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1. Introduction

The Standard Model is the bulwark of particle physics today. Two of the main guiding 

principles that have been used in the formulation of the framework are those of symmetry and gauge 

invariance. Along with the symmetries of space-time, i.e. Poincaré symmetry, internal symmetries play 

a very important role in describing physical phenomena. The model unifies three of the four 

fundamental interactions in the local gauge group SU(3) x SU(2) x U(1). Gravity is yet to be unified 

and research is ongoing to this end. These considerations are responsible for the remarkable success of 

the Model, most of which has been rigorously tested over the last 30-40 years1–4.

 The Standard Model, nevertheless, does not explain many features of nature: neutrino 

oscillations5, baryon asymmetry6, gravity, dark matter & energy7 and the gauge-hierarchy problem to 

name some. It is now thought of as an effective field theory, valid only until a certain energy limit (of 

about 1 TeV). Solving the outstanding problems has prompted many Beyond the Standard Model 

(BSM) theories, such as supersymmetry, string theory and loop quantum gravity.

Supersymmetry (SUSY) is an oft-used extension of the Standard Model. It is, mathematically, 

the only possible extension of Poincaré symmetry8,9, and postulates fermionic “superpartners” for all 

bosons and vice-versa. One objective of the experiments at the Large Hadron Collider (LHC) is to 

directly or indirectly detect signatures of such supersymmetric particles, but as of now, none have been 

found. If SUSY is to be a symmetry of nature, it must thus be spontaneously broken at the energy 

scales that are currently accessible. Supersymmetric theories provide answers, or at least hints to some 

of the problems of the Standard Model, such as the gauge-hierarchy problem, strong CP violation and 

the unification of all interactions10,11. They also provide candidate particles for dark matter12,13, making 

them very fruitful areas of study.

Many aspects of quantum field theories cannot be studied using perturbation theory. The 

phenomenon of confinement in QCD is a prime example. The best way to study them non-

perturbatively is using the techniques of lattice field theory, which was first thought of by Wilson14. 

Monte Carlo simulations of QCD on the lattice have enjoyed much success15. There are many 

considerations to be taken when putting field theories on the lattice; more so if the theory is 
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supersymmetric. It is well-known that the Leibniz rule fails on the lattice16. Since SUSY is a space-time

symmetry, it is explicitly broken on the lattice. The gluino condensate is the only SUSY-breaking 

quantity and so, it is preferable to use lattice formulations for fermions that are chiral. Coupled with the

Nielsen-Ninomiya no-go theorem17, which states that local, real, free fermions, having chiral and 

translational invariance on the lattice, must undergo doubling, we have a few options for the fermion 

formulation. The way out of the no-go theorem is to violate at least one of the assumptions. The 

optimal choice would be the Ginsparg-Wilson formulation18, which maintains an exact chiral 

symmetry, but breaks it ultra-locally. It is also computationally intensive. The Wilson formulation 

(which breaks chiral symmetry explicitly), being less demanding, can also be used, along with a tuning 

of the gluino mass.

The present work studies a dimensionally-reduced version of the N=1 SYM theory in 4 

dimensions, with a focus on the restoration of supersymmetry in the continuum limit. The investigation

is done using the Euclidean, lattice formulation of the theory and simulating it using Monte Carlo 

techniques. It is organized as follows: in the next section, a brief overview of supersymmetry is given, 

followed by the superfield formalism and the formulation of supersymmetrical Yang-Mills theories 

using it. Section 3 covers the basics of lattice gauge theories, how to put fields on the lattice, 

particularly, and a brief section on error sources and the methods used to reduce them. Section 4 

explains the different algorithms used in this work. In section 5, the theory under consideration is 

obtained via dimensional reduction of the N=1 SYM theory in 4 dimensions. The simulation results are 

presented in section 6. A few very interesting aspects of the theory presented themselves during the 

simulations. These are discussed along with a summary of the results and an outlook of possible future 

investigations in section 7.
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2. Supersymmetrical Yang-Mills theories

2.1. A brief foray into supersymmetry

A space-time symmetry between bosons and fermions was independently discovered by Gervais

& Sakita19, Golfand & Likhtman20 in 1971 and Volkov & Akulov in 197221. A couple of years later, 

Wess & Zumino understood the renormalization properties of such theories22 and, along with Salam, 

began figuring out particle physical applications. The Standard Model was then extended with 

supersymmetry by Georgi & Dimopoulos in 1981, leading to the Minimal Supersymmetric Standard 

Model (MSSM)10. 

As with any continuous symmetry, our first instinct should be to find the charges/generators of 

the symmetry, or more importantly, the algebra obeyed by these generators. The SUSY charges 

(“supercharges”) are usually represented by Qα, 

α = 1...4N. The charges can then be grouped into a 2-component Weyl spinor: 

Qα=(QA

Q̄ Ȧ
) (1)

The algebra obeyed by the charges is:

[QA ,Mμν
]=(σ

μν
)A

B QB [Q̄ Ȧ ,M μν
]=(σ̄

μν
)Ȧ

Ḃ Q̄Ḃ

[QA , Pμ
]=0 [Q̄ Ȧ ,Pμ

]=0

{QA ,QB}=0 {Q̄ Ȧ , Q̄Ḃ}=0

{QA ,Q̄ Ḃ}=2(σμ
)A Ḃ Pμ

(2)

Thus, the effect of two simultaneous supersymmetry transformations is a displacement. The action of 

the supercharges on a state is to change its helicity by one-half, thus turning bosons into fermions and 

vice-versa. Further, the particles in a “supermultiplet” have the same four-momentum because the 

supercharges and the momentum operator commute. If SUSY is unbroken, the particles must also have 

the same mass. Since there have been no observations of the such mass-degenerate partners, SUSY 

must be spontaneously broken at currently accessible energies.
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Many of the supersymmetric theories that are studied are extensions of non-abelian gauge 

theories. Such theories have massless exchange particles and hence massless supermultiplets. Let us 

take a look at the massless representations. Consider a massless one-particle state. The frame of 

reference can always be shifted to one where the four-momentum is:

Pμ=(E , 0,0, E) (3)

The properties of the state are completely specified by its energy E and helicity h. In this frame:

σμ Pμ∣E , h〉=(P0σ0−P3σ3)∣E , h〉=(0 0
0 2P0)∣E ,h 〉 (4)

Assuming, for simplicity, the case with 1 supersymmetry (N=1) and using the relation

{QA ,Q̄ Ḃ}=2(σμ
)A Ḃ Pμ (5)

this leads to:

{Q1, Q̄1̇}∣E ,h 〉={Q1, Q̄2̇}∣E ,h〉={Q2,Q̄1̇}∣E ,h〉=0 (6)

whereas

{Q2, Q̄2̇}∣E ,h 〉=4P0∣E ,h 〉 (7)

Using the first commutation relation in (6) and keeping in mind that physical states with positive 

definite norm must be considered, one reaches the conclusion:

Q1=Q̄1̇=0 (8)

and one need be concerned with the Q2s only.

Performing the rescaling:

q2=√4P0 Q2 (9)

(and a corresponding rescaling of the conjugate), (8) reduces to:

{q2, q̄ 2̇}=1 (10)

An irreducible representation of this Clifford algebra can be characterized by a ground state such that:

q2∣E ,h0 〉=0 (11)

Other states are then built by the action of the other charge:

q̄ 2̇∣E ,h0 〉=∣E ,h0+
1
2 〉 (12)
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Although this is all there is for N=1 (along with the states demanded by CPT invariance), for a theory 

with an arbitrary number of supersymmetries labeled by i=1...N,

q̄1̇ q̄ 2̇... q̄Ṅ∣E ,h0〉=∣E ,h0+
N
2 〉 (13)

Any further application of a q will annihilate the state and a theory will have the following spectrum, 

easily obtainable from the binomial co-efficients (adapted from 23):

Helicity h0 h0+1/2 h0+1 ... h0+N/2

Number of states (N0 )=1 (N1 )=N (N2 )
... (NN )=1

However, caution should be exercised. The number of supersymmetry generators cannot be 

arbitrarily large. Since the number of components of a spinor increases quickly with the number of 

space-time dimensions,

dim(spinor)=integer (2(d−1)/2) (14)

and every generator constrains a theory, one cannot go to arbitrarily high dimensions without 

trivializing the theory. It has been shown that the maximum space-time dimensionality that allows for a

non-trivial theory with interactions and no negative probabilities is 1124. The resulting supersymmetric 

theory contains 32 real supercharges.

2.2. Formulation of Supersymmetrical Yang-Mills (SYM) theories

If a supersymmetric theory is to describe the physical world, it must be a gauge theory. There 

are principally two different ways of formulating such theories. One could write the most general, 

renormalizable Lagrangians that are real and Lorentz-invariant and then tweak them and try to make 

them invariant under SUSY. This approach is perfectly valid, but is quite inelegant when compared to 

using the superspace formalism, which makes the construction “easier”.

2.2.1. Superspace and superfields

In the case of “normal” space-time symmetries (such as invariance under translations or 
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rotations), the symmetry charges can be written as differential operators acting on the fields instead of 

functions of the fields. At first glance, this approach would seem to be ruled out for the supercharges, 

since the action of a supercharge on a state yields another state at the same point (second row of (2)). 

The anticommutator of supercharges, however, produces the same field at a displaced space-time point 

(fourth row of (2)).  This suggests that the supercharges could be set up as differential operators, not on 

ordinary space-time, but on an extended space-time, called superspace. The superspace formalism was 

introduced by Salam & Strathdee in 197425. 

In order to get a feel for the formalism, let us examine an example of a symmetry charge in 

regular space-time, the four-momentum Pμ. The (unitary) transformation corresponding to the charge 

is:

U (a)=exp(i aμ Pμ) (15)

The parameter aμ is the infinitesimal displacement four-vector and it is part of the argument of the 

transformed field, i.e.:

ϕ(x ')=U (a)ϕ(x )U †
(a)=ϕ(xμ+aμ

) (16)

Thus, if one starts with a field at a defined origin, a displacement of the field to the point xμ can be 

achieved using the above operation with xμ as the parameter. This is what is done in the superspace 

formalism.

