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Nicht-perturbative Renormierung

auf dem Gitter

Zusammenfassung

Stark wechselwirkende Theorien bilden das Herz der Elementarteilchenphysik. Ihr

komplexes Verhalten bestimmt unsere Welt sui generis. Von besonderem Inter-

esse sind Gittersimulationen supersymmetrischer Theorien. Jede Diskretisierung

der Raumzeit bricht Supersymmetrie und erlaubt so die Renormierung relevanter,

susy-brechender Operatoren. Zum Verständnis des Verhaltens solcher Operato-

ren studieren wir den Renormierungsgruppenfluss des nichtlinearen O(N) Sigma

Modells (NLSM). Es wird vermutet, dass es, ähnlich zur Quantengravitation,

asymptotisch sicher ist. Das Flussdiagramm wird durch eine Kombination der

Dämon Methode mit Blockspin Transformationen berechnet. Essentiell ist hier-

bei eine gründliche Behandlung von Trunkierungsfehlern. In zwei Dimensionen

bestätigen wir asymptotische Freiheit und in drei Dimensionen kann asymptoti-

sche Sicherheit demonstriert werden. Wir fahren mit einer Gittersimulation des

supersymmetrischen O(3) NLSM fort. Anhand einer außergewöhnlichen Diskreti-

sierung, die nur die Feineinstellung eines einzigen Operators erfordert, argumen-

tieren wir, dass der Kontinuumslimes des Modells erfolgreich durchgeführt werden

kann. Allerdings wird die Anwendbarkeit von Monte Carlo Methoden durch ein

Vorzeichenproblem in Frage gestellt. Daher ist das letzte Kapitel der Fermion-bag

Methode gewidmet. Wir stellen fest, dass Fluktuationen des Vorzeichens im su-

sy NLSM hiermit deutlich seltener auftreten. Eine ergänzende Darstellung stellt

das ein-flavor Gross-Neveu Modell bereit, das ein Problem der komplexen Phase

aufweist. Leider fluktuiert die Phase im Fall von Wilson Fermionen nur gering

und eine endgültige Schlussfolgerung bezüglich der Wirksamkeit des Fermion-bag

Ansatzes kann nicht erfolgen. Schlussendlich besteht jedoch kein Zweifel daran,

dass die ständig fortschreitende Maschinerie der Gittersimulationen grundlegende

Beiträge zur Untersuchung stark wechselwirkender Theorien im Allgemeinen und

supersymmetrischer Theorien im Speziellen beitragen wird.





Non-perturbative renormalization

on the lattice

Abstract

Strongly-interacting theories lie at the heart of elementary particle physics. Their

distinct behaviour shapes our world sui generis. We are interested in lattice

simulations of supersymmetric models, but every discretization of space-time

inevitably breaks supersymmetry and allows renormalization of relevant susy-

breaking operators. To understand the role of such operators, we study renor-

malization group trajectories of the nonlinear O(N) Sigma model (NLSM). Similar

to quantum gravity, it is believed to adhere to the asymptotic safety scenario. By

combining the demon method with blockspin transformations, we compute the

global flow diagram. In two dimensions, we reproduce asymptotic freedom and in

three dimensions, asymptotic safety is demonstrated. Essential for these results

is the application of a novel optimization scheme to treat truncation errors. We

proceed with a lattice simulation of the supersymmetric nonlinear O(3) Sigma

model. Using an original discretization that requires to fine tune only a single

operator, we argue that the continuum limit successfully leads to the correct

continuum physics. Unfortunately, for large lattices, a sign problem challenges

the applicability of Monte Carlo methods. Consequently, the last chapter of this

thesis is spent on an assessment of the fermion-bag method. We find that sign

fluctuations are thereby significantly reduced for the susy NLSM. The proposed

discretization finally promises a direct confirmation of supersymmetry restoration

in the continuum limit. For a complementary analysis, we study the one-flavor

Gross-Neveu model which has a complex phase problem. However, phase fluc-

tuations for Wilson fermions are very small and no conclusion can be drawn

regarding the potency of the fermion-bag approach for this model. Nevertheless,

it is clear that the ever improving machinery of lattice simulations will provide

essential contributions to the study of strongly interacting theories in general and

supersymmetric theories in particular.
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1 MOTIVATION

1 Motivation

Quantum field theory (QFT) combines the fundamental principles of special rel-

ativity and quantum mechanics. It is an incredibly active research field and has

applications in many areas of physics. A pedagogical introduction is available in

textbooks [1, 2] and reviews [3, 4]. For a basic explanation of lattice QFT, we

refer to [5–7]. Lastly, a short account on conventions used here is given in the

appendix.

Strongly-interacting theories play a pivotal role in high-energy physics. The

Standard Model of particle physics [8] is today’s most successful theory of the

fundamental forces - except gravity. It is based on a powerful unifying principle:

local gauge invariance. The elementary building blocks of all known matter, lep-

tons and quarks, are represented by fermionic quantum fields (see Figure 1). They
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Figure 1: The Standard Model particles (not to scale) come in four groups.
Quarks and leptons make up the matter sector and gauge bosons mediate the
fundamental forces. The Higgs boson gives mass to elementary particles.

interact through exchange of gauge bosons: photons mediate the electromagnetic

force, W and Z bosons are exchanged by the weak interaction and gluons are

carriers of the strong interaction. The Standard Model’s final constituent is the

recently discovered Higgs particle [9, 10], which provides a mechanism to explain

the origin of mass [11].

Quantum Chromodynamics (QCD) describes only one particular aspect of

the Standard Model, the strong interaction between quarks and gluons. At high
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1 MOTIVATION

energies, it is asymptotically free [12, 13] and can be described by perturbation

theory. However, the low-energy physics is characterized by a strong fermionic

self-interaction that must be treated with a non-perturbative method. This be-

haviour has immense consequences for our world. Physicists believe [14] that

shortly after the big bang, our universe was in an extremely hot and dense state,

called Quark-Gluon-Plasma. As the universe expanded, it cooled down and only

a fraction of a second after its birth, it underwent a transition to a new phase.

This hadronic phase is governed by bound states of gluons and quarks: hadrons.

They include proton and neutron, which form the nuclei of all known chemical

elements. Without these constituents, the rich multitude of forms and structures

that make up all of nature could not exist. This transition is denoted as the

finite-temperature chiral transition of QCD and it is an important example of

spontaneous symmetry breaking1.

Symmetries, like e.g. local gauge invariance, are incredibly potent concepts.

They constrain the limitless possibilities that quantum field theory offers to the

theoretical physicist. If a symmetry of the microscopic theory is not broken by

quantum effects, then it forbids all processes that would violate it, even on a

macroscopic scale. Thereby, a relation is established between the smallest sys-

tems in our universe - elementary particles and their interactions - and the largest

systems, like e.g. neutron stars or even whole galaxies. A particular example con-

cerns the occurrence of antimatter. Postulated by Dirac in 1928 [15], it is used

routinely in modern day particle accelerators and even medical equipment2. It

is believed that the Big Bang created an equal amount of matter and antimatter

[16]. The laws of the Standard Model do not discriminate between particles and

antiparticles if CP-symmetry is valid3. For every physical process that creates

or destroys matter, an equivalent process exists for antimatter. Therefore, the

balance cannot change. Yet, astronomers have never observed a cosmological

region that shows signs of large amounts of antimatter. Is it possible that we

simply live in a large bubble of matter and similar bubbles, made of antimatter,

1Technically this is only true for massless quarks. If the bare mass is non-zero, chiral
symmetry is explicitly broken and the phase transition becomes a crossover.

2Positron emission tomography (PET) is a 3D imaging technique. A β+ radiation source
that emits positrons (anti-electrons) is placed inside the body as a tracer. A tomograph then
records gamma rays that are produced by electron-positron annihilation.

3Recently, one has even succeeded to artificially produce and store anti-hydrogen [17, 18].
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1 MOTIVATION

exist just out of our sight? Unfortunately, this is very unlikely. If two bubbles of

different content come into contact, a huge portion of matter and antimatter an-

nihilates. Thereby, radiation with a characteristic spectrum is emitted. However,

none has been detected so far [19]. One is compelled to conclude that the ex-

perimental results, revealing much more matter than antimatter in our universe,

cannot be explained by a theory that conforms to CP-symmetry [20]. Violations

of CP-invariance were also measured in weak decays [21] and an attempt has

been made to incorporate these results into the Standard Model. This prospect

was achieved through the CKM-matrix [22]. Even so, baryogenesis calculations

have revealed that this is not sufficient to explain the large discrepancy between

matter and antimatter [16].

The problem of missing antiparticles is an important example for an increasing

influence of cosmological observations on elementary particle physics. In order

to explain them, one must recognize that a theory beyond the Standard Model

is needed. An especially popular approach is supersymmetry. It is an extension

of the Poincaré symmetry of space-time transformations, connecting states of

different spin. Supersymmetric versions of the Standard Model exist and one is

interested in the dynamics of these models beyond perturbation theory. However,

supersymmetry poses a unique challenge to non-perturbative techniques.

The ab-initio method of choice to describe the non-perturbative dynamics of

the strong interaction is Lattice QCD. It has been actively developed for over

thirty years and demands immense computational resources. Lattice techniques

have a wide range of applicability and allow to study some of the most interest-

ing phenomena, like e.g. dynamic formation of condensates and bound states,

dynamic generation of particle masses and spontaneous breaking of symmetry.

We are interested in applying lattice methods to supersymmetric theories. How-

ever, this prospect is hindered by a fundamental obstacle. It is connected to the

discretization of space-time: fields are defined on a finite grid of points and the

number of degrees of freedom is restricted. Thus, infinite integrals of the con-

tinuum theory are regularized. At the same time, Poincaré symmetry is broken.

Only residual symmetries remain. On a hypercubic lattice, these are for example

translations by multiples of the lattice spacing or rotations by multiples of 1
2
π. In

the continuum limit, i.e. sending the lattice spacing to zero, Poincaré symmetry

is restored automatically. Unfortunately, this is not necessarily true for super-
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1 MOTIVATION

symmetry. As an extension of Poincaré symmetry, it is broken by space-time

discretization as well. Taking the contributions of virtual particles into account,

it is possible that susy-breaking operators emerge. On the lattice, they are no

longer forbidden by symmetry principles. If these operators diverge in the con-

tinuum limit, then supersymmetry is not restored and the method fails.

The topic of this thesis is to study the non-perturbative renormalization of

strongly-interacting quantum field theories on the lattice. This program is repre-

sented by three projects that are compiled in the chapters 2, 3 and 4.

In chapter 2, we compute the flow diagram of the nonlinear O(N) Sigma

model. The flow of the effective average action plays an important role in the

analysis of quantum field theories and many properties are directly related to its

structure. It allows to study the behaviour of operators near a fixed point and

paves the way to an understanding of divergent susy-breaking operators. The

model at hand is not supersymmetric but rather shares some properties with

quantum gravity. In particular, it is presumed to be asymptotically safe. We

will argue that previous studies, based on the functional renormalization group

as well as plain lattice simulations, do not provide a satisfactory picture of the

global flow diagram. Instead, an alternative method is proposed. It is used to

certify asymptotic freedom for the model in two dimensions and asymptotic safety

in three dimensions.

Chapter 3 is devoted to a study of the supersymmetric nonlinear O(3) Sigma

model in two dimensions. This theory features strongly-coupled bosonic and

fermionic degrees of freedom and may be regarded as a toy model for the mat-

ter sector of the Minimally Supersymmetric Standard Model. Previous studies

have failed to provide a discretization that complies with analytical expectations.

Therefore, we simulate a novel discretization. Based on lattice observables, we

argue that the latter leads to the desired continuum limit. Only a single operator

must be fine tuned in order to arrive at this conclusion.

However, the application of Markov Chain Monte Carlo methods to this prob-

lem is not straightforward, since the weight of the partition sum is not strictly

positive. This is denoted as the sign problem and is particularly common in

models including fermionic degrees of freedom. Chapter 4 is spent on an inves-

tigation of the fermion-bag method. It is an alternative approach to discretize

four-fermi interactions. While sign problems can be treated using reweighting
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1 MOTIVATION

techniques, they are exponentially hard to compute and thus prohibit the study

of large lattices, which are needed in order to extrapolate to the continuum limit.

No general solution has been found so far and one must study sign fluctuations

on a model-by-model basis. For this purpose, we investigate the supersymmetric

nonlinear O(3) Sigma model and the one-flavor Gross-Neveu model.

Each chapter is closed by a short conclusion and a summary as well as an

outlook on further applications is presented in chapter 5.

The compilation of this thesis is solely due to the author. All projects presented

here were carried out in the quantum field theory research group in Jena. The

MCRG study in chapter 2 was realized in collaboration with Björn Wellegehausen

and published in [23]. Preliminary results of this work have been reported in

proceedings [24]. Chapter 3 was previously published in [25] and in the proceedings

[26]. The calculation of the stereographically projected Lagrangian and analysis

of a possible supersymmetry invariance of the discretized action is due to Raphael

Flore. Comparisons to SLAC fermions are based on results by Christian Wozar.

All simulation codes were written in C++ . For chapter 2, libraries developed by

Björn Wellegehausen were used. In Chapter 3, the JenLaTT library was utilized.

The latter is a joint project of the QFT group Jena. Nevertheless, the author

has implemented more than 20.000 lines of code in order to collect the results

presented in this thesis. Simulations were carried out on the Loewe-CSC at the

University of Frankfurt and on the Omega HPC cluster at the University of Jena.
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2 MCRG FLOW OF THE NONLINEAR SIGMA MODEL

2 MCRG Flow of the nonlinear Sigma model

2.1 Wilson’s renormalization group

Quantum field theories may be defined in different ways. A quantity that is par-

ticularly suited to theoretical investigation is the Lagrangian density L. It is a

sum of operators Oi, which are composed of the degrees of freedom of the respec-

tive quantum field theory, multiplied by the coupling constants gi. The action S

is the integral of the Lagrangian density over all D space-time coordinates,

S =

∫

dDx L =

∫

dDx giOi. (2.1)

The bare parameters gi do not possess an a priori interpretation and their relation

to physical quantities that are accessible in experiments must be uncovered by

the solution of the quantum field theory. This procedure includes two different

scales: The quantum field theory is defined at small distances and high momenta,

since it is composed of the fundamental degrees of freedom. This scale is denoted

as the ultraviolet (UV) momentum scale Λ. Experiments however are conducted

at macroscopic lengths and momenta, which corresponds to the infrared (IR)

momentum scale λ. We can use the action formalism also at the IR scale: it

becomes the effective action Γ,

Γ =

∫

dDx gMi O
M
i , (2.2)

and includes the macroscopic operators OM
i that govern the physics of the model

at this scale. From the effective action, one is able to extract e.g. the masses

or decay widths of physical states and compare them to the experiment. The

relation between S and Γ is given by the renormalization of the quantum field

theory, which includes the contribution of virtual particles. Thus, through renor-

malization, a connection between the system in nature that we wish to describe

and our theoretical model is established.

A particular method to calculate the renormalization of quantum field theories

is Wilson’s renormalization group [27, 28]. It is designed to study the problem of

the statistical continuum limit. A characteristic property of this problem is that

10



2 MCRG FLOW OF THE NONLINEAR SIGMA MODEL

fluctuations of the involved degrees of freedom contribute equally, regardless of

their wavelength. This has been identified as the root cause for many divergences

that are frequently encountered in quantum field theories. It is further related

to critical phenomena, since the correlation length in critical systems is infinite

and fluctuations occur on all scales. The central idea of the renormalization

group is that different energy scales are locally coupled. Picturing a range of

momenta, one distinguishes different segments - the momentum shells - that

represent fluctuations at a certain scale. The renormalization group produces

a cascade: fluctuations at a chosen scale are influenced by the momentum shells

directly adjacent. In order to compute the renormalized quantum field theory, one

starts at the microscopic action S and integrates out momentum shells one after

another, adding up their respective contribution to the effective average action

Γk. It is scale-dependent and includes all fluctuations between the UV cutoff Λ

and the momentum scale k. Once all momentum shells have been integrated out,

one has calculated the full effective action Γ = Γk→0.

The renormalization group cascade may be visualized in an intuitive way. In

general, the number of operators Oi is infinite. They are interpreted as directions

of a theory space. Every possible action that we can write down is given as a point

in this space and the coordinates correspond to the coupling constants gi. The

cascade induces a flow of the effective average action through theory space. Step

by step, momentum shells are integrated out and Γk advances along a trajectory

of the renormalization group (RG) flow. This behaviour has immediate conse-

quences. One is the existence of scaling, i.e. each intermediate momentum shell

tends to contribute identically except for a change of scale. Scaling is achieved

when the effective action goes into itself and thus the RG flow has a fixed point.

The flow is further characterized by amplification and deamplification. Consider

a small change of the initial parameters: depending on the structure of the RG

flow, the effective action may change significantly. This is particularly apparent

in critical phenomena. Starting at the critical value for the couplings, one finds

that the correlation length of the system is infinite. However, only a slight devi-

ation is sufficient to change the correlation length to a finite value. In contrast,

deamplification is encountered in the case that different initial conditions yield

the same effective action. An example is readily provided by nature: different

ferromagnetic materials with different atomic structure show identical critical be-

11



2 MCRG FLOW OF THE NONLINEAR SIGMA MODEL

haviour [29]. This important property leads to the universality hypothesis [30],

which states that the critical behaviour of systems depends only on very general

properties, like e.g. the space-time dimension, symmetries and range of interac-

tion, but not on the details of the microscopic action.

All of these phenomena are tightly related to the structure of the RG flow.

They provide crucial insights into the physical properties of the model. Given a

point in theory space {gi}, the flow of the effective average action is generated

by a renormalization group transformation R,

{g′i} = R
(
{gi}

)
. (2.3)

The fixed points of R are given by the relation R
(
{g∗i }

)
= {g∗i }. We read off the

local structure of the RG flow in the vicinity of a fixed point from the linearized

transformation Tij ,

g′i − g∗i = Tij(gj − g∗j ). (2.4)

The eigenvalues λα and left-eigenvectors vα are determined by vαi Tij = λαvαj .

The directions around the fixed point are characterized by the scaling variables

uα = vαi (gi− g∗i ). They transform multiplicatively under the RG transformation,

(uα)′ = λαuα. (2.5)

Using the notation λα = bθ
α

, we define the critical exponents θα and the scale factor

b > 1. A scaling variable that is related to a direction with θ > 0 is amplified

under successive application of the RG transformation. The model is transported

away from the fixed point and the direction is thus denoted as a relevant direction.

The contrasting case of deamplification corresponds to θ < 0: the theory flows

towards the fixed point. This behaviour corresponds to an irrelevant direction.

The remaining case θ = 0 is called marginal and requires the study of higher

orders of the RG flow.

12



2 MCRG FLOW OF THE NONLINEAR SIGMA MODEL

2.2 Asymptotic Safety

The standard approach to deal with quantum field theories is to calculate per-

turbative diagrams4. This is meaningful if the theory exists in the vicinity of the

Gaußian fixed point, which is non-interactive. However, one frequently encoun-

ters divergent diagrams that originate from the contribution of virtual particles.

By renormalization, it is possible to control some of these divergences using coun-

terterms. Unfortunately, if a theory is deemed perturbatively non-renormalizable,

then the number of counterterms that are required is infinite. In this case, the

theory is not predictive, since it demands infinitely many parameters to be fixed

by experiment. However, it might still be possible to renormalize the theory in

a non-perturbative setting. One such situation is called the asymptotic safety

scenario [32, 33]. It applies if the model has a non-Gaußian fixed point with only

a finite number of relevant directions. Asymptotically safe theories are equally

predictive as theories that are perturbatively renormalizable and may play an im-

portant role in the description of nature. The most prominent of these theories

is general relativity. At present, all results suggest that there exists a non-trivial

UV fixed point [34–36] and it is hoped that asymptotic safety leads the way to a

theory of quantum gravity.

