Dirac Operators and Supersymmetry —
From the Coulomb Problem to Field Theories

Dissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Physikalisch—Astronomischen Fakultat

der Friedrich—Schiller—Universitat Jena

von Dipl.-Phys. Andreas Kirchberg

geboren am 19. Januar 1976 in Leinefelde



Gutachter

1. Prof. Dr. Andreas Wipf, Jena

2. Prof. Dr. Horacio Falomir, La Plata
3. Prof. Dr. Gernot Miinster, Miinster

Tag der letzten Rigorosumspriifung: 24. Juni 2004
Tag der offentlichen Verteidigung: 01. Juli 2004



Zusammenfassung

Gegenstand dieser Dissertation ist die Untersuchung einer Reihe von speziellen Eigen-
schaften supersymmetrischer Theorien. In einem ersten Schritt werden Modelle in
der Quantenmechanik analysiert, die eine solche Symmetrie besitzen. Aus dem Dirac-
Operator ip, der auf einer — zunichst beliebigen — Riemannschen Mannigfaltigkeit M
im Hintergrund moglicher Eichfeldkonfigurationen definiert ist, kann man einen super-
symmetrischen Hamilton-Operator H gewinnen, indem man H = (ilp)? definiert. H ist
invariant unter Transformationen, welche von il erzeugt werden. Hier haben wir den
Dirac-Operator als eine spezielle Superladung von H identifiziert. Unter bestimmten
Voraussetzungen gestattet H die Existenz weiterer Superladungen. In der vorliegenden
Arbeit werden diese Voraussetzungen analysiert. Zum Beispiel besitzt H eine erwei-
terte N' = 2 Supersymmetrie, d.h. es existiert eine weitere Superladung neben ip, falls
M eine Kahler-Mannigfaltigkeit ist und falls die Eichkriimmung F' mit der komplexen
Struktur kommutiert. Ferner wird gezeigt, dass N' = 4 der Tatsache entspricht, dass
M eine Hyper-Kahler-Mannigfaltigkeit ist und F' mit allen drei komplexen Strukturen
vertauscht. Theorien mit N' = 8 existieren nur auf Mannigfaltigkeiten, deren Dimension
ein Vielfaches von acht ist. In acht Dimensionen besitzt nur der flache Raum R® ohne

Eichfelder diese hohe Symmetrie.

N = 2 Supersymmetrie ist hinreichend, um Anzahloperatoren und Superpotentiale zu
definieren. Mit Hilfe dieser Superpotentiale konnen die Superladungen — insbesondere
auch der Dirac-Operator — auf ihre freien Gegenstiicke (im flachen Raum und ohne
Eichfelder) abgebildet werden. Anschlieflend kann man auf diese Weise Nullmoden des
Dirac-Operators konstruieren, d.h. man findet Losungen der Gleichung i)y = 0. Als

ein konkretes Beispiel berechnen wir die Nullmoden des Dirac-Operators ilp auf CP™.



Im nachfolgenden Schritt werden zwei weitere bekannte quantenmechanische Systeme
untersucht: das Coulomb-Problem und der harmonische Oszillator. Diese Potentiale sind
ausgezeichnet unter den typischen Problemen, da sie eine Symmetriealgebra besitzen,
die grofler ist als die Algebra der von den Drehimpulsoperatoren erzeugten Rotationen.
In d Dimensionen sind dies so(d + 1) bzw. su(d) statt der zu erwartenden so(d). Wir
definieren die entsprechenden supersymmetrischen Erweiterungen dieser Modelle und
konstruieren die supersymmetrischen Analoga des Laplace-Runge-Lenz-Vektors und des
entsprechenden Tensors zweiter Stufe fiir den Oszillator. Diese werden anschlieend
verwendet, um die Eigenwertprobleme der zugeordneten Hamilton-Operatoren H auf
algebraischem Weg zu 16sen. Wir zeigen, dass man H durch den quadratischen Casimir-
operator der jeweiligen dynamischen Symmetriealgebra ausdriicken kann. Die Darstel-
lungstheorie der so(d + 1)- bzw. su(d)-Algebren legt dann die Eigenwerte von H und
den jeweiligen Grad der Entartung fest.