Superspace is an extended space-time possessing four Grassmann co-ordinates in addition to the

four commuting co-ordinates of regular space-time. The Grassmann co-ordinates are usually grouped 

into a two-component Weyl spinor and its Hermitian conjugate:

θ=(
θ1

θ2)
θ̄=(θ̄

1̇

θ̄ 2̇)
(17)

The fields are then dependent on all eight co-ordinates and are termed superfields:

Superfield Φ=Φ(x ,θ ,θ̄) (18)

There is then an expression analogous to (16):

U (a ,ϵ , ϵ̄)Φ(x ,θ ,θ̄ )U†
(a ,ϵ , ϵ̄)=Φ( x ' ,θ ' , θ̄ ' ) (19)
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where ε & ε are the infinitesimal Grassmann parameters. The expressions for the transformed co-

ordinates x', θ' & θ' are:

x 'μ= xμ+aμ
+i ϵσμ

θ̄−i θσμ
ϵ̄

θ '=θ+ϵ

θ̄ '=θ̄+ϵ̄

(20)

 

Performing a Taylor expansion on a general superfield gives:

Φ( x ,θ , θ̄)=f (x)+θ .ϕ(x )+ θ̄ . χ̄(x )+(θ .θ)m(x)+(θ̄ .θ̄)n(x )+θσμ
θ̄ vμ(x)

+(θ .θ)(θ̄ . λ̄ (x))+(θ̄ . θ̄)(θ .ψ(x))+(θ .θ)(θ̄ . θ̄)d (x)
(21)

Since the action is a scalar under Lorentz transformations, the superfield must also be a scalar. This 

enables a deduction of the behavior of the various component fields: f(x), m(x), n(x) & d(x) are complex

scalars, φ(x), χ(x), λ(x) & ψ(x) are Weyl spinors and vμ(x) is a complex vector field. Each complex 

scalar contributes 2 bosonic degrees of freedom and the vector field contributes 8. Each Weyl spinor 

contributes 4 fermionic degrees of freedom, so there are 16 bosonic and 16 fermionic field components.

The equality should be reassurance that the content is supersymmetric. This is a reducible 

representation of the superfield, whereas we usually require irreducible representations. These are 

obtained by placing constraints on the superfield.

2.2.2. Constrained superfields

The problem of superfields containing more components than is acceptable for irreducible 

representations was solved by Ferrara, Zumino & Wess26. There are three major ways to constrain 

superfields: using SUSY-covariant derivatives so that:

DAΦ=0 or D̄ ȦΦ=0 (22)

or apply a reality condition:

Φ
†
=Φ (23)

 The reality condition is the most relevant to this work, but we shall make a small detour to flesh out 

some details of the derivative constraints.

7



• Chiral and anti-chiral superfields

Differential operators which commute with the SUSY charges can be used to constrain 

equations which are invariant under SUSY. Such operators obey:

{DA ,QB}={D̄ Ȧ ,QB}={DA ,Q̄ Ḃ}={D̄ Ȧ , Q̄Ḃ}=0 (24)

The explicit form of the SUSY-covariant derivatives is:

DA=
∂

∂θ
A +i(σμ

θ̄)A∂μ

D̄ Ȧ=−
∂

∂θ̄
Ȧ +i(σ̃μ

θ̄)Ȧ∂μ

(25)

They also satisfy:

{D ,D̄}=−2iσμ
∂μ

{D , D}={D̄ , D̄}=0
(26)

A chiral superfield satisfies the condition DAΦ=0. This implies:

χ̄( x)=0 n(x)=0 ψ(x )=0

vμ(x)=−i∂μ f (x) λ̄ (x)=
i
2
(∂μϕ(x)σμ

) d (x)=−
1
4
∂
μ
∂μ f (x)

(27)

Therefore:

Φchiral=f (x)+θ .ϕ(x )+(θ .θ)m(x)−i(θσμ
θ̄)∂μ f (x )

+
i
2
(θ .θ)(∂μϕ(x )σ

μ
θ̄)−

1
4
(θ .θ)(θ̄ .θ̄)∂μ

∂μ f (x)
(28)

The anti-chiral superfield, which satisfies DAΦ†=0 can be obtained via a complex conjugation of

the chiral superfield.

• Vector/real superfields

The appropriately named real superfield is obtained by enforcing the reality condition of a 

general superfield.
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This constrains the component fields:

f *
(x )=f (x) m*

(x)=n(x) n*
(x )=m(x ) d*

(x )=d (x )

χ (x)=ϕ(x) λ (x)=ψ(x ) vμ
*
(x )=vμ(x )

(29)

The degrees of freedom are halved, from 16 each of bosons & fermions to 8 each. Since one of the 

component fields is a vector field (which facilitates the supersymmetric generalization of a gauge 

vector field), real superfields are also called vector superfields. Using the Wess-Zumino gauge to 

eliminate some of the component fields, one arrives at the simplest form of the vector superfield:

V (x ,θ ,θ̄)=−(θσ
μ
θ̄)vμ(x )−i(θ .θ)(θ̄ . λ̄( x))+i(θ̄ .θ̄)(θ .λ (x))

−
1
2
(θ .θ)(θ̄ .θ̄)d (x)

(30)

where d(x) is a now a minor redefinition of the earlier field. In this gauge, the normal gauge freedom of

vμ(x) is preserved. Further, the components λ(x) (and λ(x)) and d(x) are invariant under super gauge 

transformations. As will be seen in the following sections, the fermionic components λ(x) and λ(x) will 

form the spin-1/2 superpartner of the gauge field, called a gaugino.  

The scalar field d(x) is an auxiliary degree of freedom. It will have no kinetic term in the 

Lagrangian and is eliminated using its equation of motion.

2.2.3. Constructing supersymmetric gauge theories

 The most general supersymmetric Lagrangian that can be formed using these three kinds of 

superfields, chiral, anti-chiral & vector, is:

L=
1

4g2
Tr [((W A W A)+h.c.)F ]+(Φ

† eV
Φ)D+(

1
2

mijΦ iΦ j+
1
2

yijkΦiΦ jΦk+h.c.)
F

(31)

A clarification of the terms is perhaps in order.

• WA is the supersymmetric generalization of the field strength tensor. It is formed out of the vector field

and the SUSY-covariant derivatives:

W A=−
1
4
(D̄ . D̄)e−V DA eV

(32)

• The subscripts (...)D and (...)F represent the D- and F-terms. These are the highest non-zero co-
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efficients of the corresponding superfield when it is expanded as a function of θ and θ. Specifically, 

(...)F=(...)|θθθθ and (...)D=(...)|θθ,y→x. These terms only contribute a total divergence under SUSY 

transformations, so such terms are exactly what is needed in the Lagrangian.

• The co-efficient mij has dimension 1. It is a necessary addition to obtain a Lagrangian with the correct 

dimensions: each superfield has dimension 1. The projection of the F-term, which involves the 

Grassmann infinitesimals dθ1 and dθ2, also has dimension 1 since each Grassmann variable has 

dimension ½, leading to a total of 3. A similar analysis yields the fact that yijk is dimensionless.

2.2.4. The N=1 SYM Lagrangian in 4D

The 4-dimensional N=1 SYM is the starting point of this work and we now have all the tools 

necessary to construct it in the continuum. In order to write the Lagrangian, all that is needed is the first

term in (31), namely:

L=
1

4g2
Tr [((W A W A)+h.c.)F ] (33)

To make things simpler, one may use the form of WA in terms of the components of the vector 

superfield:

W A
a
=√2λA

a
−da

θA−(σ
μν
θ)A Fμν

a
+

i

√2
(θ .θ)(σμ Dμ λ̄

a
)A (34

Performing the contraction and extracting the F-terms, we obtain the final result:

L=Tr (−
1
4

Fμν Fμν
+

i
2
λ̄ γμ Dμ

λ) (35)

Fμν is the regular field strength tensor:

Fμν=∂μ A ν−∂ν Aμ−ig [Aμ , Aν] (36)

Aμ is the gauge field transforming according to the adjoint representation of the gauge group and g is 

the (dimensionless) coupling constant. λ is a Majorana spinor in the adjoint representation. The 

covariant derivative has the usual definition in the adjoint:

Dμλ=∂μλ−ig [Aμ ,λ] (37)

The Lagrangian is invariant under the SUSY transformations:
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δϵ Aμ=i ϵ̄ γμλ δλ=iσμ νFμνϵ δ λ̄=−i ϵ̄σμ νFμν
(38)

It is especially clear from the transformations that SUSY transforms bosonic fields into fermionic ones 

and vice-versa. Further, because the Lagrangian is supersymmetric, the fermions have to transform in 

the same way as the bosons, namely under the adjoint representation of the gauge group (this is also the

reason why one is able to write the fermionic part of (35) in the same way as the bosonic part).

It is evident that the Lagrangian is identical in form to the QCD Lagrangian:

L=Tr (−
1
4

Fμν Fμν
+

i
2

q̄ γμ Dμ q) (39)

but for a couple of differences. The fermionic q fields in QCD are Dirac fermions and they lie in the 

fundamental representation of the gauge group (SU(3)). In contrast, the theory represented by (35) 

contains Majorana fermions transforming under the adjoint action of the gauge group. It is this 

similarity in form (and properties), however, that warrants us calling it a QCD-like theory.
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3. Lattice gauge theory

The essence of defining a field theory on a space-time lattice is, on the surface, simple: replace 

the derivatives in the Lagrangian with finite differences. In gauge theories, the gauge potential rotates 

the frame of reference in an internal symmetry space as we travel between space-time points. In 

transferring a gauge theory onto  the lattice, the matter fields are assigned to the discrete latticized sites 

of space-time. Hence, displacements between neighboring sites are simply the links of the lattice. A 

unique element of the gauge group must be assigned to each of these links to understand the state of a 

system. The links must also be oriented, in the sense that if an element of the gauge group specifies a 

link in one orientation, the inverse element specifies the same link in the opposite orientation. The 

collection of these gauge group elements plays the role of the continuum gauge potential.

Calculations of observables using the lattice has its roots in the path integral formulation of 

quantum mechanics, so we will briefly recall the most relevant points before moving on to method of 

formulation of lattice theories.

3.1. Quantum mechanics and path integrals

The path integral formulation of quantum mechanics was perfected by Feynman27, who built on 

the ideas of Dirac and Wiener. In the simplest of terms, it gives the amplitude for the displacement of a 

particle between two points as the sum over all possible paths (essentially an infinite number) between 

the points.

Consider the expression of the quantum mechanical amplitude for a particle in 1D to travel from

point x at time t to the point x' at time t':

〈x ' , t '∣x , t 〉=〈x '∣e−iH (t '−t )∣x 〉 (40)

By inserting a complete set of co-ordinate eigenstates and dividing the time interval T=t'-t into n equal 

parts, one obtains the path integral expression for the amplitude:

〈x '∣e−iHT∣x 〉=∫Dx e iS/ ℏ (41)
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where

∫Dx=∏
t
∏

i

dx i(t) (42)

represents the integration over all possible paths for the general 3D case. S is the classical action and 

so, each path is weighed by the action evaluated along it.

