in this thesis.

Furthermore, the results compiled in this thesis give valueable insight into howQLs behave,

particularly at the small and intermediate scales that are not as easily determined analytically as

some asymptotic limits. We have seen how a nite system size – as it can well be realized in real-
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world high-density systems – stabilizes the crystalline nature and, beyond that, how intermediate

scale features like the existence of some local ordering is independent of the articial scales of

lattice extent and lattice spacing a. Given that the QL behavior is conjectured to be applicable

to a very general set of phenomena, these insights could prove useful and turn out to be a rst,

simple instance of a general behavior.

For 1+1D Z2-GN models, most of the above conclusions hold true. Due to the focus on

Nf = 8 and the additional challenges in signal processing, the evidence about the existence of

B is less rigorous than in theχGN case. The same is true for the applicability of the theoretical

no-go theorem. Nevertheless, the data are consistent with a massive-at-nite-temperature and

BKT-at-zero-temperature scenario in accordance with the theoretical constraints. Our attempt

to solidify the evidence on large lattices for Nf = 2 was unfortunately inconclusive.

The new component brought into the thesis by this model was the existence of localized

degrees of freedom. These localized baryons could be shown to crystallize at nite chemical

potential in nite volume and are very likely to resemble the prototypical liquid much more

closely than the somewhat "more homogeneous" χGN case. It was established that the baryon

number – even conguration-wise – is tightly coupled to the number of oscillations of the con-

densate and that there is a preferred distance between baryons at xed chemical potential even

at nte avor number.

Given the recent developments in higher-dimensional fermionic theories (see the review in

ection 3.2), this renders it highly unlikely that purely fermionic theories are capable of breaking

translational invariance even under the inuence of some other form of Lorentz-invariance

breaking like a temperature and/or a chemical potential. It might still be the case that an even

stronger instance of such explicit breaking could induce inhomogeneities. A rst candidate, an

external magnetic eld, which was capable of producing inhomogeneous condensates in other

eective theories [179] was recently ruled out by another study of ours [37, 38] (at least at

small and moderate values of this parameter). Also, the inclusion of gauge elds could bring

completely dierent mechanisms for such breaking.

But until such a mechanism is found the more reasonable expectation might be that crys-

talline phases are not fundamentally supported by QFTs without any cutos. This renders such

scenarios less interesting for high-energy physics except for that it could exclude particularly

sti equations of state for QCD that would accompany a crystalline phase. It is less of a restric-

tion for other branches of physics well described by QFT. In condensed matter systems, a UV

as well as an IR cuto are naturally given by the crystal’s lattice spacing and the sample size,

respectively, and the above considerations about strict as opposed to almost long-range order are

less of a concern in these systems.

Afterwards, I turned to 1+2D Thmodels to discuss the long-standing issue of potential χB

for small avor numbers. Building upon previous work in this group, I presented multiple evi-

dence that no reducible Th model of integer avor number exhibits χB. To that end, we ana-

lytically continued our lattice action to non-integer avor numbers around Nr = 1.

We indeed found a regime where direct extrapolations of the chiral condensate as well as
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spectroscopic properties of the theory and spectral properties of its Dirac operator clearly in-

dicated a symmetry-broken phase at suciently strong coupling outside the LAP. This region

was, however, restricted to Nr ≲ 0.80 which – to the best of my knowledge – does not describe

a local QFT in the continuum limit.

The same analysis for Nr = 1, i.e. the single-avor reducible Th model under considera-

tion, in contrast yielded negative results. Direct extrapolation of the condensate yielded weaker

but still signicant decay towards zero. The eigenvalue spectrum of the Dirac operator stays

sparse around zero on average and correlation functions indicate an unbroken SU(2) triplet in

the spectrum.

Instead, we found an unexpected two-peaked structure in a susceptibility that is – again to the

best of our knowledge – not related to B. The stronger-coupling peak signalled the expected

transition into the LAP, a phase where the additively renormalized 1/2g2
Th

passed zero which is

impossible in the continuum model. In that sense, it is considered purely artical in this thesis

although it is of physical relevance in other branches of physics where the lattice description is

intrinsic to the problem [130, 131].

The second peak sparked the following conjecture about the PD: It might signal a second-

order PT that is not related to B. There, a continuum Th model could be constructed that is

strongly coupled but does not feature a chiral condensate. It would bypass the problem of how

to construct any strongly-coupled continuum theory from this lattice action and render the ever

so slight bump in the condensate that follows this peak an artifact of averaging the stronger noise

expected around a second-order PT. A conjectured PD is given in Fig. 7.6.