Die Quadrate spezieller Dirac-Operatoren im Hintergrund abelscher Eichfelder konnen
mit den Hamilton-Operatoren wechselwirkender Wess-Zumino-Modelle (auf einem raum-
lichen Gitter) identifiziert werden. Dies erlaubt den Ubergang von der supersymmetri-

schen Quantenmechanik zu Feldtheorien.

Ein konkretes Beispiel fiir eine solche supersymmetrische Feldtheorie wird im zweiten
Teil der Dissertation untersucht. Dabei handelt es sich um N = 2 Eichtheorie mit
abelschen oder nicht-abelschen Eichfeldern, die mit Materiefeldern gekoppelt sind. Ins-
besondere wird die Theorie in drei euklidischen Dimensionen betrachtet. Ziel dieser
Untersuchungen ist es, Losungen der Dirac-Gleichung zu konstruieren. In geraden Di-
mensionen kann man Index-Theoreme verwenden, um die Dimension des Kerns von i)
nach unten abzuschitzen. In ungeraden Dimensionen existieren solche Theoreme nicht,

und iiber die Existenz und die Dimension dieses Kerns ist nur wenig bekannt.

Wir erzeugen Nullmoden als Supersymmetrievariationen bosonischer Hintergrundfelder.
In der Arbeit wird gezeigt, dass auf diese Weise Nullmoden des Dirac-Operators konstru-
iert werden konnen, welche jedoch auf R? nicht normierbar sind. Ferner werden Null-
moden in Anwesenheit von Vortex-Feldern bestimmt und eine analoge Konstruktion auch
fiir nicht-abelsche Theorien durchgefiihrt. Hier liefert eine Kompaktifizierung auf den
Torus T? normierbare Losungen. Anschlieffend werden Nullmoden im Hintergrund von
Yang-Mills-Higgs-Monopolen bestimmt. Diese entsprechen gerade den Jackiw-Rebbi-

Moden, die aus der vierdimensionalen Theorie bekannt sind.
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1. Introduction

In all modern physical theories, symmetries are ingredients of outstanding importance.
Already the solution of higher-dimensional problems in classical or quantum mechanics
relies heavily on the presence of symmetries. For instance, exploiting rotational invari-
ance reduces the problem of motion in a central potential to an ordinary differential
equation for the radial coordinate. In this way, one can determine the orbits of planets

and the spectra of hydrogen atoms and isotropic harmonic oscillators.

In General Relativity, spherical and axial symmetry allow for the construction of exact
solutions to Einsteins equations, like black holes [1] or the rigidly rotating disk of dust [2].

Analytical solutions for generic situations — with less symmetry — are almost inaccessible.

Today, we distinguish two kinds of symmetries: those, that are related to spacetime
(or space and time in the nonrelativistic setting) and internal symmetries like gauge
symmetries in the Standard Model.

Sensible physical theories of elementary particles must admit invariance under Poincaré
transformations. The representation theory of the Poincaré group predicts the basic
properties of all possible particles and classifies them according to their mass and spin.
All fundamental particles are either bosons, if they have integer spin, or fermions, if

their spin is half-integer.

The symmetry group SU(3) x SU(2) x U(1) of the Standard Model of particle physics
admits the classification of elementary particles in terms of irreducible representations:
particles with similar properties arrange themselves into multiplets. Out of fundamental
building blocks (quarks, leptons) all matter fields can be constructed. Associated with
the symmetry group are carriers of forces, eight gluons for SU(3), three W/Z bosons
for SU(2) and the U(1) photon.

Indeed, even approximate symmetries have been successfully applied to physical prob-

lems. In 1962, Gell-Mann and Ne’eman [3] used the approximate SU(3); flavor sym-
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metry, to predict the 7, an unstable particle, the existence of which was verified only
later in 1964. Similarly, SU(2) isospin symmetry explains, why the proton and neutron

mass are almost identical.