Recently, the functional renormalization group (FRG) [37–39] was applied

to study the renormalization group flow of general relativity. It belongs to the

class of exact renormalization group equations. However, the method is not free

of approximations. In order to calculate the RG flow, one is obliged to use an

ansatz for the effective average action Γk. It is not feasible to represent all of

the infinitely many operators that are allowed in general and thus a truncation

must be used. Thereby, uncontrolled systematic errors are provoked and at best

a qualitative estimation may be obtained by comparing different truncations, e.g.

using a derivative expansion [40].

The aim of this project is to present a renormalization group method, based on

lattice simulations, that is able to improve on this situation. Different approaches

were already used in previous publications to define a running coupling such as

the renormalized correlation functions or the Schwinger functional [41]. However,

4An introduction to perturbative renormalization is available in many textbooks, for instance
[2, 31].
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2 MCRG FLOW OF THE NONLINEAR SIGMA MODEL

they rely on a connection to perturbation theory, which is not applicable for our

models. In an alternative recent approach one tries to directly integrate out

momentum shells on the lattice by using Fourier Monte Carlo simulation [42].

Unfortunately, the results depend significantly on the specific parameters of the

RG transformation. Thus, systematic errors are large and the method cannot

be regarded as stable. We use the Monte Carlo renormalization group (MCRG)

method to calculate the global flow diagram of the ubiquitous nonlinear O(N)

Sigma models (NLSM). Since they share important properties with models of

quantum gravity, they provide excellent toy models to test our approach.

2.3 The nonlinear Sigma model

We recall the Euclidean action of the nonlinear O(N) Sigma model with the sphere

as target space,

S =
1

2g2

∫

dDx ∂µφ · ∂µφ, (2.6)

where φ is an N-component scalar field that satisfies the constraint φ · φ = 1.

The coupling g has mass dimension

[g] =
2−D

2
. (2.7)

In two space-time dimensions the global O(N) symmetry cannot be broken due

to Mermin-Wagner’s theorem [43]. At strong coupling the theory is asymptoti-

cally free and the RG flow is dominated by the Gaußian fixed point. Thus, the

model is perturbatively renormalizable. This is not surprising since the coupling

is dimensionless. For higher dimensions, the coupling acquires a negative mass

dimension and perturbative renormalizability is lost. However, the small-ǫ and

1/N -expansions both point to the existence of non-trivial fixed points [44–47].

This claim is further supported by FRG calculations based on a one-parameter

truncation of the effective action [48] and higher-order truncations [49]. Addi-

tionally, lattice simulations with the discretized action

S =
1

2g2

∑

x,µ

φx · φx+µ̂, (2.8)
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known as the Heisenberg ferromagnet, reveal a critical point that separates a O(N)

symmetric phase from a broken phase by a second-order phase transition. In the

broken phase there are N−1 Goldstone bosons corresponding to the directions

tangential to a sphere in target space. In order to recover the continuum field

theory, one uses this critical behavior to define the limit of vanishing lattice

spacing. Much effort went into the study of the critical properties of the model

and in particular in calculating its critical exponents. Thus, a large number of

results is available, e.g. from numerical high-precision Monte Carlo methods,

analytical calculations using the high-temperature expansion or renormalization

group method and even experimental data from condensed matter physics [29,

48, 50–55].

We are particularly interested in the flow diagram of the three-dimensional

model that is conjectured to show a non-trivial UV fixed point, a necessary re-

quirement for the asymptotic safety scenario to be at work. However, we will also

reproduce the known results for the model in two dimensions in order to test our

approach.

2.4 Monte Carlo renormalization group

In the present work we make use of the MCRG method. It is based on Kadanoff’s

idea of blockspin transformations [56] and can be applied to a wide range of

theories, including fermionic and gauge fields [57]. We study a lattice with equal

temporal and spatial extent L. The physical volume is hence (aL)D, where a

denotes the lattice spacing. The lattice naturally introduces a UV-cutoff at an

energy Λ = a−1 and the lattice size aL serves as an IR-cutoff at a lower energy

λ = (aL)−1. In Monte Carlo simulations, one estimates the n-point functions

〈φ(x1) . . .φ(xn)〉 =
∫
Dφ φ(x1) . . .φ(xn) e−S[φ]

∫
Dφ e−S[φ] , (2.9)

by expectation values of lattice operators,

〈
φx1 . . .φxn

〉
=

∫ ∏

x dφx φx1 . . .φxn e
−S({φx})

∫ ∏

x dφx e
−S({φx})

, (2.10)
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from which all physical quantities, like e.g. particle masses and decay widths, can

be extracted. Thereby, all quantum fluctuations with scales between the upper

and lower cutoff are taken into account. The macroscopic physics is fixed by the

simulation parameters. These are the lattice extent L and the coupling constants

gi of the microscopic (bare) action. The renormalization group transformation

(2.3) relates the parameter set {gi} at the high energy scale Λ to a parameter set

{g′i} at a lower energy scale Λ′,

{gi}(Λ) 7−→ {g′i}(Λ′) = RΛ 7→Λ′ ({gi}) . (2.11)

An important property of any such RG transformation is that it does not depend

on the details of the flow in theory space. In particular the transformation must

obey the semigroup properties

RΛ 7→Λ′ = RΛ 7→Λ′′ ◦RΛ′′ 7→Λ′, RΛ 7→Λ = 1, (2.12)

where Λ > Λ′′ > Λ′. Valid transformations are given by the blockspin transfor-

mations. A blockspin transformation with scale parameter b > 1 relates a field

configuration {φx} on the fine lattice (L, a) to an averaged configuration {φ′
x}

on the coarser lattice (L′ = L/b, a′ = ba). The IR-cutoff does not change and

the blocked and initial configurations describe the same macroscopic physics. In

contrast, the UV-cutoff Λ → Λ′ = Λ/b is lowered and the effective parameters

{g′i} defined at the new cutoff Λ′ incorporate the effects of all quantum fluctu-

ations with scales between Λ and Λ′. This is depicted in Figure 2. Numerical

simulations on the coarse lattice with couplings {g′i} and on the fine lattice with

couplings {gi} yield the same ensemble, i.e. identical n-point functions. Each

set of parameters defines a point in theory space and they are connected by

an RG trajectory. Real-space RG transformations are performed by successive

application of blockspin transformations and thus the RG flow is established.

An infinitesimal RG transformation has a scale parameter b = 1+ δb (δb≪1).

The change of the couplings is described by the β-function βi

g′i = gi +
dgi
db
︸︷︷︸

−βi({gj})

δb+O(δb2). (2.13)

16



2 MCRG FLOW OF THE NONLINEAR SIGMA MODEL

∞ 0 momentum scale k

IR cutoff

λ = 1
aL

UV cutoff

Λ = 1
a

∞ 0 momentum scale k
λ = 1

aL
Λ = 1

a
Λ′ = 1

ba

RΛ 7→Λ′

Figure 2: A lattice simulation takes all fluctuations with scales between the lower
cutoff λ and the upper cutoff Λ into account (depicted in red). The blockspin
transformationR yields a set of effective coupling parameters at the reduced cutoff
Λ′, which already incorporates the contributions between Λ and Λ′. By iterating
this step, a renormalization group trajectory in theory space is established.

The fixed points of the RG flow correspond to the zeros of the beta function. In

the vicinity of such a fixed point, the linearized transformation (2.4) reads:

Tij(gj − g∗j ) = gi − g∗i −
∂βi
∂gj

∣
∣
∣
∣
g∗j

(gj − g∗j )δb ⇒ Tij = δij −
∂βi
∂gj

∣
∣
∣
∣
g∗j

︸ ︷︷ ︸

Sij

δb. (2.14)

The matrix Sij is called the stability matrix. The eigenvalues λα of the linearized

transformation are

λα = bθ
α

= (1 + δb)θ
α

= 1 + θαδb+O(δb2) (2.15)

and the critical exponents θα thus are the negative eigenvalues of the stability

matrix. They are related to the thermodynamical critical exponents, which de-

scribe the scaling of singular thermodynamic observables near a critical point.

For the scenario of a single relevant direction, which is presumed in the case of

the three-dimensional model, one finds ν = (θr)−1 for the critical exponent of the

correlation length ν and the eigenvalue θr of the relevant direction. Using the

MCRG method, we compute the lattice beta function β̂i,

β̂i =
g′i − gi
1− b

= −ag
′
i(a

′)− gi(a)

a′ − a

a′→a
= −a∂gi

∂a
=

∂gi
∂ log Λ

= −∂gi
∂b

= βi (2.16)

In the vicinity of a critical point, the correlation length is huge and the lattice
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spacing goes to zero. Thus the difference a′−a = (b−1)a goes to zero as well and

we expect that discretization errors are small. In order to compute the critical

exponents, we measure the eigenvalues of the lattice stability matrix Ŝij ,

Ŝij =
βi(gj + δgj)− βi(gj − δgj)

2δgj
, (2.17)

which involves the discretization of a second derivative.

The most popular MCRG method is the so-called matching method [58–62].

It is based on the observation that a universal attractor for the renormaliza-

tion group trajectories exists. It is called the renormalized trajectory (RT). The

first part of the method is concerned with the creation of a Markov chain of

configurations on a fine lattice with simulation parameters (L, {gi}). On each

configuration, a number of n blockspin transformations is iterated. The block-

spin expectation values characterize the macroscopic physics, e.g. the blockspin

correlation length ξ. It is important that the number of blocking iterations is

sufficiently large such that the renormalized trajectory is reached. The second

part consists of a number of lattice simulations using the coarse lattice size L/b

and different parameters {g′i} for each run. Its goal is to find a set of couplings

such that the blockspin expectation values for the two lattices match. Please

note that on the coarse lattice, only n−1 blockspin transformations are needed

in order to arrive at the same lattice size as for the fine lattice. The correlation

length is thus bnξ on the fine lattice and bn−1ξ on the coarse lattice. Therefore,

a comparison of the coupling parameters yields the shift needed to change the

correlation length by a factor b and one has thus computed the lattice beta func-

tion. Unfortunately, every RG step reduces the linear extent of the lattice by a

factor b. Hence, exponentially large lattices are needed in order to obtain suffi-

ciently long trajectories that get close enough to the renormalized trajectory [51].

Even worse, expensive scanning runs for the parameters on the coarse lattice are

needed. Furthermore, the method is not applicable if the RT does not act as an

attractor for the renormalization group trajectories, e.g. in the vicinity of the

Gaußian fixed point [63]. In order to circumvent these problems, we employ the

demon method which allows us to efficiently compute RG trajectories at a fixed

lattice volume.
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2.5 The demon method

The demon method [64–66] allows one to calculate couplings of an effective action

S = g0S0 such that the corresponding distribution is close to a given ensemble of

lattice configurations. Given a partition function

Z(g0) =

∫

Dφ e−g0S0[φ], (2.18)

an additional degree of freedom ED, the demon energy, is introduced with the

combined partition function

ZD(g0) =

∫

Dφ
∫

dED e−g0S0−g0ED (2.19)

of the canonical demon ensemble. The expectation value of the demon energy

can be calculated in a simulation of the microcanonical ensemble,

ZMCD =

∫

Dφ
∫

dED δ (S0 + ED − E0) . (2.20)

It is a function of the coupling parameter g0, thus allowing to measure g0 cor-

responding to the combined ensemble. This method can be generalized to more

than one coupling constant, i.e.

ZMCD =

∫

Dφ
∏

i

∫

dEi
D δ
(
Si + Ei

D − Ei
0

)
. (2.21)

Constraining the demon energy to Ei
D ∈ (−Ei

m, E
i
m) yields

〈
Ei
D

〉

D
=

1

gi
− Em

tanh(giEm)
≈
〈
Ei
D

〉

MCD
(2.22)

where the subscript D denotes the canonical demon ensemble (2.19) and MCD the

microcanonical demon ensemble (2.20). This equation can be solved by numerical

means and is used to extract the coupling constants {gi} from the mean demon

energies on the right hand side. In the microcanonical ensemble the total energy

is fixed. Since we want to measure the couplings of the blocked ensemble without

interference from the demon, we demand that |Ei
D| ≪ |Si|. Then the algorithm
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for our MCRG setup reads as follows:

1. Pick a configuration distributed according to the canonical ensemble with

action S = g1S1 + g2S2 + . . . on the fine lattice.

2. Perform a blockspin transformation on this configuration.

3. Use the result as the starting configuration for a microcanonical simulation

of the combined system (2.21) and measure the mean demon energies. The

starting values for the demon energies are given by the mean demon energies

extracted from the previous microcanonical runs.

4. Repeat step one to three until a sufficient number of configurations has been

generated.

5. Calculate the couplings g′i from the mean demon energies.

A comparison of these couplings with the initial ones yields the lattice beta func-

tion. In our setup, an RG transformation consists of the two steps illustrated in

Figure 3:

1. A blockspin transformation applied to an ensemble with fixed couplings

{gi}. This step respects the semigroup properties (2.12).

2. The demon method to measure the effective couplings {g′i} on the blocked

lattice. Since this method can only be applied to a truncated effective

action, the semigroup property is violated.

The next chapter is dedicated to a discussion of the effects of truncating the

effective action.

2.6 Truncated effective action

In general, more and more operators are generated by the repeated application of

the blockspin transformation. Since it is impossible to keep track of all of them,

we restrict our analysis to an ansatz for the effective action that only includes

the most important operators. Thereby, the demon method leads to a projection

of RG trajectories from general theory space down to modified trajectories in a
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blockspin demon methodξ/b ξ′ξ

transformation

composite transformation Rb

Figure 3: The composite transformation Rb relates coupling constants on a lat-
tice with correlation length ξ to a coarser lattice with correlation length ξ′. It is
obtained by using a blockspin transformation and mapping the resulting configu-
rations onto a truncated effective action with the demon method. Simulating the
truncated ensemble may not necessarily yield ξ′ = ξ/b due to truncation errors.

truncated theory space. It only consists of the terms contained in the effective

action. Naturally, this procedure introduces additional systematic uncertainties

which we will denote as truncation errors. A qualitative understanding of these

errors is obtained by comparing different truncations. For this reason, we use a

systematic derivative expansion of the effective action up to fourth order. In the

continuum formulation it is given by

S[φ] =

3∑

i=0

giNSi[φ] +O(∂6) (2.23)

with operators

S0 = −
∫

dDx φ · ∂µ∂µφ, (2.24)

S1 =

∫

dDx φ · (∂µ∂µ)2φ, (2.25)

S2 =

∫

dDx (φ · ∂µ∂µφ)2, (2.26)

S3 =

∫

dDx (φ · ∂µ∂νφ)(φ · ∂µ∂νφ). (2.27)

Note that we have introduced an additional factor N in (2.23) in order to get rid

of the leading N dependence of the couplings gi. They have mass dimension

[g0] = D − 2 , [gi] = D − 4 for i = 1, 2, 3. (2.28)
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This is a complete set of the fourth order operators that are compatible with the

symmetries of the model. As a next step, we discretize the action (2.23) on a

hypercubic lattice,

S
(
{φx}

)
=

3∑

i=0

giNS
′
i

(
{φx}

)
, (2.29)

where a straightforward discretization of the continuum operators is given by

S ′
0 =2

∑

x,µ

φx · φx+µ − 2DV (2.30)

S ′
1 =2

∑

x,µ,ν

φx ·
(
φx+µ+ν + φx+µ−ν

)
− 4D

∑

φx · φx+µ + 4D2V (2.31)

S ′
2 =

∑

x,µ,ν

{(
φx · φx+µ

) (
φx · φx+ν

)
+
(
φx · φx−µ

) (
φx · φx−ν

)
+

2
(
φx · φx+µ

) (
φx · φx−ν

)}
− 8D

∑

x,µ

φx · φx+µ + 4D2V (2.32)

S ′
3 =

∑

x,µ,ν

{(
φx · φx+µ

) (
φx · φx+ν

)
+
(
φx · φx−µ

) (
φx · φx−ν

)
−

2
(
φx · φx+µ

) (
φx · φx+ν−µ

)
− 2

(
φx · φx−µ

) (
φx · φx+µ−ν

)
+

(
φx · φx+ν−µ

) (
φx · φx+µ−ν

)
+ 2

(
φx · φx+µ−ν

)}
+

2D
∑

x,µ

(
φx · φx+µ

) (
φx · φx−µ

)
− 4D

∑

x,µ

φx · φx+µ +D2V. (2.33)

This set of lattice operators mixes operators of different range and field content.

We expect that the nearest neighbor operator φx ·φx+µ corresponds to a relevant

direction. In order to single this operator out, it is useful to reparametrize the

action: 







S ′
0

S ′
1

S ′
2

S ′
3









=









2 0 0 0

−4D 2 0 0

−8D 0 1 0

−4D 0 0 1

















Ŝ0

Ŝ1

Ŝ2

Ŝ3









+









−2DV

4D2V

4D2V

D2V









. (2.34)

As an additional benefit, we find through numerical tests that the demon method

converges faster. For simplicity we drop the hat over lattice quantities in the

following.
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2.7 Optimized blockspin transformation

In a lattice simulation we have access to observables, like e.g. the masses, which

receive contributions from all possible lattice diagrams. This information, which

is in part lost if one uses a truncated effective action, allows us to extend our

analysis of truncation errors. The macro-physics is completely determined by the

correlation functions and hence must agree for the original and blocked ensemble

in Figure 3, since the blockspin transformation does not change the IR physics.

Application of the demon method leads to a truncated ensemble. In general,

the correlation functions of the blocked and truncated ensemble do not coincide.

This discrepancy is solely due to the truncation of the effective action. In addition

to the blocked ensemble, we also simulate the truncated ensemble and measure

the difference in the correlation functions. Thus, we quantify the systematic

truncation errors directly.

The correlation function difference is reduced by an appropriately adjusted

blockspin transformation. The location of the renormalized trajectory in theory

space depends on the chosen renormalization scheme [59]. We aim to construct a

scheme for which the renormalized trajectory is closest to our truncated effective

action. For this prospect, we employ a blockspin transformation where one draws

the averaged fields according to a normalized probability distribution,

P(φ′
x) ∝ exp

{

C φ′
x·Φx({φy})

}

, (2.35)

where

Φx({φy}) =
1

|�|
∑

y∈�x

φy (2.36)

is the sum over all degrees of freedom within a hypercube of the fine lattice. In our

computations, we choose the smallest cube of size bD = 2D. The positive function

C determines how strongly the blocked fields fluctuate away from the original

degrees of freedom. We shall use a function which minimizes the systematic

errors induced by the unavoidable truncation of the effective action. In general,

the optimal value depends on the coupling constants, lattice size, target space

and number of RG steps. Only in the ideal case without truncation we expect

our results to be independent of the RG scheme and thus of the optimization

function C.
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In order to tune C in the improved blockspin transformation, we compare the

correlation lengths extracted from the two-point-functions on the fine and coarse

lattice. For simplicity, all higher correlation functions are ignored. Blockspin

transformations reduce the lattice correlation length ξ exactly by a factor b. Thus

we demand the correlation length ξ′ in the truncated ensemble to be equal to ξ/b

in order to minimize truncation errors,

ξ′ =
ξ

b
. (2.37)

The optimization function is chosen to depend linearly on the couplings,

C(g) =
∑

i

cigi, ci = const. (2.38)

It is clear from the structure of (2.35) that the choice C = 0 leads to a complete

loss of information. It is hence necessary to choose ci > 0. In the following

computations, we find that in the vicinity of the non-Gaußian fixed point, the

higher couplings gi are small compared to g0. Thus, C is governed by the c0g0

contribution and it is sufficient to keep the ci constant while only tuning the first

parameter c0 in order to match the condition (2.37).

Finally, we remark that the lattice itself together with the blockspin transfor-

mation correspond to the regulator function used in the FRG framework. Our

optimization scheme corresponds to the choice of an optimal regulator which min-

imizes the flow time (RG steps) from the UV to the IR. Please note however that

we take into account information from all lattice operators without truncation.