This conjecture is at oddswith other lattice formulations employingDW fermions. Following

the authors of [84], I conjectured in ection 7.5 that these discrepancies could be an indication

that the two formulations do not describe the same continuum theory. A dividing line between

dierent lattice formulations could be the existence of and coupling to a conserved current. This

would, in turn, raise the question why the two formulations agree so well for any higher avor

number.

Even with our expensive computer simulations, we have only scratched the surface concern-

ing the new PT and more dedicated simulations are needed to nd out more about its properties.

Compared to our original publication [64] my rened analysis in this thesis was less conclu-

sive about even the order of the PT. Further interesting information would include critical ex-

ponents to determine the universality class and the properties of the new strongly-coupled but

not-symmetry-breaking phase. uch information could also inform other methods such as FRG

for more dedicated studies.

The conjectured scenario implies further interesting questions: If there is an exotic PT for

Nr = 1, what happens to it for larger Nr? Does it maybe even exist in the MF approximation of

innite avors and if not, are we once again looking for a critical avor number?

Also, while not immediately physically relevant, several other methods such as FRG or 1/Nr

expansions are capable of working with non-integer avor numbers. It would strengthen our

ndings if – in addition to further lattice studies – other methods could conrm the found critical
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avor number and, more interestingly, its co-location with the branching point in the LF. In our

simulations, see e.g. Fig. 7.5, the system exhibited a behavior similar to a second-order PT with

respect to the avor number. It would be interesting to conrm this and study its properties.

Finally, I observed that the analytical continuation to non-integer avor numbers seems to be

smooth. Naively, one must come to the conclusion that these theories are highly non-local due to

some real exponent on the determinant in the eective action. But on the other hand, approaching

Nr = 1 locality apparently emerges in a manner that makes all studied observables smooth. It

is a fascinating question how this non-locality vanishes. Are theories with Nr = 1 + ε only

"slightly non-local" for small ε > 0? As far as I know this question, however, has no physical

relevance.

In the process of nalizing this thesis, there were further developments around 1+2D Th

models that could not be accounted for with appropriate depth anymore: While not immediately

asking about the critical avor number, [180] comes to the conclusion that pure Th models lie

on a rst order PT line between a χB and parity-breaking phase that are reached by adding

a quadratic coupling of parity-condensates to the Lagrangian. If this were true, it might be

another explanation why dierent methods come to signcantly dierent conclusions: If the

discretized operators contain contaminations from such an operator, and dierent formulations

do so in a dierent way, signicantly diering results would be an obvious consequence. For our

own results we have, however, measured neither a nite parity nor a chiral condensate beyond

what we attribute to statistical noise. Either way, these results provide an interesting perspective

on 1+2D Th models and might become relevant also to questions discussed in this thesis.

The results compiled in this thesis have shed a new light on purely fermionic interacting

theories and contributed in various ways to a rened understanding of such. But they have

also shown their limitations in the description of nature: To the best of our knowledge, fermion

interactions on the fundamental level are mediated via gauge elds and their dynamics add a

further level of complexity on top of the intricate phenomena discussed in this thesis. In both

topical complexes studied, their lingering absence left room for interpretations and speculations

about fundamental features of QFTs that need a wholesome approach to answer them. But even

if at some point this wholesome approach – from lattice eld theory or any other method – is

available to study all these features in dynamical gauge theories, the purely fermionic view on

things provides an interesting perspective to disentangle the various phenomena. And until we

are at that distant point, this thesis constitutes a further example of what invaluable insights they

provide.
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Appendix A

Numerical Dierentiation

We determined the LF as a numerical derivative of the LFF because the direct measurement

of the corresponding 8-point correlation function would have been prohibitively expensive and

noisy. Derivatives can be easily approximated by nite dierence stencils, the simplest of which

reads

∂λk(λi) =
k(λi+1)− k(λi−1)

2δλ
+O(δλ2). (A.1)

This formula is linear in all k(λi) such that linear error propagation can be used to estimate the

uncertainty of the resulting value up to the systematic error of order O(δλ2).

Unfortunately, such a naive approach can be ill-behaved when applied to noisy data even if

the errors seem to be rather small. This is seen in Fig. 7.5b where the markers show signicant

uctuations despite the rather smooth appearance of the data in Fig. 7.5a. This problem is well-

known in the literature and a plethora of regularization methods have been proposed.

Here, we apply the so-called total-variation regularized dierentiation [176] via the imple-

mentation [181]. Instead of computing an approximation of the derivative directly, it integrates

the latter and compares it to the original values. During the iteration towards an optimal solu-

tion, a regulator term can be applied to smooth out the amplied noise. A slightly more detailed

version of this description can be found in [64].