In all examples given above, the generators B of symmetry transformations form a Lie
algebra. Since the B satisfy certain commutation relations, they are called bosonic
generators. Here, B are the generators T of the gauge group for internal symmetries,
or they correspond to generators of translations P, or Lorentz transformations M,,,
depending on the symmetry one is considering. In these cases, they transform states
of different internal quantum numbers into each other, or they relate states in different

inertial frames.

For B being the generators of the Poincaré group, a theorem by Coleman and Mandula
[4] states, that there is no way of extending that algebra as to include operators which
change the spin of the states. So all states in a given multiplet have to have the same

spin, in particular all of them must be either bosons or fermions.

Supersymmetry extends the idea of bosonic symmetries to the case of a Zs-graded Lie
algebra. Here, one introduces fermionic operators F'in addition to the bosonic generators

B. The bracket |[.,.} between generators respects this grading, and is given by
[B,B} = [B, B, [F,F} ={F,F}, [F, B} = [F, B,

where [.,.] denotes the commutator, and {.,.} the anticommutator.

In particular, if B denotes the generators of the Poincaré group, the graded Lie alge-
bra is a way to overcome the Coleman-Mandula theorem. This has been pointed out
by Haag, Lopuszanski and Sohnius [5] in 1975. The Poincaré algebra can be extended
to a super-Poincaré algebra, including fermionic generators, which we will call super-
charges henceforth. The representation theory of the super-Poincaré algebra predicts
the existence of supermultiplets, which contain bosonic states as well as fermionic ones.
An important consequence of the supersymmetry algebra is that all states in a given

multiplet have the same mass.

Usually, the number of independent supercharges is called N. In four dimensions, the-
ories with (global) supersymmetry possess up to N/ = 4 supercharges, whereas super-

gravity can incorporate up to A/ = 8 of them.
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First examples of field theories, which describe the dynamics of such supermultiplets
were constructed more than three decades ago by different groups, Wess and Zumino
[6], Gol'fand and Likhtman [7], Volkov and Akulov [8], and, in the context of string
theory, Ramond [9] and Neveu and Schwarz [10]. Also gravity has been generalized to

supergravity, incorporating a local version of supersymmetry [11].

Since these seminal works, supersymmetric field theories have become a well-studied
subject in theoretical and mathematical physics, because they possess a remarkably rich
structure. For instance, in such theories ultra-violet divergences are softened out or are
even absent. In Seiberg-Witten theory (N = 2 super-Yang-Mills theory) [12] the low-
energy effective action can be calculated exactly, and invariants in that theory can be
used to determine properties of three- and four-manifolds. The Maldacena conjecture
[13] states a duality between N = 4 superconformal Yang-Mills theories on D3-branes
and supergravity theories on AdSs. A deep relation between supersymmetric models and
index theorems for differential operators on manifolds has been pointed out by Alvarez-
Gaumé [14]. Consistent string theories in ten dimensions require supersymmetry in order
to be free of tachyonic states [15]. Today, string theories provide the most promising

candidate of a Theory of Everything.

The supersymmetric extension of the Standard Model, the (minimal) supersymmetric
Standard Model, has been constructed. It contains all known particles, together with
their superpartners. Until now, no such superpartner has ever been observed in nature.
Nevertheless, many physicists believe that supersymmetry is a symmetry of nature,

because it is so beautiful that it must be true [16].

One explanation why we haven’t observed those superpartners yet, is that supersym-
metry is spontaneously broken at present-day energy scales. If this is the case, then
supersymmetry can still be a symmetry of nature, even though the supersymmetry mul-
tiplets do not reflect that fact. In particular, states in a given multiplet need no longer
be of the same mass. So the masses of the unobserved superpartners could be too large

to observe them in current experiments.

This raises the question of spontaneous supersymmetry breaking in field theories. Usu-
ally, such effects are difficult to address, since they necessitate a nonperturbative treat-
ment of the problem. In the beginning of the eighties, supersymmetric quantum me-
chanics was proposed as a toy model for analyzing such breakings by Witten [17, 18].

He defined a quantity, the Witten index, that measures the difference between the num-
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ber of bosonic and fermionic states with vanishing energy. If that index is nonzero,

supersymmetry is unbroken for the theory at hand.