2.8 D=2 : Asymptotic Freedom

In order to test our method, we reproduce the beta function for the two dimen-

sional model. It has already been computed using the MCRG matching method

for N = 3 [58] and N → ∞ [59, 63]. The MCRG demon method has been used

to determine the running coupling for N = 3 [67]. The coupling constant g0 of

the Heisenberg ferromagnet S = g0S0N is dimensionless and the theory is asymp-

totically free. We expect that the flow diagram contains two trivial fixed points,

one in the IR at vanishing coupling and the other in the UV at infinite coupling
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[51]. However, for numerical simulations only finite lattices are accessible. It is

known that the theory possesses a transition from a symmetric regime at low

coupling (large physical volume) to an ordered regime at strong coupling (small

physical volume). We measure the alignment of spins by the absolute value of

the lattice-averaged field,

ϕ =
∣
∣
∣
1

V

∑

x

φx

∣
∣
∣. (2.39)

It is shown in Figure 4 (left panel) as a function of the coupling for different

lattice sizes. With increasing volume the transition shifts to larger values of the
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Figure 4: The expectation value of the absolute lattice-averaged spins for the
Heisenberg ferromagnet is shown as a function of g0 for different lattice sizes. The
left panel depicts the behaviour in two dimensions and the right panel corresponds
to three dimensions.

coupling. In the infinite volume limit, the theory is in the symmetric regime for

every finite value of the coupling, as predicted by the Mermin-Wagner theorem. It

is also evident that finite volume effects must not be neglected for large coupling.

In particular, the observed behaviour might mimic an additional fixed point of

the RG flow. In Figure 5 (left panel) we show the β-function for the coupling

g0 in the simplest truncation using only the operator S0. We observe that it

is independent of the lattice volume. It depends however on the parameter c0

of the RG transformation. For all values of c0, we find an IR fixed point at

vanishing coupling, which corresponds to a state of absolute disorder. The spins

are randomly aligned and it is thus called the high-temperature fixed point. There

exists an analogous fixed point at infinite coupling, where the spins are aligned
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Figure 5: The beta function (left panel) for the simplest possible truncation and
N = 3 is almost independent of the lattice volume. For c0 < 2.8 it possesses
only one fixed point at vanishing coupling. For c0 = 2.8 it becomes constant for
g → ∞. The dotted line represents the analytical result for N → ∞ and g → ∞.
For c0 > 2.8 we find an additional fixed point at finite coupling which is an artifact
of the truncation. The ratio of the correlation length for a 642 and 322 lattice is
shown in the right panel for different parameters of the RG transformation.

uniformly. It is the low-temperature fixed point and depicts absolute order. For

c0 = 2, the β function stays positive even for large coupling. Increasing c0, it

develops a second zero crossing at finite coupling. However, this additional zero

is an artifact of the truncation. In Figure 5 (right panel), we show the ratio

of correlation lengths of the original ensemble on the 642 lattice compared to

the truncated ensemble on the 322 lattice. Truncation errors are assumed to be

minimal if ξ64/ξ32 = 2. Significant deviations are visible for c0 = 2 and c0 = 4.

We find that c0 = 2.8 provides a good matching for a large range of couplings.

The corresponding beta function does not show an additional zero crossing, as

expected. For large g0 it approaches a constant value, which lies near the large

N result β(N → ∞, g → ∞) = ln(2)/(6π) [63].

These findings emphasize that the optimization scheme is of critical impor-

tance. Without a means to decide on the specific value for c0, the physical

information is concealed behind systematic uncertainties.

In order to further improve on our truncation, we add the operator S1 to the

ansatz and the resulting flow diagram for fixed c0 = 3.0 is shown in Figure 6.

The flow is no longer independent of the volume and for the small lattice, which

is 162, no clear picture of the RG flow can be read off. For g0 and g1 large, an
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Figure 6: Shown is the flow diagram for c0 = 3 and N = 3 in the two operator
truncation on a 162 (left panel) and 642 (right panel) lattice.

additional fixed point seems to emerge. However, going to larger lattice volumes,

this behaviour goes away. In the infinite volume limit, no additional fixed point

exists.

The renormalized trajectory is the single trajectory that connects the triv-

ial fixed points at the origin and at infinite coupling. The arrows plotted in

Figure 6 point towards the IR. Therefore, the high-temperature fixed point is

IR-attractive, while the low-temperature fixed point is IR-repulsive. The flow

diagram perfectly reflects the idea of deamplification: all renormalization group

trajectories flow into the high-temperature fixed point, regardless of the start-

ing point. The structure of the flow diagram fully matches the prediction from

asymptotic freedom. All known results for the flow diagram are very well re-

produced with our method and we proceed with the case in three space-time

dimensions.

2.9 D=3 : Asymptotic Safety

As in two dimensions, we first investigate the O(3) model. The order parameter

(2.39) for O(3) symmetry is shown in Figure 4 (right panel). In contrast to

two dimensions, the symmetry is broken spontaneously: for couplings above the

critical coupling, ϕ does not vanish even on large lattices. The critical coupling

in the infinite volume limit is given by gc0 = 0.2287462(7) [29].
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2.9.1 One-parameter effective action

We begin with the simplest truncation possible by using the one-parameter action

S = g0NS0. We denote this scheme as 1 → 1 truncation, indicating the use of

the one-parameter action in both ensemble creation and effective action ansatz.

Similar to the D=2 results, we find that the dimensionless β function, depicted

in Figure 7 (left panel), is almost independent of the lattice size. In contrast to

the two dimensional case, β0 shows a zero crossing at finite coupling for every

value of c0. This clearly indicates a non-trivial fixed point [44–48]. It is directly

related to a second-order phase transition and points to the non-perturbative

renormalizability of the O(3) model. In order to determine the optimization
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Figure 7: The β function for the 1 → 1 truncation on a 323 lattice and N = 3
is shown in the left panel for different values of c0. In the right panel, the ratio
of correlation lengths, obtained by blocking a 323 lattice down to 163, is shown
for N=3 depending on the optimization constant. One expects that ξ16/ξ32 = 2
minimizes truncation errors. We read off the optimal value copt0 = 3.35.

constant c0, we again consider the correlation length of the two-point function. A

perturbative calculation [59] yields cpert0 = 2.3 for arbitrary N and a large number

of subsequent RG steps. Computing the ratio of correlation lengths however, we

find the optimal choice to be copt0 = 3.35 (see Figure 7, right panel). Both values

deviate significantly, indicating that a non-perturbative optimization scheme is

indeed needed.

For the optimal choice copt0 , we obtain the fixed point coupling g∗0 = 0.2310(5).

Systems with bare coupling g0 < g∗0 flow to the disordered phase in the IR. It is

controlled by the high temperature fixed point at g0 = 0. Analogously, systems
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with bare coupling g0 > g∗0 flow to the completely ordered phase, described by

the low-temperature fixed point at g0 = ∞. The critical hypersurface is reduced

to a single point g∗0 and the operator S0 corresponds to a relevant direction of the

RG flow.

The critical coupling gc0 is characterized as the point where the correlation

length of the system diverges at infinite volume. Its location can be determined

from thermodynamical observables like e.g. the susceptibility of the order pa-

rameter. It is the point of intersection between the critical hypersurface and the

line where gi = 0 except g0. A lattice simulation starting at gc0 will flow along the

critical line into the non-trivial fixed point. In general, one would expect that

the fixed point value g∗0 is identical to gc0. However, taking truncation errors into

account, this does not need to be true.

While a non-trivial fixed point could be identified, it is still important to

know the total number of relevant directions. Therefore, we proceed to discuss

higher-order truncations.

2.9.2 Higher-order truncations

Using different lattice sizes, it is evident that results from 83 and 163 lattices

already agree within their statistical error bars. We are therefore confident that

simulations on lattices with 323 points do not suffer from large finite size effects.

Figure 8 shows the global flow diagram for the truncation S = g0NS0 + g1NS1.

It is used both for ensemble generation as well as in the demon method (2 → 2

truncation). The blockspin transformation is optimized in a similar fashion as for

the action with a single parameter. Using the parametrization C = c0g0+ c1g1, a

set of parameters c0 and c1 is sought-after such that the correlation length ratio

is around 2 in the vicinity of the fixed point. Of course, our choice is not unique

since we only tune the correlation length. In general, we have to consider higher

correlation functions as well. Here, we use the values c0 = 3.1 and c1 = 2.5.

The high-temperature fixed point (HT FP) is located at zero coupling in the

lower left corner of the flow diagram. Outside of the printed area, at infinite

coupling, lies the low temperature fixed point (LT FP). Additionally, a non-

Gaußian fixed point (NG FP) in the center of the flow diagram is clearly visible.

Its position is at g∗0 = 0.119(1) and g∗1 = 0.0164(2). As expected, the length of
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Figure 8: The flow diagram using the 2 → 2 truncation on a 323 lattice and N=3
clearly shows a non-Gaußian fixed point (NG FP) in the center of the plot (left
panel). The critical line (CL) and renormalized trajectory (RT) intersect at the
NG FP. The right panel shows a detailed plot of the vicinity of the NG FP.

a trajectory gets small in the fixed point regime. According to equation (2.16),

the thickness of the momentum shell that is integrated out is proportional to the

lattice spacing. In the vicinity of the fixed point, a goes to zero and the blockspin

transformation approaches an infinitesimal RG transformation. Thus, the lattice

beta function approaches the continuum beta function. The position of the fixed

point is not universal and thus depends on the renormalization scheme. In the

two parameter truncation, it depends only weakly on the lattice volume, but

varies with the optimization constants. The dominant contribution is given by

c0 since the coupling g0 exceeds g1 by an order of magnitude. The flow diagram

is split by a separatrix which defines the critical line (CL). It extends from the

lower right to the upper left corner. The CL is the intersection of the critical

hypersurface in general theory space with the g0-g1 plane that constitutes our

truncation. Trajectories that lie above this line will flow into the low temperature

fixed point, while trajectories below flow into the high temperature fixed point.

This behaviour corresponds to the amplification property of the renormalization

group flow. Thereby, a relevant direction is indicated analogous to the simple

one-parameter truncation of the preceding section. The second direction though

is an irrelevant one. The single trajectory that is identical with the critical line

flows into the non-Gaußian fixed point. From the traditional lattice perspective,

the CL corresponds to a fine tuned set of bare parameters (g0, g1) at different
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UV cutoffs. Starting a simulation on the critical line results in a measurement

of the critical physics at the non-trivial fixed point. Since the lattice spacing in

units of the correlation length becomes small as the critical point is approached,

this behaviour is usually used to take the continuum limit.

The renormalized trajectory (RT) connects all three fixed points and acts as

an attractor for the RG trajectories. It singles out a unique theory that is both

IR and UV complete: the microscopic physics is given by the non-trivial fixed

point and the effective average action flows either into the high-temperature or

low-temperature fixed point, depending on the starting condition. As expected,

the RT does not attract the trajectories in the vicinity of the high temperature

fixed point.

Starting on the g0 axis, which corresponds to the usual lattice action of the

Heisenberg ferromagnet, and integrating out all fluctuations, one can only reach

either one of the trivial fixed points or the non-trivial fixed point. In this sense,

all of them are considered infrared fixed points. From universality arguments,

one expects that the NG FP corresponds to the well-known Wilson-Fisher fixed

point of the linear Sigma model, since it shares the same O(3) symmetry. In-

deed, a similar structure to our results emerges in this model [68]. However, the

Heisenberg ferromagnet is an effective theory that is well defined only for a fi-

nite UV cutoff. In contrast, asymptotically safe theories are defined on all scales.

Thus, the fundamental field theory corresponds to the renormalized trajectory.

The direction of the RG flow indicates that the non-trivial fixed point governs

the ultraviolet physics of this theory. Hence, we clearly identify this non-trivial

fixed point as an ultraviolet fixed point of the RG flow.

As the next step, the flow diagram for the 3 → 3 and 4 → 4 truncation

is computed. Thereby, the operators {S0, S1, S2}, {S0, S1, S3} or {S0, S1, S2, S3}
are included respectively. An overview of the flow diagram for the operators

{S0, S1, S2} is presented in Figure 9. It is evident that only an irrelevant direction

is added to the truncation. The global structure of the flow diagram is similar to

the 2 → 2 truncation. It shows two trivial IR fixed points and a non-trivial UV

fixed point. The latter is located at

g∗0 = 0.13(1), g∗1 = 0.016(1) and g∗2 = −0.0015(5). (2.40)
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Figure 9: Using a shooting technique, the RG trajectories for the 3 → 3 truncation
with operators S0, S1 and S2 on a 323 lattice with N = 3 reveal an analogous
structure to the 2 → 2 case. The projection on the g0-g1 axis in the left panel
indicates only a single relevant direction at the non-Gaußian fixed point. The
right panel shows that the trajectories first approach the fixed point regime and
afterwards flow along the renormalized trajectory to the respective IR fixed point.

For the operators {S0, S1, S3}, the resulting flow diagram is very similar. In fact,

even the position of the fixed point is identical to (2.40) within error bars. Finally,

Figure 10 shows the 4 → 4 truncation. A further irrelevant direction is added

and the fixed point structure remains unchanged. The position of the NG FP is

at

g∗0 = 0.13(1), g∗1 = 0.016(1), g∗2 = −0.0015(5) and g∗3 = −0.0015(5).

(2.41)

The fixed point couplings g∗0, g
∗
1 and g

∗
2 do not change compared to (2.40) and the

value for g∗3 is two orders of magnitude below g∗0. In conclusion, the fixed point

structure does not change if further operators are added. The non-Gaußian fixed

point is always characterized by a single relevant direction. In addition, the po-

sition of the NG FP is stable against the inclusion of higher derivative operators.

Thus, the asymptotic safety scenario clearly applies to the O(3) nonlinear Sigma

model in three dimensions.

The present work is mainly concerned with the flow diagram and fixed point

structure of nonlinear O(N) models. However, it is further possible to measure

the critical exponents θα (2.15). Of course, the MCRG demon method is not to

be seen as a replacement of dedicated high-precision Monte Carlo methods that
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Figure 10: The {S0, S1, S2} and {S0, S1, S3} projections of the flow diagram in
the vicinity of the non-Gaußian fixed point for the 4 → 4 truncation on a 323

lattice with N =3 are shown. The NG FP is characterized by one relevant and
three irrelevant directions.

focus solely on the determination of critical exponents. Rather, the objective of

the next section is to provide a reasonable estimate such that the universality

class can be confirmed. We expect it to be of Wilson-Fisher type.

2.9.3 Critical exponents

It is generally assumed that the linear and nonlinear O(N) models are in the same

universality class since they have the same range of interaction and symmetries.

This assumption is supported by several computations based on very different

approximations [5, 50, 69–71]. In contrast to the position of the fixed point,

critical exponents are universal. Thus, a verification of our results independent

of the renormalization scheme is possible. Here, we restrict ourselves to the scaling

properties of the correlation length, described by the thermodynamical critical

exponent ν. It is directly related to the critical exponent θr by ν = 1/θr.

Using the simple 1 → 1 truncation, ν−1 corresponds to the negative slope

of the lattice beta function in the vicinity of a fixed point. We find the trivial

exponent ν ≈ −1 for the high-temperature and ν ≈ 1 for the low-temperature

fixed point. These values do not depend on the optimization parameter. In

contrast, the critical exponent at the NG FP varies with c0 (see Figure 11).

Since ν is not scheme-dependent, the variation w.r.t the optimization constant
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Figure 11: The left panel shows the 1 → 1 beta function in the vicinity of the
NG FP on a 323 lattice for N = 3. The slope of β0 corresponds to the critical
exponent ν (right panel) and depends on the optimization constant.

is entirely due to systematic uncertainties that originate from truncation. By a

careful optimization of the blockspin transformation, these errors are minimized.

Using the optimal constant c0 = 3.35, we read off

ν(1 → 1) = 0.51(1) (2.42)

for N = 3. This is to be compared with the value 0.7112(5) [29]. Of course we

cannot expect to obtain high precision results with the simplest possible ansatz

for the effective action. An improvement is gained by allowing a second operator.

The critical exponent θr for the 2 → 2 truncation is depicted in Figure 12 (left

panel). Again, it takes trivial values θr ≈ −1 for vanishing coupling (high-

temperature fixed point). For infinite coupling, it is evident that θr ≈ 1. While

the plot shows local fluctuations of θr in the upper left and lower right corner of

the parameter space, it becomes flat in the vicinity of the non-trivial fixed point.

The value

ν(2 → 2) = 0.62(3) (2.43)

is computed by averaging over the fixed point regime. It deviates less than 15%

from the literature value and is considerably closer than ν(1 → 1). The error

is estimated by the standard deviation of the averaging procedure. It is further

possible to extract the critical exponent corresponding to the irrelevant direction

of the flow (see Figure 12, right panel). It takes the value θir ≈ −1 at the
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Figure 12: The critical exponent ν is related to the eigenvalue θr (left panel) of the
stability matrix corresponding to the relevant direction. The critical exponent
of the irrelevant direction (left panel) is negative at the high temperature and
non-Gaußian fixed point. The RG parameters for this flow diagram are c0 = 3.1
and c1 = 2.5.

high-temperature fixed point and θir ≈ 0 at the low-temperature fixed point.

As expected, it is negative at the non-Gaußian fixed point: θir ≈ −0.44. The

critical line is clearly visible as a separatrix that divides the trivial fixed point

regimes. For the 3 → 3 truncation, it is sufficient to choose c2 = 0, while the

other optimization constants are c0 = 3.1 and c1 = 2.5. The exponent of the

correlation length is

ν(3 → 3) = 0.64(3) (2.44)

and the irrelevant directions yield

θir,1 = −0.52 + 0.05i and θir,2 = −0.86− 0.05i. (2.45)

The imaginary part is very small and still consistent with zero due to statistical

uncertainties. Going to even higher truncations, the computation of critical expo-

nents becomes very time consuming. One is obliged to perform parameter scans

in every direction of theory space in order to determine the fixed point location

and stability matrix (2.14). Since the latter is a second order derivative, small

stepsizes are needed for the scans such that discretization errors are small. Fur-

thermore, the optimization of the blockspin transformation becomes increasingly

difficult as the number of parameters grows. Therefore, we regard the 3 → 3
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truncation as our best estimate for the present analysis.

In conclusion, the high temperature fixed point shows only irrelevant direc-

tions, i.e. all critical exponents are negative. Those corresponding to the opera-

tors S0 and S1 take the value θ0 = θ1 = −1. Just as expected from the detailed

evaluation of the flow diagram, the non-Gaußian fixed point is characterized by

a positive critical exponent corresponding to S0. The remaining θ are negative.

Therefore, the asymptotic safety scenario is verified once again. Table 1 sum-

marizes the results for the critical exponents. With increasing truncation order,

Method ν (ν − νMC)/νMC

1 → 1 trunc. 0.51(1) 0.28
2 → 2 trunc. 0.62(3) 0.13
3 → 3 trunc. 0.64(3) 0.10
MC 0.7112(5) 0.00
HT 0.715(3) 0.01

Table 1: Results for the critical exponent ν of the N = 3 model for different
truncations. The comparative data originate from Monte Carlo simulations with
an adapted high-temperature expansion (MC) [29] and plain high-temperature
expansions (HT) [50].

the critical exponent approaches comparative data, indicating that the deriva-

tive expansion converges. Although the best estimate for ν still deviates by 10%

from the literature value, we are confident that our results correctly attribute the

non-Gaußian UV fixed point to the Wilson-Fisher universality class. In the next

section, this investigation is extended to large N .