3.2. Field theory and functional integrals

Consider, as an example, a scalar field φ(x,t). It evolves in time according to:

ϕ(x , t)=eiHt
ϕ(x ,t=0)e−iHt / ℏ (43)

Green's functions are very important observables in field theory because they essentially contain all 

required information about a system. They are written as the vacuum expectation values (vevs) of time-

ordered products of field operators, such as:

〈0∣ϕ(x1)ϕ( x2)...ϕ(xn)∣0〉 t 1>t 2>...>t n (44)

We can write the functional integral expression for Green's functions by constructing analogues to the 

quantities that arose in the quantum mechanical case:

xi(t )⇔ϕ (x , t)

∏
t ,i

dxi( t)⇔∏
t , x

d ϕ(x , t)≡Dϕ
(45)

The functional integral representation of a Green's function is then:

〈0∣ϕ(x1)ϕ(x2)...ϕ(xn)∣0〉=
1
Z∫ Dϕϕ (x1)ϕ(x2) ...ϕ (xn)e

iS / ℏ

Z=∫ Dϕ eiS /ℏ

(46)

There is one problem with the formulation as it is. The imaginary exponents mean the integrands 

oscillate, leading to a convergence problem. To remedy this, we go over to imaginary time via a “Wick 

rotation”.
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3.3. Euclidean field theory

To perform a Wick rotation, the time components are replaced with an imaginary time via a 

rotation into the complex plane using t→-iτ.

This leaves the Green's functions in the form:

GE (x1 , x2, ... , xn)=
1
Z∫Dϕϕ(x1)ϕ(x2)...ϕ(xn)e

−S E

Z=∫ Dϕe
−S E

(47)

The reason for the nomenclature can be seen from an observation of the change in the space-time 

metric:

ds2
=dx2

+dy2
+dz2

−dt2

↓
ds2

=dx2
+dy2

+dz2
+d τ2

(48)

The metric after a Wick rotation looks like a 4D generalization of the regular Euclidean metric of 3D 

space.

The use of the Wick rotation is clear from (47). The oscillations are now gone. Fields with a 

large action (strongly fluctuating fields) are heavily suppressed by the exponential factor. The largest 

contributions come from paths which are close to the classical path.

The original quantities of interest, the Green's functions in real time, are obtained from GE by 

analytical continuation.

G(t1, t 2)=GE(it1 ,it 2) (49)

The continuation must be done so that all the time components are rotated simultaneously in the 

complex time-plane.
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Fig. 3.1: Wick rotation from imaginary to real time co-ordinates (taken from 28)

There are a number of similarities between Euclidean field theory as it has been formulated and 

statistical mechanics. The following is adapted from 28.

Euclidean field theory Statistical mechanics

Generating functional: ∫ Dφ exp(-SE) Partition function: ∑ exp(-βH)

Action: S Hamilton function: βH

Mass m as: G ~ e-mτ Inverse correlation length 1/ξ as: G ~ e-x/ξ

These analogies allow many of the methods of statistical mechanics to be used while investigating 

Euclidean field theories. The square of the coupling constant in the field theory is also analogous to the 

temperature of a statistical system and, identifying strong coupling/weak coupling with high 

temperature/low temperature, expansions in these limits are regularly used, just as in statistical 

mechanics.

3.4. From the continuum to the lattice

Consider a hypercubic lattice of space-time specified by:

xμ=anμ nμ∈ℤ (50)

a being the lattice spacing. 

Matter degrees of freedom are then placed at the lattice sites, for eg.:
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ψ(x)→ψ(n) ψ̄(x)→ ψ̄(n) (51)

Under gauge transformation, they vary as:

ψ(n)→Ω(n)ψ(n) (52)

As mentioned earlier, the gauge fields live on the links of the lattice and possess an intrinsic 

direction. The field Uμ(n) is on the link between the lattice sites n and n+μ in the μ-direction. The 

variable U-μ(n) is not independent of Uμ(n). They are related via:

U−μ(n)=Uμ
†
(n−μ̂) (53)

These “link variables” are not exact analogues of the continuum gauge fields, but are the lattice 

versions of the gauge transporter:

Uμ(n)=exp( ia Aμ(n)) (54)

They transform under gauge transformations as:

Uμ(n)→Ω(n)Uμ(n)Ω
†
(n+μ̂) (55)

The link variables Uμ(n) are group variables and are fundamental objects on the lattice.

Other changes that have to made on the lattice concern derivatives and integrals.

∂μϕ(x )→Δμϕ(n)≡
1
a
(ϕ(n+aμ̂)−ϕ(n))

∫ d4 x→a4∑
n

(56)

The discrete form of the derivative written (the forward difference) is, of course, one choice out of 

many. A choice of, for example, a backward difference or symmetrical difference can also be made. 

This freedom exists because the finite difference operator is an operator whose arguments are defined 

on the lattice sites and whose values are on the links. Therefore, there is no unique or natural way to 

represent it only on the sites.

 

3.4.1. Gauge fields on the lattice

In the continuum, the field strength Fμν specifies the rotation of the reference frame for the 
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transport around an infinitesimal rectangular closed path with sides dxμ & dyμ. The analogous closed 

paths on the lattice are simply its smallest squares, which are called “plaquettes”. An example of a 

transporter around a plaquette with vertices n1,n2,n3  & n4 would be:

Uμν(n)≡U P=Uμ(n)U ν(n+μ̂)Uμ
†
(n+ν̂)Uν

†
(n) (57)

From the purpose of the field strength as described above, one can see that Fμν vanishes if the transport 

around the closed path leaves the reference frame unchanged, i.e. if it is the identity. As the values 

deviates away from the identity, larger positive values are taken. In the same way, one writes the lattice 

action as a function of a plaquette, such that, if UP=1, the action is zero. Just like the continuum 

behavior, larger deviations from 1 lead to larger positive values of the action. The total action can then 

be obtained by summing over all plaquettes of the lattice.

One form of the lattice gauge action is:

Sgauge=c0β ∑
plaquette

ℜ(TrU plaquette)+c1β ∑
1x2rectangle

ℜ(Tr U1x2rectangle)

+c2β ∑
1x3 rectangle

ℜ(Tr U 1x3rectangle)
(58)

The co-efficients c0, c1 & c2 take different values for different form of the action. Uplaquette is the form 

written in (57) and is also written as U□ to represent an elementary square on the lattice. Similarly, U1x2 

rectangle & U1x3 rectangle are terms that involve larger loops on the lattice:  U1x2 rectangle≡U□□ &  U1x3 rectangle≡U□□□.

The simplest form of the gauge action is the Wilson action, named after Wilson14. The co-

efficients take the values c0=1, c1=c2=0, leading to the form:

SWilson=β ∑
plaquette

ℜ(Tr U plaquette) (59)

The constant β is to be determined using the requirement that the usual Yang-Mills action should be 

recovered in the continuum limit. This leads to:

β=
6

g lattice
2 (60)

where glattice is the bare coupling constant on the lattice.

Since, in practice, the lattice spacing is non-zero, discretization errors arise, which one should 

aim to minimize. An effective way to achieve this was established by Lüscher, Sint, Sommer & Weisz 

following a suggestion from Symanzik29. This form of the action, named the Symanzik action, takes 
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into account larger loops and is a closer approximation of the continuum. In the Symanzik action, the 

co-efficients take the values c0=1- 8c1, c1=-1/12 &  c2=0. The Symanzik action is:

SSymanzik=
5β
3

∑
plaquette

ℜ(Tr U plaquette)−
β

12
∑

1x2rectangle

ℜ(Tr U1x2rectangle) (61)

This will be the gauge action used in this work.

Observables in the quantum theory can then be calculated using:

〈A 〉=
1
Z∫∏b

dU (b)A e−S

Z=∫∏
b

dU (b)e−S

(62)

The integration dU(b) for the link b is an invariant integration over the manifold of the gauge group and

is normalized to:

∫dU=1 (63)

With this, there is no necessity of gauge fixing. The total “volume of the gauge group” is unity.

This regularization is taken care of on the lattice by the space-time discretization. The 

analogous expression of (62) is:

〈A 〉= 1
Z∑U

A (U )e−SSymanzik

Z=∑
U

e
−SSymanzik

(64)

Depending on whether the Us are elements of a discrete gauge group or a Lie group, the sums are 

ordinary sums or invariant integrals over the group manifold as discussed above. 

3.4.2. Fermions on the lattice

When representing them on the lattice, one must keep in mind that fermions are represented by 

anticommuting Grassmann variables. Taking the familiar example of a Dirac field, it will have the 

anticommuting variables ψα(x) and ψα(x), with α=1,2,3,4 being the Dirac index. The variables satisfy 

anticommutation relations such as:
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{ψα(x ),ψβ (x)}=0 (65)

and so on.

A fermionic Green's function is of the form:

〈0∣A∣0 〉= 1
Z∫D ψD ψ̄ A e−S F (66)

where

DψD ψ̄=∏
x
∏
α

dψα(x )d ψ̄α(x ) (67)

Calculating functional integrals with Grassmann variables is actually simple keeping this integration 

rule in mind:

∫d ηi(a+b ηi)=b (68)

For an integral of the form:

∫D ψD ψ̄e
−∫d 4 x ψ̄( x)D ψ(x) (69)

the rule (68) reduces this to det(D). This is a general formula since any action which is bilinear in the 

fermionic fields can be put into the form in the exponential. D is called the fermion matrix/Dirac matrix

and det(D) is the fermion determinant.

Since a Dirac fermion can be formed out of Majorana fermions, a slightly different result can be

obtained for the Majorana case:

∫D ψD ψ̄e−∫d 4 x ψ̄( x)D ψ(x)
=det (D)=∏

j=1

2

∫d λ
j e

−∫d4 x 1
2
λ̄

j
(x)D λ

j
(x)

(70)

⇒∫d λ e
−∫ d4 x 1

2
λ̄ (x)D λ(x)

=±√det (D) (71)

The square root of the determinant as in (71) is also called the Pfaffian (Pf) (a phase factor can also be 

involved). The sign of the Pfaffian is undetermined in (71). To fix it, the following definition of the 

path integral is used:
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∫d λ e
−∫ d4 x 1

2
λ̄( x)D λ(x)

=∫ d λ e
−∫d4 x 1

2
λ (x)Qλ (x)

=Pf (Q) (72)

where

Q=CD=−QT (73)

C being the charge conjugation matrix. The Dirac matrix in the theory considered in this work is “γ5-

Hermitian”, which means:

D†
=γ5 D γ5⇔γ5 D=D†

γ5 (74)

This implies that det(D) is a real quantity.