In replicating the analysis from [64], I found that the result of this dierentiation is sensitive

to the given values of k beyond the level of precision provided by the measurements. Therefore,

instead of using the values as-is, I repeated the analysis a large number of times while resampling

the values of k from a gaussian distribution with width determined from their uncertainty.

The average and 68% percentiles of this ensemble provide a smoother and statistically sounder

estimate of the susceptibility and its uncertainty. The lines given in the original paper [64]

are understood as one – in some parts rather exceptional – sample in this ensemble and some

conclusions had to be weakened.
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Appendix B

Parameters and Ensembles

This appendix provides a summary of the parameters used for the simulations and the resulting

ensembles. A machine-readable and complete list of parameters is provided in the supplemen-

tary material [63].

B.1 Chiral Gross-NeveuModels

The bulk of the simulations was performed to map out the Nf = 2 PD in the µ-T plane. We

simulated three dierent spatial extents at the largest lattice spacing and aimed for keeping a

constant physical volume while lowering the lattice spacing in producing further ensembles with

smaller lattice spacings. Aswe improved ourmethod of scalesetting after the fact, the determined

lattice spacings changed and the volumes do not precisely match up. These choices as well as

the additional Nf = 8 lattice setup are summarized in Table B.1.

For each of these spatial lattices we simulated at evenly spaced values of positive chemi-

cal potential starting at 0 as well as on a variety of dierent temporal extents to map out the

temperature axis. These temperature and chemical potential grids are summarized in Table B.2.

In addition to the above, we took additional samples for specic purposes such as scalesetting

and checks of thermalization/autocorrelation behaviour. In particular, the previously described

ensembles all used the freeze-out method for the initial conditions.66 Other methods we used are

a hot start, cold start or the inverse of freezing-out, i.e., heat-up method. Descriptions of these

can be found in [42]. These exceptional ensembles are sketched out in Table B.3.

The defaults for further technical parameters can be found in Table B.4. The trajectory length

varied between 1.0 and 2.4 with at least 10 but up to 18 integration steps per trajectory depending

on parameter details like lattice size and temperature.

66Except for 638largewhich used independent hot starts throughout all simulations.
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Table B.1: ummary of (spatial) lattice setups on which χGN model ensembles were generated.

ID Nf Ns 1/2g2χGN aρ0 ρ0

632large 2 63 1.0540 0.4566(6) 28.77(4)

1272large 2 127 1.0540 0.458(1) 58.2(1)

2552large 2 255 1.0540 0.457(1) 116(3)

1272medium 2 127 1.3895 0.194(3) 24.6(4)

2552small 2 255 1.8254 0.08(1) 49(3)

638large 8 63 5.1013 0.4124(2) 25.98(1)

Table B.2: Overview of external parameters simulated per lattice setup in χGN models. The lattices are
identied via their ID from Table B.1. All numerical values are given in lattice units.

ID Nt [min/max] δµ µmax

632large 2 / 72 0.04 0.60

1272large 2 / 72 0.04 0.60

2552large 2 / 72 0.04 0.60

1272medium 4 / 144 0.02 0.30

2552small 8 / 144 0.01 0.15

638large 4 / 80 0.04 0.60
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Table B.3: Overview over exceptional parameter settings for χGN models with a given motivation. If appli-
cable, an ID is given as a basis with potential changes as stated.

ID changes motivation

632large hot start & cold start full PD mapped out to exclude bias due
to initial conditions

1272large hot start & heating-up method for µ =
0.2, 0.4, 0.6

exclude hysteresis eects due to initial
conditions

632large Nt = 96, 144 at µ = 0.0 scalesetting

1272medium Nt = 192, 240 at µ = 0.0 scalesetting

2552small Nf = 576, 648 at µ = 0.0 scalesetting (largest Nt did not reach
sucient statistics)

632large Ns = 31, 45, 91, 181, 361, 511, 1025 at
µ = 0.0 and Nt = 48, 72

probing thermodynamic limit

- Ns = 63, Nt = 64, µ = 0.0 with vary-
ing 1/2g2χGN

scalesetting

Table B.4: Defaults for various technical parameters in our χGNmodel simulations. These represent the vast
majority of ensembles. For individual parameter combinations adjustments were made as can be retraced
in the supplementary material [63].

parameter value description

Npf Nf Number of pseudofermions

Nremez (10, 20) Number of terms in the Remez approximation
(see ection 4.1) used for force and acceptance
step respectively

spectral bounds
[(10−4, 50),

(10−5, 100)]
pectral range over which the Remez approxi-
mation is tted again for force and acceptance

HMC integrator 3 Order of the integrator in the HMC

# trajectories/cong 10 Number of HMC trajectories between two mea-
surements
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Table B.5: ummary of (spatial) lattice setups on which Z2-GN model ensembles were generated.