2.10 The large N limit

For large values of N , we can compare our results with the analytical large N

expansion [72]. Hence, we repeat the computation of the critical exponent ν in

the simple 1 → 1 truncation for N up to 10. For every value of N , a non-trivial

fixed point exists and the results are shown in Figure 13 (left panel). Starting

from N =2, where the estimate deviates from the comparative data by 40%, we

see an improvement for intermediate N < 8. However, going to even larger N ,

the behaviour changes and our results significantly underestimate the literature
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Figure 13: The critical exponent ν (left panel) is shown for the 1 → 1 and 2 → 2
truncation depending on N . We compare our data to results using the functional
RG [49] and RG expansions [52]. the dashed line corresponds to the large N
expansion up to second order [72]. In the N → ∞ limit, ν = 1 is expected. The
right panel depicts the optimization function c0(N) for the 1 → 1 truncation.
The dashed line is a fit to the asymptotic behaviour (2.46) for N ≤ 6.

values. It is evident that we do not reproduce the analytically known result of

ν = 1 for N → ∞.

This change of behaviour is not limited to the critical exponent. In this

section, the optimization “constant” c0 is determined separately for each N and

thus becomes a function of the target space. From the perturbative analysis [59],

it is known that the asymptotic behaviour is given by

c0(N) ∼ N

N − 1
, (2.46)

i.e. we expect c0(N) to become constant for large N . Indeed, Figure 13 (right

panel) shows a plateau for intermediate N . Unfortunately, going to N > 7, the

optimization function decreases rapidly. We interpret this unexpected behaviour

as a breakdown of the simple one-parameter truncation. The optimization scheme

becomes pointless if the ansatz for the effective action no longer captures the

important physics. In this case, one cannot expect to find reliable values for the

critical exponents. Although it is still achievable to tune the ratio of two-point

functions, this is no longer sufficient. Considering higher correlation functions,

one should realize that it is not possible to simultaneously tune all of them to the

desired value. The only way to improve the situation is by including higher-order
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operators. For the 2 → 2 truncation, we have computed the critical exponents up

to N=9. Indeed, the results are much closer to the comparative data (see Figure

13, left panel). Following a pragmatic approach, we have fitted the asymptotic

behaviour (2.46) to the optimized parameters c0(N) for N ≤ 6. The “plateau

values” given by the fit were used as optimization constants for N > 6. The

ratio of correlation lengths is close to the optimal value if we further choose

c1 = 1.0 for all N . While the general structure of the flow diagram persists for

different N (see Figure 14), the non-universal location of the non-Gaußian fixed

point varies. However, even in the 2 → 2 case, it is evident that the truncation
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Figure 14: The flow diagram of the O(2) , O(4) , O(6) and O(8) model is shown
in the 2 → 2 truncation on a 323 lattice. The global structure is identical to the
O(3) model. The background color depicts the critical exponent θr.

breaks down for N > 9. Again, additional operators are needed to obtain reliable

results for the critical exponents. Furthermore, tuning of the RG parameter and

the computation of critical exponents becomes increasingly difficult for large N .
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This is in part due to the scaling of the simulation time with N . Our final results

are compiled in Table 2.

N 2 3 4 5 6 8
1 → 1 trunc. 0.42 0.51 0.57 0.63 0.65 0.65
2 → 2 trunc. 0.64(4) 0.66(4) 0.71(5) 0.78(6) 0.81(6) 0.84(7)
FRG - 0.704 0.833 - 0.895 0.912
RG exp. 0.607 0.706 0.738 0.766 0.790 0.830

Table 2: Results for the critical exponent ν for different N. The comparative data
is obtained from functional renormalization group calculations (FRG) [49] and
renormalization group expansions (RG) [52].

2.11 Conclusion

We have discussed and applied a method that allows to compute the global

flow diagram from numerical simulations. In contrast to the well-known MCRG

matching technique, the MCRG demon method does not need exponentially large

lattices and works even if the renormalized trajectory does not act as an attractor

for the RG flow. However, systematic uncertainties from a truncation of the effec-

tive action greatly affect predictions from the renormalization group. In order to

complete the method, it was absolutely necessary to construct a non-perturbative

optimization scheme. In the present work, such a scheme was put forward and

shown to efficiently mitigate truncation errors.

The nonlinear O(N) Sigma model is asymptotically free in two dimensions. We

have reproduced the beta function, showing two trivial fixed points corresponding

to very low and very high temperature. Using a two-operator truncation, the

role of finite volume effects on the flow diagram was clarified. In particular, an

additional non-trivial fixed point was identified as a lattice artifact.

It has long been known that the three-dimensional O(3) model exhibits a

second-order phase transition. We have shown that it corresponds to an ultravi-

olet fixed point with a single relevant direction. Our largest truncation included

all possible operators up to fourth order in the momentum. The theory that cor-

responds to the renormalized trajectory is IR- and UV-complete. We conclude

that the asymptotic safety scenario is fulfilled. Thus, the model is renormalizable

in a non-perturbative setting.
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While the general structure of the flow diagram is independent of the spe-

cific RG transformation, the critical exponents differ. This does not contradict

their universality. It is simply the consequence of the dependence of systematic

errors on the RG transformation. These errors are mitigated by the optimization

scheme. We are able to predict the critical exponents within a reasonable ac-

curacy but can not compete with designated high precision MC-techniques that

are free of truncation errors. While the estimate for the critical exponents im-

proves for larger truncations, it is troublesome that the exact N → ∞ limit is

not reproduced for a fixed truncation. Rather, more and more operators seem to

be necessary. However, a similar behaviour was noticed previously in functional

renormalization group calculations [49]. The structure of the flow diagram is

identical. Yet, the MCRG method proves to be more stable and leads to more

robust results for different truncations. In particular, the FRG encountered a

sudden disappearance of the non-trivial fixed point for a truncation including

the operator S2 (2.32). This was not the case for the MCRG demon method.

Nevertheless, results from the FRG fail to match the N → ∞ limit as well. It is

thus concluded that, contrary to naive intuition, the analytically known large N

results are accessible only to a complicated effective action, including operators

of increasing orders of derivatives.

With regard to functional methods, we stress that lattice techniques provide

the opportunity to obtain additional information beyond the chosen truncation

by a direct measurement of correlation functions. We have actively used this

knowledge to determine the optimal constants in the improved RG transforma-

tion.
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3 Continuum limit of the supersymmetric Sigma

Model

3.1 Supersymmetry

High energy experiments at particle colliders like the LHC at CERN5 are ac-

curately described by the Standard Model of particle physics (SM) [8]. It is

based on the principle of local gauge invariance, incorporating the idea of sym-

metries. They play a pivotal role in modern elementary particle physics. If a

symmetry is recognized from experiments, strict constraints can be deduced for

the corresponding theoretical model. For example, this approach has led to the

postulation of quarks [73]. They are described by quantum Chromodynamics

(QCD), the theory of strong interaction.

However, the Standard Model still faces serious problems with regard to cos-

mological observations. One has recognized that the balance of observed matter

on the one hand and gravitational attraction on the other hand is uneven [74]. A

popular loophole is found by the postulation of yet undiscovered sources of gravi-

tation, the so-called dark matter [75]. Since the Standard Model does not include

any dark matter, beyond the Standard Model (BSM) theories are needed. Another

interesting question concerns the existence of far more matter than antimatter in

our universe. This fact is connected to the strong CPproblem [76]. Lastly, the

hierarchy problem [77] is connected to the Higgs sector of the SM. Through renor-

malization, bare parameters are related to the experimental values. The mass of

the Higgs boson receives large quantum corrections from all virtual particles cou-

pling to the Higgs field. Thus, the bare mass must be chosen extremely careful in

order to reproduce the experiment. This raises a question of naturalness: is such

a fine tuning acceptable of a fundamental theory? To address these open issues,

many BSM theories have been proposed. Among them are the supersymmetri-

cally extended versions [78], in particular the Minimal Supersymmetric Standard

Model (MSSM).

In fact, supersymmetry (susy) is the only possible extension of the Poincaré

symmetry [79]. It relates bosonic and fermionic degrees of freedom, leading to

profound implications for the spectrum of supersymmetric theories. For each par-

5See http://home.web.cern.ch/ for recent updates on the CERN laboratory.
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ticle, a superpartner exists with equal mass and quantum numbers, but different

spin. This is a direct consequence of the supersymmetry algebra

{QI
α, Q̄

J
β} = 2δIJγµαβPµ, I, J = 1, . . . ,N , (3.1)

where QI are the supercharges. However, none such superpartners have been

found in nature so far. Thus, supersymmetry must be broken. In this case, the

masses of the corresponding superpartners can be considerably larger. Besides,

they provide excellent candidates for dark matter. For additional details, the

reader is directed to the reviews on supersymmetry in [80, 81] and the textbooks

[82, 83].

In the past, two-dimensional nonlinear Sigma models have been applied suc-

cessfully to model non-perturbative properties of four-dimensional strongly cou-

pled pure gauge theories [84]. Similarly, one may employ the supersymmetrized

version of the nonlinear Sigma model to effectively describe super-Yang-Mills the-

ories with a strongly interacting fermionic sector. It is of great interest to examine

the non-perturbative properties of these theories. However, the utilization of the

only ab initio method for this purpose, namely a lattice simulation, is notoriously

difficult.

3.2 . . . on the lattice?

Supersymmetry is an extension of the Poincaré symmetry. Hence, any discretiza-

tion of space-time that breaks the latter also breaks supersymmetry. This can be

traced back to the failure of the Leibniz rule on the lattice [85]. However, whereas

the Poincaré symmetry is restored in the continuum limit from the residual lat-

tice symmetries, e.g. finite translations by multiples of the lattice spacing, this is

usually not true for supersymmetry. The discretized model is not supersymmetric

and the renormalization of susy-breaking operators is thus not forbidden. If these

operators are relevant, they will carry the effective action away from a possible

supersymmetric fixed point and supersymmetry is not restored in the continuum.

In general, one must introduce appropriate counterterms for each relevant

susy-breaking operator and fine tune them such that the desired continuum the-

ory is approached [86, 87]. Depending on the number of parameters this becomes
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practically impossible due to limited computer time. In addition, much infor-

mation about the theory is needed prior to numerical investigations. Therefore,

alternative approaches have been proposed in order to reduce the number of fine

tuning parameters or even render the fine tuning procedure obsolete [88]. One

approach for theories with extended supersymmetry aims at the construction of

a nilpotent charge. The latter is composed of the supercharges such that both

the continuum as well as the discretized model are invariant under this charge.

It is then expected that, by preserving a part of the symmetry, invariance under

full supersymmetry is restored automatically in the continuum limit, without fine

tuning. The residual supersymmetry protects the theory from the renormaliza-

tion of susy-breaking operators.

This procedure had been applied to the supersymmetric nonlinear O(3) model

[89, 90] and the authors conclude that supersymmetric Ward identities are indeed

fulfilled in the continuum limit, indicating the restoration of full supersymmetry.

However, the lattice discretization constructed this way breaks the O(3) symme-

try of the target space explicitly at finite lattice spacing. No attempt was made

to show that it is restored in the continuum limit. In fact, it was proven [25] that

this is not the case and the proposed discretization must be rejected. Using the

SLAC derivative, an alternative O(3) invariant discretization was investigated.

Though the discrete model breaks supersymmetry on the lattice, it is restored

in the continuum limit. Unfortunately, since the sign of the configuration weight

fluctuates strongly, these results were confined to small lattices.

In this chapter, we will present simulations using Wilson fermions and an-

other O(3) invariant discretization. They offer the possibility to explore larger

lattices and may provide complementary results regarding the continuum limit.

This chapter is organized as follows: First, we introduce the supersymmetric ver-

sion of the nonlinear O(3) model and discuss previous attempts of discretization

schemes. After an outline of our approach, which uses a stereographic projec-

tion to handle the constraints, extensive numerical investigations are presented.

Particular emphasis is drawn to the symmetries of the theory. We conclude with

an answer to the question whether supersymmetry is restored in the continuum

limit.
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3.3 Supersymmetric nonlinear O(3) Sigma model

A first construction of the supersymmetric nonlinear Sigma model with O(N) tar-

get manifold is due to E. Witten [91] and P. Di Vecchia and S. Ferrara [92]. Sub-

sequent papers established analytical properties like asymptotic freedom, sponta-

neous breaking of chiral symmetry and dynamical generation of particle masses

[93, 94]. The classical theory has no intrinsic mass scale, but there is a relation

between mass gap and bare coupling by dimensional transmutation. In the MS

scheme it is possible to compute the mass gap in relation to ΛMS [95, 96]. Further

studies are particularly concerned with the special case of the O(3) model, since

it admits an extended N=2 supersymmetry algebra.

The supersymmetric extension of the two-dimensional nonlinear O(N) sigma

model in Euclidean space-time can be formulated in terms of a real superfield6,

Φ = n+ iθ̄ψ + i
2
θ̄θf (3.2)

subject to the constraint ΦΦ = 1. Here, θα is a Grassmann number, n and f

denote N -tuples of real scalar fields and ψ is an N -tuple of Majorana fields. We

shall refer to the elements of a tuple as “flavors”. The constraint in superspace

entails the constraints,

n2 = 1, nψ = 0 and nf = i
2
ψ̄ψ . (3.3)

for the component fields n, ψ and f . The O(N) invariant Lagrangian density is

defined in terms of the covariant derivatives

Dα = ∂θ̄α + i(γµθ)α∂µ and D̄α = −∂θα − i(θ̄γµ)α∂µ. (3.4)

It reads:

L =
1

2g2
DΦDΦ|θ̄θ =

1

2g2
(
∂µn∂

µn+ iψ̄/∂ψ − f2
)
. (3.5)

6We choose the Majorana representation γ0 = σ3, γ1 = −σ1, γ∗ = iγ0γ1 = σ2, C = −iσ2,
and the conjugate spinor is defined as χ̄ = χTC. We employ the Fierz relation ψχ̄ = − 1

2
χ̄ψ −

1

2
(χ̄γµψ)γµ − 1

2
(χ̄γ∗ψ)γ∗. Due to the symmetry properties χ̄ψ = ψ̄χ, χ̄γµψ = −ψ̄γµχ and

χ̄γ∗ψ = −ψ̄γ∗χ the two last terms vanish for χ = ψ such that ψψ̄ = − 1

2
ψ̄ψ 1.
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Thus, the partition function is given by

Z =

∫

DnDψDf δ(n2 − 1)δ(nψ)δ(nf − i
2
ψ̄ψ)e−S[n,ψ,f ] (3.6)

with S[n,ψ, f ] =
∫
d2x L[n,ψ, f ]. The equation of motion for the auxiliary

field f implies that f and n are parallel, f = i
2
(ψ̄ψ)n, and the resulting on-shell

Lagrangian density,

L =
1

2g2
(
∂µn∂

µn+ iψ̄/∂ψ + 1
4
(ψ̄ψ)2

)
, (3.7)

contains a four-fermi term. The action and the constraints are both invariant

under global O(N) “flavor” transformations. By construction, they are also in-

variant under the N=1 supersymmetry transformations

δn = iε̄ψ, δψ =
(
/∂ + i

2
ψ̄ψ

)
nε . (3.8)

Besides flavor symmetry and supersymmetry, the classical theory admits a fur-

ther Z2-symmetry, generated by the chiral transformation ψ → iγ∗ψ. However,

quantum fluctuations dynamically generate a mass term and hence induce spon-

taneous breaking of the chiral Z2-symmetry.

The special case N = 3 allows for an extended N=2 supersymmetry since its

target manifold is Kähler [97]. One finds the simple transformations

δn = in× ε̄ψ (3.9)

δψ = −n× ∂µn γ
µε− iε̄ψ ×ψ ,

where a× b denotes the vector product of a and b. The two on-shell supersym-

metries (3.8,3.9) are generated by the supercharges

QI = i

∫

γµγ0∂µnψ , QII = −i

∫

γµγ0(n× ∂µn)ψ . (3.10)

3.4 Discretization and residual symmetries

So far, O(N) Sigma models in the continuum have been considered. In order

to investigate the corresponding lattice models, one should try to discretize it
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such that as many symmetries of the continuum theory as possible are preserved.

Maintaining supersymmetry is difficult to realize, but also the flavor symmetry

must be treated with care. We start with a formulation in terms of constrained

fields, whose discretization is manifestly O(N) invariant:

S[n,ψ] =
1

2g2

∑

x,y

(
nT

xKxyny + iψ̄
α
xM

αβ
xy ψ

β
y +

1
4
(ψ̄xδxyψy)

2
)
. (3.11)

The subscripts x, y denote lattice sites, while α, β indicate spinor indices. The

lattice derivatives Kxy and Mαβ
xy are proportional to the identity in flavor space.

The constraints nxnx = 1 and nxψx = 0 must be fulfilled at each lattice point

x. They are implemented as delta-functions in the path integral measure. This

causes some difficulties in numerical simulations. One can cope with this problem

by applying the stereographic projection, which is discussed in the next chapter.

3.4.1 Stereographic projection

It is useful to construct a formulation of the model in terms of an unconstrained

real superfield U(x, θ) = u(x)+iθ̄λ(x)+ i
2
θ̄θg(x), which forming an (N−1)-tuple.

It is related to the superfield Φ by a stereographic projection in superspace:

(

Φ1

Φ⊥

)

=
1

1 +U2

(

1−U2

2U

)

. (3.12)

The decomposition of the projection into bosonic and fermionic fields reads:

n⊥ = 2ρu, ψ⊥ = 2ρλ− 4ρ2 (uλ)u with ρ =
1

1 + u2
. (3.13)

The expressions for the remaining components n1 and ψ1 can be determined either

from (3.12) or from (3.13) via the constraints n2 = 1 and nψ = 0. The inverse

transformation in superspace reads U = Φ⊥/(1 + Φ1) and leads to

u =
1

2ρ
n⊥, λ =

1

2ρ
ψ⊥ − 1

4ρ2
ψ1n⊥ with ρ =

1 + n1

2
. (3.14)
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Applying the stereographic projection (3.13), the on-shell Lagrangian density can

be written in terms of the unconstrained fields as

L =
2

g2
ρ2
(
∂µu∂

µu+ iλ̄/∂λ+ 4iρ (λ̄u)γµ(∂µuλ) + ρ2(λ̄λ)2
)
. (3.15)

The action is now invariant under the supersymmetry transformations

δu = iε̄λ, δλ =
(
/∂ + iρ λ̄λ

)
uε− 2iρ (λ̄u)λε . (3.16)

The stereographic projection (3.13) resolves both constraints and leads to an un-

constrained but yet O(N) -symmetric lattice formulation. The discretized action

takes the form S({ux,λx}) = SB + S2F + S4F with

SB =
1

2g2

∑

x,y

4ρxu
T
xKxyuyρy + ρx(1− u2

x)Kxy(1− u2
y)ρy, (3.17)

S2F =
2i

g2

∑

x,y;α,β

λ̄
α
x

[ (
ρ− 2ρ2uuT

)

x
Mαβ

xy

(
ρ− 2ρ2uuT

)

y
+ 4

(
ρ2u
)

x
Mαβ

xy

(
ρ2uT

)

y

]

λβy ,

(3.18)

S4F =
2

g2

∑

x

ρ4x(λ̄xλx)
2. (3.19)

The transformation from the constrained fields (n,ψ) to the unconstrained fields

(u,λ) yields a non-trivial Jacobian:

∏

x,α

dnxdψ
α
x δ(n

2
x − 1)δ(nψα

x) −→
∏

x,α

duxdλ
α
x

(
1 + u2

x

)N−1
. (3.20)

The four-fermion interaction can be eliminated by employing the usual Hubbard-

Stratonovich transformation [98], introducing an auxiliary bosonic field σ:

S({ux,λx, σx}) = SB + S2F +
1

2g2

∑

x

(
σ2
x + 4iσxρ

2
x λ̄xλx

)
. (3.21)

An integration over Grassmann variables leads to the bosonic path integral

Z =

∫
∏

x

duxdσx sgnPfQ e−Seff . (3.22)
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Here, the effective bosonic action is defined as

Seff({ux, σx}) = SB +
∑

x

(
1

2g2
σ2
x − (N − 1) log (1 + u2

x)

)

− log |PfQ|, (3.23)

where Q is the fermion matrix

Qαβ
xy,ij = 4ρx

(
δik − 2ux,iux,kρx

)
Mαβ

xy

(
δkj − 2uy,kuy,jρy

)
ρy

+ 16ρ2xux,iM
αβ
xy uy,jρ

2
y + 4βρ2xσxδxyδijδ

αβ . (3.24)

In practical simulations, the effective fermionic action is rewritten according to

log |PfQ| = 1
2
log detQ and the hybrid Monte Carlo algorithm is used. A detailed

discussion of the Pfaffian sign is given in chapter 3.6.