Further, det(D) is also non-negative, because:

CDC−1
=DT (75)

(in the theory under consideration).

Therefore, since det(D)=det(Q)=|Pf(Q)|2, Pf(Q) must be real, but can have any sign.

For several fermion actions, the Dirac matrix D can be formulated such that det(D) is positive. 

If it is not, what is done in practice is the replacement of D by D†D.

Then, for example, a generating functional becomes:

Z=∫ DU Dλ e−S gauge−λ̄D λ=∫ DU e−Sgauge sign(Pf (Q))(det (D))
1
2

⇒Z=∫DU e−S gauge sign(Pf (Q))(det(D † D))
1
4

or

Z=∫DU e
−Sgauge sign(Pf (Q))(det (M ))

1
4

(76)

with M=D†D=M† being a positive, Hermitian matrix. The determinant of D (or M) is to be calculated, 

and as mentioned before, this is not tractable via brute force because of the size and sparseness of the 

matrix. To circumvent this, the determinant is calculated using “pseudofermionic” variables (which are 

actually bosonic variables). This method was first put forward by Fucito, Marinari, Parisi & Rebbi30. 

With this method, the generating functional in (76) becomes:
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Z=∫ DU∏
n=1

NPF

Dϕn
† Dϕn e−Sgauge [U ]− SPF [U ,ϕ] sign(Pf (Q))

SPF [U ,ϕ]=
1
2 ∑n=1

NPF

ϕn
† M

−1
4n ϕn

(77)

This method is used heavily in this work. The calculation of the matrix M, in this work, is done using 

the rational approximation31, which is discussed in Section 4.2.

So far, there doesn't seem to be a problem with putting fermionic fields onto a lattice. 

Unfortunately, there is one lurking around. It becomes apparent if one considers, for example, the 

propagator for a free fermion with mass m. The action to be considered is then the Dirac action, which, 

on the lattice is:

SF=
1
2∑x

∑
μ

ψ̄(x )( γμΔμ+m)ψ(x )+h.c. (78)

Δμ is the difference operator that replaces the continuum derivative.  Calculating the propagator gives:

S−1
( p)=mq+

i
a∑μ γμ sin( pμ a) (79)

Because of the finite lattice spacing, the momenta are restricted to a Brillouin zone, taken to be {-π/a, 

π/a}. The zeros then lie at pμ=0 and π. Using these zeros of the four-momentum, define the sixteen 

possible four-vectors ΠA={(0,0,0,0),(π,0,0,0)...(π,π,π,π)} with A={1,2...16}. Performing an expansion 

of the propagator in the massless limit around these zero points:

S−1
( p ,m=0)=

i
a∑μ γμsin( pμ a)=

i
a∑μ γμsin ((ΠA

+k )μ a)

⇒S−1
( p ,m=0)=

i
a
∑
μ

γμ Sgnμ

A sin(kμa)

(80)

where Sgnμ
A is ±1 depending on whether the μth component of ΠA is 0 or π. Taking the continuum limit 

a→0 for each of the 16 possibilities recovers the correct continuum form of the propagator, i.e. if any 

component of the momentum nears the limits of the Brillouin zone, the discretized fermion behaves 

like a fermion in the continuum. This leads to 2d “tastes” (named as an analogy to particle flavor) of a 

fermion, which means that there is a doubling for every dimension. This is called “fermion doubling” 

and is one of the biggest issues to be solved when studying lattice theories.

21



There have been many formulations of fermions that remove the doubling problem. The 

formulation used in this work is that of Wilson. In this formulation, the 15 spurious doublers acquire a 

large mass at the edges of the Brillouin zone and disappear from the spectrum. The Wilson operator 

looks like:

(DW )xy=(m0+dr )δxy−
1
2∑μ [(r−γμ)Uμ(x )δx+μ , y+(r+γμ)Uμ(x−μ̂)δx−μ , y] (81)

m0 is the bare mass of the fermion, d is the number of space-time dimensions considered and r is the 

Wilson parameter such that 0 < r ≤ 1. Casting the operator in another form allows for a clearer 

interpretation:

(DW )xy=δxy−κ∑
μ
[(r−γμ)Uμ(x)δx+μ, y+(r+γμ)Uμ(x−μ̂)δx−μ , y ]

κ=
1

2(m0+dr )

(82)

The effect of the first term, which is local, is to keep the fermion at the same lattice site. The other, non-

local term makes the fermion “hop” to the neighboring site with a strength κ, leading to the 

nomenclature of κ as the “hopping parameter”. During this “hop”, the fermion acquires a rotation by 

(r–γμ) in spin space and by Uμ in color space.

The main disadvantage of this formulation is that chiral symmetry is broken even for vanishing 

m0 when r ≠ 0. In the case of SYM, SUSY is also broken. However, a tuning of the gaugino mass is 

enough to restore chiral symmetry (shown by Bochicchio, Maiani, Martinelli, Rossi & Testa)32 as well 

as SUSY (shown by Curci & Veneziano)33 in the continuum limit. 

A sign problem of the Pfaffian exists, as shown by the DESY-Münster collaboration34. This is a 

potential roadblock to performing simulations effectively. If the frequency of the fluctuation of the sign

is high, cancellations can occur, leading to an increase in statistical error. However, further 

investigation by the collaboration has shown that below a critical value of the hopping parameter 

(which is also the value of zero gaugino mass), negative Pfaffians do not occur35–37. As mentioned 

above, since SUSY is expected to be recovered in the limit of vanishing gaugino mass, one can avoid 

negative Pfaffians by taking this limit. There should then be no problems in performing Monte Carlo 

simulations of SYM with Wilson fermions.
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3.5. Sources and mitigation of errors on the lattice

3.5.1. Sources (and possible reduction methods) of error

The results obtained using Monte Carlo simulations on the lattice will be different from physical

results due to many sources of error. The most important contributions (in this work) come from:

• Statistical errors: The path integral formulation essentially takes into consideration all possible paths 

between two points and assigns different weights to them depending on the value of the action along 

the path. Generating an infinite number of such configurations on the computer is, of course, not 

possible. The finite number of configurations that are used in Monte Carlo calculations thus introduce 

an error, which is proportional to 1/n1/2, n being the number of configurations used. Hence, the more 

configurations one uses, the closer the approximation is to the continuum and the less the error.

• Finite lattice spacing: Since a discretization of space-time is non-physical, it should be evident that 

the lattice formulation will intrinsically introduce errors. The size of the errors depend on how closely 

the lattice operators approximate continuum behavior. The easily way to reduce these errors is thus to 

improve lattice actions (if possible), extract observables at a range of values of the lattice spacing a and

then extrapolate to a→0. The Wilson formulation that is used in this work introduces errors of O(a).

• Finite volume effects: This error arises due to the approximation of an essentially infinite system by a 

finite volume. The error is usually proportional to e-mL 38or a power law in L, such as 1/L3 39. The errors 

can be reduced, in principle, by increasing the size of the (side of the) lattice, L, but this increases 

computational load.

3.5.2. Estimating the errors

The statistical error introduced due to the finite number of configurations is estimated in this 

work using the Jackknife technique. It was first thought of by Quenouille40 and extended by Tukey41. 

The average of the observable in question, <O>, is first calculated over the entire data set. The data is 

then divided into M blocks. One should take care to make the length of the blocks greater than the auto-
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correlation time for the method to be effective. Each block is then removed from the data set and the 

average of the observable calculated using this reduced set. This average is denoted by <O>i with 

i=1...M. The error is estimated by calculating the deviation of these “jackknifed” averages from the 

average over the complete set:

σ=√M−1
M ∑

i=1

M

( 〈O 〉i− 〈O 〉)
2 (83)

The reason the technique works is because each jackknifed average contains almost the full set of data 

and so, is approximately equal to the full data set value.  
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4. Monte Carlo methods and algorithmic aspects

In order to compute observables in lattice theories, supersymmetric or not, an enormous number

of integrations have to be performed. For example, consider (64). Even on a 2-dimensional 8x8 lattice 

with gauge group SU(2), which parametrizes each link variable by 4 parameters, this number is in the 

thousands. If a grid of, say, 10 points per integration is used, the multiple integral will be approximated 

by a sum consisting of 101000 terms on the conservative side. This makes a direct computation 

unfeasible. As noted earlier, however, lattice theories bear a striking resemblance to statistical models, 

from which it is known that out of all possible configuration, only a small subset effectively contribute 

to averages. Hence, an effective way of computing averages on the lattice would be to stochastically 

generate series of link variable configurations with a probability distribution given by the Boltzmann 

factor e-S. The average will then be given by the mean value of several such configurations:

〈O 〉= 1
N
∑
i=1

N

O( {U }i) (84)

The general requirement of an algorithm for generating such series of configurations is that it the 

configurations should eventually reach the desired probability distribution, at which point the system is 

said to be “thermalized”. The thermalized configurations can then be used to measure an observable. 

Although the number of configurations that can be generated will always be finite, if the sequence 

generated by the algorithm constitutes a representative set, then the approximation given by the above 

equation will be good. There is a probability that each configuration can transit to another, determined 

by a transition matrix, as required by stochastic processes, such that:

P(C→C ')≥0

∑
C '

P(C→C ' )=1
(85)

where C and C ' denote configurations in general. The customary process is to change one particular 

variable at a time, proceeding through the lattice, then varying another, and so on until all variables 

have been sampled. This constitutes a Monte Carlo sweep of the lattice. However, a simultaneous 

variation of multiple variables can also be done.

A sufficient condition that must be satisfied so that an algorithm can generate configurations 
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with a probability of the Boltzmann factor is that each “step” of the transition matrix must satisfy 

detailed balance, i.e.:

e−S (C )P(C→C ')=e−S (C ' )P(C '→C) (86)

The detailed balance equation does not place any restrictions on the probability function that is 

used. This grants a level of freedom that can be used to implement new algorithms or constantly 

improve established ones based on the problem being investigated.

One of the earliest and simplest algorithms that can generate chains of configurations and 

satisfy detailed balance is the so-called Metropolis-Hastings algorithm. It is perhaps instructive to go 

through it, as it provides a general idea of how such algorithms work. The steps involved here are:

• A new configuration is selected based on an arbitrary probability function, the only requirement of 

which is:

P0(C→C ')=P0(C '→C) (87)

• The change in the action due to this change is calculated. If ΔS≤0 (the action has been reduced), the 

new configuration is accepted.

