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1 Introduction

The Standard Model (SM) of particle physics has been extraordinarily successful for

more than three decades. It gives an astonishingly good description of known phenomena

in high-energy physics up to energies of 200-300 GeV. The recent measurement of the

neutrino mass, however, represents a first experimental deviation. The SM consists of

various fermions, scalar fields and gauge bosons of the strong SU(3)c and electroweak

SU(2)L×U(1)Y gauge group. The electroweak gauge symmetry is spontaneously broken

to U(1)Q of Quantum Electrodynamics (QED), such that one obtains massive W and

Z gauge bosons. Their mass is parametrized by the vacuum expectation value of a

complex scalar field, the Higgs field. All particles, except for the Higgs, have been

observed in particle accelerators and are listed in Table 1.1 with their corresponding

charges. Additional faith in the SM is provided by the renormalizability of the model,

which was not rigorously proven until 1997 [1].

Still, it seems quite clear that the SM should be viewed as an effective field theory that

will have to be extended to describe physics at arbitarily high energies. Certainly, for

energies close to the Planck scale of 1019 GeV, gravity has to be incorporated into the

SM to obtain a consistent theory. Furthermore, there are many free parameters in the

SM, and there is no guide to the origin of flavour, charge quantization and quark-lepton

distinction. Another challenge is the hierarchy problem. The lightness of the Higgs is

not protected by a gauge or chiral symmetry. In contrast to fermions, where one obtains

logarithmic divergences for the masses, the mass of the spin-zero Higgs is quadratic in

the cutoff Λ in one-loop perturbation theory. One needs to fine-tune the mass of the

Higgs at the Planck scale to obtain the rather small mass of the Higgs at the weak

scale of 100 GeV. Finally, fermions and bosons are treated quite differently. Fermions

correspond to matter fields, while bosons are mediators of interaction.

In the 1960s, there have been several attemps to unify particles of different spin. There

are approximate symmetries in non-relativistic quark models, where for example the
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Particles Description Spin Charges

Gauge bosons: 1
g SU(3)c gauge bosons (gluons) (8, 1)0

W SU(2)L gauge bosons (1, 3)0

B U(1)Y gauge bosons (1, 1)0

Chiral matter (three families): 1
2

qa =

(
ua

da

)

quarks (3, 2) 1
6

uc
a antiquarks (3̄, 1)− 2

3

dc
a antiquarks (3̄, 1) 1

3

La =

(
νa

e−a

)

Leptons (1, 2)− 1
2

(e−a )c anti-Leptons (1, 1)1

H =

(
H0

H−

)

Higgs 0 (1, 2)− 1
2

Table 1.1: The SM field content. (Qc, QL)QY/2
lists colour, weak isospin and hypercharge

of a given particle and Qc = 1, QL = 1 or QY/2 = 0 indicate a singlet under
the respective group. The T3 isospin operator is +1/2 (−1/2) when acting on
the upper (lower) component of an isospin doublet and zero otherwise. The
electric charge of QED is given by Q = T3 + Y/2.

SU(3)c symmetry is replaced by a larger SU(6) symmetry. The attempt to generalize

these non-relativistic quark models to relativistic ones failed, and it was even proved that

such a model cannot exist under the following assumptions [2]. If there is only a finite

number of particles below any given mass and if the S-matrix is nontrivial and analytic,

the most general Lie algebra of symmetry operators which commute with the S-matrix

is a direct product of some internal symmetry group and the Poincaré group. One

possibility to circumvent this Coleman-Mandula theorem is to replace the Lie algebra

by a graded Lie algebra. This leads us to supersymmetry.

The first paper on supersymmetry in four spacetime dimensions was published by Gol’fand

and Likhtman in 1971 [3] followed by a paper of Volkov and Akulov [4] with nonlinear

realization of supersymmetry. Their theories are not renormalizable. A few years later,

Wess and Zumino constructed a renormalizable supersymmetric model [5] and pointed

out the way to circumvent the Coleman-Mandula theorem [6]. Inspired by these observa-

tions, Haag,  Lopuszański and Sohnius [7] extended the results of the Coleman-Mandula

theorem to symmetry operators obeying anticommutation relations. In the context

of string theory, supersymmetry was first introduced by Ramond [8] and Neveu and
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Schwarz [9] in 1971. Also gravity has been supersymmetrized to supergravity by using

local supersymmetry parameters instead of rigid ones [10]. Supersymmetry gives the

possibility to unify the SM with gravity. The low-energy effective action of such theories

leads to supersymmetric field theories in four dimensions.

There have been several attempts to solve the hierarchy problem. One proposal suggests

that the Higgs is no fundamental particle but a meson, composed of fermions [11]. A

different and more recent proposal is the embedding of the theory into higher dimensions.

The most convincing one seems to be supersymmetry, as it can suppress the quadratically

divergent terms and therefore solve the hierarchy problem.

In the literature many supersymmetric extensions of the SM have been discussed. The

supersymmetric extension of the SM with minimal particle content is called the minimal

supersymmetric standard model (MSSM), see [12, 13]. Nice introductions to the MSSM

can be found in [14, 15]. In this model, the hierarchy problem is solved by construction

and, rather amazingly, the running couplings of the different interactions unify at a scale

of 1016 GeV (see [16] and references therein). However, for each particle contained in

the SM, there is an associated superpartner of the same mass in the MSSM which is

not observed in nature. One possibility to overcome this problem is to introduce soft

sypersymmetry-breaking terms. This introduces lots of new parameters and makes the

theory not so elegant. Another possibility, which will be discussed further below, is

spontaneous breaking of supersymmetry.

At this point one should stress that despite all hopes, supersymmetry has not been

observed in nature yet. But even if supersymmetry is not realized in nature, we would

like to emphasize its mathematical beauty which was used to prove several theorems in

mathematics or even to find and define new invariants of manifolds, as for example the

Seiberg-Witten invariants of a four-manifold. Also, as supersymmetric theories can be

solved more easily than non-supersymmetric counterparts, one can better understand

several non-perturbative effects by studying supersymmetric theories. For example, the

ingenious work by Seiberg and Witten [17, 18] gave further insight in the mechanism of

confinement and dualities. One should also mention the Maldacena conjecture, stating

that N = 4 super-conformal SU(Nc)-gauge theories arising on parallel D3-branes are

dual to supergravity theories on an AdS5-background [19] (in the limit of large ’t Hooft

coupling and large Nc).

In spite of these striking results there is still a long way to go towards a better un-
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derstanding of non-perturbative effects in supersymmetric theories. In particular, since

low-energy physics is manifestly non-supersymmetric, it is necessary that supersymme-

try is broken below some energy scale. As supersymmetry breaking is difficult to address

in perturbation theory, one is motivated to study supersymmetric models on a lattice.

Unfortunately, supersymmetry is explicitly broken by most discretization procedures,

and it is a nontrivial problem to recover supersymmetry in the continuum limit. Note

that also Poincaré invariance is broken by a lattice, but the hypercubic crystal symmetry

forbids relevant operators which could spoil the Poincaré invariance in the continuum

limit.

There are many supersymmetric lattice models circulating in literature, all of them with

their own advantages and disadvantages. Let us give a short survey of some of them.

One attempt is to realize the full algebra on the lattice. Nicolai and Dondi [20] were

the first to point out that one needs to introduce nonlocal interaction terms. They

were only able to obtain lattice theories for infinitely extended lattices. Bartels and

Bronzan [21] continued along this line. They formulated Lagrangian and Hamiltonian

Wess-Zumino models which preserve the superalgebra. Their construction is based on

Fourier transformation and they considered both, the continuum and the strong-coupling

limit. In [22, 23] Nojiri introduced translation operators on the lattice and used them

to construct lattice theories which incorporate the full superalgebra.

As the nonlocal interaction terms are difficult to treat (for example in the strong-coupling

limit or in computer simulations), several people proceeded along another way. Banks

and Windey [24] and later Rittenberg and Yankielowicz [25] tried to preserve not the

full algebra, but only a part of it by keeping time continuous. Unfortunately, their

lattice version does not fully recover the Lorentz symmetry in the continuum limit.

Elitzur, Rabinovici and Schwimmer [26] further continued in this direction. They were

considering subalgebras of the full algebra which contain only the Hamiltonian, and put

this theories on a spatial lattice. Their method only works for N ≥ 1 models in two

dimensions and for models with N ≥ 2 supersymmetry in four dimensions. In [27],

Elitzur and Schwimmer investigated the N = 2 Wess-Zumino model in two dimensions

and observed the rather strange result of a infinitely-degenerate ground state in the

continuum limit.

Every supersymmetric field theory on a spatial lattice may be reinterpreted as a high-

dimensional supersymmetric quantum mechanical system. The first studies of such
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systems go back to Nicolai [28] and have been extended by Witten in his work on super-

symmetry breaking [29, 30, 31]. Soon after that, de Crombrugghe and Rittenberg [32]

presented a very general analysis of supersymmetric Hamiltonians. Since then, many

supersymmetric Hamiltonians have been investigated. In particular, it has been demon-

strated that supersymmetry is a useful technique to construct exact solutions in quantum

mechanics [33, 34, 35, 36]. For example, all ordinary Schrödinger equations with shape-

invariant potentials can be solved algebraically with the methods of supersymmetry. On

the other hand, apparently different quantum systems may be related by supersymme-

try, and this relation may shed new light on the physics of the two systems. For example,

the hydrogen atom (its Hamiltonian, angular momentum and Runge-Lenz vector) can

be supersymmetrized. The corresponding theory contains both the proton-electron and

the proton-positron system as subsectors [JDL1].

The aim of this thesis is to further analyze lattice models of supersymmetric field the-

ories. We restrict our attention to Wess-Zumino models in 1+1 dimensions. As men-

tioned above, the Hamiltonian formulation of lattice models – keeping time continuous

and discretizing space – leads to high-dimensional supersymmetric quantum mechanical

systems.

Therefore, the first part of this thesis concentrates on supersymmetric quantum mechan-

ics in arbitrary dimensions. In Section 2.1 we give the definition of a supersymmetric

quantum mechanical system with N supercharges and define the Witten index. Then,

in Section 2.2, we specify the first supercharge to be the Dirac operator on an arbi-

trary even dimensional manifold with gauge field background. We call this the chiral

supersymmetry of the Dirac operator. We investigate under which conditions there are

further supercharges. This gives constraints for the gravitational as well as for the gauge

field background. For the case of two supercharges, we show the existence of a num-

ber operator. Thus, the Z2-grading into left- and right-handed spinors is extended to

a finer grading into a Fock-space. Another important property of the N = 2 case is

the existence of a superpotential. This superpotential can be used to determine zero

modes of the Dirac operator, and we illustrate this for complex projective spaces. In

Section 2.3 we use dimensional reduction to relate the Dirac operator on a flat manifold

with Abelian gauge field to multi-dimensional supersymmetric matrix-Schrödinger op-

erators. We also discuss some basic properties of these Hamiltonians. At this point, in

Section 2.4, we examine a specific matrix-Hamiltonian describing the supersymmetric

hydrogen atom. We determine the super-Laplace-Runge-Lenz vector and the spectrum
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of the super-Hamiltonian by group theoretical methods in the spirit of Pauli’s algebraic

approach [37]. We conclude the first part of this thesis with a brief discussion in Section

2.5 about supersymmetry breaking in quantum mechanical systems. In the framework

of perturbation theory we show that under certain assumptions zero modes remain zero

modes if the problem is appropriated deformed. We give some examples to illustrate

this fact and also show that perturbation theory not always leads to the correct result.

The second part of this thesis is dealing with lattice versions of Wess-Zumino models in

two-dimensional Minkowski space. We start the discussion in Section 3.1 with details

of the N = 1 Wess-Zumino model in the continuum. Then, we examine under which

conditions the on-shell formulation of the models allows for further supersymmetries. At

the end of this section we investigate how a specific extended N = 2 model is related to

the N = 1 model in four dimensions. In Section 3.2 we investigate Wess-Zumino models

on a spatial lattice. We give a short discussion about various lattice derivatives and their

advantages and disadvantages. Then we discuss the N = 1 and N = 2 Wess-Zumino

models on the lattice, determine their ground states for the massive free theory and

in the strong-coupling limit. Finally, we relate our strong-coupling results to the full

problem.

The appendices summarize several facts needed in the main part of this thesis. In

Appendix A we determine the spectrum and eigenvectors of the Dirac operator on a ball

with chiral-bag boundary conditions. In Appendix B we prove that the four-dimensional

super-Poincaré algebra with N = 1 does not allow for a subalgebra which closes only on

the Hamiltonian. The mathematical Appendix C is devoted to the proof of analyticity

of specific perturbations.



2 Supersymmetric Quantum

Mechanics

In the first part of this thesis we are interested in several aspects of supersymmetric

quantum mechanics. In Section 2.1 we give a definition of a supersymmetric quantum

mechanical system1 and introduce the Witten index. Then, in Section 2.2, we consider

a specific example for a supercharge, the Dirac operator on an even dimensional mani-

fold with gauge field. In this example, supersymmetry is equivalent to chiral symmetry

between left and right handed spinors. We elaborate in great detail under which con-

ditions further supersymmetries exist. This leads us to the introduction of a particle

number operator and the notion of a superpotential which contains a gauge part as

well as a gravitational part. Finally, we use the developed techniques to determine zero

modes of the Dirac operator on complex projective spaces. In Section 2.3 we make the

connection of the Dirac operator on flat space with supersymmetric matrix-Schrödinger

Hamiltonians and discuss some of their properties.

For a model to be integrable, symmetries play a crucial role. A well known example

is the hydrogen atom, where a hidden symmetry allows to solve for the spectrum by

algebraic means. For low-dimensional systems supersymmetry may be already sufficient,

but often, further symmetries are needed for the model to be integrable. In Section 2.4

we combine supersymmetry with the hydrogen atom in arbitrary dimensions. We show

that this system is integrable. The last section in this chapter, Section 2.5, investigates

the mechanism of supersymmetry breaking. This section will be important in the second

part of the thesis, where we will discuss supersymmetry breaking in field theories on a

spatial lattice.

1There are different definitions of supersymmetric quantum mechanics in the literature. A recent
discussion can be found in [38].

7
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2.1 Supersymmetry

We define supersymmetric quantum mechanics by a set (H, H,Γ, Q1, . . . , QN ). H is

a self-adjoint Hamiltonian acting on a Hilbert space H. We require the existence of a

self-adjoint operator Γ (grading operator), which squares to the identity, and self-adjoint

operators Qi (supercharges), i = 1, . . . ,N , such that

δijH =
1

2
{Qi, Qj} and {Qi,Γ} = 0. (2.1)

The +1 and −1 eigenspaces of Γ are called bosonic and fermionic sectors respectively,

H = HB ⊕HF, HB = P+H, HF = P−H, P± =
1

2
(1± Γ). (2.2)

Every linear operator on H has a 2 × 2 matrix representation with respect to the de-

composition (2.2). We obtain for example

Γ =

(

1 0

0 −1

)

, Qi =

(

0 L†
i

Li 0

)

and H =

(

L†
iLi 0

0 LiL
†
i

)

. (2.3)

The algebra of linear operators naturally splits into a bosonic and a fermionic part.

Every operator which is diagonal in the 2× 2 matrix representation, for example Γ and

H , is called bosonic. Off-diagonal ones, for example the Qi, are called fermionic. Bosonic

operators do not mix HB with HF. Contrarily, fermionic operators map HB into HF

and vice versa. The definition of bosonic and fermionic operators is equivalent to the

statement that bosonic operators commute with the grading operator Γ while fermionic

ones anticommute. Observe that only the bosonic operators form a subalgebra.

The superalgebra (2.1) implies that the supercharges Qi commute with the Hamiltonian,

[Qi, H ] = 0, (2.4)

and generate symmetries of the system. The simplest models exhibiting this structure

are 2 × 2-matrix Schrödinger operators in one dimension [28, 29, 30]. Let us consider

specific N ’s in the following.

For one supercharge, every eigenstate of H = Q2
1 ≥ 0 with positive energy is paired by

the action of Q1. For example, if |B〉 is a bosonic eigenstate with positive energy, then
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|F 〉 ∼ Q1|B〉 is a fermionic eigenstate with the same energy. However, a normalizable

eigenstate with zero energy is annihilated by the supercharge, Q1|0〉 = 0, and hence

has no superpartner. As the grading operator Γ commutes with Q1 on the space of

zero modes, we can choose the zero modes to be eigenstates of Γ. We denote the

number of zero modes in the bosonic (fermionic) subspace by n0
B (n0

F). We say that

supersymmetry is spontaneously broken if there is no state which is left invariant by the

supercharges or, equivalently, if zero is not in the discrete spectrum of H . A useful tool

to investigate whether supersymmetry is broken or not is the Witten index. Assume

that L1 is Fredholm. The index of L1 (in the context of supersymmmetry called Witten

index) is defined as

ind L1 = dim kerL1 − dim kerL†
1 = n0

B − n0
F. (2.5)

It counts the difference between bosonic and fermionic zero modes of H . Clearly,

ind L1 = 0 is a necessary condition for supersymmetry to be broken. In the case of

n0
B = 0 or n0

F = 0, ind L1 = 0 is a necessary and sufficient condition for broken su-

persymmetry. A useful expression for evaluating the Witten index, in the case that

exp(−βH), β > 0, is trace-class, is given by

ind L = Tr(Γe−βH), (2.6)

where Tr is the trace in Hilbert space, see for example [39].

In the case of two supercharges, there exist two anticommuting and self-adjoint roots of

the Hamiltonian,

H = Q2
1 = Q2

2, {Q1, Q2} = 0. (2.7)

Later we shall use the nilpotent complex supercharge,

Q =
1

2
(Q1 + iQ2) (2.8)

and its adjoint Q†, in terms of which the supersymmetry algebra takes the form

H = {Q,Q†}, Q2 = Q† 2 = 0 and [Q,H ] = 0. (2.9)

The number of normalizable zero modes of H is given by a cohomological argument. A
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zero mode |φ〉 has to be annihilated by the complex supercharge Q, that is |φ〉 ∈ kerQ.

Assume there exists an eigenstate |ψ〉 of H with |φ〉 = Q|ψ〉. As Q commutes with H ,

|ψ〉 has to be a zero mode too, which contradicts the fact that |ψ〉 is not annihilated by

Q. We conclude that the zero mode |φ〉 is not in the image of Q. The same arguments

hold for Q† and therefore we can express the number of zero modes as

n0 = n0
B + n0

F = dim(kerQ/im Q) = dim(kerQ†/im Q†). (2.10)

2.2 Supersymmetries and the Dirac Operator

There is a fundamental supersymmetric Hamiltonian, the square of the Dirac operator.

The chiral supersymmetry with one charge exists on all even-dimensional Riemannian

spin manifolds, with arbitrary gauge fields. The existence of further supercharges gives

constraints for the Riemannian manifold and for the gauge field.

Let us consider a smooth Riemannian spin manifold M of dimension D with metric g. In

local coordinates {xM}M=1,...,D the metric is specified by the metric coefficients gMN =

g(∂M , ∂N), where {∂M = ∂/∂xM} is the holonomic coordinate basis for the tangent

space at each point. We introduce an orthonormal basis with the help of vielbeine eM
A ,

eA = eM
A ∂M and obtain

δAB = g(eA, eB) = eM
A eN

B gMN . (2.11)

The Lorentz indices A,B ∈ {1, . . . , D} are converted into coordinate indices M,N ∈
{1, . . . , D} (or vice versa) with the help of the vielbein eM

A or its inverse given by eA
M =

gMNe
N
B δ

BA. The Clifford algebra is generated by the Hermitian 2D/2 ×2D/2-matrices ΓA

satisfying

{ΓA,ΓB} = 2δAB or {ΓM ,ΓN} = 2gMN , (2.12)

where the ΓM = ΓAeM
A are the matrices with respect to the holonomic basis ∂M .
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2.2.1 Chiral Supersymmetry

In even dimensions, D = 2d, we always have chiral supersymmetry generated by the

Hermitian Dirac operator viewed as supercharge,

Q1 = i /∇ = iΓM∇M = iΓA∇A, ∇A = eM
A ∇M . (2.13)

The covariant derivative acting on spinors,

∇M = ∂M + ωM + AM , (2.14)

contains the connection ω = 1
4
ωMABΓAB, ΓAB = 1

2
[ΓA,ΓB] and a gauge potential A

which takes values in some Lie algebra g. In the notation chosen, both ω and A are

antihermitian. The Γ-matrices are covariantly constant in the following sense,

∇MΓN = ∂MΓN + ΓN
MP ΓP + [ωM ,Γ

N ] = 0, (2.15)

where ΓP
MN are the usual Christoffel symbols. For the involutary operator Γ in (2.1) we

take

Γ = Γ∗ = αΓ1 . . .Γd, (2.16)

with the phase α chosen such that Γ is Hermitian and squares to 1, α2 = (−)d. The

bosonic and fermionic subspaces consist of spinor fields with positive and negative chi-

ralities, respectively. The index defined in (2.5) is the usual index of a Dirac operator,

which can be calculated using the Atiyah-Singer index theorem for compact manifolds

without boundaries [40] or the Atiyah-Patodi-Singer index theorem for compact man-

ifolds with boundary [41]. Actually, supersymmetry can be used to derive such index

theorems. In [42], for example, a quantum mechanical sigma model is used to determine

various index theorems.