We are particularly interested in the chiral condensate, which is an order pa-

rameter for spontaneous chiral symmetry breaking, and the masses of the bosonic

and fermionic fields. The fermionic correlator for the different flavor components

is constructed as

〈
iψ̄x,⊥ψy,⊥

〉
=
〈
4ρxiλ̄xλyρy − 8ρx(uxiλ̄x)(λyuy)ρ

2
y − 8ρ2x(uxiλ̄x)(λyuy)ρy

+ 16ρ2x(uxiλ̄x)(uxuy)(λyuy)ρ
2
y

〉
,

〈
iψ̄x,1ψy,1

〉
=
〈
16ρ2x(uxiλ̄x)(λyuy)ρ

2
y

〉
. (3.25)

If the O(N) symmetry is intact, all correlators lie on top of each other and we do

not need to discriminate flavor. The corresponding timeslice correlator is given

by CF(t) = N−2
s

∑

xy

〈
iψ̄(t,x)ψ(0,y)

〉
. Using these definitions, the fermionic masses

are obtained by a cosh fit to the correlator over the range t ∈]0, Nt[. In a similar

fashion, the bosonic masses are extracted by calculating the stereographically

projected correlators

〈
nx,⊥ny,⊥

〉
= 4
〈
ρxuxuyρy

〉
,

〈
nx,1ny,1

〉
=
〈
ρx
(
1− u2

x

)(
1− u2

y

)
ρy
〉
. (3.26)

The chiral condensate is given in terms of unconstrained fields as well. It is ob-

tained by using the trace of the correlator given in equation (3.25). The quadratic
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fermion operator is replaced by the inverse of the fermion matrix,

〈
... iλ̄x,iλy,j ...

〉
=
〈
... Q−1

xy,ij ...
〉

eff
(3.27)

and the lattice condensate aΞi is then written as

〈aΞi〉 =
1

V

∑

x

〈
4ρ2xQ

−1
xx,ii − 8ρ3xux,iux,jQ

−1
xx,ij

−8ρ3xux,iux,jQ
−1
xx,ji + 16ρ4xux,iux,iux,kux,lQ

−1
xx,kl

〉

eff
(3.28)

for i = 1 . . . N − 1, where

〈aΞ0〉 =
1

V

∑

x

〈
16ρ4xux,kux,lQ

−1
xx,kl

〉

eff
. (3.29)

3.4.2 Fine tuning of the continuum limit

The continuum model is invariant under a discrete chiral symmetry. It is sponta-

neously broken in the infinite volume limit and the supersymmetric ground states

correspond to the two ground states of this broken symmetry [99]. Using SLAC

fermions, chiral symmetry is maintained on the lattice by the cost of having a

non-local derivative. However, the applicability of the SLAC derivative to the

present model is confined to small lattice volumes due to strong sign fluctuations

[25]. Wilson fermions might offer the possibility to explore larger lattice volumes.

It is an ultralocal derivative, where pseudofermion algorithms can accelerated by

preconditioning schemes. However, we expect that lattice artifacts are larger for

the Wilson derivative compared to the SLAC case.

Following Wilson’s idea, we introduce an additional momentum-dependent

mass term that vanishes in the naive continuum limit,

Mαβ
xy = γαβµ

(
∂symµ

)

xy
+ δαβ

ra

2
∆xy , (3.30)

where ∂symµ is the symmetric lattice derivative, a the lattice spacing and ∆xy the

lattice Laplacian. We choose the bosonic derivative in the particular form

Kxy = −
∑

µ

(
∂symµ

)2

xy
+
(ra

2
∆xy

)2

(3.31)
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that has demonstrated superior results in Wess-Zumino models [100]. Using this

formulation, we compute the masses of bosons and fermions in figure 15. The

0

5

10

15

20

0 5 10 15 20 25 30

mBL

mFL

82
162
322

Figure 15: Comparison of the bosonic and fermionic mass in units of the box size
for three different lattice sizes using Wilson fermions. The dotted line denotes
the case mF = mB.

continuum limit is approached by keeping the physical box size (in units of the

bosonic or fermionic mass) fixed, e.g. mBL = 5, and going to larger lattice

volumes. We obtain a significant discrepancy between the masses. This gap in-

creases for larger lattices and there is no indication of convergent behaviour. In

the continuum limit, the masses will not be degenerate, so that supersymme-

try is apparently not restored. This is not too surprising, though, since Wilson

fermions may break supersymmetry in a way that is not dissolved in the contin-

uum limit. In particular, the Wilson prescription breaks chiral symmetry explic-

itly and the aforementioned behaviour indicates the renormalization of a relevant

susy-breaking operator.

Since it is not possible to construct a discretized action which simultaneously

respects at least one exact supersymmetry as well as the O(3) symmetry, we

must rely on adding fine tuning terms as a compensation for the renormalized

couplings that arise from symmetry breaking terms on the lattice. For N =1

Super Yang-Mills theories [101] it is known that the correct continuum limit may

be achieved by a fine tuning term that resembles an explicit fermionic mass. One

tunes the simulation such that the renormalized gluino mass is zero [102, 103].

Therefore we deform the fermionic derivative in a similar way using a fine tuning
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mass m,

Mαβ
xy = γαβµ

(
∂symµ

)

xy
+ δαβ

ra

2
∆xy + δαβmδxy, (3.32)

which enters the Hopping parameter κ = (4+2m)−1. The chiral condensate is an

order parameter for spontaneous chiral symmetry breaking. In the broken phase,

the effective potential shows two minima, corresponding to the two supersymmet-

ric ground states of the theory. In a finite volume, the tunneling probability is

nonzero and both ground states contribute equally to the ensemble. Going to the

infinite volume limit, tunneling is suppressed and only one of the ground states is

present. For the Wilson derivative we expect that one of the ground state energies

is raised due to the explicit breaking of chiral symmetry. Switching on the mass

m, we aim to fine tune the effective potential such that none of the ground states

is favored over the other. We will accomplish this by running parameter scans

of κ and measuring the constraint effective potential of the chiral condensate for

each run.

3.5 Performance of the HMC algorithm

Additional degrees of freedom in the fine tuning procedure increase the numerical

effort considerably. With the sign problem and large condition numbers lurking, a

Hybrid Monte Carlo algorithm with exact evaluation of the fermion determinant

and the inverse fermion matrix is used. On small lattice volumes up to 162, it pro-

vides a solid ground for the implementation of more sophisticated pseudofermion

algorithms. They become necessary at large volumes due to the poor scaling

behaviour of the LU decomposition used to solve for the inverse fermion matrix.

We choose the RHMC algorithm [104]. Thereby, the spectrum of the Dirac op-

erator is approximated by rational functions. It is of considerable importance to

tune the many technical parameters of the RHMC in the right way in order to

keep the algorithm exact and efficient. Therefore, we have monitored the sign of

the Pfaffian determinant and the spectrum of the Dirac operator throughout our

simulations. Table 3 shows average condition numbers c obtained from the exact

matrix norm c = ||Q|| · ||Q−1|| as well as typical iteration numbers of a conjugate

gradient solver for three different choices of the fermion matrix: 1. the original

fermion matrix (3.24), 2. the reduced fermion matrix, where a factor ρ, whose
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condition number cg solver steps
original 1.6(6)× 1019 454(10)
reduced 1.3(6)× 108 152(1)
even-odd 1.4(7)× 103 48(1)

Table 3: Average condition numbers and CG solver steps for three different
choices of the fermion matrix.

determinant can be evaluated analytically, is separated on both sides,

Q′αβ
xy,ij = 4

(
δik − 2ux,iux,kρx

)
Mαβ

xy

(
δkj − 2uy,kuy,jρy

)

+ 16ρxux,iM
αβ
xy uy,jρy + 4βσxδxyδijδ

αβ , (3.33)

and 3. the preconditioned reduced fermion matrix using the well-known even-

odd preconditioning scheme [105]. The latter is a special case of incomplete LU

preconditioning [106, 107]. One rewrites the fermion matrix as 1−L−U , where

1 is the identity matrix and L (U) is a lower (upper) triangular matrix. The

critical step of the iterative cg solver is the application of the inverse of QTQ

to some random (pseudofermion) vector, Y = (QTQ)−1X . We see a significant

improvement in the number of solver steps and in the condition numbers for the

reduced fermion matrix. This can directly be verified by looking at the eigenvalue

spectrum depicted in figure 16. The original and the reduced matrix are real
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Figure 16: Eigenvalue frequency of the original and reduced fermion matrix (left
panel, normalized such that both the largest eigenvalue and the integrated surface
equal one) and for the even-odd preconditioned matrix (right panel, no normal-
ization, logarithmic scale) from a sample of 2000 configurations on a 122 lattice.
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and antisymmetric and thus all eigenvalues are purely imaginary and come in

complex conjugate pairs. The original fermion matrix exhibits a large number

of eigenvalues very close to zero, as expected according to the Banks-Casher-

relation. For the reduced matrix we find that this is not the case and the condition

numbers hence decrease drastically. A further improvement is achieved by even-

odd preconditioning. The preconditioned matrix is no longer antisymmetric and

the majority of eigenvalues lies close to 1.

3.6 Pfaffian sign

Given a generic partition sum of the form

Z =

∫
∏

x

DΦx e
−S({Φ}), (3.34)

we are interested in the n-point functions

〈Φx1 . . .Φxn〉 = Z−1

∫
∏

x

DΦx Φx1 . . .Φxn e
−S. (3.35)

This high-dimensional integral is treated using stochastically distributed support

points that are generated by Markov processes (Markov Chain Monte Carlo). The

configuration space is sampled around the minima of the configuration weight

w({Φx}) = e−S({Φx}), (3.36)

where configurations with large action S are exponentially suppressed. This is

the fundamental property that ascertains the great efficiency of the MCMC sim-

ulation. Of course, we have assumed that the weight w({Φx}) is semi-positive in

order to interpret it as a probability weight. in the case

w′({Φx}) = eiφ({Φx})w({Φx}), (3.37)

this is no longer true. Nevertheless, we may still use the reweighting trick and

associate the complex phase with the measurement process rather than the con-
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figuration weight:

〈Φx1 . . .Φxn〉w′ =

〈
eiφΦx1 . . .Φxn

〉

w

〈eiφ〉w
(3.38)

=
Z−1
w

∫ ∏

xDΦx e
iφΦx1 . . .Φxn e

−S({Φx})

Z−1
w

∫ ∏

xDΦx eiφ e−S({Φx})
. (3.39)

However, this is only well defined if
〈
eiφ
〉

w
is not zero. In particular, due to the

change of the configuration weight, we no longer sample the configurations that

yield the largest contribution according to w′, but rather according to w. Since

configurations are suppressed exponentially, the efficiency of our method depends

crucially on the difference between the two weights. If the phase is fluctuating

strongly, the number of configurations needed to perform the continuum limit is

exponentially large. In fact, it was shown that the complexity of the sign problem

is NP-hard [108]. This problem invalidates the MCMC method for scenarios that

include frequent phase or sign changes.

The average Pfaffian sign for the Wilson derivative is depicted in figure 17.

We see that for small values of the fine tuning parameter κ, changes in the
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Figure 17: Left Panel: Sign of the Pfaffian on a N = 162 lattice for different
couplings g−2 and normalized fine tuning parameter κ/κc. Right Panel: Average
Pfaffian sign for different box sizes at κ = κc.

Pfaffian sign are suppressed and it is possible to evaluate expectation values

directly without reweighting. In the vicinity of κ ≈ κc however, this behaviour

changes from a mild correction for large coupling g−2 = 2 up to a significant

correction for smaller coupling g−2 = 1.2. In the fine tuned ensemble at κ = κc,
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a considerable sign problem is visible for large box sizes. Using the performance

advances of even-odd preconditioning, we are able to account for the sign problem

on lattice sizes of up to 242, which is significantly larger than for the SLAC

derivative, where only lattices up to 112 were feasible. All results presented in

the next sections are obtained using the reweighting procedure.

3.7 O(3) Symmetry

The previous studies have stressed the importance of an O(3) invariant formula-

tion of the theory. Our discretization respects the global flavor symmetry and in

order to check whether the corresponding algorithms respect it as well we record

the expectation value of the n field. Using the stereographically projected fields

u, we generate O(3) symmetric configurations, i.e. 〈n〉 ≈ 0. However, we observe

large autocorrelation times for observables which depend on the field component

corresponding to the projection axis. We find that this problem arises from the

interplay between stereographic projection and molecular dynamics steps. The

Hybrid Monte Carlo algorithm uses a pseudo-Hamiltonian and corresponding

pseudo-momenta for the u fields to generate test configurations. Computing the

pseudo-momenta for the constrained variables n, we see that the momentum cor-

responding to the projection axis used in the HMC algorithm takes values roughly

one half of the other momenta.

For the unconstrained variables, evolution of configurations is glued to a hy-

perplane of constant u2, illustrated in figure 18 (left panel), where u2, v2 and w2

correspond to the three canonical projection axes. Of course, the actual projec-

tion axis of the HMC algorithm is fixed in this plot. To circumvent this effect,

the projection axis in the molecular dynamics step is changed repeatedly between

successive trial and acceptance steps. While it is in principle possible to choose

random projection axes for every update, we rotate through the three canonical

axes, saving only every third configuration which corresponds to a fixed projec-

tion axis. A Metropolis acceptance step is yet needed after each change. The

right panel of figure 18 shows how this improved update scheme restores the bal-

ance between the projection axes. The configuration space is traversed quickly

and the expectation values 〈ni〉 go to zero with ongoing MC time.
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Figure 18: MC-histories for the lattice averages of u2, v2 and w2 using the three
different projection axes in the usual HMC algorithm (left panel) and the im-
proved algorithm (right panel). Note that fluctuations for u2, corresponding to
the projection axis chosen in the HMC algorithm, are severely suppressed in the
left panel.

3.8 Chiral symmetry

The lattice condensate is extracted from the trace of the projected correlator,

while the sign of the Pfaffian is taken into account by a reweighting procedure,

〈aΞ〉 =
〈sgnPfQ aΞ〉q
〈sgnPfQ〉q

. (3.40)

Here, 〈...〉q denotes the sign-quenched ensemble. We utilize histograms of the

chiral condensate to measure the distribution function ρ(X), which is formally

obtained by introducing a delta function into the partition sum,

ρ(X) =

∫
∏

x

duxdσx δ(X − aΞ) sgnPfQ e−Seff . (3.41)

Now, it is possible to express the expectation value for the condensate using this

quantity as

〈aΞ〉 =
∫
dX X ρ(X)
∫
dX ρ(X)

. (3.42)

However, the distribution function (3.41) cannot be interpreted as a probabil-

ity distribution, since sgnPfQ could be negative. Simulating the sign-quenched
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ensemble, we need to use the reweighted distribution function

ρ(X) =

∫
∏

x

duxdσx δ

(

X − aΞ
sgnPfQ

〈sgnPfQ〉q

)

e−Seff . (3.43)

However, this definition yields the correct result only if the chiral Z2 symmetry

is intact. For Wilson fermions, we get an additive renormalization and the chiral

condensate in the two ground states is not related by a simple sign-flip. To avoid

this problem, we will omit the sign information when considering histograms,

seeing that the Wilson ensemble shows frequent sign fluctuations only in the

direct vicinity of the critical Hopping parameter. This allows for an extrapolation

from a region where omitting the sign is safe. Expectation values are however

always determined using the reweighting procedure and are hence not affected by

this approximation. By an appropriate choice of the tuning parameter we obtain

the spontaneously broken signature that is expected in the continuum limit (see

figure 19, right panel), modified by the additive renormalization. The point of
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Figure 19: Left Panel: Expectation value of the chiral condensate aΞ for a lattice
volume of 162 and different couplings g−2. A jump corresponding to a first order
transition is visible. Right Panel: Histograms of the chiral condensate aΞ for
different values of the Hopping parameter (N = 242, g−2 = 2).

steep increase in the curves shown in figure 19 (left panel) approaches a jump in

the infinite volume limit. Thus, it is identified as a first order phase transition,

analogous to the case of Super-Yang-Mills theories. Using this signature, we have

determined the critical value of the fine tuning parameter κc for lattice sizes 82,

162 and 242 and coupling g−2 = 1 . . . 2, see figure 20.
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Figure 20: Critical value of the Hopping parameter for several lattice sizes.

3.9 Bosonic and fermionic mass

The masses of the elementary excitations are depicted in figure 21, left panel.

We see that the bosonic mass is not affected by the fine tuning procedure and
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Figure 21: Left panel: scaling behaviour of the bosonic and fermionic mass for
a 162 lattice and g−2 = 1.4 with κc = 0.382(1), marked by the black dot. The
dashed line denotes the lattice cutoff of 1/16. Right panel: comparison of bosonic
and fermionic masses in units of the box size for three different lattice sizes at
κ = κc.

takes a constant value within error bars. We will hence use the bosonic mass to

fix the physical box size mBL for our investigations. For the fermionic mass, we

observe linear scaling behaviour for κ < κc and κ > κc, however in the vicinity of

κ ≈ κc, the scaling breaks down. In contrast to e.g. N=1 Super Yang-Mills [102],

simulations at the critical point are feasible since the theory inhibits a finite mass
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gap even in the continuum. In the vicinity of the phase transition, mixing between

the two ground states occurs and the fermionic correlator must be projected onto

one of them. Without loss of generality, we project onto the sector with Ξ > 0.

This can be achieved by flipping the sign of σ for configurations with Ξ < 0.

We observe a great improvement regarding the degeneracy of the masses (see

figure 21, right panel). In particular, the fermionic masses no longer “run away”

if the volume is increased: This hints at a proper cancellation of the divergent

operator causing these problems (compare to figure 15). Nevertheless, a true

proof of this conjecture may only be provided by a study of all divergent operators

based on lattice perturbation theory and is not pursued here. For finite box sizes

of mBL > 2 a thermal mass-splitting seems to emerge. A similar behaviour

was encountered in studies using the SLAC derivative as well as for the N =

2 Wess-Zumino model with spontaneously broken Z2 symmetry and one exact

supersymmetry [100]. Analogously, we expect this thermal effect to disappear

for large box sizes mBL → ∞. To explore this region, further large volume

simulations would be needed in order to suppress possible lattice artifacts.