• If not, a random number r is selected from the interval [0,1] with a uniform probability distribution. 

If r≤e-ΔS, the change is accepted. If not, the new configuration is rejected and the process is repeated.

Although the classical configuration corresponds to the minima of the action, this conditional 

acceptance allows the system to increase its action and move away from classical configurations. The 

algorithm thus incorporates quantum fluctuations. One of the biggest benefits of the Metropolis-

Hastings algorithm is that it is free of systematic errors. There are a couple of problems with it, 

however. Consider how one could pick the new configuration to be tested. The new configuration could

be completely random. Although it will then be uncorrelated to the old one, it is very likely that such a 

change will induce a large change in the action, leading to very low acceptance rates. The system will 

then move very slowly through its configuration space. One could also choose C '=C+δC and then tune 

δC so that ΔS is small, but this will introduce large correlations between successive configurations. If 

the computation of ΔS is expensive, as it is with supersymmetric lattice theories, neither of these 
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options are good ones. The other problem is with the scope of variables that are changed. The 

Metropolis-Hastings algorithm works best if a single variable is changed in each step. Changing 

multiple variables again leads to large ΔS and low acceptance rates. In fact, this problem also arises for 

single variable changes in actions depending non-locally on the co-ordinates. What is desired is then an

algorithm that performs global updation and also has a high acceptance rate.

4.1. The Hybrid Monte Carlo (HMC) algorithm

The HMC algorithm combines molecular dynamics methods, which have high acceptance rates,

with the Metropolis acceptance test. The result is an algorithm capable of globally updating variables, 

with a high acceptance rate and free of systematic errors. It was developed, in its complete form, by 

Duane, Kennedy, Pendleton & Roweth42. An outline of the steps involved is:

• A set of momenta {πi}, conjugate to the co-ordinates {φi}, is chosen from a Gaussian ensemble:

P({πi })=(∏
i

1
√2π

)e
−∑

i

π i
2

2 (88)

• A half step is performed:

π̃i(n)=πi(n)−ϵ
2
∂ S[ϕ]
∂ϕi(n)

(89)

where n denotes a particular time step and ε is the value of a single time step.

• The following two equations are then iterated for a number of time steps, at the discretion of the 

user:

ϕi(n+1)=ϕi(n)+ϵπ̃ i(n)

π̃i(n+1)=π̃i(n)−ϵ
∂ S[ϕ]

∂ϕi(n+1)

(90)

• If {φ',π'} and {φ,π} denote the configurations after and before the iteration, the new configuration is 

accepted with probability:
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P=min (1,e−H [ ϕ' , π ' ]
/e−H [ϕ , π]

) (91)

where H is the Hamiltonian of the system.

• If there is no acceptance, start over with the old configuration {φ,π}. If the new configuration is 

accepted, use the new co-ordinates and repeat the process from the second step onwards.

A few improvements to the above algorithm are implemented in this work, particularly higher 

order integrals and multiple time scales. 

4.2. The rational Hybrid Monte Carlo (rHMC) algorithm

The pseudofermion method, as seen in (77), requires the calculation of the inverse of the 

fermion matrix. This is done using the rHMC algorithm, which was put forward by Horváth, Kennedy 

& Sint31. In this method, the term M-q, where q=1/4n, is approximated rationally using:

r (x )=x−q
≈α0+∑

r=1

NR αr

x+βr

(92)

The co-efficients α & β are calculated using the Remez algorithm43. The accuracy of the approximation 

depends mainly on the number of terms NR used in the polynomial and the accuracy in the 

determination of α & β. In this work, NR is 20 for the 8x8 lattice and 25 for the larger lattices in the 

interval {10-4,10}. The inversion of the fermion matrix using the rHMC approximation is then done 

using the Conjugate Gradient (CG) solver44. 
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5. N=2 SYM in 2D on the lattice

5.1. Dimensional reduction of 4-dimensional N=1 SYM

The starting point is (35), the equation of an N=1 supersymmetric Yang-Mills theory in 4-

dimensional Minkowski space-time. The idea is to assume that 2 of the space-time dimensions (here, x2 

& x3) are compact and interpret them as internal degrees of freedom45. Fields no longer depend on these

compactified dimensions and all derivatives with respect to these dimensions can be set to zero. In the 

following, m and n are used to denote all four dimensions, so m,n=1,2,3,4. Greek indices denote purely 

space-time indices, so, for example, μ=0,1 in 2 dimensions. The compactified dimensions are 

represented (directly or indirectly) using Latin indices, so, for example, a=2,3.

First, the Clifford algebra is defined in 2 and 4 dimensions. Let the gamma matrices in 2D be 

denoted by γμ and those in 4D by Γm. A representation of the 4D matrices is chosen to clearly see their 

construction from their 2D counterparts:

Γ
μ
=I 2x2⊗γ

μ
μ=0,1

Γ
1+a

=γ3⊗iσa a=1,2
(93)

I2x2 is the 2x2 identity matrix. The following representation of the 2D gamma matrices can be chosen46:

γ
0
=(1 0

0 −1) γ
1
=( 0 1

−1 0) γ3=γ
0
γ

1
=(0 1

1 0) (94)

Consider the pure Yang-Mills term. To maintain dimensionality in 2D, the gauge field 

components are re-scaled:

Aμ→
Aμ

√V 2

μ=0,1

ϕa→
ϕa

√V 2

a=1,2

(95)
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The φas are the (now scalar) components of the gauge field in the compactified dimensions. With this, 

the field strength becomes:

Fμν
4D
=∂μ

Aν

2D

√V 2

−∂ν

Aμ
2D

√V 2

−
i g4D

V 2

[ Aμ
2D , Aν

2D
]=

1

√V 2

{∂μ Aν
2D
−∂ν Aμ

2D
−i g2D[Aμ

2D , Aν
2D
]}

=
Fμν

2D

√V 2

Fμ ,1+a
4D

=∂μ
ϕa

2D

√V 2

−
i g4D

V 2

[Aμ
2D ,ϕa]=

1

√V 2

{∂μϕa
2D
−i g2D[Aμ

2D ,ϕa]}=
1

√V 2

Dμ
2D
ϕa

F1+ a ,1+b
4D

=
−i g4D

V 2

[ϕa ,ϕb]=
−i g2D

√V 2

[ϕa ,ϕb]

(96)

where

g2D=
g4D

√V 2

(97)

is the rescaled coupling constant in 2D. Substituting the above terms into the pure Yang-Mills term in 

the action and integrating over the compactified dimensions (which cancels all the V2 co-efficients in 

the denominators), the dimensionally reduced Yang-Mills term is obtained:

SYM=−
1
4∫d4 xTr (Fmn Fmn)→−

1
4∫ d2 xTr (FμνFμν+2 Dμ

ϕ
a Dμϕa−g2D

2
[ϕ

a ,ϕb
][ϕa ,ϕb]) (98)

The factor of 2 in the second term arises because Fμ,1+aFμ,1+a=F1+a,μF1+a,μ.

For the purpose of dimensionally reducing the Dirac term, the Majorana spinor is decomposed:

λ=
1

√V 2

∑
r=1

2

er⊗χr (99)

er is a basis vector in 2D space-time and χr, with this normalization, is a Majorana spinor in 2D space-

time. Similarly:

λ̄=λ†Γ0=
1

√V 2

∑
r=1

2

(er
T⊗χr

†)( I 2x2⊗γ0)=
1

√V 2

∑
r=1

2

er
T⊗χr

† γ0=
1

√V 2

∑
r=1

2

er
T⊗χ̄r (100)
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The covariant derivatives take the form:

Dμλ=
1

√V 2

∑
r=1

2

er⊗Dμχ r

D1+aλ=
1

√V 2

−ig2D∑
r=1

2

er⊗[ϕa ,χr ]
(101)

Inserting these terms into the Dirac part of the action and integrating over the compactified dimensions:

SD=
i
2 ∫d4 xTr ( λ̄Γm Dmλ)→

i
2∫ d2 xTr [∑

rs

(er
T
⊗χ̄r)Γ

m Dm(es⊗χ s)]

=
i
2
∫d2 xTr [∑

rs

(er
T
⊗χ̄ r)(es⊗γ

μ Dμχ s)−ig2D∑
rs

(er
T
⊗χ̄ r)(γ3⊗iσa)(es⊗[ϕa ,χ s])]

=
i
2
∫d2 xTr{∑rs

(er
T es)⊗(χ̄rγ

μ Dμχ s)−ig2D∑
rs

[(er
T
γ3)⊗(χ̄r iσa)][es⊗[ϕa, χs] ]}

=
i
2
∫d2 xTr [∑

rs

δrs⊗(χ̄r γ
μ Dμχs)−ig2D∑

rs

(er
T
γ3 es)⊗(χ̄r iσa[ϕa, χs])]

=
i
2
∫d2 xTr [∑

r

( χ̄r γ
μ Dμχ r)−ig2D∑

rs

(γ3)rs⊗(χ̄r iσa[ϕa ,χ s])]

(102)

From the representation of γ3 chosen, it can be seen that non-zero values exist only when r≠s. 

Therefore, calling iσa≡γa:

S D=
i
2 ∫d2 xTr [ λ̄ γμ Dμλ−ig2D(χ̄1γa[ϕa ,χ2]−χ̄2γa[ϕa ,χ1])]

=
i
2
∫d2 xTr [ λ̄ γμ Dμλ−ig2D(χ̄1γaϕaχ2−χ̄1γaχ2ϕa+χ̄2γaϕaχ1−χ̄2γaχ1ϕa)]

=
i
2 ∫d2 xTr [ λ̄ γμ Dμλ−ig2D(λ̄ γaϕaλ−λ̄ γaλϕa)]

=
i
2
∫d2 xTr [ λ̄ γμ Dμλ−ig2D λ̄ γa [ϕa,λ ]]

(103)

Performing a further re-scaling of:

Aμ→
1

g2D

Aμ ϕa→
1

g2D

ϕa λ→
1

g2D

λ (104)

the complete action can be written as:

S=α∫ d2 xTr (−
1
4

Fμν Fμ ν−
1
2

Dμ
ϕ

a Dμϕa+
1
4
[ϕ

a ,ϕb
][ϕa ,ϕb ]+

i
2
λ̄ γμ Dμλ+

1
2
λ̄ γa [ϕa ,λ ]) (105)

where the factors of the coupling constant (and the “volume” V2) have been absorbed by α, i.e.:
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α=
V 2 D

g4 D
2 (106)

The field content of the dimensionally reduced theory is a gauge field, two real scalar fields and 

a (four-component) Majorana fermion.