The commutator of two covariant derivatives yields the gauge field strength and curva-
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ture tensor in the spinor-representation,

[∇M ,∇N ] = FMN = FMN +RMN ,

FMN = ∂MAN − ∂NAM + [AM , AN ],

RMN = ∂MωN − ∂NωM + [ωM , ωN ] =
1

4
RMNABΓAB, (2.17)

where the Riemann curvature tensor is obtained from the connection via

RMNAB = ∂MωNAB − ∂NωMAB + ω C
MA ωNCB − ω C

NA ωMCB. (2.18)

We find the squared Dirac operator,

H = (Q1)2 = − /∇2
= −gMN∇M∇M − 1

2
ΓABFAB. (2.19)

Here we have used the components of FMN with respect to an orthonormal basis,

FAB = eM
A e

N
BFMN = [∇A,∇B]. (2.20)

Note that the two covariant derivatives in (2.19) act on different types of fields. The

derivative on the right acts on spinors and is given in (2.14), whereas the derivative on

the left acts on spinors with a coordinate index and hence contains an additional term

proportional to the Christoffel symbols,

∇MψN = ∂MψN + ωMψN − ΓP
MNψP + AMψN . (2.21)

2.2.2 Extended Supersymmetries

In the following we investigate under which conditions the Hamiltonian (2.19) has further

supersymmetries besides the chiral supersymmetry. We characterize a class of first-order

differential operators which square to H = − /∇2
. Our ansatz is motivated by previous

results in [43, 44] and the simple observation that both, the free Dirac operator /∂ on flat

space and

IM
NΓN∂M , (2.22)
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have the same square for any orthogonal matrix I. Thus, we are led to the following

ansatz for additional supercharges

Qi = Q(Ii) = iIM
i NΓN∇M = i(IiΓ)M∇M , i = 1, . . . ,N − 1, (2.23)

where the Ii are real tensor fields with components IM
i N . As the N th supercharge we

take QN = Q(1) = i /∇. Imposing the condition that the supercharges Qi, i = 1, . . . ,N
obey the algebra (2.1), one obtains the following Lemma, the details of which can be

found in [JDL3],

Lemma: The N charges

QN = i /∇ and Qi = iIA
i BΓB∇A, i = 1, . . . ,N − 1, (2.24)

are Hermitian and generate an extended superalgebra (2.1), if and only if

{Ii, Ij} = − 2δij1d, IT
i = −Ii (2.25)

∇Ii = 0, [Ii, F ] = 0. (2.26)

These formulae should be read as relations with respect to the orthonormal frame, for

which we do not have to distinguish between upper and lower indices. Especially, these

conditions mean that the Ii are complex structures. These complex structures form a

D-dimensional real representation of the Clifford algebra in N − 1 dimensions. We call

a representation irreducible, if only 1 commutes with all matrices Ii. In the irreducible

cases, only flat space and no gauge field are allowed. Irreducible representations are

known to exist for the cases

N − 1 8k 6 + 8k 7 + 8k

D 16k 8 · 16k 8 · 16k
, k ∈ N0. (2.27)

In the following we investigate the N = 2 case in more detail, as it will be important

for further considerations. We will not elaborate on the more special cases of higher N
for which the interested reader is referred to [JDL3].
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2.2.3 N = 2 and Number Operator

The existence of one covariantly constant complex structure implies in particular, that

the manifold is Kähler. Therefore, on any Kähler manifold of dimension D = 2d, the

Dirac operator admits an extended N = 2 supersymmetry if the field strength commutes

with the complex structure (2.26). With respect to a suitably chosen orthonormal frame

this structure has the form (IA
B) = iσ2 ⊗ 1d, while the condition that the field strength

commutes with the complex structure is equivalent to the condition

(FAB) =

(

U V

−V U

)

, UT = −U, V T = V. (2.28)

The complex nilpotent charge in (2.8) takes the simple form

Q =
1

2
(Q(1) + iQ(I)) = iψA∇A (2.29)

with operators

ψA = PA
BΓB, PA

B =
1

2
(1 + iI)A

B. (2.30)

P projects onto the d-dimensional I-eigenspace corresponding to the eigenvalue −i, its

complex conjugate P̄ onto the d-dimensional eigenspace +i. The two eigenspaces are

complementary and orthogonal, P + P̄ = 1 and PP̄ = 0. The ψA and their adjoints

form a fermionic algebra,

{ψA, ψB} = {ψA†, ψB†} = 0 and {ψA, ψB†} = 2PAB. (2.31)

At this point it is natural to introduce the number operator,

N =
1

2
ψ†

Aψ
A =

1

4
(D1+ iIABΓAB), (2.32)

the eigenvalues of which are lowered and raised by ψA and ψA†, respectively,

[N,ψA†] = ψA†, [N,ψA] = −ψA. (2.33)

Since only d = rank P of the D creation operators are linearly independent we have

inserted a factor 1
2

in the definition of the number operator N in (2.32). This operator
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commutes with the covariant derivative, because covariant constancy of the complex

structure is equivalent to

[∇M , N ] = ∂MN + [ωM , N ] = 0. (2.34)

It follows with the definition of Q in (2.29) and (2.33) that Q decreases N by one, while

its adjoint Q† increases it by one,

[N,Q] = −Q and [N,Q†] = Q†. (2.35)

The real supercharges are now given by

Q(1) = Q +Q† = i /∇ and Q(I) = i(Q† −Q) = i[N, i /∇]. (2.36)

Let us introduce the Clifford vacuum |0〉, which is annihilated by all operators ψA and

hence has N = 0. The corresponding Clifford space C is the Fock space built over this

vacuum state. Since only d creation operators are linearly independent, we obtain the

following grading of the Clifford space,

C = C0 ⊕ C1 ⊕ . . .⊕ Cd, dim Cp =

(

d

p

)

, (2.37)

with subspaces labeled by their particle number

N
∣
∣
Cp

= p · 1. (2.38)

Along with the Clifford space the Hilbert space of all square integrable spinor fields

decomposes as

H = H0 ⊕H1 ⊕ . . .⊕Hd with N
∣
∣
Hp

= p · 1. (2.39)

Since the Hamiltonian commutes with the number operator it leaves Hp invariant. The

nilpotent charge Q maps Hp into Hp−1, and its adjoint Q† maps Hp into Hp+1.

The raising and lowering operators ψA† and ψA are linear combinations of ΓA and there-

fore anticommute with Γ in (2.16). Hence they map left- into right-handed spinors and
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vice versa. Since Γ|0〉 is annihilated by all ψA,

ψA(Γ|0〉) = −ΓψA|0〉 = 0, (2.40)

and since the Clifford vacuum |0〉 is unique, we conclude that |0〉 has definite chirality.

It follows that all states with even particle number have the same chirality as |0〉, and

all states with odd particle number have opposite chirality,

Γ = ±(−)N . (2.41)

The conclusion is that we get a finer grading as the Z2-grading of left- and right-handed

spinors, if we have N = 2 superymmetry. Observe that this is similar to the grading of

differential forms, where one has the fine grading of p-forms and the coarse Z2-grading

of even and odd forms. The Witten index (2.5) corresponds to the Euler characteristic.

Finally, we observe that the Hermitian matrix

Σ = N − D

4
1 =

i

2
IABΓAB ∈ spin(D) (2.42)

generates a U(1) subgroup of Spin(D). This is the R-symmetry of the superalgebra,

(

Q(1)

Q(I)

)

−→
(

cosα sinα

− sinα cosα

)(

Q(1)

Q(I)

)

. (2.43)

2.2.4 N = 2 and Superpotential

In the preceding subsection we have discussed a special feature of N = 2 supersymmetry,

the number operator. In the following we will show a second important property, the

existence of a superpotential. The superpotential can be useful for finding zero modes

of a given Dirac operator. We will illustrate this in the subsequent section.

A Kähler manifold is in particular a complex manifold of even dimension D = 2d. A

nice introduction to complex and Kähler manifolds can be found in [45]. Therefore we

may introduce complex coordinates (zµ, z̄µ̄) with µ, µ̄ = 1, . . . , d, which diagonalize the
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complex structure I,

Iµ
ν =

∂zµ

∂xM

∂xN

∂zν
IM

N = −iδµ
ν , I µ̄

ν̄ =
∂z̄µ̄

∂xM

∂xN

∂z̄ν̄
IM

N = iδµ̄
ν̄ ,

Iµ
ν̄ =

∂zµ

∂xM

∂xN

∂z̄ν̄
IM

N = 0, I µ̄
ν =

∂z̄µ̄

∂xM

∂xN

∂zν
IM

N = 0. (2.44)

The real and complex coordinate differentials are related as follows

dzµ =
∂zµ

∂xM
dxM , dz̄µ̄ =

∂z̄µ̄

∂xM
dxM ,

∂µ =
∂xM

∂zµ
∂M , ∂µ̄ =

∂xM

∂z̄µ̄
∂M . (2.45)

The line element in complex coordinates reads

ds2 = gMNdxMdxN = 2gµν̄dzµdz̄ν̄ , gµν̄ = g(∂µ, ∂ν̄) =
∂xM

∂zµ

∂xN

∂z̄ν̄
gMN , (2.46)

where gµν̄ = gν̄µ are the only non-vanishing components of the metric in the complex

basis and can be obtained from a real Kähler potential K via

gµν̄ = ∂µ∂ν̄K. (2.47)

Covariant and exterior derivatives split into holomorphic and antiholomorphic pieces,

∇ = dzµ∇µ + dz̄µ̄∇µ̄,

d = dzµ∂µ + dz̄µ̄∂µ̄ = ∂ + ∂̄, (2.48)

where we have introduced

∇µ =
∂xM

∂zµ
∇M and ∇µ̄ =

∂xM

∂z̄µ̄
∇M . (2.49)

The only non-vanishing components of the Christoffel symbols are

Γρ
µν = gρσ̄∂µgσ̄ν = gρσ̄∂σ̄µνK, (2.50)

Γρ̄
µ̄ν̄ = gρ̄σ∂µ̄gσν̄ = gρ̄σ∂σµ̄ν̄K. (2.51)

Let us introduce complex vielbeine eα = eµ
α∂µ and eα = eα

µdzµ, such that gµν̄ = 1
2
δαβ̄e

α
µe

β̄
ν̄ .

The components of the complex connection can be related to the metric gµν̄ and the
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vielbeine with the help of the Leibniz rule and (2.50) as follows,

ωβ
µαeβ ≡ ∇µeα

= (∂µe
ν
α)∂ν + eν

αΓρ
µν∂ρ

= (∂µe
ν
α)∂ν + eν

αg
ρσ̄(∂µgσ̄ν)∂ρ

= gρσ̄∂µ(eν
αgσ̄ν)∂ρ

= eβ
ρg

ρσ̄∂µ(eν
αgσ̄ν)eβ. (2.52)

Comparing the coefficients of eβ yields the connection coefficients ωβ
µα. The remaining

coefficients are obtained the same way, and one finds altogether,

ωβ
µα = eβσ̄∂µeσ̄α, ωβ̄

µᾱ = eβ̄
σ̄∂µe

σ̄
ᾱ,

ωβ̄
µ̄ᾱ = eβ̄σ∂̄µ̄eσᾱ, ωβ

µ̄α = eβ
σ∂̄µ̄e

σ
α, (2.53)

where for example eβσ̄ = gσ̄ρeβ
ρ .

Now we are ready to rewrite the Dirac operator in complex coordinates,

i /∇ = Q+Q† = 2iψµ∇µ + 2iψµ̄†∇µ̄. (2.54)

We are led to the independent fermionic lowering and raising operators,

ψµ =
1

2

∂zµ

∂xM
ΓM =

1

2

∂zµ

∂xM
ψM and ψµ̄† =

1

2

∂z̄µ̄

∂xM
ΓM =

1

2

∂z̄µ̄

∂xM
ψM†. (2.55)

Of course, the supercharge Q in (2.54) is just the supercharge in (2.29) rewritten in

complex coordinates. The fermionic operators introduced in (2.55) fulfill the anticom-

mutation relations

{ψµ, ψν} = {ψµ̄†, ψν̄†} = 0, {ψµ, ψν̄†} =
1

2
gµν̄ , (2.56)

where gµν̄ is the inverse of gµν̄ in (2.46). The operators ψµ lower the value of the

Hermitian number operator N in (2.32) by one, while the ψµ̄† raise it by one. N reads

in complex coordinates

N = 2gµν̄ψ
ν̄†ψµ. (2.57)
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Now we can prove that, in cases where /∇ admits an extended supersymmetry, there

exists a superpotential for the spin and gauge connections. Indeed, if space is Kähler

and the gauge field strength commutes with the complex structure, then the complex

covariant derivatives commute

[∇µ,∇ν] = Fµν =
∂xM

∂zµ

∂xN

∂zν
FMN = 0. (2.58)

But equation (2.58) is just the integrability condition (cf. Yang’s equation [46]) for the

existence of a superpotential h such that the complex covariant derivative can be written

as

∇µ = h∂µh
−1 = ∂µ + h(∂µh

−1) = ∂µ + ωµ + Aµ. (2.59)

This useful property is true for any (possibly charged) tensor field on a Kähler manifold

provided that the field strength commutes with the complex structure. If the Kähler

manifold admits a spin structure, as for example CP d for odd d, then (2.59) also holds

true for a (possibly charged) spinor field.

Of course, the superpotential h depends on the representation according to which the

fields transform under the gauge and Lorentz group. One of the more severe technical

problems in applications is to obtain h in the representation of interest. It consists of

two factors, h = hAhω. The first factor hA is the path-ordered integral of the gauge

potential. According to (2.53) and (2.59), the matrix hω in the vector representation

is just the vielbein eβσ̄. If one succeeds in rewriting this hω as the exponential of a

matrix, then the transition to any other representation is straightforward: one contracts

the matrix in the exponent with the generators in the given representation. This will be

done for the complex projective spaces in the following subsection. Now let us assume

that we have found the superpotential h. Then we can rewrite the complex supercharge

in (2.54) as follows,

Q = 2iψµ∇µ = hQ0h
−1, Q0 = 2iψµ

0 ∂µ, ψµ
0 = h−1ψµh. (2.60)

The annihilation operators ψµ are covariantly constant,

∇µψ
ν = ∂µψ

ν + Γν
µρψ

ρ + [ωµ, ψ
ν ] = 0, (2.61)
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and this translates into

∂µψ
ν
0 = h−1

(
∂µψ

ν + [h∂µh
−1, ψν ]

)
h

(2.59)
= h−1 (∂µψ

ν + [ωµ, ψ
ν ]) h

= −Γν
µρh

−1ψρh
(2.50)
= −gνσ̄ (∂µgσ̄ρ)ψρ

0 . (2.62)

This implies the following simple equation,

∂µ (gσ̄ρψ
ρ
0) = 0, (2.63)

stating that the transformed annihilation operators ψ0σ̄ are antiholomorphic. Indeed,

one can show that they are even constant.

The relation (2.60) between the free supercharge Q0 and the h-dependent supercharge

Q is the main result of this subsection. It can be used to determine zero modes of the

Dirac operator. With (2.36) we find

i /∇χ = 0 ⇐⇒ Qχ = 0, Q†χ = 0. (2.64)

In sectors with particle number N = 0 or N = d one can easily solve for all zero modes.

For example, Q† annihilates all states in the sector with N = d, such that zero modes

only need to satisfy Qχ = 0 in this sector. Because of (2.60), the general solution of this

equation reads

χ = f̄(z̄)hψ†1 · · ·ψ†d̄|0〉, (2.65)

where f̄(z̄) is some antiholomorphic function. Of course, the number of normalizable

solutions depends on the gauge and gravitational background fields encoded in the su-

perpotential h. With the help of the novel result (2.65) we shall find the explicit form

of zero modes on CP d in the following.

2.2.5 The Dirac Operator on Complex Projective Spaces

The ubiquitous two-dimensional CP d models possess remarkable similarities with non-

Abelian gauge theories in 3+1 dimensions [47]. They are frequently used as toy models

displaying interesting physics like fermion-number violation analogous to the electroweak

theory [48] or spin excitations in quantum Hall systems [49, 50]. Their instanton solu-
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tions have been studied in [51], and their supersymmetric extensions describe quantum

integrable systems with known scattering matrices [52].

It would be desirable to construct manifestly supersymmetric extensions of these models

on a spatial lattice. In the second part of this thesis, we will see how field theories on

a spatial lattice can be related to Dirac operators. To this end we reconsider the Dirac

operator on the symmetric Kähler manifolds CP d. We shall calculate the superpotential

h in (2.59) and the explicit zero modes of the Dirac operator.

First we briefly recall those properties of the complex projective spaces CP d which are

relevant for our purposes. The space CP d consists of complex lines in Cd+1 through

the origin. Its elements are identified with the following equivalence classes of points

u = (u0, . . . , ud) ∈ Cd+1\{0},

[u] = {v = λu|λ ∈ C∗}, (2.66)

such that CP d is identified with (Cd+1\{0})/C∗. In each class there are elements with

unit norm, ū · u =
∑
ūjuj = 1, and thus there is an equivalent characterization as a

coset space of spheres, CP d = Sd+1/S1. The u are homogeneous coordinates of CP d.

We define the d+ 1 open sets

Uk =
{
u ∈ Cd+1|uk 6= 0

}
⊂ Cd+1\{0}, (2.67)

where the kth coordinate is fixed to one. This defines a complex analytic structure. The

line element on Cd+1,

ds2 =

d∑

j=0

dujdūj = du · dū, (2.68)

can be restricted to Sd+1/S1 and has the following representation on the kth chart,

ds2 =

(
∂u

∂zµ
dzµ +

∂u

∂z̄µ̄
dz̄µ̄

)

·
(
∂ū

∂zµ
dzµ +

∂ū

∂z̄µ̄
dz̄µ̄

)

. (2.69)

We shall use the (local) coordinates

u = ϕ0(z) =
1

ρ
(1, z) ∈ U0, where ρ2 = 1 + z̄ · z = 1 + r2, (2.70)
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for representatives with non-vanishing u0. With these coordinates the line element takes

the form

ds2 =
1

ρ2
dz · dz̄ − 1

ρ4
(z̄ · dz)(z · dz̄), (2.71)

and is derived from a Kähler potential K = ln ρ2. This concludes our summary of CP d.

To apply the results of the preceding subsection, we have to find complex orthonormal

vielbeine ds2 = eαδαβ̄e
β̄ . The complex vielbeine may be found from the Maurer-Cartan

form on SU(d+ 1) by considering CP d as the symmetric space SU(d+ 1)/U(d). A nice

introduction to symmetric spaces can be found in [53]. We do not give the details of this

calculation, but in this way, we obtained the following representation for the vielbeine

of the Fubini-Study metric (2.71),

eα = eα
µdzµ = ρ−1

(
P

α
µ + ρ−1

Q

α
µ

)
dzµ and

eα = eµ
α∂µ = ρ (Pµ

α + ρQµ
α) ∂µ. (2.72)

Here, we have introduced the matrices

P = 1− zz†

r2
and Q =

zz†

r2
, z =

(
z1 . . . zd

)T
, (2.73)

which satisfy

P

2 = P, Q

2 = Q, PQ = QP = 0, P

† = P, Q

† = Q, (2.74)

and hence are orthogonal projection operators. For the particular space CP 2, the viel-

beine are known, and can be found in [54]. They are related to those of (2.72) by a

local Lorentz transformation. We are not aware of explicit formulae for the vielbeine for

d > 2 in the literature. Expressing the vielbeine in terms of projection operators as in

(2.72) allows us to relate the superpotentials in different representations. From (2.53)

and (2.72) we obtain the connection (1,0)-form,

ωα
µβ = − z̄µ

ρ2

(
1

2
P

α
β +Qα

β

)

+
1 − ρ

ρr2
P

α
µz̄β . (2.75)

In the following we calculate zero modes of the Dirac operator on CP d. Actually, only

for odd values of d a spin bundle S exists on CP d. We can tensor S with Lk/2, where L
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is the generating line bundle, and k takes on even values. In the language of field theory

this means that we couple fermions to a U(1) gauge potential A. For even values of d,

there is no spin structure, so S does not exist globally. Similarly, for odd values of k, Lk/2

is not globally defined. There is, however, the possibility to define a generalized spin

bundle Sc which is the formal tensor product of S and Lk/2, k odd [55]. Again, in the

language of field theory, we couple fermions to a suitably chosen U(1) gauge potential

with half-integer instanton number. In both cases, the gauge potential reads

A =
k

2
ū · du =

k

4
(∂ − ∂̄)K = hA∂h

−1
A + h†−1

A ∂̄h†A, hA = e−kK/4 = (1 + r2)−
k
4 , (2.76)

with corresponding field strength

F = dA = (∂ + ∂̄)A =
k

2
∂̄∂K. (2.77)

hA is the part of the superpontential h that gives rise to the gauge connection A. It

remains to determine the spin connection part hω of h ≡ hωhA.

Uupon using (2.72), (2.73), the identity (2.53) can be written in matrix notation as

(ωµ)α
β = (S∂µS

−1)
α

β, where

S = ρ(P+ ρQ)
(2.74)
= exp

(
P ln ρ +Q ln ρ2

)
= exp

(

(1 +Q) ln ρ
)

, (2.78)

and we have succeeded in finding an exponential form of S. From the matrix form of S

in (2.78) we read off the superpotential hω in the spinor representation,

hω = exp

(
1

4
(δᾱβ +Qᾱβ)Γᾱβ ln ρ

)

, (2.79)

where we have introduced

Γᾱβ ≡ 1

2
[Γᾱ,Γβ] = 2[ψ†ᾱ, ψβ], Γᾱ = 2ψ†ᾱ, Γβ = 2ψβ. (2.80)

Next, we study zero modes of Q and Q† in the gauge field background (2.76). In the

sector of interest (N = d), the superpotential hω in the spinor representation simplifies

to

hω

∣
∣
N=d

= (1 + r2)
d+1

4 , since Γᾱβ
∣
∣
N=d

= 2δᾱβ. (2.81)
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All states in the N = d sector are annihilated by Q†. Zero modes χ satisfy in addition

0 = Qχ = 2iψµ∇µχ = 2iψµh∂µh
−1χ, h = hAhω. (2.82)

Using (2.76) and (2.81) we conclude that

χ = hf̄(z̄)ψ†1̄ · · ·ψ†d̄|0〉 = (1 + r2)
d+1−k

4 f̄(z̄)ψ†1̄ · · ·ψ†d̄|0〉, (2.83)

with some antiholomorphic function f̄ . Normalizability of χ will put restrictions on the

admissible functions f̄ . Since the operators z̄µ̄∂µ̄ (no sum) commute with ∂µ and with

each other, we can diagonalize them simultaneously on the kernel of ∂µ. Thus, we are

let to the following most general ansatz,

f̄m = (z̄1)m1 · · · (z̄d)md,

d∑

i=1

mi = m. (2.84)

There are
(

m+d−1
d−1

)
independent functions of this form. The solution χ in (2.83) is square-

integrable if and only if

‖χ‖2 =

∫

dvol (det h) χ†χ

(2.83)∝
∫

dΩ

∫

dr r2m+2d−1(1 + r2)−
d+k+1

2 <∞, (2.85)

so normalizable zero modes in the N = d sector exist for

m = 0, 1, 2, . . . , q ≡ 1

2
(k − d− 1). (2.86)

Note that q is always integer-valued, since k is odd (even) if d is even (odd). Note

further that there are no zero modes in this sector for k < d+1 or equivalently q < 0. In

particular, for odd d and vanishing gauge potential there are no zero modes, in agreement

with [56].