3.10 Path integral based Ward identity

Starting from the partition function (3.6), a twisted supercharge Q is used to

construct a Q-exact action [90],

S =
1

2g2
QΛ with Q2 = 0. (3.44)

This implies the continuum Ward identity

∂ lnZ
∂(g−2)

=
〈
−1

2
QΛ
〉
= 0, (3.45)

since action and measure are invariant under the symmetry transformation gen-

erated by Q. A similar relation can be deduced for the partition function (3.22),

∂ lnZ
∂(g−2)

= −V g
2

2
− g2 〈Sσ〉+ g2

dimQ

2
(3.46)
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with V as number of lattice sites, dimQ the dimension of the fermion matrix in

terms of flavor and spinor components as well as lattices sites and

Sσ =
1

2

∑

x,y

(
4ρxu

T
xKxyuyρy + ρx(1− u2

x)Kxy(1− u2
y)ρy

)
+

1

2

∑

x

σ2
x. (3.47)

Please note that an additional factor gV from stereographic projection is im-

portant in order to arrive at this result. It is irrelevant for the computation of

expectation values and usually dropped. In our case the Ward identity reads

〈Sσ〉 =
3

2
V. (3.48)

In order to see a possible restoration of supersymmetry in the continuum limit,

the bosonic action Sσ has been calculated in the fine tuned ensemble at κ = κc

(see figure 22). We observe the Ward identity to approach the desired value from
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Figure 22: Expectation value of the bosonic action Sσ at κ = κc for different g
−2

(left panel) and different box sizes (right panel). 2〈Sσ〉
3N

= 1 is expected in the
supersymmetric continuum limit.

above, with a discrepancy of 7% for fine lattice spacing (g−2 = 2) and up to

14% for a coarser lattice spacing (g−2 = 1.4) on the 242 lattice. Overall, the

slope of the Ward identity clearly points to a restoration of supersymmetry in

the continuum limit.
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3.11 Conclusion

In this project, a discretization of the supersymmetric nonlinear O(3) Sigma

model was investigated. The constraints of the original theory are resolved by

a stereographic projection and this leads to an O(3) symmetric simulation algo-

rithm. The ultra-local Wilson derivative is employed together with an even-odd

preconditioning scheme. For small lattices, we find that the simulation time

is thereby reduced by an order of magnitude and even stronger reductions are

achieved for larger lattices. This preconditioning scheme is not applicable for the

SLAC derivative, since it is nonlocal.

Regarding sign fluctuations, we find that they reappear if the simulation is

tuned to the critical Hopping parameter. This corresponds to a tuning to the

spontaneously broken chiral symmetry that is expected in the continuum limit.

However, the sign problem at fixed lattice volume is weaker compared to SLAC

fermions and the cheaper simulations allow us to simulate lattices of up to 242.

This is a considerable improvement to earlier SLAC-based studies.

Our results verify O(3) symmetry and chiral symmetry. While the former is

respected on the lattice, the latter is broken spontaneously and the supersymmet-

ric ground states are visible as minima of the constraint effective potential of the

chiral condensate. Regarding supersymmetry, we find that bosonic and fermionic

masses agree well. In particular, it does not seem to be necessary to tune coun-

terterms other than the fermionic mass, which is used to correct for the explicit

chiral symmetry breaking of the Wilson derivative. For intermediate box sizes, a

thermal contribution to the mass gap is visible and the degeneracy is superseded.

We expect this residual discrepancy to vanish for large box sizes. This is sup-

ported by measurements of a Ward identity, which unambiguously goes towards

the supersymmetric value if the simulation is tuned to the continuum limit.

However, in order to actually see a restoration of supersymmetry, even larger

lattices are needed. For these simulations, the sign problem can no longer be

treated by computational power alone, but should be handled systematically. In

the next chapter, we discuss the fermion-bag approach. It has shown promising

results in the special case of four-fermi interactions and might improve the sign

problem for the supersymmetric nonlinear O(3) Sigma model as well.
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4 Fermion-bag approach to Monte Carlo sign

problems

4.1 Sign problems in lattice QFT

Lattice quantum field theory has progressed significantly throughout the past

decades and the recent advances can be attributed not only to faster computers

but more importantly to more efficient algorithms [109].

The study of the QCD phase diagram in the regime of finite temperature and

chemical potential has been an active topic in recent years [110–113]. It is partic-

ularly interesting for the study of dense matter in the early universe, in neutron

stars and in heavy ion collisions at future experiments like e.g. RHIC, FAIR

and NICA7 [114]. In order to generate MCMC configurations, the Hybrid Monte

Carlo algorithm has been established and current research focuses on accelerating

the most costly part, which is the computation of the pseudo-Hamiltonian force

e.g. using a Conjugate-Gradient type solver, by use of efficient preconditioning

schemes [115]. It is clear that the fermionic contribution to the partition sum - the

fermion determinant and the various ways to estimate it - provides the dominant

contribution to the execution time of lattice QFT simulations.

However, the application of Monte Carlo methods to QCD at finite chemical

potential is hindered by a fundamental problem: the weight of the path inte-

gral configurations becomes complex and can thus no longer be interpreted as a

probability distribution [116]. This is denoted as the complex phase problem or

sign problem and it is not limited to QCD. Sign problems appear in many the-

ories, e.g. frustrated quantum systems that model condensed matter [117–120]

or theories where spontaneous breaking of supersymmetry is possible, i.e. the

Witten index vanishes [121–125]. A technical description of the sign problem in

the supersymmetric nonlinear Sigma model was given in chapter 3.6. In order

to overcome this problem, countless techniques have been studied, including the

use of imaginary chemical potential [126–128], Taylor expansion [129], fugacity-

expansion [130–132], reweighting techniques [133, 134] and the density-of-states

7See http://www.bnl.gov/rhic/ for information regarding Brookhaven’s Relativistic
Heavy Ion Collider, http://www.fair-center.de for the Facility for Antiproton and Ion Re-
search at GSI Darmstadt and http://nica.jinr.ru/ for the Nuclotron-based Ion Collider
fAcility at JINR, Dubna.
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method [135–138]. However, each of these has only a limited domain of applica-

bility and one is interested in a solution that addresses the core problem itself -

the complex weight. Considerable progress has been reported for the application

of the complex Langevin equation [139–141] to this problem as well as regarding

the use of dual variables [142–146]. In the following chapters however, we will use

the fermion-bag method. It was presented first in [147] and was shown to be par-

ticularly suited to four-fermi interactions, where the sign problem was softened

or even eliminated.

4.2 The fermion-bag method

The conventional approach to four-fermi theories rests on the application of

the Hubbard-Stratonovich transformation, which converts a model of interacting

fermions into a model of fermions that propagate freely in an auxiliary back-

ground potential. It is thus also denoted as the auxiliary field approach. In a

series of recent articles [148–152], it was argued that in some cases the partial

bosonization of fermions introduces additional sign fluctuations to the configura-

tion weight. A contrasting approach called the fermion-bag method was shown to

eliminate sign fluctuations in models of staggered fermions with Gross-Neveu or

Thirring interaction. As a general conclusion, it was denoted that the fermion-

bag approach is successful whenever a suitable pairing mechanism is available for

the fermions. Of course, this depends on the model at hand and it is clear that

the fermion-bag method is no solution to the sign problem in a strict sense [108].

It is simply a resummation of degrees of freedom and the models that are free

of sign fluctuations in the fermion-bag formulation actually never suffered from a

sign problem: it was artificially introduced by using the conventional approach.

True sign problems still exist, e.g. in lattice QED with Wilson fermions, for

which the fermion-bag method failed [153]. Nevertheless, it may help to uncover

hidden pairing mechanisms and an application to four-fermion models is worth-

while. For some theories, the fermion-bag method leads to the computation of

fermionants [154], which can be exponentially hard to calculate [155] in contrast

to determinants, for which polynomial time algorithms exist. In this case, the

fermion-bag method is not useful. An example is the D = 3 Gross-Neveu model

with four-component spinors and Wilson fermions. To circumvent this problem,
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one might use staggered fermions which diagonalize the spinor degrees of freedom

[156] or use a non-standard interaction term like e.g. a six-fermi or even higher

term. We choose to investigate the Gross-Neveu model using the irreducible rep-

resentation of the gamma matrices, i.e. with two-component spinors, where the

fermion-bag method is applicable as well. Furthermore, we will investigate the

supersymmetric nonlinear O(3) Sigma model once again with a special emphasis

on the sign problem.

We start with the supersymmetric NLSM and derive the fermion-bag formu-

lation. In a first approach, we study the quenched approximation. It will serve

to map out our expectations for the full model, which is studied in detail af-

terwards. We report our findings and proceed with the one-flavor Gross-Neveu

model. Instead of sign fluctuations, we have to deal with a complex phase here.

Therefore, we begin with a short investigation of the model using the SLAC

derivative, uncovering the basic properties. The next step consists of a derivation

of the fermion-bag discretization, which uses the Wilson derivative. After we

have presented our results, we conclude the chapter and compare the payoff of

the fermion-bag method for both models.

4.3 The supersymmetric nonlinear O(3) Sigma model

The two-dimensional supersymmetric nonlinear O(3) sigma model was studied

extensively in chapter 3. In order to arrive at a discretized action that is suitable

for MCMC simulations, we treated the four-fermi interaction term by a Hubbard-

Stratonovich transformation, which results in a Yukawa-like interaction for the

Majorana fermions and an auxiliary field σ, which does not propagate. After in-

tegrating out the fermions, the effective action for the bosonic degrees of freedom

contains the Pfaffian of the fermion matrix, which now depends on the σ field. We

have demonstrated in chapter 3.6 that the sign of the Pfaffian determinant is not

constant but rather fluctuates. In particular, going to the continuum limit, fluc-

tuations become more pronounced and the cost of generating configurations rises

exponentially. This is a major problem and prevents further progress regarding

this model.

In order to advance on the sign problem, the idea of dual variables was applied

to the model recently by separate groups. Progress was reported in a proceeding
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[157] and a bachelor thesis [158]. The latter was supervised by the author. Alas,

the preliminary results point to a residual sign problem for N ≥ 3. We have thus

chosen an alternative approach - the fermion-bag method.

4.3.1 Derivation of the fermion-bag discretization

The fermionic action of the model is written as

SF = S2F + S4F =
2

g2

∑

x,y

λT

x iQxyλy +
2

g2

∑

x

ρ4x
(
λT

xCλx
)2
, (4.1)

where the fermion matrix Q is given by

Qαβ
xy,ij = 4ρx

(
δik−2ux,iux,kρx

)
Mαβ

xy

(
δkj−2uy,kuy,jρy

)
ρy+16ρ2xux,iM

αβ
xy uy,jρ

2
y (4.2)

andMαβ
xy is the Wilson derivative, see equation (3.30). It is evident that fermionic

fields at separate lattice points do not mix in the four-fermi interaction8,

S4F =
2

g2

∑

x

ρ4x

(

λαx,iC
αβλβx,i

)2

=
16

g2

∑

x

ρ4xλ
0
x,0λ

1
x,0λ

0
x,1λ

1
x,1. (4.3)

Instead of the usual bosonization of the four-fermi interaction, we separate the

term and expand the exponential e−S4F in the fermionic part of the partition sum:

ZF =

∫
∏

z,l

dλ0z,ldλ
1
z,l

(

1− 16

g2
ρ4zλ

0
z,0λ

1
z,0λ

0
z,1λ

1
z,1

)

e−
1

2

∑
x,y λ

T
xiQxyλy . (4.4)

We introduce a new field k that takes the values kz ∈ {0, 1} and maps all possible

factors of the product in (4.4) to configurations {k}. The remaining exponential

function is expanded in an analogous way:

ZF =
∑

{k}

∫
∏

z,l

dλ0z,ldλ
1
z,l

(
16

g2
ρ4zλ

0
z,0λ

1
z,0λ

0
z,1λ

1
z,1

)kz ∏

x

e−
1

2
λT

x

∑
y iQxyλy . (4.5)

8We use the explicit representation of the gamma-matrices: γ0 = σ3, γ1 = −σ1, γ∗ = iγ0γ1 =
σ2, C = −iσ2. In general, x and y correspond to lattice indices, i and j to flavor indices and
α and β to spinor indices.
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The integrand corresponds to a sum of products analogous to a high-temperature

expansion. In order to provide a contribution to the partition sum, the Grass-

mann integral must include every fermionic degree of freedom exactly once, lest

it vanishes due to the Grassmann nature of the fermions. Please note that for

a given configuration {k}, the Grassmann integration is completely saturated at

the lattice point z by setting kz = 1. Therefore, all addends that include factors
1
2
λT

x iQxyλy with x = z or y = z vanish. Only factors with indices from the set

{

(x, i, α)
∣
∣
∣ x ∈ {0, . . . , V −1}, i ∈ {0, 1}, α ∈ {0, 1}, kx = 0

}

, (4.6)

are allowed. Let P [k] be a partition of these indices into pairs {(x, i, α), (y, j, β)}
without respect to ordering. The partition sum is thereby rewritten as

ZF =
∑

{k}

∫
∏

z,l

dλ0z,ldλ
1
z,l

(

−16

g2
ρ4zλ

0
z,0λ

1
z,0λ

0
z,1λ

1
z,1

)kz ∑

P [k]

∏

{(x,i,α),(y,j,β)}

λαx,iiQ
αβ
xy,ijλ

β
y,j ,

(4.7)

where a factor 2−kz was accounted for by the overcounting of the sum in equation

(4.5) in comparison to the sum over all partitions
∑

P [k]. We proceed by inte-

grating out all fermionic degrees of freedom which gives the usual Pfaffian of the

fermion matrix. However, due to the introduction of the k field, only those rows

and columns are present for which kx = 0:

ZF =
∑

{k}

∫
∏

z,l

dλ0z,ldλ
1
z,l λ

0
0,0 . . . λ

1
V−1,1

(

−16

g2
ρ4z

)kz ∑

P [k]

sgnP [k]
∏

{(x,i,α),(y,j,β)}

iQαβ
xy,ij ,

=
∑

{k}

∏

z

(

−16

g2
ρ4z

)kz

Pf iQ[k] =
∑

{k}

∏

z

(
16

g2
ρ4z

)kz

PfQ[k]. (4.8)

Analogous to chapter 3.5, we split the ρ factors from the fermion matrix, which

results in the final formulation:

ZF =
∑

{k}

∏

z

ρ4z

(
16

g2

)kz

PfQ′[k], (4.9)
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with the fermion matrix

Q′
xy,ij = 4 (δik − 2ux,iux,kρx)CMxy (δkj − 2uy,kuy,jρy) + 16ρxux,iCMxyuy,jρy.

(4.10)

The discretization of the bosonic part proceeds as depicted in chapter 3.4.1 and

the partition function for the full model reads

Z =
∑

{k}

∫
∏

x

dux

(
16

g2

)kx

e−Seff({u,k}), (4.11)

where the effective action is

Seff({u, k}) =
1

2g2

∑

x,y

(
4ρxuxKxyuyρy + ρx(1− u2

x)Kxy(1− u2
y)ρy

)

− 2
∑

x

log ρx − log PfQ′[k]. (4.12)

For the fermionic derivative, we use the Wilson operator which includes only

nearest-neighbor interactions. We emphasize that this leads to a simplification

of the Pfaffian. Given a configuration {k}, we locate the connected clusters Bi

of lattice sites x for which kx = 0. If two or more such clusters exist, then the

fermion matrix can be rearranged such that the Pfaffian is given by the product

of the Pfaffian determinants for each cluster,

PfQ′[k] =
∏

i

PfQ′[Bi]. (4.13)

These clusters are called fermion-bags. A reduction of the matrix size translates

into a large decrease of the simulation time. A simple algorithm for the compu-

tation of the determinant, like e.g. the LU decomposition, scales according to n3,

where n = 2NV is the size of the fermion-matrix for the supersymmetric non-

linear O(N) Sigma model. Furthermore, whereas the size of the fermion matrix

naturally grows with the lattice volume V , this is not necessarily true for the size

of the fermion-bags |Bi|. The simulation time is thus governed by the largest

fermion bag B+,

τ ∝ |B+|3. (4.14)
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Figure 23: Visualization of typical fermion-bags - the connected clusters of lattice
sites x for which kx = 0 - in the quenched ensemble for g−2 = 0.05 (left panel)
and g−2 = 0.2 (right panel). Although different colors correspond to different
fermion-bags, some colors are used several times.

In order to picture possible expectations of the fermion-bag approach, we first

concern ourselves with the quenched approximation, i.e. we ignore the contribu-

tion of the Pfaffian determinant.

4.3.2 Quenched ensemble

The k and u field interact only through the Pfaffian determinant. If we ignore it,

then the expectation values of the k field no longer depend on the bosonic field

and we can investigate the simplified partition function

Zq =
∑

{k}

∏

x

(
16

g2

)kx

. (4.15)

The mean number of fermion-bags 〈nB〉q and the average size of the largest bag

〈|B+|〉q are depicted in figure 24. In the g−2 → ∞ limit, configurations with

kx = 1 are favored and a formation of fermion-bags does not occur. In particular,

we find that for a fixed coupling with g−2 > 0.03 the size of the largest fermion-

bag does not scale with the lattice volume. This is a much desired property for the

full model. The strong coupling limit, g−2 → 0, is dominated by configurations

with kx = 0 and the fermion-bags grow to their maximum size. The fermions

propagate freely, which is expected from asymptotic freedom, but the simulation
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Figure 24: Shown is the number of fermion-bags (left panel) and the size of the
largest bag (right panel) in dependence of the coupling constant for the quenched
ensemble Zq.

time is large. Since this limit is easily described by perturbation theory, it seems

contradictory that the numerical effort grows to its maximum. Fortunately, we

can use an alternative derivation of the fermion-bag method that is efficient in

the strong coupling limit. It is called the dual fermion-bag approach.

4.3.3 Dual fermion-bag approach

The dual fermion-bag method is related to the diagrammatic Monte Carlo method

[159, 160]. We will derive the formulation starting from equation 4.5. One rec-

ognizes that the field insertions λ0z,0λ
1
z,0λ

0
z,1λ

1
z,1, which stem from the expansion

of the four-fermi interaction term, can be created by functional derivation of a

generating functional:

∂

∂η0z,0

∂

∂η1z,0

∂

∂η0z,1

∂

∂η1z,1
ZF [η]

∣
∣
∣
η=0

=

∫
∏

z,l

dλ0z,ldλ
1
z,l λ

0
z,0λ

1
z,0λ

0
z,1λ

1
z,1 e−

1

2

∑
x,y λ

T
xiQxyλy ,

(4.16)

with

ZF [η] =

∫
∏

z,l

dλ0z,ldλ
1
z,l e

− 1

2

∑
x,y λ

T
xiQxyλy+

∑
x η

T
xλx . (4.17)
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Using Wick’s theorem, the expression evaluates to the Pfaffian of the propagator

matrix. It consists of all propagators between the lattice sites z with kz = 1,

Q′−1[k] =







. . .

(Q′−1)αβxy,ij
. . .







with kx = ky = 1. (4.18)

The partition function thus takes the form:

ZF =
∑

{k}

∏

z

ρ4z

(
16

g2

)kz

PfQ′−1[k] PfQ′. (4.19)

Comparing equations (4.19) and (4.9), we find the duality relation

PfQ′[k] = PfQ′−1[k] PfQ′. (4.20)

The collection of sites with k = 1 is called the dual fermion-bag. In general,

the propagator matrix is dense and a splitting of the Pfaffian akin to the regular

fermion-bags is not possible. Therefore, it is not meaningful to define discon-

nected dual fermion-bags. The effective action for the full model using the dual

fermion-bag approach reads

Seff =
1

2g2

∑

x,y

4ρxuxKxyuyρy + ρx(1− u2
x)Kxy(1− u2

y)ρy

− 2
∑

x

log ρx − log PfQ′−1[k]− log PfQ′, (4.21)

where the partition sum is given by equation (4.11). The Pfaffian of the fermion

matrix PfQ′ does not depend on {k} and can be ignored in an update of the

fermion-bag configuration. One is left with the computation of the propagator

matrix and its Pfaffian determinant. Please note that for each update, the inverse

of the full fermion matrix needs to be computed and only afterwards, lines and

columns corresponding k = 0 are dropped.