5.2. Wick rotation of the 2-dimensional theory

  A Wick rotation is achieved by making the following substitutions:

γ0→ iγ0 A0→ iA0 (107)

The Euclidean form of the action then reads:

SE
=α∫ d2 xTr (

1
4

Fμν Fμ ν+
1
2

Dμϕa Dμϕa−
1
4
[ϕa ,ϕb][ϕa ,ϕb]+

1
2
λ̄ γμ

E Dμλ−
1
2
λ̄ γa

E
[ϕa ,λ]) (108)

5.3. The lattice form of the theory

For the sake of avoiding a cluttered presentation, let us split the total lattice action.

Slattice=Sboson+S fermion

where Sboson=Sgauge+Sscalar

(109)

The form of the gauge part of the action that is used has already been mentioned: the Symanzik action, 

which is reproduced here:

Sgauge=SSymanzik=
5β
3

∑
plaquette

ℜ(Tr U plaquette)−
β

12
∑

1 x2 rectangle

ℜ(TrU 1x 2rectangle) (110)

From the definitions of β (60) and α (106), one can see that the two are related and can convert between

them according to convenience.

The scalar action has two contributions, the kinetic part and the potential (the commutator). The

kinetic part reads:
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Sscalar
kinetic

=−[ϕ1(x )Uμ(x)ϕ1(x+μ̂)+ϕ2(x)Uμ(x)ϕ2(x+μ̂)]+2 [ϕ1(x )ϕ1(x )+ϕ2(x)ϕ2(x)] (111)

For the commutator term, we expand the scalar fields (which are in the adjoint representation) in terms 

of the generators and simplify:

Sscalar
potential

=Tr{−1
4
[ϕi(x) ,ϕ j(x )][ϕi(x) ,ϕ j(x )]}

=Tr{−1
4
[ϕi

a(x)T a ,ϕ j
b(x)T b] [ϕi

c(x )T c ,ϕ j
d (x)T d]}

=Tr{−1
4
ϕi

a
(x)ϕ j

b
(x )[T a ,T b

]ϕi
c
(x )ϕ j

d
(x)[T c , T d

]}
=Tr{−1

4
ϕi

a
(x)ϕ j

b
(x ) f abmT m

ϕi
c
(x)ϕ j

d
(x ) f cdn Tn}

=−
1
4

Tr (T mT n
) f abm f cdn

ϕi
a
(x)ϕ j

b
(x )ϕi

c
(x )ϕ j

d
(x )

=−
1
4
δ

mnf abm f cdn
ϕi

a
(x)ϕ j

b
(x)ϕi

c
(x)ϕ j

d
(x)

=−
1
4

f abn f cdn
ϕi

a
(x)ϕ j

b
(x)ϕi

c
(x)ϕ j

d
(x)

=−
1
4

f abcd
ϕi

a
(x)ϕ j

b
(x )ϕi

c
(x )ϕ j

d
(x )

(112)

where fabcd=fabmfcdn and the generators are normalized so that Tr(TaTb)=δab.

The lattice action for the fermions is written in the form:

S fermion=λ̄ Dlatticeλ (113)

As with the scalars, there are two contributions to Dlattice, the kinetic term and the Yukawa potential 

term. The kinetic term on the lattice is the Wilson operator that was discussed earlier, so:

Dlattice
kinetic

=(DWilson)xy=δxy−κ∑
μ
[(r−γμ)Uμ(x)δx+μ, y+(r+γμ)Uμ(x−μ̂)δx−μ , y ]

κ=
1

2(m0+2 r )

(114)

The substitution of d=2 has been made for this particular theory. Using an expansion in the generators 

and proceeding as with the scalars, the Yukawa term on the lattice has the form:

Dlattice
Yukawa

=−γa f mnp
ϕi

p
(x) (115)

where a sum over i=1,2 for the two scalars is to be done. Substituting (110), (111), (112) & (113) into

(109) yields the action that is first used for the simulations.
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6. Simulation results

For the simulations, the link variables have been taken to be unitary matrices from the group 

SU(2). As a preliminary step, simulations were first performed on an 8x8 lattice to find optimal values 

of α. To do this, the average plaquette was calculated for a range of α values. This was done because 

plaquette values of zero and one describe trivial and non-interacting theories. A well-tested range of the

plaquette value is between 0.5-0.8 (for example, see 47). A plot of the average plaquette versus α is 

shown in Fig. 6.1. (For the preliminary simulations, statistics of 500 configurations were used. For the 

main simulations, an 8x8 lattice with statistics of 5000 configurations and a 16x16 lattice with statistics

of 1000 configurations were used.)

Fig. 6.1: Average plaquette as a function of the coupling α.

So, a plaquette range of 0.5-0.8 leaves an α range of ~0.4-0.9 available to us. In the main simulations, 

two values of α, 0.7 and 0.9, were chosen.

While performing these simulations, an instability of the theory was revealed. The potential 

term for the scalars has flat directions. The fields composing these directions can fluctuate to arbitrarily

large values with no cost to the potential energy. This, in turn, causes the Hamiltonian to change 

drastically, leading to low acceptance rates and a breakdown of the simulation. This is shown in Fig. 

6.2, where the scalar field is plotted as a function of the configuration number.
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Fig. 6.2: <ϕ2> as a function of configuration number for five different values of α.

As one can see, the expectation value of the square of the scalar field increases rapidly to very large 

values with no sign of stabilization. To solve this problem, a mass term for the scalar fields was added.

6.1. The addition of the scalar mass term and stabilization of the theory

The term is specifically:

mscalar (ϕ1(x)ϕ1(x)+ϕ2(x )ϕ2(x )) (116)

This prevents the scalar field from blowing up, as shown in Fig. 6.3.

Fig. 6.3: <ϕ2> as a function of configuration number for different values of α after the addition of the mass term.
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The expectation value of ϕ2 stabilizes very quickly now and shows a constant dipping and rising about 

an average value.

6.2. Simulation parameters

With the addition of the mass term, there are now three parameters to consider:

• the coupling α, for the purpose of ultimately constructing the continuum limit. This is usually done 

by taking the limit α→∞, since α is inversely related to the lattice spacing. As mentioned earlier, two 

values of α have been used in this work (from examining the plaquette values), 0.7 and 0.9.

• the bare gaugino mass, for the purpose of restoring supersymmetry. The bare mass is contained in the

hopping parameter κ (see (82)). To repeat an earlier point, chiral symmetry and SUSY are broken on 

the lattice when the Wilson formulation of fermions is used. A tuning of the gaugino mass restores 

both. What observable signs does the symmetry breaking leave that we can use for the tuning? In SYM 

with gauge group SU(N), the global discrete chiral symmetry Z2N is broken spontaneously by a non-

zero chiral condensate. A consequence of this is the expectation of the existence of a first-order phase 

transition at vanishing effective gaugino mass. A first order phase transition should also present with a 

double peak structure if a histogram of the chiral condensate is plotted. The value of the bare gaugino 

mass obtained using this method can be compared to the results from another test: although the gaugino

is not part of the physical spectrum (due to confinement), in 48, using chiral perturbation theory and the 

OZI rule (from QCD), the renormalized gaugino mass has been related to the pion mass:

mg∝mπ
2 (117)

Veneziano and Yankielowicz have argued49 that the connected part of the η' meson is analogous to the 

pion. Thus, by measuring the square of the mass of the “pion” as a function of the bare gaugino mass, 

the value of the bare gaugino mass corresponding to zero effective gaugino mass can be extrapolated. 

The bare gaugino mass has been scanned between 0 and -1.

• the scalar mass. This has been added for stabilizing the theory, but it breaks SUSY in the process. 

The symmetry can be easily restored, however, by taking the limit mscalar→0. Three values of the scalar 
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mass have been used: 0.002, 0.01 & 0.05.

6.3. The bosonic Ward identity

In order to investigate the restoration of supersymmetry on the lattice, the bosonic Ward 

identity, i.e. the expectation value of the bosonic action, was studied. This identity reads50:

⟨SB⟩=
n−n0

2
(118)

where n is the total number of bosonic (or equivalently, fermionic) degrees of freedom and n0 is the 

number of zero modes. The total number of degrees of freedom

n=nC nS (119)

where nC is the number of colour degrees of freedom (=3) and nS is the number of spinor degrees of 

freedom (=4). Therefore, n=12. The number of zero modes n0=nC, giving:

⟨SB⟩=
12−3

2
=4.5 (120)

This has been demonstrated in earlier studies51 and it was satisfied here as well (without the mass term 

for the scalars, of course), as seen in Fig. 6.4.

Fig. 6.4: The bosonic Ward identity as a function of α.

There are some deviations from the expected value for the lower values of α. For α=0, the plaquette is 

also 0, representing a trivial theory and this causes the deviation of the first point. As α increases, the 
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average bosonic action rises to the expected value, but there are still deviations from the theoretical 

value. This is because the figure presented is for κ=0.277, which is not the critical value at which the 

effective gaugino mass vanishes, as will be seen a little later. However, for further increasing values of 

α (i.e. towards the continuum limit), the results agree, since the Ward identities should be fulfilled 

exactly in the continuum limit. It is expected that at the critical point of κ and in the continuum limit, 

the deviations will disappear.

The addition of the mass term changes the identity and the change can be calculated. The 

modification is essentially (for one of the scalar fields):

⟨mscalarϕ
2⟩=

∫Dϕ e−(S B+mscalar ϕ
2
)mϕ

2

∫Dϕ e−(S B+mscalar ϕ
2
)

(121)

The fermionic part of the action need not be considered because it is only linear in φ. Looking in the 

flat directions of the potential, where the term mscalarφ2 plays a major role, the term SB can be ignored, 

leading to:

⟨mscalarϕ
2⟩=

∫Dϕ e−mscalar ϕ
2

mϕ
2

∫Dϕ e−mscalar ϕ
2 (122)

With

Z=∫Dϕ e−mscalar ϕ
2

=√
π

mscalar
(123)

(122) can be written as:

⟨mscalarϕ
2⟩=−mscalar

∂(ln Z )
∂mscalar

=−mscalar
1
Z
∂Z
∂mscalar

=−mscalar√mscalar
π

∂
∂mscalar

(√
π
mscalar

)

=
1
2

(124)

Considering both scalar fields, this means the mass term should increase the Ward identity by 1. This is 

proven in figures 6.5 and 6.6, where the term mscalarϕ2 is plotted for both lattice sizes and all values of α 

and mscalar. To show the behavior of this term as a function of HMC time, a few representative values of 

κ are used in figures 6.5 and 6.7. In figures 6.6 and 6.8, which plot the expectation value of mscalarϕ2,  
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three values of κ are used covering the entire scan range. 