For q ≥ 0, the total number of zero modes in the N = d sector is

q
∑

m=0

(
m + d− 1

d− 1

)

=
1

d!
(q + 1)(q + 2) . . . (q + d). (2.87)

Similar considerations show that there are no normalizable zero modes in the N = 0
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sector for q′ < 0, where q′ = 1
2
(−k − d − 1). For q′ ≥ 0 there are zero modes in the

N = 0 sector, and their number is given by (2.87) with q replaced by q′.

Observe, that the states in the N = 0 sector are of the same (opposite) chirality as the

states in the N = d sector for even (odd) d. The contribution of the zero modes in those

sectors to the index of i /∇ is given by

1

d!
(q + 1)(q + 2) . . . (q + d), q =

1

2
(k − d− 1), (2.88)

for all q ∈ Z.

On the other hand, the index theorem on CP d reads [57]

ind i /∇ =

∫

CP d

ch(L−k/2)Â(CP d) =
1

d!
(q + 1)(q + 2) . . . (q + d), (2.89)

where ch and Â are the Chern character and the Â-genus, respectively. Note, that this

index coincides with (2.88). This leads us to conjecture that for positive (negative) k all

normalizable zero modes of the Dirac operator on the complex projective spaces CP d

with Abelian gauge potential (2.76) reside in the sector with N = d (N = 0) and have

the form (2.83).

We can prove this conjecture in the particular cases d = 1 and d = 2. For CP 1 we have

constructed all zero modes. The same holds true for CP 2 for the following reason: Let

us assume that there are zero modes in the N = 1 sector. According to (2.41) they have

opposite chirality as compared to the states in the N = 0 and N = 2 sectors. Hence,

the index would be less than the number of zero modes in the extreme sectors. On the

other hand, according to the index theorem, the index (2.89) is equal to this number.

We conclude that there can be no zero modes in the N = 1 sector.

2.3 Dimensional Reduction to Matrix-Schrödinger

Hamiltonians

In this section we show how Dirac operators are related to multi-dimensional supersym-

metric matrix-Schrödinger operators [28, 29, 30]. We proceed in two steps. First, let us

consider a special example of the results obtained in Section 2.2 and then dimensionally
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reduce it to obtain a matrix-Schrödinger Hamiltonian.

We consider the Dirac operator on flat space in even dimension D = 2d with Abelian

gauge field,

i /∇ = iΓA∇A, ∇A =
∂

∂xA
− iAA, (2.90)

where {xA}A=1,...,D are coordinates. The 2d×2d-dimensional Γ-matrices obey the Clifford

algebra in D dimensions

{ΓA,ΓB} = 2δAB. (2.91)

Upper-case indices like A run from 1 to D. We will also use lower case and Greek indices

like a and α, which run from 1 to d only. Observe that we introduced a Hermitian gauge

field here in contrast to (2.14). The corresponding Hamiltonian reads

H = − /∇2
= −∇A∇A +

i

4
[ΓA,ΓB]FAB

= −∆ + (AA)2 + i(∂AAA) + 2iAA∂A +
i

4
[ΓA,ΓB]FAB, (2.92)

with FAB = ∂AAB − ∂BAA.

In this section we restrict to the case of N = 2 supersymmetry, that is we require the

field strength to commute with a complex structure chosen to be of the standard form

(IA
B) =

(

0 1d

−1d 0

)

. We introduce complex coordinates zα = xα + ixd+α, α = 1, . . . , d,

such that Iα
β = −iδα

β holds in line with the conventions of (2.44). Furthermore, for the

fomulae given in (2.45) and (2.55), we obtain the explicit expressions

∂µ =
1

2

(
∂

∂xµ
− i

∂

∂xd+µ

)

, ∂µ̄ =
1

2

(
∂

∂xµ̄
+ i

∂

∂xd+µ̄

)

ψµ =
1

2
(γµ + iγd+µ), ψµ† =

1

2
(γµ − iγd+µ). (2.93)

As we have seen in 2.2.4, N = 2 allows for a superpotential h, which for flat space only

contains the gauge field part hA, such that the complex supercharge is given by Q =

hQ0h
−1 with Q0 = 2iψµ∇µ, see (2.60). The complex covariant derivative ∇µ = ∂µ − iαµ

contains the complex gauge field αµ = 1
2
(Aµ−iAd+µ) = ih(∂µh

−1). For any h there exists
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a polar decomposition h = UR with U †U = 1 and a positive, real function R = exp(χ).

We may eliminate the U part by a gauge transformation, such that Q becomes

Q = RQ0R
−1 with R = exp(−χ) real. (2.94)

The Hamiltonian (2.92) contains a term which is first-order in the derivatives. As we

want to obtain a matrix-Schrödinger Hamiltonian, which is only second-order in deriva-

tives, the term AA∂A must vanish. If all ∂d+a, a = 1, . . . , d, commute with the Dirac

operator, we can consider the subspace of spinors which only depend on the xa coordi-

nates. On this subspace, half of the disturbing terms vanish. This subspace of spinors

can be of reasonable interes if one considers for example the product space of Rd with

the d-Torus T d with small radius. In this case, one can Fourier expand the spinors in the

xd+a-directions, and xd+a-independent spinors decouple from the others. If we demand

in addition that Fab = 0, the Aa can be gauged to zero and the term AA∂A vanishes.

Let us find out what these assumptions imply for the complex supercharge Q. As

the gauge field is independent of the last d coordinates, the superpotential χ should

only depend on the xa. On the space of xd+a-independent spinors, the complex partial

derivatives reduce to real derivatives again, and we obtain

Q = e−χQ0e
χ = iψa(∂a + χ,a) with Q0 = iψa∂a

Q† = eχQ†
0e

−χ = iψ†
a(∂a − χ,a) with Q†

0 = iψ†
a∂a, (2.95)

where ∂a = ∂
∂xa , χ,a = (∂aχ) and ψa = ψµ=a, ψ†

a = ψµ=a†. The supersymmetric Hamilto-

nian in (2.92) reduces to a 2d × 2d-dimensional matrix-Schrödinger Hamiltonian,

H = {−∆ + χ,aχ,a + (∆χ)}12d − 2ψ†
aχ,abψb, χ,ab =

∂2χ

∂xa∂xb
, (2.96)

which – by construction – does not contain any first-order derivative term. Unlike the

supercharge and its adjoint, see (2.35), the supersymmetric Hamiltonian H commutes

with the number operator N = ψ†
aψa defined in (2.32) and hence leaves each subspace

Hp in the decomposition (2.39) invariant,

H : Hp → Hp. (2.97)

On each subspace Hp the supersymmetric Hamiltonian is still a matrix Schrödinger
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operator,

H
∣
∣
Hp

= −∆1 + V (p), tr 1 =

(

d

p

)

. (2.98)

Only in the extreme sectors H0 and Hp do we get ordinary Schrödinger operators acting

on one-component wave functions. The nilpotent supercharges give rise to the following

Hodge-type decomposition of the Hilbert space,

H = QH⊕Q†H⊕ kerH, (2.99)

where the subspace kerH is spanned by the zero modes of H . Indeed, on the orthogonal

complement of kerH we may invert H and write

(kerH)⊥ = (QQ† +Q†Q)H−1(kerH)⊥

= Q

(
Q†

H
(kerH)⊥

)

+Q†
(
Q

H
(kerH)⊥

)

, (2.100)

which proves (2.99). The supercharge Q maps every energy-eigenstate in Q†H ∩ Hp

with positive energy into an eigenstate in QH∩Hp−1 with the same energy. Its adjoint

maps eigenstates in QH∩Hp into those in Q†H∩Hp+1 with the same energy. With the

exception of the zero-energy states there is an exact pairing between the eigenstates and

energies in the bosonic and in the fermionic sector as depicted in Figure 2.1.

The supersymmetric system with supercharges (2.95) admits a duality relating Hp with

Hd−p. This can be seen as follows: exchanging (ψa, ψ
†
a, χ) by (ψ†

a, ψa,−χ), Q and Q†

are interchanged while the Hamiltonian H stays the same. But this is the same as to

interpret the ψa as creation operators, the ψ†
a as anihilation operators and, in addition

to flip the sign of χ. We obtain the important duality

Hχ
∣
∣
∣
Hp

= H−χ
∣
∣
∣
Hd−p

. (2.101)

This concludes our general discussion. In the next section we will discuss a particularly

beautiful example of a matrix-Schrödinger Hamiltonian.
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✻E

H0
✲✛

Q†

Q
H1

✲✛
Q†

Q
H2 Hd−2 Hd−1 Hd

✲✛
Q†

Q

✲✛
Q†

Q

\\

\\

QH Q†H QH Q†H QH Q†H QH Q†H QH Q†H

Figure 2.1: Pairing of eigenstates of the Hamiltonian.

2.4 The Supersymmetric Hydrogen Atom

For a closed system of two non-relativistic point particles interacting via a central force

the angular momentum L of the relative motion is conserved and the motion is always

in the plane perpendicular to L. If the force is derived from the Newton or Coulomb

potential, there is an additional conserved quantity: the Laplace-Runge-Lenz2 vector

[60]. For the hydrogen atom this vector has the form

C =
1

m
p × L − e2

r
r, L = r × p, (2.102)

where m denotes the reduced mass of the proton-electron system. The Laplace-Runge-

Lenz vector is perpendicular to L and hence is a vector in the plane of the orbit. It

points in the direction of the semi-major axis.

Quantum mechanically, one defines the Hermitian Laplace-Runge-Lenz vector

C =
1

2m

(
p × L − L × p

)
− e2

r
r. (2.103)

By exploiting the existence of this conserved vector operator, Pauli calculated the spec-

2A more suitable name for this constant of motion would be Hermann-Bernoulli-Laplace vector, see
[58, 59].
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trum of the hydrogen atom by purely algebraic means [37]. He noticed that the angular

momentum L together with the vector

K =

√

−m
2H

C, (2.104)

which is well-defined and Hermitian on bound states with negative energies, generates

a hidden so(4) symmetry algebra,

[La, Lb] = i~ǫabcLc, [La, Kb] = i~ǫabcKc, [Ka, Kb] = i~ǫabcLc. (2.105)

The Hamiltonian can be expressed in terms of K2 + L2, one of the two second-order

Casimir operators of this algebra, acording to

H = −me
4

2

1

K2 + L2 + ~2
. (2.106)

One further observes that the other Casimir operator K ·L vanishes and finally arrives

at the bound state energies by purely group theoretical methods. The existence of the

conserved vector K also explains the accidental degeneracy of the hydrogen spectrum.

In this section we sketch the generalization of these results in two directions: to the

hydrogen atom in arbitrary dimensions3 and to the corresponding supersymmetric ex-

tensions. A more detailed treatment can be found in [JDL1].

First we consider d-dimensional supersymmetric systems (2.96) with spherically sym-

metric superpotential χ(r). In the following we set ~ = 1. The supercharges (2.95)

simplify to

Q = iψa

(
∂a + xaf

)
and Q† = iψ†

a

(
∂a − xaf

)
, where f =

χ′

r
, (2.107)

with the short-hand notation χ′ = d
dr
χ. We define total angular momenta Jab, which

3When speaking of the d-dimensional hydrogen atom, we always mean the 1/r-potential, although this
potential permits the application of Gauss’ law in three dimensions only.
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contain an orbital part Lab and a fermionic part Sab,

Jab = Lab + Sab,

Lab = xapb − xbpa, pa = −i∂a,

Sab = −i(ψ†
aψb − ψ†

bψa). (2.108)

They obey the usual commutation relations of the so(d) algebra

[Jab, Jcd] = i(δacJbd + δbdJac − δadJbc − δbcJad). (2.109)

xa, pa as well as ψa, ψ†
a are vectors with respect to Jab, as xa, pa are vectors with respect

to Lab and ψa, ψ†
a are vectors with respect to Sab. It follows that Jab commutes with Q,

Q† and therefore also with H .

We have shown in [JDL1] that for χ = −λr the symmetry group is even larger. There

exists a supersymmetric conserved Laplace-Runge-Lenz vector, given by

Ca = Jabpb + pbJab − λx̂aA, λ > 0, (2.110)

with

A = (d− 1)1− 2N + 2S†S, S = x̂aψa, x̂a =
xa

r
. (2.111)

The Ca not only commute with the Hamiltonian, but also with the supercharges Q and

Q†. This choice of the superpotential leads to the following supersymmetric extension

of the Coulomb Hamiltonian,

H = −∆ + λ2 − λA

r
, (2.112)

with supercharges

Q = Q0 − iλS and Q† = Q†
0 + iλS†, (2.113)

where the free supercharge has been defined in (2.95). Restricted to the zero-particle

sector this is the Hamiltonian of the hydrogen atom and restricted to the d-particle

sector it corresponds to the electron-antiproton system.
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A straightforward calculation shows that total angular momentum Jab supplemented by

the vector operator

Ka =
Ca

4(λ2 −H)
, (2.114)

restricted to the subspace of bound states (E < λ2), form a so(d+ 1) algebra.

Similarly to (2.106) one can write

H|ker Q = QQ† = λ2 − (d− 2N − 1)2λ2

(d− 2N − 1)2 + 4C(2)

,

H|ker Q† = Q†Q = λ2 − (d− 2N + 1)2λ2

(d− 2N + 1)2 + 4C(2)

, (2.115)

where C(2) is the second-order Casimir of the dynamical symmetry algebra so(d+ 1),

C(2) =
1

2
JabJab +KaKa. (2.116)

All zero modes of H are annihilated by both Q and Q†, and according to (2.115) the

second-order Casimir must vanish on these modes. We conclude that every normalizable

zero mode Ψ of H must transform trivially under the dynamical symmetry group.

To obtain the bound state energies we need to determine those irreducible representations

of the dynamical symmetry group which are realized in H and the corresponding values

of the second-order Casimir operator. The degeneracy of an energy level is then equal

to the dimension of the corresponding representation.

We use the abbreviation Dℓ
℘ to denote multiplets of the orthogonal groups corresponding

to Young tableaux of the form

1 · · ℓ
·
·
℘

, (2.117)

since in the following only those representations will appear.

Each Fock space Cp forms an irreducible representation of so(d), the totally antisym-

metric representation D1
℘=p. The homogeneous polynomials of degree l form a totally
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symmetric representation of so(d), Dℓ=l
1 . It follows that the tensor-product representa-

tions,

D1
p ⊗Dl

1 = Dl
p−1 ⊕Dl−1

p ⊕Dl+1
p ⊕Dl

p+1, (2.118)

are realized in Hp. Observe that for special p and l some of the representations may be

absent. When using the results (2.118), one should take into account that the representa-

tions with ℘ and d−℘ are equivalent, therefore we consider only ℘ ≤ d/2. Furthermore,

for even dimensions the representations Dℓ
d/2 are reducible and contain one selfdual and

one antiselfdual multiplet.

As the symmetry algebra so(d) is a subalgebra of so(d+ 1) with given embedding, every

representation of so(d+ 1) in the p-particle sector has to branch into representations of

so(d) given in (2.118). The only possibilities4 are given by

Dℓ
℘

∣
∣
so(d+1)

→
{
Dℓ

℘ ⊕Dℓ−1
℘ ⊕ · · · ⊕ D1

℘ ⊕Dℓ
℘−1 ⊕Dℓ−1

℘−1 ⊕ · · · ⊕ D1
℘−1

} ∣
∣
so(d)

(2.119)

with ℘ = p, p + 1. Of course, for ℘ = 1 the last representations of the rotation group

are absent. There is one notable exception for even d: in the middle sector Hd/2 two

representations of the dynamical symmetry group with ℘ = d/2 appear, as can be seen

from (2.118) and the fact mentioned above that Dℓ
℘ ∼ Dℓ

d−℘.

As all representations in (2.118) are realized, both representations of the dynamical

symmetry group in each particle sector are needed. In the last section and in the

introductory section 2.1 we have seen that all states except for zero modes are paired

via the action of Q and Q†. As Q and Q† commute with the generators of the Lie

algebra so(d + 1), they map a nontrivial representation in the particle sector p to the

same representation in particle sector p − 1 or p + 1. From these facts, one can derive

how the different representations are realized in the various sectors.

In odd dimensions, d = 2n+ 1, the following representations of so(d+ 1) arise for ℓ ≥ 1

4They can be obtained from [61] or by using the program LiE.
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H0 H1 H2
✲Q†

✛Q HnHn−1

Dℓ
1

✲✛ Dℓ
1

Dℓ
2

✛ ✲ Dℓ
2

Dℓ
3

✲✛

✲✛ Dℓ
n−1

Dℓ
n

✛ ✲ Dℓ
n

It is sufficient to consider only the sectors presented here, as the others are obtained by

the duality (2.101). In the subspace H0 we have in addition the trivial representation

(zero mode). In even dimensions, d = 2n, the following representations of the dynamical

symmetry algebra so(d+ 1) arise for ℓ ≥ 1:

H0 H1 H2
✲Q
†

✛Q Hn−1 Hn

Dℓ
1

✲✛ Dℓ
1

Dℓ
2

✛ ✲ Dℓ
2

Dℓ
3

✲✛

✲✛ Dℓ
n−1

Dℓ
n

✛ ✲ Dℓ
n(⊕Dℓ

n)

The energy eigenvalue (2.115) and its degeneracy for a given represention Dℓ
℘ can be

obtained from the value of the quadratic Casimir C(2) and the dimension of the repre-

sentation. The interested reader may consult the group theory literature or [JDL1].

So far we have not investigated normalizability of the states. For this purpose we con-

sider the Hamiltonian (2.112). It is easy to see that the Hermitian operator S†S is an

orthogonal projector, and hence has eigenvalues 0 and 1. It follows at once that for

p > d/2 the operator A is negative and hence H > λ2 for λ > 0. We conclude that

H has no bound states in the sectors Hp>d/2. In particular, there can exist exactly

one normalizable zero mode in H0, which corresponds to a trivial representation of the

dynamical symmetry group. In Hn, for d = 2n, the operator A has both positive and

negative eigenvalues. Only one of the two representations (for each ℓ) of the dynamical

symmetry group contains bound states, as the other representation would give via Q† a

representation in Hn+1. That the remaining representations are realized on normalizable
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states was shown in [JDL1] by an explicit construction of the representations. We will

not elaborate on this construction of bound states here. Related techniques, however,

are illustrated in Appendix A, where we determine the spectrum of the Dirac operator

on a ball with chiral-bag boundary conditions.

2.5 Supersymmetry Breaking

In Section 2.1 we have introduced a helpful criterion for supersymmetry breaking. In

this section we will further elaborate on this point. In the first subsection we will see

that in perturbation theory, under certain assumptions, zero modes remain zero modes.

Then we will consider two illuminating examples which will become important in the

second part of this thesis.

2.5.1 Perturbation Theory and Zero Modes

Let us recall a well known result for perturbation theory of zero modes in supersymmetric

quantum mechanics, e.g. [62]. We consider the N = 1 case of Section 2.1 and denote

the single Hermitian supercharge by Q0. In the following we assume that n0
F = 0 and

choose a zero mode out of the bosonic sector denoted by Ψ0. We perturb the operator

Q0 by an operator ǫQ1 with real parameter ǫ, Q(ǫ) = Q0 + ǫQ1, where {Q1,Γ} = 0. We

want to solve the eigenvalue equation

Q(ǫ)Ψ(ǫ) = λ(ǫ)Ψ(ǫ), (2.120)

with λ(0) = 0 and Ψ(0) = Ψ0. We are considering the following formal power series in

ǫ,

Ψ(ǫ) = Ψ0 +
∑∞

k=1 ǫ
kΨk,

λ(ǫ) =
∑∞

k=1 ǫ
kλk.

(2.121)

Proposition: Under the assumptions above one has λ(ǫ) = 0 and ΓΨ(ǫ) = Ψ(ǫ) in the

sense of formal power series.

Proof by induction: To order ǫ0 the proposition holds. Let us assume that the
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proposition holds for order ≤ j − 1. To order ǫj we obtain the equation

Q0Ψj +Q1Ψj−1 = λjΨ0. (2.122)

Taking the scalar product in Hilbert space (denoted by 〈·, ·〉) with Ψ0, (2.122) becomes

λj = 〈Ψ0, Q1Ψj−1〉. (2.123)

Rewriting

λj = 〈Γ2Ψ0, Q1Ψj−1〉 = −〈ΓΨ0, Q1ΓΨj−1〉 = −〈Ψ0, Q1Ψj−1〉 = −λj , (2.124)

we obtain λj = 0. Furthemore, with

Q0ΓΨj = −ΓQ0Ψj = ΓQ1Ψj−1 = −Q1Ψj−1 = Q0Ψj, (2.125)

we conclude

Q0P−Ψj = 0, (2.126)

where we used the projection operator P− introduced in (2.2). As P−Ψj is a zero mode

of Q0 we obtain by assumption P−Ψj ∈ HB. But as P− projects onto HF, we find

P−Ψj ∈ HB ∩HF = {0} and therefore Ψj ∈ HB which proves the statement �

Observe that the statement holds for formal power series. It may happen that λ(ǫ) is

not analytic for ǫ = 0 and the result above is misleading. Non-perturbative effects can

be important which we will illustrate in what follows.

2.5.2 Analyticity of Perturbations

First we consider the Hamiltonian (2.96) for d = 1, that is

H = −∂x∂x + (χ′)2 − [ψ†, ψ]χ′′, (2.127)

where χ′ = ∂xχ and χ′′ = ∂x∂xχ. The Fock space consists only of two states, |0〉, which

is annihilated by ψ, and |1〉 = ψ†|0〉. To solve for zero modes in this case is rather simple.

In the zero-sector all states are annihilated by Q. We have to find the most general state
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in this sector which is also annihilated by Q†. The only solution is given by exp(χ)|0〉.
Similarly, in the one-sector all states are automatically annihilated by Q†. The only

state which is also annihilated by Q is exp(−χ)|1〉. The number of normalizable zero

modes depends on the chosen superpotential χ. Assume that χ = λxp + q(x), λ 6= 0,

where the degree of the polynomial q is less than p. If p is odd, no normalizable zero

mode exists. If p is even, for λ > 0 (λ < 0), there is one normalizable solution in H1

(H0). Observe that the zero modes are not analytic for λ = 0, but with respect to the

parameters in q they are. Let us consider for example the superpotential χ = λx3 +µx2.

For λ 6= 0 we do not have any zero mode, but for λ = 0 we have one zero mode, say in

the one-sector for µ > 0. In perturbation theory, one would obtain a zero mode also for

λ 6= 0 which, however, contradicts the exact result. In this case perturbation theory is

not a convergent series, the radius of convergence is zero.