We have laid out both fermion-bag methods and proceed with results for the

full model without resorting to the quenched approximation.
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4.3.4 The full ensemble

Dynamical variables of the full model include stereographically projected bosonic

fields u and fermion-bags k. The ensemble is defined by partition function (4.11)

and effective action (4.12) or (4.21) depending on whether the regular or dual

fermion-bag approach is used. In order to construct a Markov Chain of config-

urations, u and k are updated separately. The former is treated by the O(3)

improved HMC algorithm that was outlined in chapter 3.7. However, instead of

a rational approximation, the Pfaffian is calculated explicitly using the method in

[161]. Though this leads to larger simulation times, it is in part compensated by

using the more efficient fermion-bag formulation. The fermion-bags are updated

by a local Metropolis step. For each lattice site x, we propose to update the

fermion-bag variable kx → k′x ∈ {0, 1}. The acceptance probability is given by

pacc =

(
16

g2

)k′x−kx
∏

i PfQ
′[B′

i]
∏

j PfQ
′[Bj ]

. (4.22)

for the regular fermion-bag update or

pacc =

(
16

g2

)k′x−kx PfQ′−1[k′]

PfQ′−1[k]
. (4.23)

for the dual fermion-bag update. We have calculated the mean number of bags

and the size of the largest bag for different couplings and Hopping parameters in

figure 25. Both observables vary strongly with κ and it is evident that a precise

fine tuning is needed. We have verified the values for the critical Hopping param-

eter κc that were determined in chapter 3.8 by computing the constraint effective

potential of the chiral condensate again, using the fermion-bag approach. There is

a technical difference between both formulations. In the bosonized discretization,

the interaction is implemented by the background field. For the fermion-bags, it

is generated by dropping certain rows and columns from the fermion matrix. Of

course, regarding the resulting expectation values, we find good agreement. It is

quite interesting that 〈nB〉 and 〈|B+|〉 have an extremum in the vicinity of the

critical Hopping parameter.

The mean number of bags and size of the largest fermion bag in the fine tuned

ensemble are shown in figure 26. Comparing with the quenched results in figure

71



4 FERMION-BAG APPROACH TO MONTE CARLO SIGN PROBLEMS

1

2

3

4

5

6

7

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

〈nB〉

κ

g−2 = 1.1
g−2 = 1.2
g−2 = 1.3

0

50

100

150

200

250

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

〈|B+|〉

κ

g−2 = 1.1
g−2 = 1.2
g−2 = 1.3

Figure 25: We show the number of fermion-bags (left panel) and the size of the
largest bag (right panel) in dependence of the Hopping parameter for different
coupling constants on a 162 lattice.

24, we see that the behaviour of the observables has changed significantly. The

size of the bags grows towards the continuum limit, i.e. g−2 → ∞. Furthermore,

for sufficiently small coupling, we see a clear scaling of the fermion-bag size with

the lattice volume.

Following our previous discussion for the quenched model, it might be bene-

ficial to use the dual fermion-bag approach in the small coupling regime since it

offers increased performance in the case of large bag sizes. However, in order to

evaluate the acceptance probability (4.23), one needs to compute the Pfaffian of

the propagator matrix Q−1[k]. Since we compute the Pfaffian exactly, knowledge

of all elements ofQ−1 is required. Alas, the fermion matrix depends on the bosonic

degrees of freedom and the full inverse needs to be computed at every step of the

HMC integration, which renders the dual fermion-bag algorithm too expensive to

be applicable for this model. A faster approach might be given by discarding the

Pfaffian sign and using the identity Pf 2M = detM for a skew-symmetric matrix

M . It is then possible to rewrite the contribution to the effective action,

elog |PfM | = e
1

2
log detM = e

1

2
tr logM . (4.24)

It was shown in [162] that tr logM may be computed efficiently using stochas-

tic estimator and Padé approximation techniques. However, since the sign of

the Pfaffian fluctuates, it must be computed separately, which diminishes the
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Figure 26: Shown is the number of fermion-bags (left panel) and the size of the
largest bag (right panel) in dependence of the coupling constant for the full model.
The solid lines denote the maximum bag size |Bmax| = V .

efficiency of the approach. Therefore, we have not pursued this method and

continue to use the regular fermion-bag method.

In order to investigate the continuum limit, we use the bosonic two-point

function in equation 3.26 to extract the bosonic mass mBa. Again, values for

the bosonized and fermion-bag formulation agree within error bars and we show

〈nB〉 and 〈|B+|〉 for different box sizes mBL in figure 27. The continuum limit is
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Figure 27: The number of fermion-bags (left panel) and the relative size of the
largest bag (right panel) are shown. For fixed physical box size mBL = const.,
the relative bag size does not depend on the lattice volume.

approached by keeping the box size mBL fixed and increasing the lattice volume.

We immediately see that the relative size of the largest bag 〈|B+|〉 /|Bmax| does
not change towards the continuum limit. The size of the largest bag thus scales
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linearly with the lattice volume,

〈|B+|〉 ∝ |Bmax| = V. (4.25)

Consequently, the scaling of the simulation time τ is equivalent to the behaviour

for the bosonized formulation. We must conclude that the fermion-bag method

does not show an advantage in this respect.

It is still important to evaluate the fluctuations of the Pfaffian sign since it

directly affects the applicability of the MCMC method. In figure 28, we compare

the average sign for the fermion-bag method (left panel) and the bosonized formu-

lation (right panel) depending on the coupling constant. It is evident that while

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2

〈s
g
n
P
fQ

′ 〉

g−2

82
162
242

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2

〈s
g
n
P
fQ

′ 〉

g−2

82
162
242

Figure 28: The expectation value of the Pfaffian sign is shown for the fermion-bag
method (left panel) and the auxiliary field method (right panel). We see that sign
fluctuations are significantly reduced for the fermion-bag approach.

sign fluctuations still occur, they are significantly smaller than for the bosonized

formulation. This conclusion is valid even in the continuum limit, which is shown

in figure 29. Alas, keeping the box size fixed, we still find that the sign problem

gets slightly worse for larger volumes. However, the notable reduction in sign

fluctuations is going to allow the study of lattice sizes considerably larger than

possible up to now.

4.4 The one-flavor Gross-Neveu model

The Gross-Neveu model in three space-time dimensions is often formulated using

a reducible representation of the gamma matrices. In this case, the model is
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Figure 29: We show the behaviour of the average sign towards the continuum
limit for the fermion-bag method (left panel) and the bosonized model (right
panel). For fixed box size, the sign problem gets worse for larger lattice volumes.

invariant under a continuous chiral symmetry. Furthermore, it is γ5-hermitean

and the fermion determinant is real. In this chapter however, we will construct

the model with the irreducible representation and γ5-hermiticity is lost. Our

aim is to evaluate the complex phase of the fermion determinant in both the

conventional discretization and the fermion-bag approach.

For Nf flavors of Dirac-spinors ψi, i ∈ {0, . . . , Nf − 1}, the action of the

massless Gross-Neveu model takes the form

S =

∫

d3x
{

ψ̄i /∂ψi − U
(
ψ̄iψi

)2
}

, (4.26)

where U is the four-fermi coupling constant. The model exhibits a U(Nf ) flavor

symmetry,

ψi → Uijψj , ψ̄i → ψ̄jU
†
ji, Uij ∈ U(Nf ). (4.27)

The irreducible representation of the gamma matrices in three space-time dimen-

sions may be explicitly written out using the Pauli matrices,

γ0 = σ1, γ1 = σ2, γ2 = ±σ3. (4.28)

Since there is no γ5 matrix, it is not possible to define a chiral symmetry. How-

ever, the model is invariant under a parity transformation that results in a Z2-
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symmetry akin to a discrete chiral symmetry,

ψi(x) → ψi(−x), ψ̄i(x) → −ψ̄i(−x). (4.29)

In particular, the parity symmetry is broken explicitly by the parity condensate

ψ̄i(x)ψi(x). The model is not renormalizable in a loop expansion, which is already

evident from a simple power counting analysis. However, in the large-N limit it is

renormalizable to every finite order in 1/N and the model exists at a non-Gaußian

fixed point [163, 164]. This fixed point corresponds to a second-order phase

transition that divides a symmetric phase with order parameter
〈
ψ̄ψ
〉
= 0 from

a phase with spontaneously broken symmetry,
〈
ψ̄ψ
〉
6= 0. Using the functional

renormalization group, this behaviour was established also for the N =1 model

[165]. Starting in the broken phase, there is a transition at high temperatures

where the parity symmetry is restored, see figure 30 (left panel). This transition

has been analyzed using the large-N expansion and analytical methods because

of its similarity with the finite temperature chiral transition in two-flavor massless

QCD and the critical behaviour was found to belong to the universality class of

the 2d Ising model [164].

T

U

Tc =
Tc(U)

〈
ψ̄ψ
〉
= 0

〈
ψ̄ψ
〉
6= 0

Uc

κ κc

U

Uc

continuous first order

second order

Figure 30: Presumed phasediagram of the continuum Gross-Neveu model for
finite temperature (left panel) and of the discrete model at zero temperature
(right panel).
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4.4.1 Discretization

In the following sections, we will discretize the model using the SLAC and the

Wilson derivative. In the latter case we introduce an additional fermion mass

parameter analogous to the study of the supersymmetric nonlinear Sigma model,

which is used to fine tune the model to the continuum limit. However, since

the additional fine tuning increases the numerical expense of the simulation, we

conduct a first investigation using the SLAC derivative. This study will serve to

support our basic expectations of the model.

At zero temperature, we expect a phase transition at κc for couplings U > Uc

and a continuous transition for couplings U ≤ Uc (see figure 30, right panel). In

the broken phase, the two ground states give rise to a latent heat for the transition

around κc, which is thus of first order. This behaviour is used to construct the

continuum limit. We start in the broken phase U > Uc and evaluate the effective

potential of the parity condensate ψ̄ψ. By adjusting the Hopping parameter, we

tune the ensemble such that the minima of the effective potential are of equal

height. For κ = κc, the energies of both ground states are degenerate. This

procedure is repeated for different U > Uc. As U approaches Uc, the lattice

spacing goes to zero and the continuum limit is reached. The critical point, which

corresponds to a second order phase transition, is characterized by a vanishing

curvature of the effective potential.

The discretization of the model is usually constructed by a partial bosonization

of the four-fermi term using the Hubbard-Stratonovich transformation. This

formulation will be used to compare to the fermion-bag approach and is therefore

given here in short. Starting from the continuum action (4.26), we derive the

discretized form for the Nf=1 model

S =
∑

x,y

ψ̄xMxyψy − U
∑

x

(
ψ̄xψx

)2
, (4.30)

where Mxy corresponds to either the SLAC derivative or the Wilson derivative.

We introduce an additional scalar field σ such that

∫

dσ eσψ̄ψ+
1

4U
σ2 ∝ e−U(ψ̄ψ)

2

(4.31)
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and the partition sum takes the form:

Z =

∫
∏

z

dσzdψ̄zdψz exp
{

−
∑

x,y

ψ̄x(Mxy + σxδxy
︸ ︷︷ ︸

≡Mxy(σ)

)ψy +
1

4U

∑

x

σ2
x

}

,

=

∫
∏

z

dσz detM(σ) exp
{

− 1

4U

∑

x

σ2
x

}

,

=

∫
∏

z

dσz exp {−Seff} (4.32)

with the effective action

Seff =
1

4U

∑

x

σ2
x − log detM(σ). (4.33)

The determinant of the fermion-matrix may obtain a complex phase,

detM(σ) = eiφ(σ) |detM(σ)| . (4.34)

We simulate the phase-quenched ensemble using a global Hybrid Monte Carlo

algorithm and include the phase by a reweighting procedure. The partition sum

of the phase quenched ensemble reads

Zφ =

∫
∏

z

dσz exp
{

− 1

4U

∑

x

σ2
x − log |detM(σ)|

}

(4.35)

and expectation values are defined as

〈O〉 =
〈
Oeiφ

〉

φ

〈eiφ〉φ
=
Z−1
φ

∫ ∏

z dσz Oeiφ exp
{
− 1

4U

∑

x σ
2
x − log |detM(σ)|

}

Z−1
φ

∫ ∏

z dσz e
iφ exp

{
− 1

4U

∑

x σ
2
x − log |detM(σ)|

} .

(4.36)

We will now analyze the basic features of the model using the non-local SLAC

derivative.
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4.4.2 SLAC fermions

On a one-dimensional lattice of length L, the SLAC derivative reads

∂SLACxy =

{

0 for x = y
π
L
(−1)x−y sin−1

(
π
La
(x− y)

)
for x 6= y

. (4.37)

This is generalized to arbitrary dimensions in a straightforward way and leads to

a non-local derivative. Boundary conditions for different lattice directions µ are

set by the respective lattice side length Lµ:

for Lµ

{

even anti-periodic boundary conditions,

odd periodic boundary conditions.

The SLAC derivative was shown to be very efficient for supersymmetric quantum

mechanics [123, 166], Wess-Zumino models [100] and the supersymmetric nonlin-

ear sigma model [25]. It shows only small lattice artifacts and does not break the

parity symmetry explicitly, which eliminates the need to fine tune the fermion

mass parameter. Our aim is to use this derivative to reveal the basic features

of the model in order to obtain a guideline for the discussion of the fermion-bag

method.

The parity condensate is an order parameter for the parity symmetry. It is

zero in the symmetric phase and becomes nonzero in the broken phase. However,

in lattice simulations we work with finite volumes and the tunneling probability

between the two ground states is hence nonzero. This leads to a vanishing of the

parity condensate even in the broken phase. As a rough guideline for the phase

boundary, we use the four-fermi term

〈F 〉 = 1

2V

∑

x

( 〈
trM−1

xx trM
−1
xx

〉
−
〈
trM−1

xxM
−1
xx

〉 )
, (4.38)

which is shown in figure 31 (left panel). For small coupling, it takes small values.

Going to larger coupling, 〈F 〉 increases until a plateau is reached. Furthermore, it

is not diminished if the lattice size is increased. The (phase-quenched) constraint
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Figure 31: The average of the four-fermi term (left panel) shows a transition that
is more pronounced for larger lattices. This is reflected by the constraint effective
potential of the condensate for different couplings U on the 8 × 72 lattice (right
panel). In particular, the two minima which correspond to the ground states in
the broken phase are clearly visible for large coupling.

effective potential of the parity condensate

Ûφ(ψ̄ψ) = − log ρφ(ψ̄ψ) (4.39)

is depicted in figure 31 (right panel). The probability density ρφ is given by

ρφ(X) = Z−1
φ

∫
∏

z

dσz δ(X − ψ̄ψ) e−Seff . (4.40)

For small coupling, we find that Ûφ(ψ̄ψ) shows only a single minimum. Going to

larger coupling, the effective potential broadens and two minima appear, which

correspond to the ground states of the model. This behaviour is compatible with

a second order phase transition.

From previous studies we expect the appearance of massless fermions at the

critical point. Therefore, we have computed the fermionic masses mFa from the

scalar correlator < O(x)Ō(y) > with source Ō(y) = ψ̄yψy and sink O(x) = ψ̄xψx.

Thereby, a projection onto one of the ground states in the broken phase is not

needed. We find that the masses are well above the cutoff value for the 6 × 52

lattice (see figure 32, left panel). For the larger 8×72 lattice however, the masses

decrease significantly towards the critical point and a massless continuum limit
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Figure 32: The left panel shows the fermionic mass in dependence of the coupling.
The solid lines depict the cutoff mass. In the right panel, we show the behaviour
of the parity condensate to a variation of the fermion mass parameter m on the
8 × 72 lattice. For small coupling, a continuous transition is observed, but for
large coupling the behaviour grows more steep. In the infinite volume limit we
expect a jump which corresponds to a first order phase transition.

is plausible.

We can disfavor one of the minima by the introduction of a fermionic mass

term mψ̄ψ, which breaks the parity symmetry explicitly and rises the respective

ground state energy. In figure 32 (right panel), we depict the parity condensate

for different values of the fermion mass parameter m. We find a smooth tran-

sition between positive and negative values of the condensate, but it becomes

increasingly steep for large coupling. The fermionic mass behaves like a relevant

operator. If it is zero and U = Uc, then the theory flows along the critical line. If

it is chosen nonzero however, a display of the amplification property of the RG

flow is provided. For a finite lattice, fluctuations are integrated out only until a

lower cutoff: the behaviour is continuous. In the infinite volume limit however,

the lower cutoff goes to zero and even a small deviation leads to a large change

of the macroscopic physics: the steep behaviour becomes a jump. It is a signal

of a first order phase transition.

The applicability of the MCMC method is challenged by the complex weight of

the effective action (4.33). In figure 33 (left panel) we show the average absolute

phase 〈|φ|〉 of the fermion determinant in dependence of the coupling constant.

We see that phase fluctuations are particularly pronounced in the vicinity of the

critical point. Furthermore, 〈|φ|〉 increases significantly with the lattice volume.
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Figure 33: Shown is the average absolute phase of the fermion determinant for
various lattice sizes depending on the coupling (left panel) and the distribution
ρφ(φ) of the phase on the 8× 72 lattice for different couplings (right panel).

The distribution ρφ(φ) (see figure 33, right panel),

ρφ(X) = Z−1
φ

∫
∏

z

dσz δ(X − φ) e−Seff (4.41)

is sharp for small coupling U = 2.0 but becomes flat for U = 4.0, revealing that

the phase varies strongly. Since we need to simulate the model in the vicinity

of the critical point in order to compute the continuum limit, this is a severe

problem. It is clear that simulations at large volumes will be extremely hard to

perform.

In the next chapter, we will evaluate the fluctuations of the phase in the

fermion-bag approach and discuss whether this formulation is able to provide a

solution to the complex phase problem.

4.4.3 The fermion-bag method

The idea of the fermion-bag formulation in the one-flavor Gross-Neveu model is

analogous to the supersymmetric nonlinear Sigma model. However, integrating

out the Dirac fermions yields the determinant of the fermion-matrix instead of

the Pfaffian. We start with the action (4.30) and note that again the four-fermi

82



4 FERMION-BAG APPROACH TO MONTE CARLO SIGN PROBLEMS

interaction does not mix degrees of freedom at different lattice sites,

∑

x

(
ψ̄xψx

)2
= 2

∑

x

ψ̄0
xψ

0
xψ̄

1
xψ

1
x. (4.42)

We expand the interaction and due to the Grassmann nature of the fermions only

the constant and linear term survive. The partition sum reads:

Z =

∫
∏

z

dψ̄zdψz
(
1 + 2Uψ̄0

zψ
0
z ψ̄

1
zψ

1
z

)
exp
{

−
∑

u,v

ψ̄uMuvψv

}

. (4.43)

Here, u and v collect the 2V lattice and spinor indices to allow for a shorter

notation. The interaction term is rewritten by the introduction of a new field

variable kx ∈ {0, 1} for every lattice site x, which will later be interpreted as the

fermion-bag,

Z =
∑

{k}

∫
∏

z

dψ̄zdψz
(
2Uψ̄0

zψ
0
z ψ̄

1
zψ

1
z

)kz
∏

u

(

1− ψ̄u
∑

v

Muvψv

)

. (4.44)

For a fixed configuration of {k}, only one term survives the integration. It includes

every fermionic degree of freedom exactly once:

Z =
∑

{k}

∫
∏

z

dψ̄1
zdψ

1
zdψ̄

0
zdψ

0
z (2U)kz

∑

v0,v1,...

ψ0
v0
ψ̄0
0 . . . ψ

0
xψ̄

0
xψ

1
xψ̄

1
x . . . ψ

1
vV−1

ψ̄1
V−1 M0v0 . . . 1 . . .M0vV−1

. (4.45)

The lattice sites z with kz = 0 provide an element of M to the product, whereas

the lattice sites with kz = 1 do not contribute. For the product to be nonzero,

all vi must be different from each other. Since a reordering of the indices is

antisymmetric, we identify the product as the determinant of the fermion-matrix
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M with rows and columns corresponding to lattice sites with kz = 1 dropped:

Z =
∑

{k}

∫
∏

z

dψ̄1
zdψ

1
zdψ̄

0
zdψ

0
z (2U)kz

ψ0
0ψ̄

0
0 . . . ψ

0
xψ̄

0
xψ

1
xψ̄

1
x . . . ψ

1
V−1ψ̄

1
V−1

∑

v0,v1,...

ǫv0v1...M0v0 . . . 1 . . .M0vV −1
.