Fig. 6.5: The term mscalarϕ2 as a function of configuration number on the 8x8 lattice for α=0.7 (left) and α=0.9 (right). A

scalar mass of 0.05 is revealed to be too heavy to retain supersymmetry.

Fig. 6.6: <mscalarϕ2> vs. κ on the 8x8 lattice for α=0.7 (left) and α=0.9 (right). The deviation from the theoretical values for a

scalar mass of 0.05 is especially clear in these diagrams.

Scalar masses of 0.002 and 0.01 leave the increase of the bosonic action in very good agreement

with the theoretical prediction. For a scalar mass of 0.05, large deviations occur. Although the increase 

in the bosonic action tends to 1 for increasing κ, such values are much larger than the critical value of 

κ, as will be seen later.
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Fig. 6.7: The term mscalarϕ2 as a function of configuration number on the 16x16 lattice for α=0.7 (left) and α=0.9 (right). The

problem with a scalar mass of 0.05 persists and some new anomalies are seen.

Fig. 6.8: <mscalarϕ2> vs. κ on the 16x16 lattice for α=0.7 (left) and α=0.9 (right).

There are a few interesting points to note in the 16x16 lattice. In figure 6.7, for the lowest scalar

mass, 0.002, for α=0.7, the increase in the bosonic action fluctuates multiple times for the first third of 

configurations and then appears to begin stabilization. This is a little better for α=0.9. Such fluctuations

usually indicate problems with the change in the Hamiltonian and hence acceptance. This will be 

investigated in the next section. For a scalar mass of 0.01, a long thermalization time is also observed 

for α=0.7, which becomes much shorter for α=0.9. This is a shortcoming in the simulations performed. 

Optimally, a larger number of configurations is preferred, which always leads to better statistics.
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On both the lattices, it is clearly seen that setting mscalar to 0.05 results in deviations from the 

predicted increase of 1. This value is perhaps too high for the theory to remain supersymmetric.

6.4. The problem with mscalar=0.002

Fig. 6.9: δH plotted as a function of the update number for a scalar mass of 0.002 and α=0.7 (left) and α=0.9 (right).

There are indeed large changes in the Hamiltonian as was conjectured. This leads to large 

autocorrelation times. In figure 6.9, the change in the Hamiltonian is plotted as a function of the update 

number (there are 10 updates for every configuration). For this reason, this value of the scalar mass is 

also neglected for the principal results of this work.

6.5. The bosonic Ward identity, continued

With the inclusion of the scalar mass term, the average bosonic action should be around 5.5, 

which is shown in figures 6.10 and 6.11. The problem with mscalar=0.05 is again apparent in these 

diagrams.
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Fig. 6.10: The bosonic action density as a function of κ on the 8x8 lattice for α=0.7 (left) and α=0.9 (right).

Fig. 6.11: The bosonic action density as a function of κ on the 16x16 lattice for α=0.7 (left) and α=0.9 (right).

The most obviously interesting thing first: for a scalar mass of 0.05, for both values of α, there 

seems to be a sudden jump in the value of the bosonic action, which may be an indicator of a first-order

transition. It also looks like the Ward identity is satisfied for all values of κ (in the optimal case of 

mscalar=0.01), which shouldn't be the case. The correct value of 5.5 should correspond to the critical 

value of κ. Figures 6.12 and 6.13 present the data for mscalar=0.01 within a narrower range.
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Fig. 6.12: A close-up of the bosonic action density vs. κ for mscalar=0.01 on the 8x8 lattice and α=0.7 (left) and α=0.9 (right).

Fig. 6.13: A close-up of the bosonic action density vs. κ for mscalar=0.01 on the 16x16 lattice and α=0.7 (left) and α=0.9

(right).

From figure 6.12, it is observed that the value of κ for which the action is 5.5 shifts to higher 

values as α increases, meaning it goes closer to the continuum limit. Unfortunately, the statistics used 

for the 16x16 lattice preclude the drawing of a meaningful conclusion. The shifting of the critical value 

of κ can be compared with the results of the next section, where the chiral condensate is examined.

6.6. The chiral condensate

The transition that the chiral condensate is expected to undergo at the critical point (where the 
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effective gaugino mass vanishes) is examined here. Figure 6.14 shows the chiral condensate for both 

values of α and on both lattice sizes for a scalar mass of 0.01 plotted as a function of the κ.

 

Fig. 6.14: The chiral condensate for α=0.7 and 0.9 and mscalar=0.01 as a function of κ on the 8x8 lattice (left) and the 16x16

lattice (right).

The chiral condensate then underwent multiplicative and additive renormalization to 

compensate for the residual Wilson mass at finite lattice spacing. Assuming that the Wilson mass is a 

linear function of κ, since it is the gaugino mass, the following function was used52:

Σren(κ)=Z1Σ(κ)−Z2κ−Z3 (125)

The co-efficients Z1, Z2 & Z3 were then fixed so that Σren(κ<<κC)=1=-Σren(κ>>κC). The main idea is to 

make the chiral condensate a linear function of κ at values far from the critical values and then adjust 

the co-efficients so that they are approximately symmetrical about the zero value. This renormalized 

chiral condensate is shown in figure 6.15.
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Fig. 6.15: The renormalized chiral condensate for α=0.7 and 0.9 and mscalar=0.01 as a function of κ on the 8x8 lattice (left)

and the 16x16 lattice (right).

The critical value of κ can then be extracted from the graphs and it is seen that:

κC(8x8)=0.3709(7) and κC(16x16)=0.3695(7)

The (renormalized) chiral condensate for a scalar mass of 0.05 showed some interesting 

characteristics, as seen in figure 6.16.

Fig. 6.16: The renormalized chiral condensate for α=0.7 and 0.9 as a function of κ on the 8x8 lattice (left) and the 16x16

lattice (right).

The chiral condensate displays what appears to be a hysteresis loop on both lattices, with the loop 

becoming larger and sharper for larger volume. If it is indeed a hysteresis loop, implies that a first-order
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phase transition should take place in this region. A further investigation of this and its implications are 

discussed at length in section 6.8. It is also unclear whether there is another transition at higher values 

of κ, similar to the one observed for mscalar=0.01, from which the critical value was just extracted. This 

will also be discussed later.

6.7. The (square of the) pion mass

 Unfortunately, the square of the pion mass could not be calculated accurately on the 8x8 lattice,

since a larger volume results in better statistics and comparatively reduced errors. Figure 6.17 shows 

the square of the pion mass as function of κ. 

 

Fig. 6.17: The pion mass as a function of κ, for both values of α and a scalar mass of 0.01.

A linear fit to the data and extrapolation to zero κ delivers the critical value at which the 

effective gaugino mass vanishes:

κC=0.358(2)

This value is about 3.1% different from the value obtained using the chiral condensate 

transition, so the two values agree quite well.
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6.8. mscalar=0.05 and symmetry breaking

In the previous sections, two indications of a first-order transition taking place for a scalar mass 

of 0.05 were seen: the sudden increase in the bosonic action in figure 6.11 and the loop seen in figure 

6.16. In order to verify this, both the (square of the) scalar field and the chiral condensate may be 

plotted as a function of HMC time (i.e. as a function of the configuration number). It would then be 

reasonable to expect sharp changes in their values at the point of the transition. Since the jump and the 

loop are much clearer on the 16x16 lattice, this is the size used. Figure 6.18 shows the square of the 

scalar field as a function of HMC time for both values of α.

Fig. 6.18: The square of the scalar field as a function of configuration number for mscalar=0.05 on the 16x16 lattice for α=0.7

and κ=0.328 (left) and α=0.9 and κ=0.301 (right).

The sharp transitions characteristic of a first-order phase transition are clearly visible. As one moves in 

either direction of this transition point, one would expect a clear separation of phases, i.e. the system 

should be only in one of the two phases. This is demonstrated in figure 6.19.
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Fig. 6.19: The square of the scalar field as a function of configuration number for mscalar=0.05 on the 16x16 lattice for α=0.7

& κ=0.32, 0.328 & 0.337 (left) and α=0.9 & κ=0.294, 0.301 & 0.308 (right).

This was repeated for the chiral condensate. The sharp change at the transition point is shown in

figure 6.20 and the presence of two separate phases at gaugino masses away from the transition point in

figure 6.21.

Fig. 6.20: The chiral condensate as a function of configuration number for mscalar=0.05 on the 16x16 lattice for α=0.7 &

κ=0.328 (left) and α=0.9 & κ=0.301 (right).
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Fig. 6.21: The chiral condensate as a function of configuration number for mscalar=0.05 on the 16x16 lattice for α=0.7 &

κ=0.32, 0.328 & 0.337 (left) and α=0.9 & κ=0.294, 0.301 & 0.308 (right).

As was discussed in section 6.2, another indication of a first-order phase diagram is the 

presence of a double-peaked structure when a histogram of the chiral condensate is plotted. This is 

shown in figure 6.22 for the same two cases as considered in figure 6.20.

Fig. 6.22: Histograms of the chiral condensate for mscalar=0.05; α=0.7 & κ=0.328 (left) and α=0.9 & κ=0.301 (right).

Further, if histograms of the chiral condensate for bare gaugino masses away from this point are 

considered, a first-order transition is indicated by the position of the peaks remaining constant. Figure 

6.23 demonstrates this.
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Fig. 6.23: Histograms of the chiral condensate for mscalar=0.05; α=0.7 & κ=0.312, 0.32, 0.328, 0.337 & 0.347 (left) and

α=0.9 & κ=0.287, 0.294, 0.301, 0.308 & 0.316 (right).

All of the above evidence, which verifies that a first-order transition takes place, points towards 

the spontaneous breaking of a symmetry. In 53, Banks & Casher linked the spontaneous breaking of 

chiral symmetry to the density of (near-)zero modes of the low-end spectrum of the Dirac operator. 

More simply, if the density of (near-)zero modes of the Dirac operator is non-zero, the chiral 

condensate is non-zero, implying a spontaneous breaking of chiral symmetry. However, it must be 

mentioned that this relation is mostly discussed for theories with gauge+fermion content. The literature 

seems to be lacking in information on what happens once scalars are introduced. Also, the relation is 

perfectly valid in the continuum limit, which means usage of larger lattices yields more accurate 

results. Keeping these two points in mind, preliminary results are presented in figures 6.24 and 6.25.
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Fig. 6.24: The real and imaginary parts of lowest eigenvalues (λ) of the Dirac operator for mscalar=0.05 on the 16x16 lattice

for α=0.7 & κ=0.32, 0.328 & 0.337 (left) and α=0.9 & κ=0.294, 0.301 & 0.308 (right).