As a second example let us consider the Hamiltonian (2.96) with d = 2 and assume

in addition that the superpotential is harmonic. Actually, in this case, one can show

that we have N = 4 supersymmetry. It is easy to see that in the extreme sectors, H0

and H2, there are no normalizable zero modes. The same considerations as above show

that the only solutions for zero modes in these sectors are given by exp(χ)|0〉 ∈ H0 and

exp(−χ)|12〉 ∈ H2, where we defined |12〉 = ψ†
1ψ

†
2|0〉. As χ is harmonic, it is neither

bounded from above nor from below and both of them are not normalizable. There may

be zero modes in the middle sector H1. For the investigation of zero modes in the middle

sector, we specialize to the harmonic superpotential χ = λℜzp/p with z = x1+ix2, λ > 0.

The zero modes of this particular problem were already constructed in [63]. To obtain

a harmonic superpotential χ, we take the real part ℜ of a holomorphic function. Using

polar coordinates z = reiϕ we obtain χ = λrp cos(pϕ)/p. A short calculation gives

χ,1 = λrp−1 cos((p− 1)ϕ), χ,2 = −λrp−1 sin((p− 1)ϕ),

χ,11 = λ(p− 1)rp−2 cos((p− 2)ϕ), χ,12 = −λ(p− 1)rp−2 sin((p− 2)ϕ). (2.128)

The supercharges (2.95) read

Q = iψ1(cosϕ∂r −
sinϕ

r
∂ϕ + χ,1) + iψ2(sinϕ∂r +

cosϕ

r
∂ϕ + χ,2),

Q† = iψ†
1(cosϕ∂r −

sinϕ

r
∂ϕ − χ,1) + iψ†

2(sinϕ∂r +
cosϕ

r
∂ϕ − χ,2). (2.129)
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Comparing the commutators [ − i∂ϕ, H ] and [ψ†
1ψ2 − ψ†

2ψ1, H ] one finds that

J ≡ −i∂ϕ + i
p− 2

2
(ψ†

1ψ2 − ψ†
2ψ1) (2.130)

commutes with the Hamiltonian. The eigenstates of i(ψ†
1ψ2 −ψ†

2ψ1)) are given by | ↑〉 =
1√
2
(i|1〉+ |2〉) and | ↓〉 = 1√

2
(−i|1〉+ |2〉) with eigenvalues +1 and −1 respectively, where

we defined the states |a〉 = ψ†
a|0〉. For the zero modes of the Hamiltonian we consider

the most general eigenstate of J with eigenvalue j,

Ψj = R+(r) ei(j+1−p/2)ϕ| ↑〉 +R−(r) ei(j−1+p/2)ϕ| ↓〉. (2.131)

Observe that for the functions to be single valued, j has to be integer for p even and half-

integer for p odd. For Ψj to be a zero mode we have to demand that QΨj = Q†ψj = 0.

We obtain two coupled first-order differential equations,

R′
± − (p− 2)/2 ∓ j

r
R± − λrp−1R∓ = 0, (2.132)

where R′
±(r) = ∂rR±(r). The solutions are given in terms of Bessel functions,

R±(r) = rp−1
(
C1I|1/2±j/n|(λr

p/p) + C2K|1/2±j/p|(λr
p/p)

)
. (2.133)

For r → ∞ only the K-functions are normalizable. Furthermore, as K−ν = Kν we can

omit the absolute value. We obtain

R±(r) = Crp−1K 1
2
±j/p(λr

p/p). (2.134)

These functions are normalizable at the origin for all |1
2
± j/p| < 1 which results in the

condition |j| < p/2. There are p−1 solutions (remember that for p even, j is integer and

for p odd, j is half-integer). For the case p = 3, for example, we obtain two normalizable

zero modes given by

Ψ 1
2

=
λr2

21/2π31/4

(

K 2
3
(
λ

3
r3)| ↑〉 +K 1

3
(
λ

3
r3)eiϕ| ↓〉

)

,

Ψ− 1

2
=

λr2

21/2π31/4

(

K 1
3
(
λ

3
r3)e−iϕ| ↑〉 +K 2

3
(
λ

3
r3)| ↓〉

)

. (2.135)

A useful formula for calculating the norm of theses states or expectation values of oper-
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ators is given by

∫∞
0

dt tλKα(t)Kβ(t) = 2λ−2

Γ(1+λ)
Γ(1+λ

2
+ α+β

2
)Γ(1+λ

2
+ α−β

2
)Γ(1+λ

2
− α−β

2
)Γ(1+λ

2
− α+β

2
)

(2.136)

for λ > |α|+ |β|−1 (see fomula (6.576.4) in [64]), where Γ is the usual Gamma function.

In [62] it was shown that one can add an arbitrary potential ℜq(z) with deg q < p

without changing the index. The unperturbed problem has only zero modes in the

middle sector, we call them bosonic zero modes. Observe that we can never loose any

zero mode without changing the index (2.5). Hence, all zero modes remain zero modes

and perturbation theory gives the correct result. If the interaction generates new zero

modes, they have to come in pairs.



3 Supersymmetry on a Spatial Lattice

In the second part of this thesis we consider Wess-Zumino models on a spatial lattice.

A general introduction to supersymmetric field theories can be found in various lecture

notes [65] and in the books [66]. In Section 3.1 we recall various Wess-Zumino models

in two-dimensional Minkowski space. We start with the most general N = 1 Wess-

Zumino model and discuss its superalgebra. Then, we determine the conditions under

which this model possesses N = 2 or higher supersymmetry. Finally, we investigate

how these models are related to Wess-Zumino models in higher dimensions. In Section

3.2 we formulate lattice versions of the Wess-Zumino models we obtained so far. We

give a short discussion of lattice derivatives, e.g. the left- or right-derivative and the

SLAC derivative, and their implications for fermions on the lattice. For both, the N = 1

and N = 2 Wess-Zumino model on the lattice, we determine the ground state of the

massive free model and zero modes in the strong-coupling limit. Finally we compare the

strong-coupling result with results from perturbation theory. Some mathematical proofs

needed in this discussion can be found in Appendix C.

3.1 Wess-Zumino Models

Let us start with the most general superalgebra in two-dimensional Minkowski space with

metric ηµν = diag(+,−). The algebra consists ofN right-handed Hermitian supercharges

QI
+, N ′ left-handed Hermitian supercharges QI′

− and Hermitian momentum operators P±

and reads

{QJ
+, Q

K
+} = 2δJKP+, J,K = 1, . . . , N,

{QJ ′

− , Q
K ′

− } = 2δJ ′K ′

P−, J ′, K ′ = 1, . . . , N ′,

{QJ
+, Q

K ′

− } = 2ZJK ′

. (3.1)

40
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The mass dimensions of (QJ
+, Q

J ′

− , P±) are (1
2
, 1

2
, 1), respectively. Under Lorentz boosts

QJ
+ aquire a prefactor eθ/2, the QJ ′

− a factor e−θ/2, whereas the P± aquire a factor e±θ.

ZJK ′

are central charges, they do not transform under Lorentz transformations and

commute with all supercharges.

In this thesis we consider chiral invariant theories only, i.e. N ≡ N = N ′. Let us

introduce γ-matrices

γ0 = σ2, γ1 = iσ1, γ∗ = γ0γ1 = σ3. (3.2)

They form both, a Majorana and a chiral representation for the Clifford algebra

{γµ, γν} = 2ηµν , with γ0γµ†γ0 = γµ. (3.3)

Now, the algebra (3.1) can be written in a compact way,

{QJ
α, Q

K
β } = 2

(
δJK(γµγ0)αβPµ + i(γ0)αβZJK

A + i(γ∗γ
0)αβZJK

S

)
, J,K = 1, . . . ,N ,

(3.4)

where P± = P0 ∓ P1 and ZJK
S (ZJK

A ) is the (anti)symmetric part of ZJK . Here we

introduced spinor indices α, β ∈ {1, 2}, such that in the chosen basis (3.2) 1 corresponds

to + and 2 to −. Introducing the Dirac conjugate spinors Q̄J = (QJ)†γ0, the algebra

(3.4) reads

{QJ
α, Q̄

K
β } = 2

(
δJK /P + iδαβZJK

A + i(γ∗)αβZJK
S

)
with /P = γµPµ. (3.5)

3.1.1 The N = 1 Wess-Zumino Model

We derive a representation of the algebra (3.4) for N = 1 without central charges on

fields with minimal spin by the procedure of “seven easy steps” [67]. For the realiza-

tion of infinitesimal translations with real parameters aµ generated by −iaµPµ and for

infinitesimal supersymmetry transformations with Grassmann-valued parameters ǫ gen-

erated by −iǭQ we write δa and δǫ, respectively. The corresponding mass dimensions of

the parameters (aµ, ǫ) are (−1,−1
2
).

Let us start with a real scalar field φ of mass dimension 0. Translations on this field, as
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for any other field, are given by

δaφ = −iaµδPµφ = −aµ∂µφ. (3.6)

The supersymmetry transformation acting on φ is realized as

δǫφ = −iǭαδQαφ ≡ ǭψ, (3.7)

where we introduced the Majorana spinor field ψα = −iδQαφ of mass dimension 1
2
. We

write for the supersymmetry transformation of this field

δǫψα = −iǭβδQβ
ψα ≡ −iǭβFβα. (3.8)

The symmetric part of Fαβ is fixed by imposing the algebra (3.4) on φ. The antisym-

metric part is arbitrary and can be parametrized by a single real scalar field F of mass

dimension 1. We obtain

δǫψ = (−i/∂φ+ F )ǫ. (3.9)

Next, imposing the algebra on ψ results in the supersymmetry transformation

δǫF = −iǭ/∂ψ, (3.10)

in particular, we do not obtain further new fields. At last, the algebra is automatically

realized on the real scalar field F .

Let us summarize the results. We can realize the algebra (3.4) with N = 1 and without

central charges on the fields (φ, ψ, F ), where φ, F are real scalar fields and ψ is a

Majorana spinor, by the supersymmetry transformations

δǫφ = ǭψ,

δǫψ = (−i/∂φ+ F )ǫ and

δǫF = −iǭ/∂ψ. (3.11)

In the following we construct a model with field content (φ, ψ, F ) which is invariant under

these transformations by using superspace formalism. The two-dimensional Minkowski
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space with coordinates (xµ) = (t, x) can be extended by two real Grassmann variables

θα, α = 1, 2 to the superspace R2|2. We arange the fields (φ, ψ, F ) into one real superfield

Φ(x, θ) = φ(x) + θ̄ψ(x) +
1

2
θ̄θF (x), (3.12)

where θ̄ = θ†γ0 again denotes the Dirac conjugate spinor. The coordinate transforma-

tions

θα → θα + ǫα, xµ → xµ − iθ̄γµǫ (3.13)

generate the supersymmetry transformations in (3.11). Therefore, we may introduce

vector fields on superspace generating these supersymmetry transformations,

δaΦ = −iaµPµΦ, δǫΦ = −iǭQΦ = −iQ̄ǫΦ, (3.14)

with

Pµ = −i∂µ, Qα = i
∂

∂θ̄α

− (γµθ)α∂µ and Q̄α = −i
∂

∂θα

+ (θ̄γµ)α∂µ. (3.15)

We can check explicitly, that the map Qα → Qα, Pµ → Pµ from the algebra into the

vector fields is an antihomomorphism, i.e.

{Qα, Q̄β} = −2(γµ)αβPµ. (3.16)

Observe that the F -term in the superfield (3.12) transforms into a total derivative under

supersymmetry transformations. Furthermore, products of superfields are again super-

fields and the covariant derivatives

Dα = i
∂

∂θ̄α

+ (γµθ)α∂µ, D̄α = −i
∂

∂θα

− (θ̄γµ)α∂µ (3.17)

with

{Dα, D̄β} = 2(γµ)αβPµ (3.18)
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anticommute with Q and Q̄. It follows that the action

S = i

∫

d2θ d2x

(

−1

4
D̄αΦDαΦ +W (Φ)

)

(3.19)

is invariant under the transformations (3.13). In (3.19) we introduced the superpotential

W , which is an arbitrary function of the superfield Φ. Integrating over the Grassmann

variables θα, we obtain the component Lagrangian

L =
1

2
∂µφ∂

µφ+
i

2
ψ̄/∂ψ +

1

2
F 2 +W ′(φ)F − 1

2
W ′′(φ)ψ̄ψ. (3.20)

Here W ′ and W ′′ denote the first and second derivative of the superpotential with respect

to the scalar field φ. One may further generalize this Lagrangian to the case of several

multiplets (φa, ψa, F a), a = 1, . . . , d, now the Lagrangian reads

L =
1

2
∂µφ

a∂µφa +
i

2
ψ̄a/∂ψa +

1

2
F aFa + F aW,a −

1

2
W,abψ̄

aψb, (3.21)

and the superpotential W depends on the fields φ1, . . . , φd. We denote the derivative with

respect to φa by W,a. For Wess-Zumino models the target space is Rd with Euclidean

metric δab. Hence we would not have to distinguish between upper and lower indices

a, b, as they are lowered (raised) with δab (δab). Nevertheless, we will keep track of the

position of indices, as the generalization to nonlinear sigma models is more obvious and

we have to be careful with the position of indices after introducing complex coordinates

anyhow.

Let us check invariance of the action under the transformations

δǫφ
a = ǭψa,

δǫψ
a = (−i/∂φa + F a)ǫ,

δǫF
a = −iǭ/∂ψa, (3.22)

explicitly and determine the corresponding Noether charges. A straightforward calcula-
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tion gives

δL = ∂µ

(

− i

2
F aǭγµψa −

1

2
∂νφ

aǭγνγµψa + ∂µφaǭψa − iW,aǭγ
µψa

)

− 1

2
W,abc(ǭψ

a)(ψ̄bψc). (3.23)

The last term in (3.23) vanishes because of the Fierz identity

(ǭψa)(ψ̄bψc) + (ǭψb)(ψ̄cψa) + (ǭψc)(ψ̄aψb) = 0, (3.24)

and the action is indeed invariant under the transformations (3.22). The corresponding

conserved Noether current reads

Jµ = ∂νφ
aǭγνγµψa + iW,aǭγ

µψa (3.25)

and we obtain the Noether charge

Q =

∫

dx
(
πa − γ∗∂xφa + iW,aγ

0
)
ψa, (3.26)

where we introduced the conjugate momentum of φa, πa = φ̇a.

The canonical structure is more transparent in the on-shell formulation. This is obtained

from the off-shell version by replacing the auxiliary fields Fa via their equations of motion

by −W,a. The on-shell Lagrangian is given by

L =
1

2
∂µφ

a∂µφa +
i

2
ψ̄a/∂ψa −

1

2
δabW,aW,b −

1

2
W,abψ̄

aψb, (3.27)

whereas the on-shell supersymmetry transformations are

δǫφ
a = ǭψa,

δǫψa = (−i/∂φa −W,a)ǫ. (3.28)

The nontrivial equal time (anti)commutators read

{ψa
α(x), ψb

β(y)} = δαβδ
abδ(x− y) and [φa(x), πb(y)] = iδabδ(x− y). (3.29)
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The Hamiltonian

H =

∫

dx

(
1

2
πaπa +

1

2
∂xφ

a∂xφa +
1

2
δabW,aW,b +

1

2
ψa†(hF)abψ

b

)

(3.30)

with

(hF)ab = (h0
F)ab + γ0W,ab, (h0

F)ab = −iγ∗δab∂x (3.31)

is the Legendre transform of the Lagrangian. The action is also invariant under spacetime

translations generated by the Noether charges

P0 = H and P1 =

∫

dx

(

∂xφaπ
a +

i

2
ψ̄aγ0∂xψa

)

. (3.32)

Using (3.29), one proves that Q and Pµ satisfy the superalgebra (3.5) for N = 1 with

central charges

ZA = 0 and ZS =

∫

dx ∂xW. (3.33)

The central charge ZS is a surface term and therefore a topological quantity. The

appearance of this central charge was first observed by Witten and Olive in [68].

For d = 1, the energy of a pure bosonic, static field configuration is given by

E =
1

2

∫

dx (∂xφ∂xφ+W ′W ′) =
1

2

∫

dx (∂xφ±W ′)
2 ∓ZS. (3.34)

We obtain the Bogomolny-Prasad-Sommerfield (BPS) bound

E ≥ |ZS|. (3.35)

The bound is saturated if and only if the first order differential equation

∂xφ = ∓W ′(φ) (3.36)

holds. Solutions of this first order differential equation are solutions of the equations of

motion.

In the last few years there has been an active discussion about one-loop corrections to
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E and ZS and whether the bound is still saturated or not (see [69, 70] and references

therein). At first sight, it is surprising that the central charge gets any quantum correc-

tions at all, because classically the central charge is a surface term only. But in [69], the

classical central charge is amended by an anomalous term proportional to the second

derivative of the superpotential W . With this anomalous term the bound is saturated

to one-loop, too.

3.1.2 Extended On-shell Wess-Zumino Models

Let us investigate under which conditions the on-shell N = 1 Wess-Zumino model (3.27)

allows for further supersymmetries. Similar considerations for the more general nonlinear

sigma models can be found in [71].

In most explicit calculations we take the Majorana representation

γ0 = σ2, γ1 = iσ3 and γ∗ = γ0γ1 = −σ1, (3.37)

which can be obtained from the represention in (3.2) by a unitary transformation, such

that the superalgebra (3.4) takes the simple form

{QI
1, Q

J
1} = 2(δIJH + ZIJ

S ),

{QI
2, Q

J
2} = 2(δIJH − ZIJ

S ),

{QI
1, Q

J
2} = 2(δIJP1 + ZIJ

A ). (3.38)

We start with the investigation of the free theory, that is

L =
1

2
(∂µφ

a∂µφa + iψ̄a/∂ψa). (3.39)

We make the most general ansatz for supersymmetry transformations respecting Lorentz

structure, dimensionality of the fields, parity and fermion-boson rule,

δJφa = IJ
abǭψ

b,

δJψa = AJ
ab
/∂φbǫ+BJ

abc(ǭψ
b)ψc + CJ

abc(ǭγ
µψb)γµψ

c +DJ
abc(ǭγ∗ψ

b)γ∗ψ
c. (3.40)

J runs from 1 to N , N being the number of independent supersymmetry transforma-
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tions. Invariance of the action constraints this ansatz to

δJφa = IJ
abǭψ

b, δJψa = −iIJ
ba
/∂φbǫ (3.41)

with

∂

∂φa
IJ
bc = 0. (3.42)

Further conditions for the IJ are obtained by demanding that the supersymmetry algebra

[δJ
ǫ1
, δK

ǫ2
] = 2iδJK ǭ1γ

µǫ2∂µ (3.43)

holds. Imposing the algebra on the fields yields

IJ(IK)T + IK(IJ)T = 2δJK , (3.44)

in particular the matrices IJ have to be orthogonal. For J = 1 we set I1 = 1, such that

the first supersymmetry transformation coincides with the one in (3.28) with W = 0.

The remaining conditions read

IJ + (IJ)T = 0 and

IJIK + IKIJ = −2δJK for J,K = 2, . . . ,N . (3.45)

We obtain a similar result as we got for the Dirac operator in subsection 2.2.2. The IJ ,

J > 1, have to be real, antisymmetric, constant matrices forming a Clifford algebra in

N − 1 dimensions, especially each IJ , J > 1, is a complex structure on the flat target

space Rd.

Next, we introduce an interaction term into the Lagrangian such that the model is given

by (3.27). As the potential W has mass dimension 1, the most general ansatz for the

supersymmetry transformations contains an additional term,

δJφa = IJ
abǭψ

b

δJψa = −iIJ
ba
/∂φbǫ+GJ

aǫ, (3.46)

where GJ
a is linear in W or its derivatives such that GJ

a is of mass dimension 1, too.
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Invariance of the action to first-order in W gives the condition

GJ
a,c = −W,ab(I

J) b
c , (3.47)

whereas invariance to second-order in W gives

δabW,aW,bc(I
J)c

d = −W,daG
Ja
. (3.48)

For J = 1, that is I1 = 1, we have to choose

G1
a = −W,a (3.49)

and reobtain the original supersymmetry transformations (3.28).

To find the most general solution of the equations (3.47) and (3.48) for J > 1 is a more

involved calculation. As we consider in the following one fixed index J > 1, we omit

this index in the calculation. Ga can be written as

Ga = Iab(2Kb −W,b) (3.50)

with a set of arbitrary functions Ka. The condition (3.47) reads

2Kc,d = (δa
cδ

b
d + Ia

cI
b
d)W,ab. (3.51)

As the right hand side is symmetric in the indices c and d we get

K[c,d] = 0, (3.52)

which is the integrability condition for the existence of a potential K, such that

Ka = K,a. (3.53)

To get further insight into the equations, we introduce complex coordinates on the target

space Rd as in subsection 2.2.4, such that the complex structure is diagonal, Iα
β = iδα

β,
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I ᾱ
β̄

= −iδᾱ
β̄

and Iα
β̄

= I ᾱ
β = 0. In this coordinates eqn. (3.51) looks like

K,αβ = K,ᾱβ̄ = 0, (3.54)

(K −W ),αβ̄ = 0. (3.55)

The most general solution of the first equation is given by

K = aαφ
α + āᾱφ̄

ᾱ + aαβ̄φ
αφ̄β̄ with aαβ̄ = āᾱβ

!
= aβᾱ, (3.56)

where we fixed the coefficients, such that K is real. The solution of the second equation

is

W (φα, φ̄ᾱ) = K(φα, φ̄ᾱ) + h(φα) + h̄(φ̄ᾱ), (3.57)

where h is an arbitrary holomorphic function of the complex fields φα. It remains to

solve eqn. (3.48), which is equivalent to

(W,aG
a),c = 0 (3.58)

by using eqn. (3.47). With (3.50) and (3.57) this condition reads

IabK,b(h+ h̄),a = const, (3.59)

or equivalently

LV (h + h̄) = const, (3.60)

where we have introduced the vector field V = V a∂a with V a = K,bI
ba. In complex

coordinates we have Vα = iK,α and V̄ᾱ = −iK,ᾱ. V is a holomorphic vector field since

(3.54) implies 0 = K,ᾱβ̄ = i∂ᾱV̄β̄ = i
2
δβ̄γ∂ᾱV

γ. Eqn. (3.60) can be written in complex

coordinates as follows:

V α∂αh+ V̄ ᾱ∂ᾱh̄ = const, (3.61)

that is the real part of V α∂αh has to be constant. But as V α∂αh is holomorphic, it has
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to be constant itself, so

V α∂αh = const. (3.62)

Finally we want to mention that V is a Killing vectorfield. The Killing equations in

complex coordinates read

∂αVβ + ∂βVα = 0 and

∂αV̄β̄ + ∂β̄Vα = 0. (3.63)

They are satisfied because of eqn. (3.54) and the definition of V .