︸ ︷︷ ︸

detM [k]

(4.46)

The final form for the partition sum is hence

Z =
∑

{k}

∏

x

(2U)kx detM [k]. (4.47)

We will use the ultra-local Wilson derivative from equation (3.30) to discretize the

fermionic action and the determinant detM [k] can thus be written as a product

of the determinants for the fermion-bags Bi,

detM [k] =
∏

i

detM [Bi]. (4.48)

Analogous to the previous chapter, it is possible to construct a dual fermion-bag

formulation which nets the duality relation

detM [k] = detM detM−1[k], (4.49)

whereM−1[k] is the matrix of propagators between the lattice sites x with kx = 1.

Of course, the matrix of propagators is in general not sparse and the determinant

does not break up into separate factors for each fermion-bag.

Ignoring the fermionic contribution of the determinant, the quenched partition

sum for the fermion-bags takes an analogous form to the equation (4.15) and we

can expect a similar behaviour to figure 24. In particular, we again want to

address the question whether the fermion-bag formulation shows an improved

scaling behaviour of the simulation time when one approaches the continuum

limit in the full model.
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4.4.4 Wilson fermions

The Markov chain is constructed using a local Metropolis algorithm. Please

note that in contrast to the nonlinear Sigma model, the fermion-matrix M does

not depend on any bosonic or gauge degrees of freedom and the inverse thus only

needs to be computed once. For the lattice sizes considered here, we will compute

all matrix elements exactly. The acceptance probability for the site x takes the

form

pacc = (2U)1−2kx

∏

i detM [B′
i]

∏

j detM [Bj ]
(4.50)

for the regular fermion-bag formulation and

pacc = (2U)1−2kx detM−1[k′]

detM−1[k]
(4.51)

for the dual formulation. As before, it is clear that the performance of the al-

gorithm depends crucially on the size of the fermion-bags. We start with a test

run, where the bare fermion mass m is set to zero. For different coupling U , we

measure the simulation time of both fermion-bag formulations, see figure 34 (left

panel). We find that the runtime of the regular algorithm correlates well with
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dual
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U

Figure 34: The simulation time τ for the regular and dual fermion-bag formulation
on a 43 lattice is shown in the left panel. The bare fermion mass set to zero and
τ is normalized such that the largest time recorded is equal to 1. The right panel
shows the average size of the largest fermion-bag which correlates well with the
performance of the regular method.

the size of the largest fermion-bag that is depicted in the right panel of figure
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34. The plot shows superior performance of the dual updater for small couplings,

where fermion-bags are large, and faster execution of the regular algorithm for

large couplings and small fermion-bags.

In order to approach the continuum limit, the parameters U and κ need

to be fine tuned such that the microscopic action lies on the critical line. We

identify this point by a sequence of simulations starting in the broken regime

U > Uc and gradually lowering the coupling towards the critical point. For each

coupling U , different values of the Hopping parameter κ are simulated and the

critical κc = κc(U) is determined from the constraint effective potential Ûφ(ψ̄ψ)

of the parity condensate. In figure 35 (left panel) we show the potential for three

different values of κ and it is evident that the critical value corresponds to the

potential with minima of equal height. In this case, both ground states have the

4
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Figure 35: Shown is the constraint effective potential Ûφ(ψ̄ψ) of the parity con-
densate in the vicinity of the critical Hopping parameter on a 24×62 lattice with
U = 0.55 (left panel) and for different coupling parameters U approaching the
critical point Uc on a 32× 82 lattice (right panel).

same energy and none is favored over the other. The critical point Uc is reached

if the curvature of the potential vanishes (see figure 35, right panel). In contrast

to the nonlinear Sigma model, the size of the largest bag depends only weakly on

the Hopping parameter. Furthermore, we find a distinct behaviour in the vicinity

of κc, shown in figure 36 (left panel). It is reminiscent of the parity condensate

(see figure 36, right panel). The fermion-bag method is most useful if we simulate

the model either in the regime of small couplings, where the dual algorithm is

fast, or in the regime of large coupling, where the regular algorithm is efficient.
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Figure 36: The size of the largest bag varies weakly with the Hopping parameter
(left panel) and shows a distinct behaviour at the critical κc which is also visible
for the parity condensate (right panel). This results were obtained on a 16 × 42

lattice.

We are most interested to simulate in the vicinity of the critical coupling. By

simulating different ensembles, we find that the value for Uc depends on the lattice

proportions. In the following, we choose a lattice that is larger in the temporal

direction: Ltemporal = 4Lspatial. The critical coupling is small and thus the dual

updater is used for these simulations. The performance of the algorithm depends

on the size of the dual bag |Bd|. In figure 37 we depict the average size of the

largest bag (left panel) and of the dual bag (right panel) in the vicinity of the

critical coupling Uc for different lattice sizes. Even though the dual fermion-bag
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Figure 37: We show the size of the largest bag (left panel) and the size of the
dual bag (right panel) in the vicinity of the critical coupling Uc for different lattice
sizes.
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formulation provides a massive speedup compared to the conventional method,

it is evident that the dual bag grows with the lattice volume and the scaling

behaviour of the simulation time is hence not improved. In contrast, the size

of the largest bag decreases for larger lattices. However, based on the lattice

sizes used here, it is not possible to conclude whether the regular fermion-bag

algorithm is superior for large lattices.

It is still of great interest to evaluate the distribution of the phase of the

fermion determinant. We compare our results for the absolute value 〈|φ|〉 using
the fermion-bag and bosonized formulation in figure 38. We find that the complex
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Figure 38: We show the average absolute phase of the fermion determinant for
the fermion-bag method (left panel) and the auxiliary field method (right panel)
for various lattice sizes.

phase problem is far less severe for the Wilson derivative compared to the SLAC

results in figure 33. However, this behaviour may be analogous to the nonlinear

Sigma model, where the milder sign problem is attributed to lattice artifacts.

Following this reasoning, the SLAC derivative shows stronger sign fluctuations

simply because the discretization is closer to the continuum limit. Indeed, going

to larger lattices, it is revealed that 〈|φ|〉 gets larger and the distribution ρφ(φ),

which is shown in figure 39 grows broader. The complex phase problem thus

becomes worse towards the continuum limit. Comparing the fluctuations for the

fermion-bag and auxiliary field method, we find that the former performs even

slightly worse than the latter. However, since fluctuations of the phase are very

mild, this small difference is of no practical significance.
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Figure 39: The distribution of the phase at Uc for different lattice sizes is depicted
for the fermion-bag method (left panel) and the auxiliary field method (right
panel).

4.5 Conclusion

In this chapter we have studied the applicability of the fermion-bag method to the

sign problem. This problem invalidates the Monte Carlo method. In general, a

treatment by brute force, using the reweighting technique, leads to an exponential

increase of the simulation time towards the continuum limit and is not feasible.

We have shown that this is true for the nonlinear O(3) Sigma model and the one-

flavor Gross-Neveu model. To assess the fermion-bag method for these models, we

have investigated the scaling behaviour of the simulation time and the fluctuations

of the Pfaffian sign for the former and the phase of the fermion determinant for

the latter model respectively.

In the case of the supersymmetric NLSM we have demonstrated that it is

possible to rewrite the partition sum using the fermion-bag method such that

the resulting discretized formulation is suitable for numerical evaluation. Alas,

we find that the size of the largest fermion-bag, which governs the runtime of

the algorithm, scales linearly with the lattice volume. Hence we do not see an

improvement of the simulation time scaling in comparison to the conventional

discretization, which uses a partial bosonization of the four-fermi interaction.

However, we have seen that the fluctuations of the Pfaffian sign are significantly

reduced, which provides a substantial performance increase. This improvement is

especially prevalent for large volumes, which are needed in order to approach the

continuum limit. We thus conclude that the fermion-bag discretization is superior
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to the bosonized formulation. Whereas we did not use advanced techniques to

treat the fermion determinant here, i.e. using pseudofermions, there is no general

problem that would prevent this. We expect that using the formulation presented

in this chapter, it is possible to push lattice sizes for this model well beyond what

was accessible previously. Based on these large lattice volumes, one will be able

to directly ascertain the restoration of supersymmetry in the continuum limit.

For the one-flavor Gross-Neveu model, we started with a simulation using the

non-local SLAC derivative in order to quickly identify the basic behaviour with-

out the need for fine tuning. This analysis revealed massive fluctuations of the

phase of the fermion determinant. Thus, we derived an alternative discretiza-

tion using the fermion-bag method and Wilson fermions. Ultralocal derivatives

like the Wilson derivative lead to a sparse fermion matrix, which is beneficial

for algorithms that depend on fast matrix-vector multiplications, e.g. conjugate-

gradient solvers. It further allows to split up the fermion determinant in the

regular fermion-bag method: instead of computing the determinant of the full

matrix, one computes the product of fermion-bag determinants. However, in our

simulations we have found that the dual fermion-bag algorithm is substantially

faster than the regular fermion-bag algorithm or the conventional approach, even

though it does not profit from the ultralocal derivative. Going to larger lattices,

the size of the dual bag grows and the simulation time scaling is thus not im-

proved. It is possible that the regular algorithm becomes more efficient at a

certain lattice size, but this is not covered by the simulations conducted here.

Regarding the complex phase problem, we find that it is greatly reduced for

Wilson fermions, both in the fermion-bag formulation and the auxiliary field

approach. The difference between both methods is very small and no practical

significance can be attributed to it.

The great difference in phase fluctuations for the SLAC and Wilson fermions

is quite interesting. Following an argument analogous to the nonlinear Sigma

model, one could presume that the SLAC derivative provides a discretization

that is far closer to the continuum limit and thus shows a stronger sign problem.

This perspective is supported by the observation that the complex phase problem

for Wilson fermions gets worse for larger lattices. Yet a final conclusion can not

be achieved by the present study without a means to compare lattice artifacts.
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5 Summary and Outlook

All quantum field theories discussed in this thesis share an important property:

they interact strongly. Thus, perturbation theory is not applicable. Instead, we

have used lattice techniques to study their non-perturbative behaviour. Markov

Chain Monte Carlo simulation is an incredibly powerful tool to analyze quantum

field theories on space-time lattices. Yet, every project portrayed here presented

an unusual challenge, pushing investigations toward the boundaries of applicabil-

ity of this method.

The main result of chapter 2 consists of the full flow diagrams for the non-

linear O(N) Sigma model in two and three dimensions. This type of information

is usually not accessed in lattice simulations. Rather, one directly measures

renormalized correlation functions without resorting to the full effective action Γ.

Nevertheless, a combination of blockspin transformations and the demon method

was shown to be able to compute the renormalization group flow. It is however

unavoidable to truncate the effective action. For the asymptotically free model in

two dimensions we have shown that such a truncation leads to considerable uncer-

tainties, including the appearance of artificial fixed points. In order to complete

our method, we have successfully applied a novel optimization scheme, based on

the evaluation of correlation functions in truncated ensembles. Thereby, system-

atic errors were mitigated significantly. Finally, we have shown that for our best

truncation, including all possible operators up to fourth order in the momenta,

asymptotic safety is fulfilled in the three-dimensional NLSM.

In chapter 3 we have concerned ourselves with the supersymmetric nonlin-

ear O(3) Sigma model. Unfortunately, every discretization of space-time breaks

supersymmetry and thus allows the renormalization of susy-breaking operators.

If these operators diverge in the continuum limit, supersymmetry is not restored

and the lattice method fails. Here, we have presented extensive numerical investi-

gations of the aforementioned model. Using stereographic projection of the fields,

O(3) symmetry stays intact even for finite lattice spacing, whereas supersymme-

try and chiral symmetry are broken. However, both are seemingly restored in the

continuum limit by fine tuning of a single parameter. Thus, the lattice method

yields the correct continuum limit for this theory.

Yet, one problem remains: the path integral weight is not positive. Since
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Monte Carlo simulations rest on a probabilistic interpretation of the weight, their

application is not straightforward. Although a loophole is given by the reweight-

ing trick, it leads to an exponential increase of simulation time for large lattices.

Thus, the Monte Carlo method still fails. In chapter 4, we have used the fermion-

bag approach to treat the sign problem for the supersymmetric nonlinear O(3)

Sigma model and the one-flavor irreducible Gross-Neveu model. While an im-

provement of simulation time scaling is not achieved for the former model, sign

fluctuations are considerably reduced. We conclude that this formulation allows

to study much larger lattices than previously possible. The second model suffers

from a complex phase problem. Whereas SLAC fermions show wild phase fluc-

tuations, they are greatly reduced for Wilson fermions. No further improvement

is achieved by the fermion-bag method for this model.

Based on these investigations, our general conclusion is clear. Markov Chain

Monte Carlo simulations and the lattice method are very well suited to study

strongly-interacting quantum field theories. They provide a powerful tool that is

prepared to tackle future challenges. Out of these, we emphasize two particular

problems that are related to the present thesis.

Triviality of φ4 theory The nonlinear O(N) Sigma model may be obtained as

a limit of the linear O(N) Sigma model

S =
∑

x

{

− κ
D∑

µ=0

(φx · φx+µ̂ + φx · φx−µ̂) + φx · φx + λ(φx · φx − 1)2
}

(5.1)

by taking λ → ∞. If the number of fields N is equal to 1, this limit reduces to

the well-known Ising model, i.e. φ ∈ {1,−1}. The action (5.1) is equivalent to

S =
∑

x

{ 1

2

D∑

µ=0

(∂µφ̂x)
2 +

m2

2
φ̂

2

x +
g

4!
φ̂

4

x

}

, (5.2)

with rescaled fields φ̂x =
√
2κφx and couplings m2 = (1−2λ)/κ−2D, g = 6λ/κ2.

This formulation is known as φ4 theory. For D > 4, it was rigorously proven that

it is trivial, i.e. all correlation functions are identical to the correlation functions

of a generalized free field [167, 168]. It is still an open question whether this

92



5 SUMMARY AND OUTLOOK

is true for D = 4 as well. In four dimensions, φ4 theory possesses two phases,

separated by a second-order phase transition at κc(λ). For κ < κc the model is in

the symmetric phase and O(N) symmetry is intact. For κ > κc, O(N) symmetry

is broken spontaneously and N−1 Goldstone bosons appear. They correspond

to the tangential directions of the field. Using high-temperature expansion and

RG equations, triviality bounds for this model were calculated in [169–171]. It is

expected that the critical exponents take their mean-field values. Furthermore,

the renormalized φ4 coupling vanishes in the continuum limit. However, since it

vanishes only logarithmically, prohibitively large lattices are needed. Recently,

one has simulated the Ising-limit using highly efficient worm algorithms [172–174].

Unfortunately, progress is still limited as one is forced to rely on a connection to

perturbation theory in order to extrapolate to the continuum limit. The appli-

cation of the MCRG demon method to this problem could be a very interesting

prospect. Using the full flow diagram, one is able to characterize fixed points of

the RG flow and the corresponding critical exponents, providing a complementary

perspective to the question at hand.

Asymptotic Safety of Quantum Einstein Gravity We have demonstrated

that the D = 3 nonlinear O(N) Sigma model is asymptotically safe. Of course,

this model can only be regarded as a toy model for another question of far greater

physical relevance: is general relativity asymptotically safe? Several attempts to

answer this question have been undertaken using functional renormalization group

calculations [175–179]. Although a non-Gaußian UV fixed point was identified,

one ought to treat these results with care since they are based on a truncation

of the effective action. Thus, complementary results, e.g. using the MCRG

demon method, are highly anticipated. However, in order to apply the latter

approach, a formulation of general relativity based on numerical simulations is

required. Fortunately, such a formulation exists. It is given by causal dynamical

triangulation (CDT) [180, 181]9. Thereby, non-perturbative quantum gravity is

defined as a sum over space-time geometries. Since the method is independent

of any preferred background metric, a definition of a correlation length or an

9Incidentally, the authors of [181] note that the Wilson-Fisher fixed point of three-
dimensional scalar theory is different from the presumed fixed point of general relativity since
the former is an infrared fixed point. However, we have argued in chapter 2 that it actually is
an ultraviolet fixed point and asymptotic safety is realized.
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analogue to blockspin transformations is unclear. One approach might be to

consider matter-coupled quantum gravity, where correlators of matter fields are

used. In the absence of matter however, no similar formulation, e.g. of a graviton

propagator, is currently available. Furthermore, while real-space renormalization

group transformations exist for dynamical triangulations [182, 183], they do not

respect the causal structure that is inherent in CDT. An approximation for the

effective action may be obtained by a comparison to the mini-superspace approach

[184]. However, in order to obtain the full flow diagram, a technique like the

demon method is needed. Preliminary results suggest that the latter is indeed

applicable to triangulations [185]. Thus, an implementation of the MCRG demon

method seems feasible, given that a suitable RG transformation is found.
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A Basic symbols and conventions

Throughout this thesis, natural units ~ = 1 = c are used. Unless noted otherwise,

x and y are used to indicate lattice points. For spinor components, α and β are

typically used and field species or “flavors” are denoted with i and j. Einstein’s

summation convention

φxφx ≡
∑

x

φxφx (A.1)

is implied, i.e. indices that appear twice are to be summed over. For space-time

indices µ, ν the summation rule

∂µ∂
µ = ηµν∂µ∂ν ≡

D−1∑

µ=0

D−1∑

ν=0

ηµν∂µ∂ν , (A.2)

with space-time dimensionD holds. The metric tensor ηµν has signature (−1, 1, . . .)

(“mostly plus”) in Minkowski space and (1, 1, . . .) in Euclidean space. Thus, the

line element in Minkowski space reads

ds2 = ηµνdx
µdxν = −(dx0)2 +

D−1∑

a=1

(dxa)2. (A.3)

Kronecker’s delta is defined by

δxy =

{
1 if x = y

0 else.
(A.4)

Regarding Fourier-transformation, a convention is chosen where the normaliza-

tion is split. For a Lebesgue-integrable function f(x), the Fourier transform F(f)

is given by

F(f) ≡ f(p) =
1√
2π

∫ ∞

−∞

dx e−ipxf(x) (A.5)

and the inverse transform corresponds to

F−1(F(f)) ≡ f(x) =
1√
2π

∫ ∞

−∞

dp eipxf(p). (A.6)



As usual, ∫ ∞

−∞

dx e−ipx = 2πδ(p) (A.7)

holds, where δ(x− y) is Dirac’s delta.

B Lattice definitions

Quantum field theories in D dimensions are discretized on a hypercubic space-

time lattice

{

x = (x0, . . . , xD−1)
∣
∣
∣ xµ = anµ, nµ = 0, . . . , Lµ−1

}

, (B.1)

with lattice spacing a and lengths Lµ. The total number of points is V =
∏

µ Lµ

and the physical volume thus
∏

µ aLµ. A vector with norm 1,

µ̂ν =

{
1 if µ = ν

0 else,
(B.2)

is used to denote directions on the lattice. After discretization, fields are defined

on lattice sites: φ(x) → φx. Using generalized boundary conditions

φx+aµ̂Lµ
= e2πiθµφx, (B.3)

the special cases of periodic (anti-periodic) boundary conditions is obtained for

θµ = 0 (θµ = 1
2
). The momenta are constrained to the Brillouin zone of the dual

lattice

{

p = (p0, . . . , pD−1)
∣
∣
∣ pµ =

2π

aLµ
(kµ + θµ), kµ = −Lµ

2
− 1, . . . ,

Lµ
2

}

(B.4)

and the plain waves eipµnµa conform to (B.3). It is evident that

1

Lµ

Lµ/2∑

kµ=−Lµ/2+1

e
i 2π
Lµ

kµnµ =
1

Lµ

Lµ−1
∑

kµ=0

e
i 2π
Lµ

kµnµ = δnµ0, (B.5)



such that lattice Fourier transformation may be defined by

F(φ) =
1√
V

∑

x

φxe
−ipx (B.6)

F−1(F(φ)) ≡ φx =
1√
V

∑

p

fpe
ipx. (B.7)
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