ID Nf Ns 1/2g2
Z2-GN aρ0 ρ0

(Ns)
8
large 8 31, 47, 63, 127 5.2 0.4100(5) 12.71(1), 19.27(2), 25.83(3), 52.07(6)

(Ns)
8
medium 8 31, 47, 63, 127 6.3 0.2495(5) 7.73(2), 11.73(2), 15.72(3), 31.69(6)

(Ns)
8
small 8 31, 47, 63, 127 6.85 0.195(5) 6.0(2), 9.2(2), 12.3(3), 24.8(6)

632large 2 63 1.022 0.4100(5) 25.83(3)

Table B.6: Overview of external parameters simulated per lattice setup Z2-GN models. The lattices are
identied via their ID from Table B.5. All numerical values are given in lattice units. The marked (*)
value applies only to Ns ≤ 63; Ns = 127 was only simulated up to µ = 0.390.

ID Nt [min/max] δµ µmax

(Ns)
8
large 4 / 80 0.0410 1.845

(Ns)
8
medium 4 / 80 0.02495 1.123

(Ns)
8
small 4 / 80 0.0195 0.877*

632large 4 / 80 0.0410 1.845

B.2 Discrete Gross-NeveuModels

The bulk of the simulations was performed to map out the Nf = 8 PD in the µ-T plane. The

larger avor number was chosen in order to compare with naive fermions that are incapable

of simulating lower avor numbers without a P. We simulated four dierent numbers of spa-

tial lattice points at three dierent lattice spacings. A visual overview can be obtained from

Fig. 6.14. Additional exploratory simulations of theNf = 2 PD were performed. These choices

are summarized in Table B.5. All of these were simulated from independent hot starts.

For each of these spatial lattices we simulated at least at evenly spaced values of positive

chemical potential starting at 0 as well as on a variety of dierent temporal extents to map

out the temperature axis. These temperature and chemical potential grids are summarized in

Table B.6. As this model was studied rst chronologically, there was more experimentation and

exploration and there is a signicant number of additional sample points in parameter space.

I refer the reader to the supplementary material for all the details [63], some of which can be

inferred from the irregularities in Figs. 6.11 and 6.14.

In addition to the above, we took additional samples for specic purposes such as scaleset-

ting and checks of thermalization/autocorrelation behaviour. These exceptional ensembles are

sketched out in Table B.7.

The defaults for further technical parameters can be found in Table B.8.
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Table B.7: Overview over exceptional parameter settings for Z2-GN models with a given motivation. If
applicable, an ID is given as a basis with potential changes as stated.

ID changes motivation

632large Ns = 65, 125, 185, 255, 375, 525, 725,
Nt = 80

exploration of thermodynamic limit
due to initial conditions

638large cold start for Nt = 32, 64 investigation of hysteresis eects

- Nf = 4, 16, Ns = 63 for µ = 0.0 exploration of Nf dependency

- Nf = 2, 4, 8, 16,Nt = 64 (andmore), µ =
0.0, varying 1/2g2

Z2-GN

scalesetting

Table B.8: Defaults for various technical parameters for our Z2-GN model simulations. These represent
the vast majority of ensembles. For individual parameter combinations adjustments were made as can be
retraced in the supplementary material [63].

parameter value description

Npf Nf Number of pseudofermions

Nremez (10, 20) Number of terms in the Remez approximation
(see ection 4.1) used for force and acceptance
step respectively

spectral bounds
[(10−2, 200),

(10−4, 200)]
pectral range over which the Remez approxi-
mation is tted again for force and acceptance

HMC integrator 3 Order of the integrator in the HMC

# trajectories/cong 10 Number of HMC trajectories between two mea-
surements

HMC trajectory length 3.6 -

HMC #integration steps 12 . . . per trajectory
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B.3 Thirring Models

This project was ongoing in the group when I joined. The data for Nr ≥ 2 as well as all irre-

ducible avor numbers were directly taken over from [128] and I refer the interested reader to

that publication for details about this part of the data.

The data this thesis is focussed on are concerned with the analytic continuation aroundNr =

1. For most of the runs we used quasi-cubic lattices with Nt =Ns +1 and we will imply this

whenever only one (usually Nt) is stated.

We started our simulations with an exploration of the inuence of the small trigger mass on

three lattices Nt = 8, 12, 16 for mass values

m0 = 0.00, 0.01, . . . , 0.04, 0.08, . . . , 0.28. (B.1)

When data from other runs were available, they were also included into Fig. 7.2a. As mentioned

in the main text, all following simulations were performed at xedm0 = 0.01 from Eq. (7.3).