Let us summarize the result. With respect to each complex structure I, the superpoten-

tial W is expressed in eqn. (3.57) via the Killing potential K (3.56) and a holomorphic

function h. Furthermore, the Lie derivative of h along the holomorphic Killing vector V

corresponding to K has to be constant (3.62).

Two particular solutions should be mentioned at this point. First, if we choose K = 0

(the constant in (3.62) has to be zero for consistency), there is no further condition on

h. We obtain

W = h+ h̄. (3.64)

W is the solution of the differential equation W,αβ̄ = 0 which is in real corrdinates

equivalent to the fact that the Hessian of W anticommutes with the complex structure,

I c
a W,cb +W,acI

c
b = 0. (3.65)

Second we consider the case where h is constant and we may choose this constant to be

zero, h = 0. Then we get

W = K = aαφ
α + āβ̄φ̄

β̄ + aαβ̄φ
αφ̄β̄, (3.66)

which corresponds to a massive free theory. This is the solution of the equations W,αβ =

W,ᾱβ̄ = 0 which is in real coordinates equivalent to the fact that the Hessian of W
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commutes with the complex structure,

I c
a W,cb −W,acI

c
b = 0. (3.67)

Let us calculate the supersymmetry algebra, realized on the fields. It reads

[δI
ǫ1 , δ

I
ǫ2] = 2iǭ1γ

µǫ2∂µ,

[δI
ǫ1
, δJ

ǫ2
] = 2ǭ1ǫ2(LIJV I − LIIV J ) for I 6= J, (3.68)

where the Lie derivatives act on the fields as

LV φ
a = V a,

LV ψ
a = (∂bV

a)ψb. (3.69)

Now we are ready to consider special values for N .

Example: N = 2

The smallest target space dimension which allows for the existence of one complex

structure is d = 2. For the complex structure we choose

Iab =

(

0 −1

1 0

)

ab

. (3.70)

In (3.56) the most general Killing potential K was already given for any dimension. The

corresponding Killing vector reads

V̄φ̄ = −i(ā+ bφ),

V φ = 2V̄φ̄ = −2i(ā+ bφ) with a ∈ C, b ∈ R. (3.71)

We obtain the following differential equation for h(φ),

(ā+ bφ)∂φh = c, (3.72)
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for some constant c. The solution of this differential equation is

h =

{
c
b

log(ā+ bφ) for b 6= 0,
c
ā
φ for b = 0, a 6= 0

(3.73)

and h arbitrary for a = b = c = 0. In the first case h is not holomorphic except for

c = 0. The results are summarized in Table 3.1. We only get an interacting theory

b 6= 0, c = 0 h = 0 W = aφ+ āφ̄+ bφφ̄ massive free theory

b = 0, a 6= 0 h = c
ā
φ W = (a+ c

ā
)φ+ (ā+ c̄

a
)φ̄ free theory

a = b = c = 0 h holomorphic W = h+ h̄ interacting theory

Table 3.1: Possible superpotentials for N = 2 and d = 2.

for a = b = c = 0 such that the superpotential W is harmonic. Then, the second

supersymmetry has the form

δ2
ǫφ

a = Iabǭψb,

δ2
ǫψ

a = Iab(i/∂φb −W,a). (3.74)

The corresponding Noether charge reads

Q2 =

∫

dx (πa − ∂xφaγ∗ − iW,aγ
0)(Iψ)a. (3.75)

The central charges take the form

ZJK
A = 0 and ZJK

S = (σ3)JK

∫

dx
dW

dx
− (σ1)JK

∫

dx
dU

dx
, (3.76)

where U is the imaginary part of the analytic funtion h = 1
2
(W + iU) with real part W .

Observe that the central charge ZJK
S is again a surface term and therefore a topological

quantity.

Let us conclude this example by writing the Lagrangian and supercharges in terms of

the complex scalar field and by composing the two Majorana spinors to a Dirac spinor,

i.e.

φ =
1√
2

(φ1 + iφ2) and ψ =
1√
2

(ψ1 + iγ∗ψ
2). (3.77)
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The on-shell Lagrangian takes the form

L = ∂µφ(∂µφ)∗ + iψ̄/∂ψ − 1

2
|h′|2 − h′′ψ̄P+ψ − h̄′′ψ̄P−ψ, (3.78)

where h′ is the derivative of h with respect to the complex field φ and we have introduced

the chiral projectors

P± =
1

2
(1± γ∗). (3.79)

Along with the real scalar fields one combines the corresponding conjugate momenta to

the complex momentum π = 1√
2
(π1 − iπ2) such that

[φ(x), π(y)] = iδ(x− y) and {ψα(x), ψ†
β(y)} = δαβδ(x− y). (3.80)

The complex supercharges take the form

Q =
1

2
(Q1 + iγ∗Q

2) =

∫

dx
(
(π − ∂xφ̄+ ih′γ0)P+ψ + (π̄ + ∂xφ+ ih̄′γ0)P−ψ

)
(3.81)

and satisfy the anticommutation relations

{Q,Q} = 0 and {Q, Q̄} = /P + iγ∗Z11
S − Z12

S . (3.82)

Let us point out, that γ∗ in the definition of Q (3.81) and the vanishing of the antisym-

metric central charges ZIJ
A are crucial for Q2 = 0.

Example: N = 4

The smallest realization of the Clifford algebra (3.45) is given in target space dimension

d = 4. We choose for the complex structures

I2a
b = ((−iσ2) ⊗ σ0)a

b,

I3a
b = (σ3 ⊗ (−iσ2))a

b,

I4a
b = (σ1 ⊗ (−iσ2))a

b. (3.83)
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The superpotential is given by

W = KJ +HJ , ∀ J = 2, 3, 4, (3.84)

where HJ is the real part of an IJ -holomorphic function hJ . As for flat target space the

KJ are at most quadratic in the coordinates, we split

HJ = HJ
quad +HJ

rest (3.85)

and get

W = Wquad +Wrest = KJ +HJ
quad +HJ

rest. (3.86)

Considering terms of third or higher-order we get

HJ
rest = Wrest for J = 2, 3, 4. (3.87)

But that means that Wrest is the real part of a triholomorphic function which is of order

three or higher. In the following we prove, that this implies Wrest = 0.

Proposition: Any triholomorphic function W (holomorphic with respect to the three

complex structures (3.83)) is at most linear in the coordinates.

Proof: In real coordinates, W being holomorphic with respect to the complex structure

I means that

W,ab + Ic
aI

d
bW,cd = 0, (3.88)

which is equivalent to

I c
a W,cb +W,acI

c
b = 0, (3.89)

such that the anticommutator of the complex structure with the Hessian of W has to

be zero. This has to hold for all three complex structures. But as I4 = I2I3 and since

the Hessian of W anticommutes with I2 and I3 we conclude that the Hessian of W

commutes with I4. As the Hessian of W commutes and anticommutes with I4 it has to

vanish. The most general solution for W is therefore linear in φ. �

The conclusion is, that there exists only a massive free N = 4 Wess-Zumino model
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with target space dimension four. From this conclusion it follows, that there are no

nontrivial N = 2 Wess-Zumino models in four-dimensional Minkowski space with two

complex scalar fields, as by dimensional reduction one would obtain from this model a

N = 4 model in two dimensions with d = 4. For a proof of this statement, but only for

renormalizable theories in four spacetime dimensions, the reader may consult [72].

One way out would be to consider models with higher target space dimensions, such

that one can choose I4 6= I2I3 and the proposition above does not hold. But let us stop

the discussion here and investigate in the next subsection, how the obtained models are

related to the N = 1 Wess-Zumino model in four dimensions by dimensional reduction.

3.1.3 Dimensional Reduction of the N = 1 Wess-Zumino Model in

Four Dimensions

In this subsection, we start with the N = 1 Wess-Zumino model in four-dimensional

Minkowski space and reduce it to two dimensions. For Lorentz indices in four dimensions

we will use Latin indices like m,n = 0, . . . , 3. For the Γ-matrices in four dimensions, we

choose a Majorana representation, such that Majorana spinors are real. We denote the

Γ-matrices by Γm,

{Γm,Γn} = 2ηmn, Γ∗ = iΓ0Γ1Γ2Γ3, P± =
1

2
(1± Γ∗). (3.90)

The Lagrangian of the model is given by

L(4) = (∂mφ)∗(∂mφ) +
i

2
ψ̄/∂ψ −

∣
∣
∣
∣

∂h

∂φ

∣
∣
∣
∣

2

− 1

2

∂2h

∂φ2
ψ̄P−ψ − 1

2

(
∂2h

∂φ2

)∗
ψ̄P+ψ, (3.91)

where h is any holomorphic function depending on the complex scalar field φ and ψ is a

four-component Majorana spinor. The fields (φ, ψ) have mass dimensions (1, 3
2
), respec-

tively. As we reduce this model to two dimensions, we do not care about renormaliz-

ability in four dimensions. Otherwise we would have to assume, that h is a polynomial

in φ of degree less than four. In the following we change to real scalar fields by defining

φ =
1√
2

(φ1 + iφ2), W = h+ h∗, (3.92)
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such that the Lagrangian reads

L(4) =
1

2
∂mφa∂

mφa +
i

2
ψ̄/∂ψ − 1

2
(W,a)2 − 1

2
W,11ψ̄ψ − i

2
W,12ψ̄Γ∗ψ. (3.93)

We denoted the derivative of W with respect to φa by W,a. W is a harmonic function

of the φa, as it is the real part of the holomorphic function h. The supersymmetry

transformations leaving the action corresponding to (3.93) invariant are given by

δǫφ1 = ǭψ,

δǫφ2 = iǭΓ∗ψ,

δǫψ = −i
(
(/∂φ1 − iW,1) + i(/∂φ2 + iW,2)Γ∗

)
ǫ. (3.94)

For the dimensional reduction, we fix a specific representation of the Γ-matrices, such

that we obtain the Majorana representation (3.37) in two dimensions. This can be

realized by the choice,

Γµ = 12 ⊗ γµ, Γa+1 = ∆a ⊗ γ∗, ∆1 = iσ1, ∆2 = iσ3. (3.95)

In the following, Greek indices like µ ∈ {0, 1} are Lorentz indices in two dimensions and

Latin indices like a run from one to two. We are led to the relations

C(4) = 12 ⊗ C(2), C(2) = −γ0, Γ∗ = −σ2 ⊗ γ∗. (3.96)

The Majorana condition now reads

ψ = ξ ⊗ χ = ψc = ψ∗ ⇔ ξ ∈ R2, χ = χc = χ∗, (3.97)

and an arbitrary Majorana spinor in four dimensions can be written as

ψ = ea ⊗ χa, (3.98)

where we choose for {ea} the canonical basis in R2.
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Dimensional Reduction of the Action

Let us now reduce the Lagrangian (3.93) to two dimensions. We assume, space is

R

2 ×S1 ×S1 and we write V(2) for the volume of the two-dimensional torus S1 ×S1. We

may Fourier expand all fields in the compact directions. If V(2) gets small, the constant

modes decouple from the others, i.e. in the limit of small V(2) we can restrict the theory

to fields, which are independend of the compact coordinates. Next, we have to verify the

dimensions of the various fields. The fields (φa, ψ) have mass dimensions (1, 3
2
) in four

dimensions. But scalar fields in two dimensions have zero mass dimension and spinors

are of mass dimension 1
2
. Therefore we have to rescale the fields,

φa → 1
√
V(2)

φa, ψ =
1

√
V(2)

ea ⊗ χa. (3.99)

Now we reduce the different terms. As the fields do not depend on the compact coor-

dinates, the corresponding derivatives drop out. The reduction of the bosonic term is

then rather obvious. For the fermionic terms we obtain the following expressions,

V(2)ψ̄Γm∂mψ = χ̄aγ
µ∂µχa,

V(2)ψ̄ψ = χ̄aχa,

V(2)ψ̄Γ∗ψ = −(σ2)abχ̄aγ∗χb. (3.100)

After redefining the second spinor,

χ2 → −γ∗χ2, (3.101)

we obtain the Lagrangian

L(2) =
1

2
∂µφa∂

µφa +
i

2
ψ̄a/∂ψa −

1

2
(W,a)2 − 1

2
W,abχ̄aχb, (3.102)

which coincides with (3.27).
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Dimensional Reduction of Supersymmetry Transformations

Finally we determine the supersymmetry transformations in two dimensions. We write

for the supersymmetry parameter

ǫ = ea ⊗ ǫa. (3.103)

As the ea are linear independent, we obtain two independent supersymmetry transfor-

mations, both generated by one of the two Majorana spinors ǫa. After changing the

supersymmetry parameter, ǫ2 → γ∗ǫ2, the supersymmetry transformations read

δ1
ǫ1φa = ǭ1χa, δ1

ǫ1χa = (−i/∂φa −W,a)ǫ1,

δ2
ǫ2
φa = Iabǭ2χb, δ2

ǫ2
χa = Iab(i/∂φb −W,b)ǫ2, (3.104)

which coincide with (3.28) and (3.74).

3.1.4 Short Summary

Let us summarize the discussion of the Wess-Zumino model in two dimensions. We

derived the N = 1 off-shell Wess-Zumino model from R

2|2 superspace. Observe that su-

perspace formulations always lead to off-shell formulations, as there are as many bosonic

degrees of freedom as fermionic ones. This can be seen from the expansion of the super-

field.

Furthermore, one can obtain a specific N = 2 off-shell Wess-Zumino model from the

superspace R2|4, which results from dimensional reduction from four dimensions [73].

We did this dimensional reduction explicitly for the corresponding on-shell model. The

resulting Lagrangian is the one of the N = 1 model with harmonic superpotential.

Remember (Table 3.1), that there are further N = 2 on-shell models, which can’t be

obtained by straighforward dimensional reduction. But these models are anyhow only

massive free field theories and therefore of minor interest. It would be interesting to

investigate, whether one can get these models by twisting the theory. In the superspace

formulation of the four-dimensional theory one imposes the so called chiral constraint.

From the point of view of the two-dimensional theory one has the possibility to demand

other constraints, the so called twisted chiral constraints [73].
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Let us finally mention, that for nonlinear sigma models in the on-shell formulation there

may be more interesting extended theories, as the Killing potential K needs not to be

only quadratic in the coordinates (3.56).

3.2 Wess-Zumino Models on the Spatial Lattice

In this section we formulate lattice versions of Wess-Zumino models in two-dimensional

Minkowski space. The results presented here are part of [JDL4].

It is known that the N = 1 Wess-Zumino model does not need wave function renormal-

ization and the N = 2 model is actually ultraviolet finite [74]. Anyhow, we introduce a

lattice version for both of them, as the lattice provides us not only an ultraviolet-cutoff,

but also allows for non-perturbative calculations, e.g. numerical simulations, mean field

approximation or strong-coupling expansion.

We choose the Hamiltonian approach, discretizing space and keeping time continuous,

such that time translations remain symmetries generated by the Hamiltonian. Following

[26] we try to preserve at least a subalgebra of (3.4) which involves the Hamiltonian.

For example for the N = 1 model, with the choice (3.37) for the γ-matrices, we choose

{Q1, Q1} = 2(P0 + ZS) (3.105)

as the subalgebra. Observe that the Q1 do not close on H but on H and ZS. This will

become important for the lattice versions.

We will not consider lattice models of supersymmetric field theories in higher dimensions

in this thesis. But let us mention that in four dimensions, there does not exist such

a subalgebra for the N = 1 model. This No-go theorem is proven in appendix B.

Therefore, the requirement to find such a subalgebra gives a restriction on the type of

models.

The fields of the supersymmetric model in the Hamiltonian formulation are discretized

as follows,

(φa(x), πa(x), ψa(x)) → (φa(n), πa(n), ψa(n)), n = 1, . . . , N, a = 1, . . . , d, (3.106)
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where the lattice spacing has been set to one and we choose periodic boundary condi-

tions. Observe that we have not only introduced a lattice but we have also adopted a

finite volume and obtain a N × d-dimensional quantum mechanical system. The Hermi-

tian scalar fields φa(n) with corresponding canoncial conjugate momenta πa(n) and the

Majorana spinors ψa(n) obey the canonical (anti)commutation relations

[φa(m), πb(n)] = iδabδ(m,n) and {ψa
α(m), ψb

β(n)} = δabδαβδ(m,n) (3.107)

and the others are trivial.

On a space-lattice the derivative becomes a difference operator. Before we start with

the Wess-Zumino models on the lattice, let us investigate various lattice derivatives and

consider their consequences for fermion doubling and chiral symmetry on the lattice.

But let us already mention at this point that there is no lattice derivative which obey

the Leibniz rule. This makes it rather difficult to preserve supersymmetry [20].

3.2.1 Lattice Derivatives

As we consider first of all real scalar fields and Majorana spinors which are also real

with our choice of γ-matrices (3.37), we will consider only real lattice derivatives ∂, but

the lattice derivatives need not to be antihermitian. We denote the Hermitian conjugate

lattice derivative, with respcect to the ℓ2−scalar product

(f, g) =

N∑

n=1

f̄(n)g(n) (3.108)

and with periodic boundary conditions f(n + N) = f(n), by ∂†. The kinetic and mass

term for fermions read

HF =
1

2

∫

dx ψ†hFψ, hF = h0
F +mγ0, h0

F = −iγ∗∂x. (3.109)

The corresponding lattice version is given by

HF =
1

2

N∑

m=1

ψ†(m)(hFψ)(m) with h0
F = i

(

0 ∂

−∂† 0

)

, (3.110)
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such that hF is Hermitian. We demand that the left- and right-handed part of the

fermions obey the same second-order equation and therefore we only consider normal

lattice derivatives, i.e.

∂∂† = ∂†∂ = −∆. (3.111)

We may define the symmetric and antisymmetric part of the lattice derivative by

∂S =
1

2
(∂ + ∂†), ∂A =

1

2
(∂ − ∂†) with [∂A, ∂S] = 0, ∂2

A − ∂2
S = ∆. (3.112)

The last two porperties follow from the assumption [∂, ∂†] = 0 in (3.111). Since

hF = −iγ∗∂A + γ0(m− ∂S), (3.113)

chirality is preserved for massless fermions if ∂ = ∂A is antisymmetric. Thus, if ∂ is

antisymmetric and local then, according to a general theorem [75], there is fermion

doubling. The theorem can be circumvented by using a nonlocal and antisymmetric

derivative. For a general lattice derivative, h0
F contains a momentum dependent mass

term −γ0∂S. Such a term has been introduced by Wilson [76] to raise the masses of

the unwanted doublers to values of order of the cutoff, thereby decoupling them from

continuum physics. Let us start with the investigation of specific lattice derivatives and

discuss their advantages and disadvantages.

Left- and Right-Derivative

One very common lattice derivative is the left- and right-derivative or some linear com-

bination of them. They are defined as

(∂Rf)(n) = f(n+ 1) − f(n) and (∂Lf)(n) = f(n) − f(n− 1), (3.114)

and the adjoint of the left-derivative is minus the right-derivative

(f, ∂Lg) = −(∂Rf, g). (3.115)

Both derivatives share the property that (1, ∂Rf) = (1, ∂Lf) = 0, but the correspond-

ing momentum operators p̂L = −i∂L and p̂R = −i∂R are not Hermitian and have the
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following complex eigenvalues,

λk(p̂L) = 2e−ipk/2 sin
pk

2
, λk(p̂R) = 2eipk/2 sin

pk

2
with pk = 2πk/N (3.116)

and k = 1, . . . , N . The advantage of these kinds of lattice derivatives is that they

are ultralocal. In order to better understand the dependency of the spectrum and

doubling phenomena of the lattice derivative, we consider the following one-parameter

interpolating family of local difference operators

∂α =
1

2
(1 + α)∂R +

1

2
(1 − α)∂L = ∂S + ∂A (3.117)

with symmetric and antisymmetric parts

∂S =
1

2
α(∂R − ∂L) and ∂A =

1

2
(∂R + ∂L) ≡ ∂R+L. (3.118)

For α = −1 (α = 1) we obtain the left(right)-derivative back. For α = 0 we get

the antisymmetric operator ∂R+L for which the corresponding Hermitian momentum

operator p̂R+L has the spectrum

λk(p̂R+L) = sin(pk) with pk = 2πk/N, k = 1, . . . , N. (3.119)

The 2N eigenvalues of the Hermitian Dirac Hamiltonian (3.113) depend on the defor-

mation parameter as follows,

λk(α) = ±
√

m2 + 4α(α+m) sin2(
pk

2
) + (1 − α2) sin2(pk), (3.120)

where again pk = 2πk/N with k = 1, . . . , N . For α = ±1 all eigenvalues with pk in

the interior of the first Brioullin zone have multiplicity two and for α = 0 they have

multiplicity four. One can show that for α greater than α+ or less than α−, where

4α± = ±(
√
m2 + 8 ∓m), (3.121)

all eigenvalues have multiplicity two. However, for α ∈ [α−, α+] some eigenvalues have

multiplicity four. This should be compared with the eigenvalues of the derivative oper-
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ator on the continuous interval of length N ,

λk = ±
√

m2 + p2
k, pk = 2πk/N, k ∈ Z, (3.122)

with multiplicity two. The conclusion is that for α > α+ or α < α− we do not have

fermion doublers and for α 6= 0 chiral symmetry is explicitly broken.

The nonlocal SLAC Derivative

Let us consider a nonlocal difference operator called the SLAC derivative operator [77].

For the definition of the SLAC derivative let us remember some facts of quantum me-

chanics. In position space, the position operator is defined by multiplication with the

coordinate. Contrarily, the momentum operator is a differential operator. But in mo-

mentum space their respective roles are interchanged. There, the position operator is

a differential operator and momentum operator is a multiplication operator. On the

finite lattice, we want to treat them on the same footing, that is we define both as mul-

tiplication operators, the position operator in position space and momentum operator

in momentum space. To obtain the momentum operator in position space we have to

make a Fourier transformation. The result will be a nonlocal operator.