Fig. 6.25: A comparison of the lowest eigenvalues (λ) of the Dirac operator for mscalar=0.05 on the 8x8 and 16x16 lattice for

α=0.7 & κ=0.328 & 0.337 (left) and α=0.9 & κ=0.301 & 0.308 (right).

These are the hand/finger diagrams of the Dirac eigenvalues. From figures 6.24 and 6.25, the 

eigenvalues do move closer to 0 for larger lattices, but due to the restriction of the settings used, 

accurate calculations could not be carried out.

This behavior is displayed for lower scalar masses as well, although no corresponding loop or 

evidence of a first-order transition is seen. Figure 6.26 shows the eigenvalues of the Dirac operator for 

a scalar mass of 0.01.
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Fig. 6.26: A comparison of the lowest eigenvalues (λ) of the Dirac operator for mscalar=0.01 on the 8x8 and 16x16 lattice for

α=0.7 and κ=0.301 & 0.308 (left) and α=0.9 and mgaugino=0.301 & 0.308 (right).

The eigenvalues still tend towards 0 in both cases. The difference between the figures for the 

two scalar masses is that in the case of mscalar=0.01, the eigenvalues are more defined, whereas those in 

the case of mscalar=0.05 are spread out.

Do the eigenvalues behave similarly in the case of the other transition in the chiral condensate? 

Figures 6.27 and 6.28 examine this for mscalar=0.01 and 0.05.

Fig. 6.27: A comparison of the lowest eigenvalues (λ) of the Dirac operator for mscalar=0.01 on the 8x8 and 16x16 lattice for

α=0.7 and κ=0.357 & 0.367 (left) and α=0.9 and mgaugino=0.357 & 0.367 (right).
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Fig. 6.28: A comparison of the lowest eigenvalues (λ) of the Dirac operator for mscalar=0.05 on the 8x8 and 16x16 lattice for

α=0.7 and κ=0.373 & 0.384 (left) and α=0.9 and mgaugino=0.373 & 0.384 (right).

The comparatively diffuse nature of the eigenvalues for mscalar=0.05 is also seen in this case. For both 

scalar masses, the eigenvalues bend towards proper 0 for larger lattices.

It is difficult to draw accurate conclusions from the available data. To check the bending of the 

eigenvalues towards 0 and calculate the density of (near-)zero modes and hence the chiral condensate, 

more lattices have to be used. The diffuseness of the eigenvalues for mscalar=0.05 could be another clue 

towards a broken symmetry, since a symmetry transformation of the eigenvalues may not lead to a 

switch to a different branch/finger. In contrast, the sharp definition of the eigenvalues for mscalar=0.01 

makes it more probable that this would happen. Further simulations with intermediate scalar masses are

necessary.
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7. Summary, discussion and future prospects

Let us examine the simulation parameters and how they have affected the results.

The coupling parameter α is our first stop. A continuum limit can be obtained by writing

α=
V 2 D

g4 D
2 =

(Na)2

g4 D
2 (126)

N being the number of lattice points and a, the lattice spacing. This is trivial in 4D, but because the 

theory being studied has been derived from the 4D theory by dimensional compactification, the two 

compactified dimension can be thought of as being much smaller than the physical dimensions, 

validating the expression in 2D as well. Following this, the volume V2D=(Na)2 can be kept fixed. If 

larger and larger lattices are then used, i.e. N→∞, then a→0 necessarily.

The critical point of vanishing effective gaugino mass was successfully extracted using the 

transition in the chiral condensate and the linear extrapolation of the square of the pion mass to zero. 

The results are repeated below:

Using the chiral condensate: κC(8x8)=0.3709(7) and κC(16x16)=0.3695(7)

Using the square of the pion mass: κC(16x16)=0.358(2)

The agreement between the values obtained using the two methods is good; there is a 3% difference 

between them, so both methods can be used to obtain a supersymmetric continuum limit. A comparison

of these results can be done with the bosonic Ward identity (figure 6.12), where the average bosonic 

action is expected to be 5.5 at the critical value. Although this does not happen exactly, it is observed 

that the critical point at which the action density is 5.5 shifts closer to the values obtained using the 

chiral condensate and pion mass for increasing α, i.e. towards the continuum limit, where the Ward 

identity is satisfied exactly. The discrepancy is probably due to finite size effects and lattice artifacts.

The nature of the transition in the chiral condensate at the point of vanishing effective gaugino 

mass is not clear. It shows no signs of being a first-order transition. To compare with figure 6.17, which

shows a first-order transition, the chiral condensate as a function of HMC time for the critical value of 
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the bare gaugino mass is shown below, in figure 7.1.

Fig. 7.1: The chiral condensate as a function of configuration number for α=0.9 and κ=0.357 on the 16x16 lattice.

One can only say that there may be a second-order transition here, but even this is unclear. In order to 

clear this up, the chiral susceptibility was calculated on both lattices, using finite differences. Forward, 

backward and central differences were calculated and then averaged over. Since, for a first-order 

transition, the peak should scale proportionate to the volume and for a higher-order transition, with a 

critical exponent, this could be a telling sign about the nature of the transitions. Figure 7.2 displays the 

susceptibility as a function of κ for different values of the scalar mass.

55



Fig. 7.2: The chiral susceptibility as a function of κ on both lattices for mscalar=0.002 (previous page, left), 0.01 (previous

page, right) & 0.05 (above).

Looking at the graph above, for a scalar mass of 0.05, there are clearly two peaks (the fluctuation on 

the 8x8 lattice is because of its smaller size). The larger peak on the left, at around κ=0.3 corresponds 

to the first-order transition that was observed and investigated earlier. The peak on the right, at κ~0.37 

corresponds to the other transition. There is definitely a difference between the two, as can be observed 

from the scaling behavior. The peak on the left scales more strongly, whereas the peak on the right 

scales much more gently. Note the scaling of the right-side peak: the increase is O(3). Looking back at 

the chiral susceptibility curves for the lower scalar masses, this is also the scaling behavior displayed 

there. It seems that these are higher-order transitions, not first-order. In order to be sure about the 

scaling behavior, simulations on at least one more lattice size are necessary. If, in figure 7.2, the larger 

peak does represent a first-order transition, then, simulations on a 32x32 lattice should lead to a scaling 

similar to the one seen in the diagram. The critical exponent, which determines the scaling of the 

smaller peak, should then also reduce.

As a small aside, the determination of the critical value of κ at which the effective gaugino mass

vanishes can also be determined using the chiral susceptibility. This would be a better signal because it 

is not affected by renormalization. In the continuum limit, however, the values obtained using this 

method and the transition of the chiral condensate will match. The improvement in the accuracy is 

especially noticeable for a scalar mass of 0.05. Consider the renormalized chiral condensate in this case

(figure 6.16, reproduced here for the 16x16 lattice in figure 7.3):
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Fig. 7.3:  The renormalized chiral condensate for mscalar=0.05 α=0.7 and 0.9 as a function of κ on the 16x16 lattice.

The value of κ at which the chiral condensate vanishes is 0.3406(7), but this is clearly not the point at 

which the slope of chiral condensate changes (and, unfortunately, also not the point of the first-order 

transition). This point must be obtained by excluding the first-order transition and renormalizing that 

data, as shown in figure 7.4:

Fig. 7.4: The renormalized chiral condensate, excluding the first-order transition,  for mscalar=0.05 & α=0.9 on the 16x16

lattice.

From figure 7.4, the critical values of κ (at which the effective gaugino mass vanishes) can be obtained,

which is 0.3801(7), which is very different from the value of vanishing chiral condensate. However, 

these two values should be the same, because in the chiral limit (mgaugino→0), the chiral susceptibility 
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should diverge/change54. Thus, it may be advisable to calculate the chiral limit using the chiral 

susceptibility. Here are the values of κ corresponding to zero effective gaugino mass/zero chiral 

condensate for all scalar masses using both methods (on the 16x16 lattice):

mscalar κ using renormalized chiral
condensate

κ using chiral susceptibility

0.002 0.3674(7) 0.3570(7)

0.01 0.3695(7) 0.3577(7)

0.05 0.3406(7)/0.3801(7) 0.3704(7)

It has been argued earlier that for a scalar mass of 0.05, the chiral condensate shows clear signs 

of a first-order transition. What causes this transition, spontaneous chiral symmetry breaking? In the 

last part of Section 6.7, preliminary data obtained for the investigation of the Banks-Casher relation 

was presented. As mentioned in that section, the lowest eigenvalues of the Dirac operator do show 

signs of behavior concordant with an agreement with the Banks-Casher relation: they extend towards 

the imaginary axis for larger bare gaugino masses and they also bend towards zero for larger volumes. 

If such a trend continues for larger lattices, a calculation of the density of these (near-)zero modes 

would give the value of the chiral condensate. If this is non-zero, then chiral symmetry is 

spontaneously broken. As was mentioned, further simulations on larger lattices are required for this.

There seems to be an interplay between the bare gaugino mass/κ and the scalar mass. A phase 

diagram of the theory in the scalar mass-bare gaugino mass plane would clarify this. Using the values 

in the table above, a diagram as in figure 7.5 can be drawn.
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Fig. 7.5: The phase diagram of the theory under investigation using available data.

Along the black curve, the chiral condensate is zero and the effective gaugino mass is zero, which 

means this curve represents the chiral limit. It may be that this curve also represents the curve of 

supersymmetry restoration. Simulations with better statistics would enable the investigation of the 

bosonic Ward identity. If the bosonic action density crosses 5.5 at the values on this curve, it would 

increase the probability that it is. Other Ward identities could also be examined to increase confidence 

in this conclusion. The red point is what is known now about the first-order transition: for a scalar mass

of 0.05, it happens for κ=0.3047(7). Since no such transition is observed for mscalar≤0.01, it is estimated 

that at and above some critical scalar mass 0.01≤mcritical≤0.05, there is a first-order transition. The red 

curve in figure 7.5 is purely qualitative and hypothetical. Simulations with a number of scalar masses 

between 0.01 and 0.05 will enable a determination of this critical mass.

Further, the cause of this first-order transition is not clear from the present simulations. As 

mentioned earlier, simulations on larger lattices would clarify the behavior of the eigenvalues of the 

Dirac operator. It could then be checked whether the Banks-Casher relation is satisfied and if 

spontaneous chiral symmetry breaking is responsible for this transition.
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