Next, we performed an overview scan of the chiral condensate on the Nt = 16 lattice. We

used a regular grid of coupling strengths and avor numbers with steps of 0.04 in inverse cou-

pling strength and 0.05 in avor number.

This overview informed a rened scan on lattice of the sizes Nt = 6, 8, . . . , 18 with a Nr-

dependent window in inverse coupling strength and steps of 0.01 inNr. The window was shifted

in a manually tuned step-wise linear fashion to follow the maximum and can be seen in Fig. 7.2b

as red dots.

A summary of these scans is given in Table B.9. They were used to create the Figs. 7.2

and 7.6. The remaining investigations at individual points in parameter space are already clearly

labeled in the main text.

Concerning the LFF, we performed additional simulations on larger lattices. Concretely, we

used Nt = 8, 10, . . . , 24 for Nr = 1, scanning in 1/2g2
Th

with step size 0.004 in order to produce

Figs. 7.5c and 7.5d.

The defaults for further technical parameters can be found in Table B.10.
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Table B.9: ummary of ensembles generated for scanning the PD of Th models. The asterisk means that
there is a sliding window following the maximum of the condensate as described in the text.

Nt Nr 1/2g2
Th

purpose

8,12,16 0.70 0.418 mass dependence, see Eq. (B.1) and Fig. 7.2a

16 0.50,. . . ,1.10 0.300,. . . ,0.600 condensate overview (Fig. 7.2b)

6,. . . ,18 0.80,. . . ,1.0 * scan for maximum (Fig. 7.2)

Table B.10: Defaults for various technical parameters for our Thmodel simulations. These represent the vast
majority of ensembles. For individual parameter combinations adjustments were made as can be retraced
in the supplementary material [63].

parameter value description

Npf 4 Number of pseudofermions

Nremez (10, 25) Number of terms in the Remez approximation
(see ection 4.1) used for force and acceptance
step respectively

spectral bounds
[(10−4, 1000),

(10−5, 1000)]
pectral range over which the Remez approxi-
mation is tted again for force and acceptance

HMC integrator 3 Order of the integrator in the HMC

# trajectories/cong 10 Number of HMC trajectories between two mea-
surements

HMC trajectory length 1.8 -

HMC #integration steps 12 . . . per trajectory
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Appendix C

Data Availability Statement and Technical

Acknowledgements

The fully automated analysis workow is available in Ref. [63] and includes pointers to the full

data release. Raw data and the simulation code for generating the congurations are available

upon request and I will include pointers to public versions of these into the metadata of [63] if it

becomes feasible to share these more widely. For a recent review on open science in the context

of lattice QFT see [182].

The simulations for this thesis were performed using a C++ simulation framework originally

developed in the context of [127]. From the scientic ecosystem, it leverages [126, 183–185].

The analysis workow is Python-based [186], explicitly importing [2, 187–191].
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Acronyms

Z2-GN discrete Gross-Neveu

χSB chiral symmetry breaking

χGN chiral Gross-Neveu

χspiral chiral spiral

GN Gross-Neveu

NJL Nambu-Jona-Lasinio

Th Thirring

1+nD 1+n(-)dimension(al/s)

4FT four-Fermi theory

AC autocorrelation

ACF AC function

ACT AC time

BCR Banks-Casher relation

BCS Bardeen-Cooper-chrieffer

BKT Berezinski-Kosterlitz-Thouless

CHMW Coleman-Hohenberg-Mermin-Wagner

DOF degree of freedom

DSE Dyson-chwinger equation

DW domain-wall

EOM equation of motion

FP xed point

FRG functional renormalization group

FS nite-size

FSS nite-size scaling

FT Fourier transform

HMC hybrid MC

HS Hubbard-tratonovich

IR infrared

KAK kink-antikink

LAP lattice artifact phase

LFF lattice lling factor

LFS lattice lling susceptibility

LL Landau-Lifshitz

LO leading order

LOFF Larkin-Ovchinnikov-Fulde-Ferrell

MCMonte Carlo

MF mean-eld

NGB Nambu-Goldstone boson

NN nearest-neighbor

PD phase diagram

PerT perturbation theory

PT phase transition

QCD quantum chromodynamics

QED quantum electrodynamics

QFT quantum eld theory

QM Quark-Meson

QSL quantum-spin liquid

rHMC rational HMC

SLAC tanford Linear Accelerator Center

SP sign problem

SSB spontaneous symmetry breaking

TN tensor network

UV ultraviolet
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