For the Fourier transformation we choose,

φ(xm) =
1√
N

N∑

n=1

eipnxmφ̃(pn), pn =
2π

N
(n + α), xm = m + β,

φ̃(pn) =
1√
N

N∑

m=1

e−ipnxmφ(xm), (3.123)

where α and β are at this point arbitrary parameters. A simple calculation shows, that

φ(xm +N) = e2πiαφ(xm), (3.124)

i.e. the fields are periodic for α ∈ Z. As discussed above, the momentum operator in
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position space is defined as

(p̂φ)(xm) =
1√
N

N∑

n=1

eipnxmpnφ̃(pn)

=
N∑

k=1

(

1

N

N∑

n=1

eipn(xm−xk)pn

)

︸ ︷︷ ︸

(∂SLAC)mk

φ(xk). (3.125)

To evaluate this sum, we calculate the generating functional

f(x) ≡
N∑

n=1

eipnx (3.126)

which must be real, such that the SLAC derivative

(∂SLAC)mk =
1

N

∂

∂x
f(x)

∣
∣
x=xm−xk

, for m 6= k (3.127)

is real. We treat the case m = k separately. This can be achieved by a symmetric

summation, that is we choose

α = −N + 1

2
, (3.128)

and the generating functional (3.126) reads

f(x) =
sin(πx)

sin(πx/N)
. (3.129)

As we showed already, for the functions to be periodic, we have to choose α ∈ Z,

therefore we find a real SLAC derivative with periodic boundary conditions only for an

odd number N of lattice sites. Evaluating expression (3.127) leads to

(∂SLAC)mk = (−)m−k π/N

sin(π(xm − xk)/N)
, for m 6= k. (3.130)

As the summation in (3.125) over pn with our choice of α is symmetric, the diagonal

elements vanish.

By this construction we obtain, as stated already, a nonlocal operator. The main advan-
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tages of the SLAC derivative are that it is antisymmetric and hence preserves chirality

and that the N eigenvalues coincide with the lowest eigenvalues of the continuum oper-

ator on the interval of length N .

In Figure 3.1 we have plotted the positive eigenvalues of h0
F for the interpolating operator

for the values α = 0, 1, α+ and the SLAC derivative operator.
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Figure 3.1: Positive eigenvalues of h0
F for 3 different α and for the SLAC deriva-

tive operator.

The question arises if this nonlocal lattice derivative can be used in numerical simu-

lations. In (supersymmetric) quantum mechanics the result is affirmative. One can

discretize the stationary Schrödinger equation by different methods and obtain finite

matrices. The approximative spectrum is given by the eigenvalues of these matrices.

The use of the SLAC derivative, in contrast to other local derivatives, increases the time

for the numerical calculation at most by a factor of two [78]. But the spectrum obtained

with the SLAC derivative has an incredibly better accuracy [JDL4]. Unfortunately, the

result in the context of field theories is not so clear yet. As the lattice derivative is

nonlocal, Monte-Carlo calculations are getting involved. Furthermore, there has been
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discussions in the literature about problems of the SLAC derivative in the continuum

limit. For example in [79], the vacuum polarization in the one-loop approximation in

QED on the lattice was calculated with the use of the SLAC derivative operator. The

vacuum polarization appears non-covariant and nonlocal in the continuum limit. But in

[80] it was pointed out that the problem is due to the way in which the gauge field cou-

pling to fermions is introduced. They could avoid these difficulties, however they payed

the price in that the resulting theory is considerably more complicated. We conclude

that further investigations are needed and we hope to comment on this point in near

future.

Interlude: Derivative Operator for Curved Target Space

In nonlinear sigma models [81, 82] the scalar fields φk, k = 1, . . . , d, are coordinates of

a manifold and the considered Lagrangians are invariant under a change of coordinates.

∂xφ
k(x) is a tangent vector of the target space at the point φk(x). If we want to find

a lattice formulation of this theory which preserves this invariance under coordinate

transformations, we have to careful think about which definition we use for the lattice

derivative (∂φ)k(m). Let us illustrate one possibility. φk(m) and φk(m + 1) are two

points on target space. For small distances there is a unique geodesic between these two

points. We define (∂φ)k(m) as the tangent vector to this geodesic at the point φk(m).

If the target space is flat, this definition corresponds to the right derivative ∂R. We can

define a similar lattice derivative corresponding to the left derivative. Unfortunately, it

is not so clear whether this lattice derivative is of any use for numerical simulations, but

it may be important for analytic investigations of nonlinear sigma models.

3.2.2 The N = 1 Wess-Zumino Model on the Lattice

Let us now discretize the continuum N = 1 Wess-Zumino model, for which details were

given in Subsection 3.1.1. For the discretized version of the supercharge Q (3.26) we

choose

Q = (π, ψ) + i(φ, h0
Fψ) + i(W ′, γ0ψ) with (h0

F)ab = iδab

(

0 ∂

−∂† 0

)

. (3.131)
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We used for example the short hand notation (W ′, γ0ψ) =
∑

m,aW,a(φb(m))γ0ψa(m). A

straightforward calculation using (3.107) leads to the anticommutation relations,

1

2
{Qα, Q̄β} = /Pαβ + i(γ∗)αβ(W ′, ∂Aφ) − (γ0)αβ(W ′, ∂Sφ) (3.132)

with energy and momentum

2P0 = (π, π) − (φ,∆φ) + (W ′,W ′) + (ψ, hFψ)

2P1 = 2(∂Aφ, π) − (ψ, γ∗h
0
Fψ). (3.133)

The last term in (3.132) is not present in the superalgebra (3.5) and breaks Lorentz

covariance. This term is due to the improvement term γ0∂S which we introduced to

avoid fermion doublers. For the SLAC derivative we do not have this term and we do

not have fermion doublers neither. This is one further advantage of the SLAC derivative

operator. But still, choosing the SLAC derivative, there is another poblem. The term

(W ′, ∂Aφ) is no central charge anymore and none of the supercharges Qα commutes with

the Hamiltonian P0. We do not have any supersymmetry left. But let us recall that

as we disretize space, spatial translations are not supposed to be good symmetries of

the theory anymore. We are actually looking for the subalgebra (3.105) including the

Hamiltonian only. Let us define the Hamiltonian for any lattice derivative to be the

square of the first supercharge Q1,

H ≡ (Q1)2 = P0 + (W ′, ∂†φ). (3.134)

This Hamiltonian is manifest supersymmetric, but contains lattice artefacts as well as

the central charge.

From now on we only consider the N = 1 Wess-Zumino model with one scalar field φ,

i.e. we set d = 1. This makes notation more simple. We remark that it is not difficult

to generalize the results to several fields.

From the Dirac Operator to the N = 1 Wess-Zumino Model

Let us relate our discretized version of the N = 1 Wess-Zumino model with N lattice

points to the square of a Dirac operator on 2N flat dimensions. In Section 2.3 we have

already considered the dimensional reduction to matrix-Schrödinger Hamiltonians. The
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considerations here are similar, but we do not demand N = 2. We assume the flat

manifold to be RN × TN . In the discretized Wess-Zumino model there are no linear

terms in momentum in contrast to the square of the Dirac operator (2.92). Therefore we

have to make the same assumptions as in Section 2.3. The gauge fields do not depend

on the last N coordinates xN+n and we set An = 0 for n = 1, . . . , N . Next we make the

following identification with the Wess-Zumino model,

xn = φ(n), −i
∂

∂xn

= π(n),

(

Γn

ΓN+n

)

=
√

2ψ(n) (3.135)

and the non-vanishing components of the gauge fields have the form

AN+n = (∂†φ)(n) −W ′(φ(n)). (3.136)

With this choice we find

− 1√
2

i /∇ = (π, ψ1) − (φ, ∂ψ2) + (W ′, ψ2) = Q1. (3.137)

Ground State of the Free Model

With 2W = mφ2 we obtain the massive non-interacting N = 1 Wess-Zumino model

with d = 1. The corresponding Hamiltonian is the sum of two commuting operators, of

the bosonic part

HB =
1

2
(π, π) +

1

2
(φ,A2φ), A2 = −△ +m∂S +m2, (3.138)

and the fermionic one

HF =
1

2
(ψ, hFψ), hF = −iγ∗∂A + γ0(m− ∂S). (3.139)

We assume that the parameters are such that A2 is positive. Near the continuum limit

this is always the case if the physical mass is positive. The ground state wave function

of the supersymmetric Hamiltonian factorizes,

Ψ0 = ΨBΨF with HBΨB = EBΨB and HFΨF = EFΨF. (3.140)
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The bosonic factor ΨB ist Gaussian

ΨB = c · exp

(

−1

2
(φ,Aφ)

)

and EB =
1

2
tr A. (3.141)

Here A is the positive root of the positive and Hermitian A2 in (3.138). For the family

of operators in (3.117) the trace of A is just half the sum of the positive eigenvalues in

(3.120). For ∂SLAC with eigenvalues pk = 2πk/N we obtain

EB =
π

N

N ′
∑

k=−N ′

√

m2 + p2
k

m→0−→ (N − 1)(N + 1)

4N
π. (3.142)

To find ΨF we introduce the (2-component) eigenfunctions vk of hF with positive eigen-

values. Since the Hermitian matrix hF is imaginary the vk cannot be real and we have

hFvk = λkvk ⇐⇒ hFv̄k = −λkv̄k (λk > 0). (3.143)

The eigenvectors are orthogonal with respect to the Hermitian scalar product,

(vk, vk′) =
∑

n,α=1,2

v̄kα(n)vk′α(n) = δkk′ and (v̄k, vk′) = 0. (3.144)

Now we expand the Majorana spinors in terms of this orthonormal basis,

ψ(n) =
N∑

k=1

(

χkvk(n) + χ†
kv̄k(n)

)

, where χk = (vk, ψ), χ†
k = (v̄k, ψ) (3.145)

are one-component complex objects with anticommutation relations

{χk, χk′} = 0 and {χk, χ
†
k′} = δkk′. (3.146)

Inserting the expansion (3.145) into HF yields

HF =
1

2

∑

k:λk>0

λk

(

χ†
kχk − χkχ

†
k

)

. (3.147)
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It follows that the ground state of HF is the Fock vacuum which is annihilated by all

annihilation operators χk,

χkΨF = 0, k = 1, . . . , N, and EF = −1

2

∑

k:λk>0

λk. (3.148)

Since h2
F = 12 ⊗A2 we conclude, that the positive eigenvalues of hF are identical to the

eigenvalues of A such that

E = EB + EF = 0. (3.149)

Since Ψ0 is normalizable for A > 0 we conclude that the Hamiltonian admits a bound

supersymmetric ground state for all definitions of the lattice derivative ∂ provided A is

positive.

Ground State for Strong-Coupling Limit

Elitzur et al. [26] where the first who investigated the strong-coupling limit of super-

symmetric theories. Effectively, the strong-coupling limit corresponds to introducing a

coupling constant in front of each lattice derivative and let this constant going to zero.

In the following we introduce the parameter λ in the supercharge (3.137),

Q1(λ) = (π, ψ1) + (W ′, ψ2)
︸ ︷︷ ︸

A0

+λ(−(φ, ∂ψ2)
︸ ︷︷ ︸

A1

). (3.150)

We recall that ψ1(m) and ψ2(m) are Hermitian 2N × 2N -matices. As in our models the

only interaction term between different lattice points is in A1, in the limit λ → 0 fields

at different lattice points decouple. The strong-coupling limit is not so simple if one

introduces nonlocal interaction terms [21] to realize the full superalgebra. In that case

the theory does not decouple for different lattice sites.

In our considerations the supercharge Q1 and the Hamiltonian H are – in the strong-

coupling limit – the sum of N identical and commuting operators, each defined on a

given lattice site. The ground state is therefore a product state. The operators on a
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fixed lattice site read

Q1 = −iψ1
∂

∂φ
+ ψ2W

′(φ) and H = − ∂2

∂φ2
+W ′2 − iψ1ψ2W

′′. (3.151)

After introducing complex anihilation operators, ψ = − 1√
2
(ψ1 + iψ2), we obtain the

complex supercharge

Q = iψ(
∂

∂φ
+W ′), Q1 =

1√
2

(Q+Q†) (3.152)

and the Hamiltonain reads

2H = {Q,Q†} = −∂φ∂φ + (W ′)2 − [ψ†, ψ]W ′′. (3.153)

We have discussed this supersymmetric quantum mechnical model and its ground state

already in 2.5.2. Supersymmetry is broken, if the degree of the polynomial W is odd,

otherwise it is unbroken. As this holds for each lattice site, we conclude that in the

strong-coupling limit the N = 1 Wess-Zumino model on the spatial lattice has always

one normalizable zero mode if the degree of the polynomial is even.

From Strong to Weak Coupling

In what follows, we compare the strong-coupling results with the usual perturbation

theory in the vicinity of minima of the potential.

In the case deg(W ) = p even, supersymmetry is never broken, neither in the strong-

coupling limit nor in perturbation theory. For even W there is at least one minimum of

the potential V = 1
2
(W ′)2 with V = 0. The quadratic approximation of the potential

at the critical points yields for each minimum one normalizable zero mode similar to

the ground state of the free model. In contrast to the strong-coupling limit there may

be more than one perturbative zero mode, but they come in an odd number. Thus the

difference of bosonic and fermionic zero modes is ±1 as in the strong-coupling limit.

In the case deg(W ) = p odd, the difference between the strong-coupling limit and

perturbation theory is more severe. Supersymmetry is broken in the strong-coupling
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limit but it may be unbroken in perturbation theory. Let us consider an explicit example,

W (φ) =
g2

2
φ3 + g0φ. (3.154)

Perturbation theory for g0 < 0 predicts one bosonic and one fermionic zero mode (un-

broken supersymmetry) and broken supersymmetry and thus no zero mode for g0 > 0.

The strong-coupling limit states that supersymmetry is broken for all g0.

In Appendix C.1 we provide the mathematically nontrivial proof that λA1 (3.150) is

an analytic perturbation of A0 (3.150) for λ ∈ R. This means that all eigenvalues

are analytic functions of the parameter λ. Assume now that in a finite range of the

parameter λ there is a ground state with energy exactly equal to zero. As an analytic

function which vanishes in some finite range is identically zero, the number of zero

modes changes at most at isolated points of the parameter space of λ. Furthermore, in

the strong-coupling limit, we have either bosonic or fermionic zero modes. In Section 2.5

we have proven that under this assumption a zero mode always remains a zero mode.

We conclude that, generically, the number of zero modes is given by the number of zero

modes in the strong-coupling limit. Moreover, as the index also depends analytically on

the parameter λ, we are able to calculate the index in the strong-coupling limit.

In the continuum and infinite-volume limit these arguments may break down, as the

estimates necessary for proving analyticity (Appendix C.1) may not be valid anymore.

In the unbroken case we can definitely conclude that supersymmetry is still unbroken

in the continuum and infinite-volume limit. Suppose we know for any finite lattice that

there is at least one ground state with energy zero. As the limit of zero is again zero

this mode survives in the limit. In the case of broken supersymmetry a non-zero energy

eigenstate may become a zero mode in the continuum and infinite-volume limit, and

supersymmetry may get restored in this limit although it is broken for all finite lattices.

Indeed, for negative g0 in our example above, the scalar field has a vacuum expectation

value and therefore the fermionic field ψ has a non-zero mass. As there is no massless

Goldstone fermion, supersymmetry has to be unbroken in this case [29].

Let us summarize. On a finite lattice, the strong-coupling limit gives the correct number

of zero modes of the full problem. There is only one zero mode in the case where

deg(W ) = p is even, and otherwise there is no zero mode. Variations of the parameters

in the superpotential of power less than p do neither change the number of zero modes
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nor the index. For example, in the model with superpotential given in (3.154), on a

finite lattice it is impossible to have two phases of broken and unbroken supersymmetry

depending on the parameter g0. The numerical simulations in [83], however, may be

interpreted as a hint for such a phase transition in the continuum theory.

3.2.3 The N = 2 Wess-Zumino Model on the Lattice

In this subsection we consider the N = 2 Wess-Zumino model with d = 2 and harmonic

superpotential W , see Subsection 3.1.2. First, we specify which subalgebra of (3.4) we

realize on the lattice. Using the Majorana representation (3.37) for the γ-matrices and

the expressions (3.76) for the central charges we read off

{Q1
1, Q

1
1} = {Q2

2, Q
2
2} = 2(P0 + Z) and {Q1

1, Q
2
2} = 0, Z = Z11

S = −Z22
S . (3.155)

As the central charge appears in the same way for the two supercharges, there is a good

chance to maintain this part of the superalgebra on the lattice. Indeed, if we discretize

the supercharges Q1
1 (3.26) and Q2

2 (3.75) by

Q1
1 = (π, ψ1) + (W ′, ψ2)

︸ ︷︷ ︸

B0

+ (∂φ1, ψ1
2) − (∂†φ2, ψ2

2)
︸ ︷︷ ︸

B1

, (3.156)

Q2
2 = (π, Iψ2) + (W ′, Iψ1) − (∂φ1, ψ2

1) − (∂†φ2, ψ1
1), (3.157)

the algebra (3.155) is realized with H = P0 + Z,

H = HB +HF,

HB =
1

2
((π, π) + (W ′,W ′) + (∂φ, ∂φ)) + (W,1, ∂φ

1) − (W,2, ∂
†φ2),

HF =
1

2

(
(ψ̄,W ′′ψ) + (ψ†, (h0

Fψ)
)
, (3.158)

where we have introduced

(h0
F)12

αβ = (h0
F)21

αβ = 0, (h0
F)11

αβ = i

(

0 −∂†
∂ 0

)

αβ

, (h0
F)22

αβ = i

(

0 ∂

−∂† 0

)

αβ

. (3.159)

Observe that we had no other choice for the lattice derivatives such that the algebra

holds. Furthermore, we have introduced as before the bracket for short hand notation,
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for example (π, π) =
∑

m,a πa(m)πa(m).

We may also introduce the first component of the complex supercharge in (3.81),

Q =
1

2
(Q1

1 − iQ2
2) = (ψ̃, π − iχ′) with

χ = −
∑

m

U(φ1(m), φ2(m)) − (φ1, ∂†φ2). (3.160)

As before, U is the imaginary part of the holomorphic superpotential h and we defined

ψ̃1(m) =
1

2
(ψ1

1(m) + iψ2
2(m)), ψ̃2(m) =

1

2
(ψ2

1(m) − iψ1
2(m)). (3.161)

In Section 2.3 we dimensionally reduced the Dirac operator with N = 2 supersymme-

try on flat space to a supersymmetric quantum mechanical system with complex super-

charges given in (2.95) and corresponding Hamiltonian in (2.96). With πa(m) = −i ∂
∂φa(m)

it follows that −Q in (3.160) coincides with this supercharge. We conclude that the

N = 2 Wess-Zumino model can be obtained by dimensional reduction of the Dirac

operator in 4N dimensions.

Ground State of the Free Model

For the massive free N = 2 Wess-Zumino model we have to choose h = m
2
z2 and obtain

U = mxy, with z = x+ iy. It follows that the complex supercharge Q can be written as

Q = −i

(

ψ̃,
∂

∂φ
+ χ′′φ

)

(3.162)

with constant, real, symmetric 2N × 2N -matrix χ′′,

χ′′ = −
(

0 ∂† +m1N

∂ +m1N 0

)

. (3.163)

We diagonalize χ′′ by an orthogonal transformation S,

χ′′ = S−1DS, D = diag(d1, d2, . . . , d2N). (3.164)
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Correspondingly, we rotate the fields with S,

ξ = Sφ, η = Sψ and η† = Sψ†. (3.165)

The new fields still obey the standard anticommutation relations, e.g.

{η†α(m), ηβ(n)} = δαβδmn, (3.166)

and the transformed supercharges read

Q = −i

(

η,
∂

∂ξ
+Dξ

)

and Q† = −i

(

η†,
∂

∂ξ
−Dξ

)

(3.167)

and show, that the new degrees of freedom decouple. Hence the groundstate must have

the product form

Ψ0 = exp

(

−1

2

∑

|dj|ξ2
j

)

|Ω〉 (3.168)

and the action of the supercharges on this state reads,

QΨ0 = 2i
∑

j: dj>0

djηjξjΨ0, Q†Ψ0 = −2i
∑

j:dj<0

djη
†
jξjΨ0. (3.169)

This way we arrive at the following conditions for this state to be invariant,

dj > 0 =⇒ ηj|Ω〉 = 0 and dj < 0 =⇒ η†j |Ω〉 = 0. (3.170)

This leads to the unique normalizable groundstate (3.168) with

Ω =
∏

dj<0

η†j |0〉, (3.171)

which is annihilated by the supercharges and hence has vanishing energy. There are N

positive and N negative eigenvalues of χ′′ such that the invariant vacuum state lies in

the middle sector HN in the decomposition (2.39) of the Hilbert space with d = 2N .

All fermionic states with negative eigenvalues of χ′′ are filled. This is analogue to the

Dirac-sea filling prescription.



3.2. Wess-Zumino Models on the Spatial Lattice 77

Ground States for Strong-Coupling Limit

In the strong-coupling limit we may neglect the spatial derivatives such that both, the

supercharges and the Hamiltonian, become the sum of N commuting operators, each

defined on one lattice site. The operators on one site take the form

Q = −iψ̃a

(
∂

∂φa
− ∂U

∂φa

)

(3.172)

with harmonic superpotential U(φ1, φ2). We have discussed this model in the second

part of Subsection 2.5.2. There we concluded that for a polyomial U with deg(U) = p

there are p− 1 normalizable zero modes.

Since the eigenstates of H are product states, and since we have for each lattice site the

choice of p − 1 zero modes, there are (p − 1)N zero modes for the lattice model in the

strong-coupling limit. After we had finished our calculations we realized that Elitzur

and Schwimmer already came to the same surprising conclusion [27].

From Strong to Weak Coupling

In the following we want to investigate the implications of the strong-coupling limit for

the full problem. We consider one of the two Hermitian supercharges, say Q1
1 which

squares to the Hamiltonian H . We introduce as for the N = 1 case a parameter λ,

Q1
1 = B0 + λB1, (3.173)

where B0 and B1 are defined in (3.156). Similar to the N = 1 case, we prove in Appendix

C.2 that the index is analytic in the parameter λ. This implies that we have (p − 1)N

zero modes for the theory on finite lattices. For the continuum theory in a finite volume,

it was shown using methods of constructive field theory that the N = 2 Wess-Zumino

model is ultraviolet finite and that the index is given by p− 1 [74]. This seems to be in

contradiction with our result, as the (p− 1)N zero modes exist for all finite lattices and,

by the same arguments as for the N = 1 model, remain zero modes in the continuum

limit.

We suggest the following solution for this problem. Remember that our lattice Hamilto-

nian H contains not only the discretized version of the continuum Hamiltonian P0 but
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also the central charge Z, i.e.

H = P0 + Z. (3.174)

Furthermore, both P0 and Z contain the lattice derivative which couples the various

lattice sites to each other. If we choose a zero mode in the strong-coupling limit which

varies from lattice point to lattice point, both P0 and Z may get very large but will,

nevertheless, add up to zero. In the continuum limit the energy P0 may tend to infinity

in which case this rapidly varying zero mode is only a lattice artefact. On the other

hand, if we choose the zero mode to be the same for each lattice site, P0 as well as Z
remain zero in the continuum limit. There are exactly p−1 such modes. We are planing

to test this conjecture in a perturbative calculation of P0 or Z, and our results will be

presented elsewhere.



4 Summary

Supersymmetric field theories on a spatial lattice result in high-dimensional quantum

mechanical systems. Our lattice approach preserves part of supersymmetry such that

we do not need fine-tuning of parameters to recover the full supersymmetry algebra in

the continuum limit. We refrain from preserving the full algebra on the lattice, as this

requires nonlocal interaction terms. These terms would make it difficult to use numerical

simulations and to investigate these theories for example in the strong-coupling limit.

This thesis is divided into two parts. The first one begins with a preparatory step

where we consider high-dimensional supersymmetric quantum mechanical systems (not

necessarily related to lattice theories). Demanding the existence of N self-adjoint su-

percharges together with a self-adjoint grading operator Γ which anticommutes with all

supercharges and thus commutes with the Hamiltonian, the Hilbert space splits into two

sectors, a bosonic and a fermionic subspace. The first supercharge is chosen to be the

Dirac operator on an even-dimensional manifold equipped with Riemannian metric and

gauge field. The existence of further supercharges yields severe restrictions on both the

manifold and the gauge field under consideration. For N = 2, we have shown that the

manifold has to be Kähler while the field strength has to commute with the complex

structure. N = 3 automatically implies N = 4 and restricts the manifold to be hyper-

Kähler while the field strength has to commute with all three complex structures. In

the minimal target space dimension having N = 4, d = 4, this implies that the field

strength has to be either selfdual or anti-selfdual. After this general considerations we

have investigated the N = 2 case in more detail. We have proven the existence of a

particle-number operator and of a superpotential which contains the gravitational as well

as the gauge degree of freedom. One consequence of the existence of the particle-number

operator is that the bosonic and fermionic subspaces further split into subspaces with

definite particle-number. This is similar to differential forms where one has the coarse

grading into even and odd forms in contrast to the finer grading into p-forms. The exis-

79
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tence of the superpotential can be used to determine zero modes of the Dirac operator.

We have developed a general procedure how to determine this superpotential and to

obtain all zero modes in the sectors of maximal and minimal particle number. As an ex-

plicit example, we have considered the Dirac operator on complex projective spaces with

Abelian gauge fields. With our new method we have constructed for this example the

zero modes for the first time. We believe that all zero modes can be obtained in this way.

Unfortunately, we could prove this conjecture only for low dimensions. Besides these

interesting questions concerning the Dirac operator as a supercharge itself, we wanted to

connect our results to well-known results in the literature. We have suceeded to relate

the Dirac operator on a flat manifold with Abelian gauge field to matrix-Schrödinger

Hamiltonians, which have been investigated by Nicolai, Witten and others before, by

dimensional reduction. At this point we could not refrain from discussing a beautiful

example of a matrix-Schrödinger Hamiltonian describing the supersymmetric hydrogen

atom. We have determined the super-Laplace-Runge-Lenz vector and the spectrum of

the super-Hamiltonian by group theoretical methods in the spirit of Pauli’s algebraic

approach. The first part of this thesis conclucdes with a discussion of spontaneous su-

persymmetry breaking. We have proven a beautiful theorem, which was already known

in the literature, which states the following: If a supercharge has only zero modes of one

kind, say bosonic ones, zero modes remain zero modes under deformations of the super-

charge in perturbation theory to all orders. It may happen that the deformation of the

supercharge is non-analytic and perturbation theory is misleading. We have illustrated

these facts by investigating some examples.

In the second part of the thesis, we have investigated Wess-Zumino models in two-

dimensional Minkowski space on a spatial lattice. To set the stage, we have first discussed

the Wess-Zumino model in the continuum in great detail. We have considered the N = 1

Wess-Zumino model for the target space Rd. Furthermore, we have determined the

various Noether charges and their algebra including central charges. In analogy with

the investigations of the Dirac operator, we have clarified under which conditions the

on-shell model allows for additional supersymmetries. The restrictions have been further

analyzed for explicit examples. One particular solution for N = 2 yields a superpotential

being a harmonic function of the scalar fields. Furthermore, we have shown that this

model can be obtained by dimensional reduction of a N = 1 Wess-Zumino model in

four-dimensional Minkowski space. Leaving continuum in favor of lattices, we have

discussed N = 1 and N = 2 Wess-Zumino models in the Hamiltonian formulation on
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a spatial lattice. We first have observed that we have to include central charges in the

Hamiltonian to preserve part of the supersymmetry algebra. Second, we have to choose

a lattice derivative for our model. As the implications of the chosen lattice derivative

for the lattice model are important, we have disussed various lattice derivatives and

their advantages and disadvantages. There are the right- and left-derivatives which are

local and do not have fermion doublers but break chiral symmetry. In order to better

understand the dependency of the spectrum and doubling phenomena of the lattice

derivative, we have interpolated between the left- and right-derivative. One important

case is the antisymmetric lattice derivative. For the latter, chiral symmetry is not broken

but we have fermion doubling. Finally, we have considered the SLAC derivative which

is nonlocal and preserves chiral symmetry. Its spectrum coincides with the restriction

of the spectrum of the derivative operator on a continuous interval to the first Brioullin

zone. In quantum mechanical simulations this nonlocal derivative is of great use. Even

though numerical simulations may last longer than with local lattice derivatives, the

accuracy of the result increases substantially. Having discussed various lattice derivatives

in great detail, we have turned back to the Wess-Zumino models on the lattice. We have

determined the ground states of the massive free theories in the N = 1 and N = 2

case. For both theories there is exactly one zero mode. In the strong-coupling limit, the

number of zero modes is different for the N = 1 and N = 2 model. For the N = 1 case,

the number of zero modes is zero or one, depending on whether the polynomial degree of

the superpotential is odd or even. In the appendix we have given the mathematical proof

that the strong-coupling limit gives the correct result for the number of zero modes on

finite lattices. This may drastically change in the continuum and infinite-volume limit.

We have illustrated this for a specific example where supersymmetry is unbroken at

strong coupling and broken at weak coupling. The situation for the N = 2 case is quite

different. We have shown that in the strong-coupling limit there are (p−1)N zero modes,

where p is the polynomial degree of the superpotential and N is the number of lattice

points. Similar to the N = 1 case, we have proven in the appendix that again, the

strong-coupling limit gives the correct number of zero modes on finite lattices. This is

a rather surprising result, as in the literature it was shown by methods of constructive

field theories that there are only p− 1 zero modes in the continuum with finite volume.

We have proposed a solution to this paradox. As mentioned before, the Hamiltonian

on the lattice conists of the Hamiltonian of the continuum theory and central charges.

We have conjectured that for zero modes which vary from lattice point to lattice point
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drastically, the energy of the continuum Hamiltonian as well as the central charges tend

to infinity in the continuum limit and therefore are pure lattice artefacts. Only the zero

modes which are constant in the strong-coupling limit, there are p− 1 of them, survive

the continuum limit. We want to test this conjecture by perturbative calculations in

future.

One may ask whether one can generalize our considerations to higher dimensions and

to other theories. A rather severe restriction is to find a subalgebra which closes on the

Hamiltonian only. For example, the N = 1 superalgebra in four dimensions does not

allow for such a subalgebra. But our approach could be used for the N = 2 super-Yang-

Mills theory in four dimensions and one could attempt to extend the results obtained

by Seiberg and Witten. Encouraged by the impressive results obtained in numerical

simulations for quantum mechanical systems by using the SLAC derivative, we would

further like to use the SLAC derivative in Monte-Carlo simulations of our lattice models.

Furthermore, at present time we are interested in fermions on a lattice coupled to gauge

fields formulated with the SLAC derivative. We are confident to comment on these

points in future.



A Dirac Operator on a Ball

Possible mechanisms of spontaneous chiral symmetry breaking in QCD habe been dis-

cussed for many years. Instead of probing the different phases by a chiral symmetry

breaking mass term and remove it after the infinite-volume limit, in [84] it was pro-

posed to investigate the system in a finite box and to impose chiral symmetry breaking

boundary conditions and then perform the infinite-volume limit.

Along these lines, we consider in this appendix the free Dirac operator on a D = 2d

dimensional ball B of radius R. The Dirac operator is given by

i /∇ = iΓA
∂

∂xA

, (A.1)

where we used the Einstein summation convention for the index A = 1, . . . , D, and the

Γ-matrices fulfill the Clifford algebra

{ΓA,ΓB} = 2δAB. (A.2)

We have to choose boundary conditions for the spinors Ψ, such that the Dirac operator

is Hermitian. In the following we will consider chiral-bag boundary conditions, which

are defined with the help of the boundary operator

Π =
1

2
(1− iΓ∗e

Γ∗θS) (A.3)

with free parameter θ ∈ R and

Γ∗ = (−i)dΓ1 · · ·ΓD, S = xAΓA/r, r =
√
xAxA. (A.4)
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We demand that

ΠΨ|∂B = 0. (A.5)

In contrast to Atiyah-Patodi-Singer boundary conditions, the chiral-bag boundary con-

ditions are local. One can further show, that this boundary conditions do not allow for

zero modes. More details can be found in [84]. Only recently, strong ellipticity of these

boundary conditions has been shown [85].

First we observe that the Dirac operator and the boundary operator commute with total

angular momentum

JAB = LAB + ΣAB, A,B = 1, . . . , D, (A.6)

where

LAB = −i(xA
∂

∂xB
− xB

∂

∂xB
) and ΣAB =

1

4i
[ΓA,ΓB]. (A.7)

Therefore, we first diagonalize total angular momentum, i.e. we determine the spin

spherical harmonics in D = 2d dimensions by group theoretical methods. In the follow-

ing we construct the highest weight states: these states are eigenstates of the Cartan

operators of the so(D)-algebra and are annihilated by the raising operators. All other

states can be obtained by applying lowering operators on the highest weight states.

We choose a Cartan-Weyl basis for the so(D)-algebra. The Cartan operators, raising

and lowering operators corresponding to simple positive roots in the complex basis

za = x2a−1 + ix2a, ∂a =
1

2
(

∂

∂x2a−1
− i

∂

∂x2a
), ψa =

1

2
(Γ2a−1 − iΓ2i), a = 1, . . . , d,

(A.8)

read

Ha = za∂a − z̄a∂̄a +
1

2
(ψ†

aψa − ψaψ
†
a), a = 1, . . . , d

Ea = −i(za∂a+1 − z̄a+1∂̄a + ψ†
aψa+1), a = 1, . . . , d− 1

Ed = −i(zd−1∂̄d − zd∂̄d−1 + ψ†
d−1ψ

†
d). (A.9)
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We define the state |0〉 by demanding, that it is annihilated by all operators ψa. As the

generators in (A.9) act trivially on the radial part of spinor wavefunctions, we consider

in the following the angular part. For that we introduce the unit normal vectors

x̂A = xA/r, ẑa = zA/r. (A.10)

Let us now first determine the highest weight states for the bosonic part. They are given

by

φl = (ẑ1)l. (A.11)

One easily verifies that these states are annihilated by all simple positive roots and the

eigenvalues with respect to the Cartans are given by (H1, . . . , Hd) = (l, 0, . . . , 0).

For the fermionic part there are only two highest weight states given by

χ+ = ψ†
1 · · ·ψ†

d|0〉 and χ− = ψ†
1 · · ·ψ†

d−1|0〉. (A.12)

The corresponding eigenvalues of the Cartan operators are given by (1
2
, . . . , 1

2
) and

(1
2
, . . . , 1

2
,−1

2
), respectively.

Next, we determine the highest weight states of fermionic and bosonic degrees of freedom

together. Two highest weight states are found easily, they are given by

φ+
l = φlχ

+ and φ−
l = φlχ

− (A.13)

with eigenvalues of the Cartan operators (l + 1
2
, 1

2
, . . . , 1

2
) and (l + 1

2
, 1

2
, . . . , 1

2
,−1

2
), re-

spectively. Furthermore, observe that the operator

S = x̂AΓA = (ψ†
az̄a + ψaza)/r = S†, S2 = 1, (A.14)

commutes with the total angular momentum and therefore maps highest weight states

into highest weight states. We obtain two further highest weight states

ψ+
l = Sφ+

l and ψ−
l = Sφ−

l (A.15)

with eigenvalues (l + 1
2
, 1

2
, . . . , 1

2
) and (l + 1

2
, 1

2
, . . . , 1

2
,−1

2
), and we will prove that these,
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together with the states in (A.13), are all highest weight states. We claim that the

following tensor product rule with the corresponding highest weight states holds.

Tensor product rule: The tensor product of the bosonic representation (l, 0, . . . , 0)

with the fermionic representation (1
2
, . . . , 1

2
) is given by

(l, 0, . . . , 0) ⊗ (1
2
, . . . , 1

2
) = (l + 1

2
, 1

2
, . . . , 1

2
) ⊕ (l − 1

2
, 1

2
, . . . , 1

2
,−1

2
)

φl ⊗ χ+ −→ φ+
l ⊕ ψ−

l−1

(A.16)

and the tensor product of the bosonic representation (l, 0, . . . , 0) with the fermionic

representation (1
2
, . . . , 1

2
,−1

2
) is given by

(l, 0, . . . , 0) ⊗ (1
2
, . . . , 1

2
,−1

2
) = (l + 1

2
, 1

2
, . . . , 1

2
,−1

2
) ⊕ (l − 1

2
, 1

2
, . . . , 1

2
)

φl ⊗ χ− −→ φ−
l ⊕ ψ+

l−1.

(A.17)

We proved already, that the given states are indeed highest weight states. That they

appear at the corresponding places is determined by the degree of the polynomials in

xA and the chirality of the corresponding states. By counting the dimensions of the

representations we show that there can’t be further representations in the tensor product

rule.

Using Weyl’s dimension formula for the Dd groups

dim(ℓ1, . . . , ℓd) =
∏

1≤r<s≤d

ℓr + ℓs + 2d− r − s

2d− r − s

lr − ℓs + s− r

s− r
, (A.18)

we obtain

dim(l + 1
2
, 1

2
, . . . 1

2
,±1

2
) = 2d−1

(

l + 2d− 2

l

)

, and

dim(l, 0, . . . , 0) =

(

l + 2d− 1

l

)

−
(

l + 2d− 3

l − 2

)

.

(A.19)
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One can easily check – using the properties of binomial coefficients – that

dim(l, 0, . . . , 0) × dim(
1

2
, . . .

1

2
,±1

2
) = dim(l +

1

2
,
1

2
, . . . ,

1

2
,±1

2
)

+ dim(l − 1

2
,
1

2
, . . . ,

1

2
,∓1

2
). (A.20)

Let us summarize the first main result of this appendix: we determined four types of

spin spherical harmonics denoted by φ±
l and ψ±

l .

Next, we investigate the chiral-bag boundary conditions. We may express Γ∗ with the

help of (A.8) by

Γ∗ =

d∏

a=1

(ψ†
aψa − ψaψ

†
a). (A.21)

As φ+
l and ψ+

l (and likewise φ−
l and ψ−

l ) have the same eigenvalues, with respect to the

Cartan operators Ha, we allow for linear combinations

Ψ±
l = f±

l (r)φ±
l + g±l (r)ψ±

l . (A.22)

Imposing the boundary condition ΠΨ±
l = 0 leads to the following equations for the

values of the radial functions at the boundary,

f±
l (R) ∓ ieθg±l (R) = 0. (A.23)

We obtained this simple result, because total angular momentum commutes with the

boundary operator, and we have chosen an adapted frame.

Finally, we want to solve for the spectrum of the Dirac operator, which reads in complex

coordinates

i /∇ = 2iψa∂̄a + 2iψ†
a∂a. (A.24)

The eigenvalue equation is given by

i /∇Ψ±
l = λΨ±

l . (A.25)

One obtains a system of coupled first-order differential equations, which can be easily



88

solved,

f±
l (r) = r1−d−l(c1J−1+d+l(|λ|r) + c2N−1+d+l(|λ|r))
g±l (r) = sign(λ)ir1−d−l(c1Jd+l(|λ|r) + c2Nd+l(|λ|r)). (A.26)

Finally, we impose the boundary condition (A.23). With k ≡ |λ|R we obtain

J−1+d+l(k) + sign(λ)eθJd+l(k) = 0 for + case

J−1+d+l(k) − sign(λ)e−θJd+l(k) = 0 for − case. (A.27)

The degeneracy of the eigenvalues can be determined by Weyl’s dimension formula. For

each l in D = 2d dimensions and for each case in eq. (A.27) the degeneracy is given by

dim = 2d−1

(

2d+ l − 2

l

)

. (A.28)

In this appendix, we have determined the spin spherical harmonics in even dimensions

and have calculated the eigenfunctions of the free Dirac equation on a ball, imposing

chiral-bag boundary conditions. The method is similar to the method developed in

[JDL1]. We use these results in [JDL5] to determine the spectral asymmetry and compare

it with the invariants of an associated boundary operator.



B No-go Theorem

In this appendix we prove that, as stated already in [26], the N = 1 superalgebra in

four spacetime dimensions does not allow for a subalgebra closing on H only. In the

following we use a Majorana representation in four dimensions, such that the Majorana

spinor components Qα, α = 1, . . . , 4, are Hermitian operators. The superalgebra without

central charges reads

{Qα, Qβ} = 2(γµγ0)αβPµ, (B.1)

where Pµ is the four-momentum and P0 = H . We try to find a linear combination of

supercharges, Q =
∑

α bαQα, bα ∈ R, such that

{Q,Q} = 2H. (B.2)

Eqn. (B.2) is equivalent to

bαbα = 1, (γiγ0)αβbαbβ = 0, i = 1, 2, 3. (B.3)

We are free to choose a particular realization of the γ-matrices. With the realization

γ0 = σ0 ⊗ σ2, γ1 = iσ0 ⊗ σ3, γ2 = iσ1 ⊗ σ1 and γ3 = iσ3 ⊗ σ1, (B.4)

we obtain the conditions

∑

α

bαbα = 1,

b1b2 + b3b4 = 0,

−b1b3 + b2b4 = 0,

(b2
2 + b3

2) − (b1
2 + b4

2) = 0. (B.5)
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Let us define the two real vectors u = (b1, b4)T and v = (b2, b3)T, such that we can

rewrite these conditions as

‖u‖2 + ‖v‖2 = 1, ‖u‖ = ‖v‖, (u, v) = 0, (u,Mv) = 0, M =

(

0 −1

1 0

)

. (B.6)

Here we introduced the standard scalar product (·, ·) and norm ‖ · ‖ on R2. Observe

that M is a rotation matrix with angle of rotation equal to π
2
. That means that u has

to be both, orthogonal and parallel to v and therefore has to be zero. As ‖u‖ = ‖v‖ also

v has to be zero and we get no solution.



C Analyticity of Perturbations

In the main part of this thesis we need some rigorous analyticity properties of specific

perturbations. We need several theorems in the context of functional analysis which

can be found in the literature. Let us mention here the series of books by M. Reed and

B. Simon [86] and the book of H. Triebel [87]. For topics concerning perturbation theory

the standard reference is Kato [88].

In the following we consider operators on the Hilbert space

H = L2(R
d, ddx) ⊗CD (C.1)

with D ∈ N arbitrary and norm

‖f‖2 =
D∑

i=1

‖fi‖2
L2
, f = (f1, . . . , fD) ∈ H. (C.2)

Here, ‖ · ‖L2
denotes the familiar L2-norm.

C.1 The N = 1 Case

For the N = 1 Wess-Zumino model on the lattice we specify D = 2N , d = N (number

of lattice points) and consider the (unperturbed) operator (3.150)

A0 =
N∑

m=1

(−iψ1(m)∂m + ψ2(m)W ′(xm)) . (C.3)
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We recall that W is a polynomial of degree deg(W ) = p > 1 and ψα(m) are Hermitian

D ×D−matrices obeying the Clifford algebra

{ψα(m), ψβ(n)} = 2δαβδ(m,n), m, n = 1, . . . , N and α, β = 1, 2. (C.4)

The operator A0 with domain of definition

D(A0) = C∞
c (RN) ⊗CD (C.5)

is essentially self-adjoint, where C∞
c (RN) is the space of C∞-functions with compact

support in RN . A simple calculation, using (C.4), shows

(A0)
2 =

∑

m

(−∂m∂m +W ′(xm)W ′(xm) − iψ1(m)ψ2(m)W ′′(xm)) . (C.6)

Closure of the Operator A0

To determine the closure Ā0 of the operator A0, we have to find the closure of its domain

D(A0) with respect to the norm

‖f‖2
A0,a ≡ a‖f‖2 + ‖A0f‖2, a > 0. (C.7)

Note that these norms are equivalent for all a > 0. Using the abbreviation

ρp = 1 + |x|p−1, |x| =

√
∑

m

(xm)2, (C.8)

we can prove the following

Lemma: There exist constants a, b1, b2 > 0 such that

‖f ′‖2 + b1‖ρpf‖2 ≤ a‖f‖2 + ‖A0f‖2 ≤ ‖f ′‖2 + b2‖ρpf‖2 (C.9)

holds for all f ∈ D(A0).

In the Lemma we used the short hand notation ‖f ′‖2 =
∑

m ‖∂mf‖2.
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Proof: First, we show that actually only the degree deg(W ) = p is important. We find

∑

m

‖W ′(xm)f‖2 ≤ Na1‖ρpf‖2, a1 =

∥
∥
∥
∥

W ′(xm)

ρp

∥
∥
∥
∥

2

∞
, (C.10)

where ‖ · ‖∞ denotes the supremum norm. The factor N arises from the sum over m, as

a1 does not depend on xm. Similarly, we obtain

‖ρpf‖2 =

∥
∥
∥
∥
∥

ρp
√

1 +
∑

n(W ′(xn))2

√
1 +

∑

m(W ′(xm))2 f

∥
∥
∥
∥
∥

2

≤ a2(‖f‖2 +
∑

m

‖W ′(xm)f‖2), a2 =

∥
∥
∥
∥
∥

ρp
√

1 +
∑

n(W ′(xn))2

∥
∥
∥
∥
∥

2

∞
. (C.11)

Now, it is easy to prove the second inequality in (C.9),

a‖f‖2 + ‖A0f‖2
(C.10)

≤ ‖f ′‖2 + a‖f‖2 +Na1‖ρpf‖2 +
∑

m

‖f‖ ‖W ′′(xm)f‖

≤ ‖f ′‖2 + (a +Na1 +Na3)
︸ ︷︷ ︸

b2

‖ρpf‖2, (C.12)

with a3 =
∥
∥
∥

W ′′(xm)
ρp

∥
∥
∥
∞

. We used that the matrix-norm of the matrices ψα(m) is one,

as the eigenvalues of these matrices are ±1. In the last inequality we made use of

‖f‖ ≤ ‖ρpf‖ which holds for all f ∈ D(A0).

The other inequality in (C.9) is more difficult to prove. With (C.11) we get

a‖f‖2 + ‖A0f‖2 ≥ ‖f ′‖2 +
1

a2
‖ρpf‖2 + (a− 1)‖f‖2 −

∑

m

‖f‖ ‖W ′′(xm)f‖. (C.13)

We have to be careful with estimates for the last term in (C.13) as we want to obtain a

positive constant b1 in the Lemma. We introduce a ball of radius R and split f ∈ D(A0)

into two parts, f = f< + f>, where f< has its support inside the ball and f> outside the

ball. We obtain

∑

m

‖f‖ ‖W ′′(xm)f‖ =
∑

m

(‖f<‖ ‖W ′′(xm)f<‖ + ‖f>‖ ‖W ′′(xm)f>‖) , (C.14)

where the terms which contain both, f< and f>, vanishes. Let us now consider the two
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terms in (C.14) separately. First, we obtain

∑

m

‖f>‖ ‖W ′′(xm)f>‖ ≤ Na4(R)‖ρpf‖2, a4(R) =

∥
∥
∥
∥

W ′′(xm)

ρp

∥
∥
∥
∥
∞,>

, (C.15)

where we have introduced the supremum norm ‖ · ‖∞,> = sup|x|>R{| · |}. For large R we

have a4(R) ∼ 1
R

such that a4 gets arbitrarily small in that limit. Second, we obtain

∑

m

‖f<‖ ‖W ′′(xm)f<‖ ≤ Na5(R)‖f‖2, a5(R) = ‖W ′′(xm)‖∞,<, (C.16)

with ‖ · ‖∞,< = sup|x|<R{| · |}. For R → ∞ we have a5(R) → ∞. Altogether, we find

a‖f‖2 + ‖A0f‖2 ≥ ‖f ′‖2 + (a− 1 −Na5(R))‖f‖2 + (1/a2 −Na4(R))
︸ ︷︷ ︸

b1

‖ρpf‖2. (C.17)

In the first step we must choose R large enough such that b1 > 0. In the second step we

must choose a large such that the constant in front of ‖f‖2 is also positive. This finishes

our proof. �

Since all norms

‖f‖2
b ≡ ‖f ′‖2 + b‖ρpf‖2 (C.18)

are equivalent for b > 0, the Lemma implies that these norms are eqivalent to the norms

‖f‖2
A0,a. Therefore, the closure of D(A0) with respect to the norm ‖ ·‖A0,a coincides with

the closure with respect to ‖ · ‖b, which is given by

D(Ā0) =
{
f ∈W 1

2 (RN) ⊗CD : ‖ρpf‖ <∞
}
≡W 1

2 (RN , ρ2
p) ⊗CD. (C.19)

Here, W 1
2 (RN) is the Sobolev space with first weak-derivative in L2.

Perturbation

In the main part of this thesis, the operator A0 is perturbed by the operator A1 (3.150),

A1 = −
N∑

m,n=1

xm(∂)mnψ2(n). (C.20)
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The operator A1 is obviously self-adjoint and D(A1) = L2(R
N , ρ̃) ⊗ CD ⊃ D(Ā0) with

ρ̃-weighted Lebesgue measure, ρ̃(x) = (1 + |x|)2. From the following Lemma we will

obtain many consequences for the quality of the perturbation.

Lemma: For all λ ∈ R and arbitrarily small ǫ > 0 there exists a constant Cǫ > 0 such

that

‖λA1f‖ ≤ ǫ‖A0f‖ + Cǫ‖f‖, ∀f ∈ D(Ā0) (C.21)

holds.

Proof: We prove the inequality for all f ∈ D(A0) and it follows that it also holds for

all elements in the closure. As before we split f = f< + f>. First, we find

‖λA1f<‖ ≤ |λ|N2a(R)‖f‖, a(R) = ‖xm‖∞,< · max{|∂mn| : m,n = 1, . . . , N}. (C.22)

For R → ∞, a(R) → ∞. Next, we have

‖λA1f>‖
(C.9)

≤ |λ|N2b(R)(c‖f‖ + ‖A0f‖),

b(R) =

∥
∥
∥
∥

xm

ρp

∥
∥
∥
∥
∞,>

· max{|∂mn| : m,n = 1, . . . , N} (C.23)

for some number c > 0. For big R the constant b(R) tends to zero. We choose the radius

of the ball large enough such that |λ|N2b(R) = ǫ and set Cǫ = ǫc + |λ|N2a(R). �

Note that the latter constant may become huge.

Self-adjointness

We proved already that Ā0 is a self-adjoint operator. Clearly, λA1 is symmetric on

D(Ā0). Furthermore, (C.21) shows that λA1 is Ā0-bounded with bound less than one.

The famous Kato-Rellich theorem, see Theorem X.12 in [86], states that under these

conditions the operator

Q1(λ) = A0 + λA1 (C.24)
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is self-adjoint with domain D(Q1(λ)) = D(Ā0). We conclude that Q1(λ) is a family of

self-adjoint operators with common domain of definition D(Ā0).

Analyticity of Eigenvalues

In the following we prove that Q1(λ) is an analytic family in the sense of Kato for all

λ ∈ R. We have shown already that for real λ, Q1(λ) is self-adjoint. For a self-adjoint

and analytic family it is known that the eigenvalues depend analytically on the parameter

λ, see for example Theorem XII.13 in [86].

For an arbitrary real λ0, λ0A1 is Ā0-bounded with arbitrary small bound (C.21). Then,

it is easy to see that A1 is Q1(λ0)-bounded. From this fact it follows that for small ǫ,

Q1(λ0 + ǫ) is an analytic family of type (A) [86] and therefore also an analytic family in

the sense of Kato. But as λ0 ∈ R is arbitrary, we haven proven that Q1(λ) is analytic

for all real λ.

Actually, the cited Theorem XII.13 [86] above is only valid for isolated eigenvalues

with finite degeneracy or equivalently for eigenvalues in the discrete spectrum. In the

following we prove that the spectrum of Q1(λ) consists only of the discrete spectrum by

proving this statement for the square, H(λ) = Q1(λ)2. H(λ) is self-adjoint with domain

of definition given by

D(H(λ)) ≡ {f ∈ D(Ā0) : Q1(λ)f ∈ D(Ā0)}
= W 2

2 (RN , ρ′) ⊗CD, ρ′(x) = (1 + |x|2(p−1))2 (C.25)

and it is semibounded

H(λ) ≥ 0. (C.26)

Such operators possess entirely discrete spectrum if and only if its resolvent is a compact

operator, see Theorem XIII.64 in [86]. In the following we prove that H(λ) has compact

resolvent for all λ ∈ R.

We have to show that the image of a bounded subset of the Hilbert space, say

{f ∈ H : ‖f‖ < 1, } (C.27)
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is mapped to a precompact set in Hilbert space under the map (H − z)−1 for some z in

the resolvent of H . The image is given by

{g ∈ D(H) : ‖(H − z)g‖ < 1}. (C.28)

We split g as before into g> and g< and obtain for radius R large enough, ‖g‖ ≤ ‖g<‖+ǫ.

For a compact set B = {x ∈ RN : |x| ≤ R} we have Sobolev’s embedding theorem and

there is an ǫ-net gj ∈ W 2
2 (B), j = 1, . . . , Nǫ with ‖g< − gj‖ < ǫ for one j ∈ {1, . . . , Nǫ}.

We extend the gj by zero to the region outside the ball and obtain

‖g − gj‖ ≤ 2ǫ (C.29)

for any g in the image of the unit ball under (H − z)−1 and a specific j ∈ {1, . . . , Nǫ}.

We conclude that there is a 2ǫ-net of the image and therefore the image is precompact.

This completes our proof.

Stability of the Index

We have shown that the eigenvalues are analytic functions of the parameter λ on the

whole real axis. It follows at once that the index (2.5) – the difference of bosonic and

fermionic zero modes – is also an analytic function and, as the index only takes on

integer values, is constant.

An alternative, elegant proof of this statement can be given with the help of the theorem

that a relatively compact perturbation does not change the index [88]. Indeed, inequaltiy

(C.21) implies that out perturbation is relatively compact.1

C.2 The N = 2 Case

As we have discussed the N = 1 case in great details, we keep the discussion for N = 2

short. We specify d = 2N , D = 22N and consider B0 defined in (3.156). We choose the

1We thank H. Triebel for the proof of this statement.
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following domain of definition

D(B0) = C∞
c (R2N) ⊗CD (C.30)

such that B0 is an essentially self-adjoint operator. We introduce the potential

K(x, y) =

√
∑

a

(W,a(x, y))2. (C.31)

For large radii only the leading power of W is relevant. Therefore, we may consider the

particular case

W (x, y) = κ/p ℜzp (C.32)

for which we obtain K(x, y) = κrp−1 → ∞ in all directions for r → ∞.

The perturbation contains the lattice derivative,

B1 =
∑

m,n

(
xm(∂)mnψ

2
2(n) + ym(∂†)mnψ

1
2(n)

)
. (C.33)

Replacing in the estimates of the case N = 1 supersymmetry the potential W ′(xm) by

K(xm, ym) leads to analogous results in the N = 2 case. Again, all eigenvalues are

analytic functions of the parameter λ, and in particular the index does not depend on

this parameter.
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Zusammenfassung

Betrachtet man supersymmetrische Feldtheorien auf einem räumlichen Gitter, erhält

man hochdimensionale quantenmechanische Systeme. In unserem Zugang zur Gitterthe-

orie behalten wir nur einen Teil der Supersymmetrie auf dem Gitter bei, so dass wir ohne

Feinabstimmung der Parameter im Kontinuumslimes die volle Supersymmetriealgebra

wiederbekommen. Wir versuchen nicht die ganze Algebra auf dem Gitter zu realisieren,

da dies nichtlokale Wechselwirkungsterme erfordert. Diese würden numerische Simula-

tionen und Untersuchungsmethoden, wie zum Beispiel den starken Kopplungslims, sehr

erschweren.

Die Arbeit ist in zwei Hauptteile aufgeteilt. Im ersten Teil haben wir als Vorbere-

itung hochdimensionale, supersymmetrische, quantenmechanische Modelle untersucht.

Diese Modelle müssen nicht unbedingt mit einer Gitterfeldtheorie verknüpft sein. Mit

der Forderung von N selbstadjungierten Superladungen und eines selbstadjungierten

Graduierungsoperators Γ, welcher mit den Superladungen antikommutiert und damit

mit dem Hamiltonoperator kommutiert, zerfällt der Hilbertraum in zwei Teile, in den

bosonischen und fermionischen Unterraum. Für die erste Superladung haben wir den

Diracoperator auf einer geraddimensionalen Mannigfaltigkeit mit Riemannmetrik und

Eichfeld gewählt. Die Forderung der Existenz von weiteren Superladungen ergibt starke

Einschränkungen, sowohl an die Mannigfaltigkeit als auch an das Eichfeld. Wir haben

gezeigt, dass für N = 2 die Mannigfaltigkeit eine Kählermannigfaltigeit sein muss und

dass die Feldstärke mit der komplexen Struktur kommutieren muss. N = 3 impliziert

automatisch N = 4 und existiert nur für Hyper-Kähler Mannigfaltigkeiten und für

Feldstärken, die mit allen drei komplexen Strukturen kommutieren. In der kleinsten

Dimension des Zielraumes, d = 4, ist dies gleichbedeutend damit, dass die Feldstärke

selbst- oder antiselbstdual sein muss. Nach dieser allgemeinen Diskussion haben wir uns

dem Spezialfall N = 2 zugewendet. Wir haben die Existenz eines Teilchenzahlopera-



tors und eines Superpotentials gezeigt, welches sowohl die gravitativen Freiheitsgrade

als auch die Eichfreiheitsgrade enthält. Die Existenz des Teilchenzahloperators hat

als Konsequenz, dass der bosonische und auch der fermionische Unterraum in weit-

ere Sektoren zerfallen. Dies ist ähnich zu Differentialformen auf einer Mannigfaltigkeit,

bei welchen man die grobe Einteilung in geraden und ungeraden Formen, aber auch

die feinere Einteilung in p-Formen hat. Die Existenz des Superpotentials erlaubt es,

Nullmoden des Diracoperators zu konstruieren. Wir haben uns eine allgemeine Proze-

dur zur Bestimmung des Superpotentials überlegt und haben gezeigt, wie dieses zur

Konstruktion von Nullmoden im maximalen und minimalen Teilchensektor verwendet

werden kann. Als explizites Beispiel haben wir den Diracoperator auf komplexen pro-

jektiven Räumen mit abelschen Eichfeldern betrachtet. Mit unserer Methode konnten

wir zum ersten mal Nullmoden für dieses Problem explizit bestimmen. Wir glauben,

dass wir alle Nullmoden für dieses Beispiel bestimmt haben, konnten dies allerdings

nur für niedrige Dimensionen beweisen. Neben diesen interessanten Untersuchungen für

den Diracoperator als Superladung, waren wir daran interessiert, den Diracoperator mit

bekannten Resultaten aus der Literatur in Verbindung zu bringen. Wir haben es dabei

geschafft, den Diracoperator auf einem flachen Raum mit abelschen Eichfeld mittels der

Methode der dimensionalen Reduktion mit Matrix-Schrödinger Hamiltonoperatoren in

Zusammenhang zu bringen. An dieser Stelle haben wir uns einem hochinteressantem

Problem zugewendet, dem supersymmetischen Wasserstoffatom. Wir haben den ver-

allgemeinerten Laplace-Runge-Lenz Vektor und das Spektrum des Hamiltonoperators

mit Hilfe von gruppentheoretischen Methoden im Sinne von Paulis Zugang bestimmt.

Den ersten Teil dieser Arbeit haben wir mit der Betrachtung von spontaner Supersym-

metriebrechung in quantenmechanischen Modellen abgeschlossen. Wir haben ein sehr

schönes Theorem, das in der Literatur schon bekannt war, bewiesen. Dieses besagt,

dass wenn entweder bosonische oder fermionische Nullmoden einer selbstadjungierten

Superladung existieren, diese Nullmoden dann – unter einer Störung – Nullmoden in

der Störungstheorie bleiben. Ob die Störung wirklich eine analytische Störung ist oder

nicht, muss von Fall zu Fall untersucht werden.

Im zweiten Teil dieser Arbeit haben wir zweidimensionale Wess-Zumino Modelle auf dem

Gitter betrachtet. Um damit beginnen zu können, haben wir zuerst ausführlich Wess-

Zumino Modelle im Kontinuum studiert. Für das N = 1 Wess-Zumino Modell haben

wir die Noetherladungen und deren Algebra mit zentralen Ladungen berechnet. Ähnlich

wie beim Diracoperator haben wir untersucht, unter welchen Bedingungen das Wess-



Zumino Modell erweiterte Supersymmetrie erlaubt. Die Einschränkungen haben wir an

Beispielen untersucht. Insbesondere für N = 2 gibt es eine Lösung mit harmonischen

Superpotential. Dieses Modell haben wir auch mittels dimensionaler Reduktion eines

N = 1 Wess-Zumino Modells in vier Dimensionen erhalten. Von nun an haben wir uns

den Gittertheorien zugewendet. Wir haben das N = 1 und N = 2 Wess-Zumino Modell

auf das Gitter gesetzt. Zunächst wurden wir dazu veranlasst, die zentrale Ladung in der

Definiton des Hamiltonoperators aufzunehmen, um überhaupt eine supersymmetrische

Theorie zu erhalten. Weiterhin muss eine Gitterableitung gewählt werden. Daher haben

wir Vor- und Nachteile verschiedener Gitterableitungen untersucht. Zu nennen sind

hierbei die Links- und Rechtsgitterableitung, welche lokal sind und das Problem der

Fermionverdopplung nicht haben, allerdings die chirale Symmetrie explizit brechen. Um

die Abhängigkeit des Spektrums und der Fermionverdopplung besser zu verstehen, haben

wir zwischen der Rechts- und Linkgitterableitung interpoliert. Ein wichtiger Spezialfall

ist die antisymmetrische Gitterableitung, für welche die chirale Symmetrie nicht ge-

brochen ist, dafür das Fermionverdopplungsproblem existiert. Abschließend haben wir

die SLAC-Gitterableitung untersucht. Dies ist eine nichtlokale Gitterableitung, welche

chiral invariant ist und deren Spektrum mit der Ableitung auf einem koninuierlichen

Intervall, auf die erste Brillouinzone eingeschränkt, übereinstimmt. In quantenmech-

anischen Modellen haben wir diese Gitterableitung getestet. Obwohl die Zeit für nu-

merische Simulationen größer ist als für lokale Gitterableitungen, ist die Genauigkeit

der Ergebnisse mit Hilfe der SLAC-Gitterableitung überzeugend. Nachdem wir die ver-

schiedensten Gitterableitungen ausführlichst diskutiert haben, haben wir uns wieder

den Wess-Zumino Modellen auf dem Gitter zugewendet. Wir haben die Grundzustände

sowohl für das massive, freie N = 1 Modell als auch für das entsprechende N = 2

Modell bestimmt. Für beide existiert genau eine Nullmode. Die Anzahl der Nullmoden

im starken Kopplungslimes ist allerdings verschieden. Für den N = 1 Fall existiert kein

oder eine Nullmode, abhängig davon ob der polynomiale Grad des Superpotential unger-

ade oder gerade ist. Im Anhang haben wir bewiesen, dass der starke Kopplungslimes

das korrekte Resultat auf dem endlichen Gitter liefert. Dies kann sich allerdings im

Kontinuumslimes und unendlichen Volumenlimes ändern. Dies haben wir an einem ein-

fachen Beispiel diskutiert. Im N = 2 Fall ist die Situation eine ganz andere. Im starken

Kopplungslimes haben wir (p−1)N Nullmoden gefunden, wobei p der polynomiale Grad

des Superpotentials und N die Anzahl der Gitterpunkte sind. Ähnlich zum N = 1 Fall

haben wir im Anhang gezeigt, dass auch hier die Anzahl der Nullmoden im starken



Kopplungslimes korrekt wiedergegeben wird. Dies ist allerdings ein sehr überraschen-

des Resultat, da in der Literatur im Rahmen der konstruktiven Feldtheorien, die Ex-

istenz von p − 1 Nullmoden im Kontinuum und im endlichen Volumen gezeigt wurde.

Zu diesem Widerspruch haben wir eine Lösung vorgeschlagen. Wie bereits erwähnt,

enthält der Hamiltonoperator auf dem Gitter nicht nur den Hamiltonoperatur des Kon-

tinuums, sondern auch die zentrale Ladung. Wir behaupten nun, dass für Nullmoden die

sich von Gitterpunkt zu Gitterpunkt im starken Kopplungslimes stark ändern, sowohl

die Energie des Kontinuumshamiltonoperators als auch die zentrale Ladung im Kontin-

uumslimes divergieren. Diese Nullmoden sind folglich reine Gitterartefakte. Nur die

Nullmoden die im starken Kopplunglimes konstant über alle Gitterpunkte sind, davon

gibt es p− 1, überstehen den Kontinuumslimes. Wir möchten diese Behauptung mittels

störungstheoretischer Methoden in naher Zukunft untersuchen.

Weiterhin kann man sich die Frage stellen, ob man die benutzte Methode zur For-

mulierung von Gittermodellen auch für andere Modelle und in anderen Dimenisonen an-

wenden kann. Eine starke Einschränkung gibt die Existenz einer Unteralgebra, die auf

den Hamiltonoperator schließen muss. Die N = 1 Algebra in vier Dimensionen erlaubt

beispielsweise keine solche Unteralgebra. Aber der Zugang könnte zum Beispiel für die

N = 2 super-Yang-Mills Theorie in vier Dimensionen angewendet werden. Damit soll-

ten sich dann die Resultate von Seiberg und Witten überprüfen lassen. Ermutigt durch

die numerischen Resultate, welche wir für quantenmechanische Systeme mit Hilfe der

SLAC-Ableitung erhalten haben, wollen wir nun auch die SLAC-Ableitung in Monte-

Carlo-Simulationen für unsere Gittermodelle verwenden. Darüber hinaus wollen wir

uns mit Fermionen auf dem Gitter, gekoppelt an Eichfelder und unter Benutzung der

SLAC Gitterableitung, beschäftigen. Wir sind zuversichtlich, in Zukunft mehr darüber

berichten zu können.
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An zweiter Stelle möchte ich A. Kirchberg für die intensive und gute Zusammenarbeit

danken. Das lockere und angenehme Klima in unserem Arbeitszimmer wird mir immer

in guter Erinnerung bleiben.

PD Dr. T. Heinzl danke ich für das kritische Lesen meiner Arbeit und für viele hilfreiche

Kommentare.

Weiterhin danke ich der ganzen Arbeitsgruppe für die freundliche und entspannte At-
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zulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel und

Literatur angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen

Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten

erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungs- bzw. Be-

ratungsdiensten in Anspruch genommen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form
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Ich versichere ehrenwörtlich, dass ich nach bestem Wissen und Gewissen die reine

Wahrheit gesagt und nichts verschwiegen habe.

Jena, den 8. Juli 2004 Jean Dominique Länge



Lebenslauf

Name: Jean Dominique Länge

geboren am: 18. Dezember 1974 in Laichingen

Staatsangehörigkeit: deutsch

Familienstand: ledig

Ausbildung

17. Juni 1994 Abitur am Albert-Schweitzer-Gymnasium in Laichingen

09/1994 - 10/1995 Zivildienst im Kreiskrankenhaus Blaubeuren

10/1995 - 06/1998 Studium der Physik an der

Eberhard-Karls-Universität zu Tübingen
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