Supersymmetric quantum mechanics itself has become a field of active research since.
Many seemingly unrelated problems in quantum mechanics turned out to be related by
a supersymmetry transformation. One prominent example of such a pairing is the one-
dimensional infinite square well and the (sinx)™ potential. Supersymmetry together
with shape invariance can be used to determine the complete spectra of certain Hamil-
tonians algebraically. For a review of these issues and a list of problems that can be

solved this way, see [19].

It is the aim of this thesis to study some particular examples of supersymmetric quantum

mechanics and field theories in detail.

First of all, in Chapter 2, we note that the Dirac operator i), defined on a Rieman-
nian manifold M in the background of some gauge field configuration, can be used as a
fundamental supercharge. Here, the corresponding Hamiltonian is given by the square
of the Dirac operator, H = (il)?. In this way, a quantum system with A" = 1 super-
symmetry can be formulated. We raise the question, under which conditions additional

supercharges (i.e. square-roots of H) can be defined.

Whereas N’ = 1 can be realized without further restrictions on even-dimensional M, the
existence of N’ = 2 supersymmetry requires M to be a Kahler manifold and the gauge
curvature F' to commute with the complex structure defined on (the tangent bundle
of) M. We will show how the existence of three supercharges, N' = 3, already implies
N = 4 supersymmetry. This in turn is equivalent to M being a Hyper-Kahler manifold
and to F' commuting with the three complex structures on M. In four dimensions, this
implies that ' must be either selfdual or anti-selfdual. Our analysis can be extended to

arbitrary values of N.

It turns out that N' = 2 supersymmetry is sufficient to define a number operator and a
superpotential, which can be used to deform the supercharges into their free counterparts.
In particular, the Dirac operator i) can be deformed and simplified this way. This
deformation a la Witten can be used to construct zero modes of the Dirac operator. We
outline this construction in the general setting and present the zero modes on CP™ as a

particular application.

In a subsequent step, we analyze properties of two prominent quantum mechanical sys-
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tems with N/ = 2 supersymmetry. They arise after a particular dimensional reduction
of Dirac operators in Abelian backgrounds. In this case, the superpotential reduces to a
scalar function, the 1/r-potential of the Coulomb or Kepler problem, and the r2-potential
of the isotropic harmonic oscillator. For a variety of reasons, the non-supersymmetric
counterparts of these models have been studied since the very beginning of modern

physics, and we list a few of them now.

There are eleven coordinate systems for which the Hamilton-Jacobi equation may sep-
arate in R* [20]. Superintegrable Hamiltonians in three degrees of freedom possess —
by definition — more than three functionally independent, globally defined and single-
valued integrals of motion. The system is called maximally superintegrable if it admits
five such integrals, then all finite trajectories are closed, so they fill a surface of less
dimensions (here one) than the number of degrees of freedom (here two). The system
is called minimally superintegrable if it admits four globally defined and single-valued
integrals of motion. In this case, the trajectories are restricted to a two-dimensional
surface. Superintegrability implies the existence of separable solutions to the Hamilton-
Jacobi equation in at least two coordinate systems, cf. [21] and references therein. The
isotropic harmonic oscillator in three dimensions is separable in eight coordinate sys-
tems'. The five isolating integrals in this case are the energy E, the energies of two
subsystems, say F; and F,, angular momentum squared L? and its third component
Ls. The Coulomb problem separates in three coordinate systems?, and isolating inte-
grals are the energy F, angular momentum squared L?, its third component squared L3
its second component squared L3, and the third component of the Laplace-Runge-Lenz
vector. So both, oscillator and Coulomb problem, possess five isolating integrals and are

therefore superintegrable.

A theorem by Bertrand [22] states that the 1/r-potential of the Coulomb problem and
the r2-potential of the harmonic oscillator are the only spherically symmetric potentials

such that every admissible (bound-state) trajectory is closed.

It is well-known, that these two potentials exhibit unique properties also in the quan-
tum mechanical setting. There has been no difficulty in exploiting ostensible geomet-
ric symmetry, which is manifested by a group of linear operators commuting with the

Hamiltonian of the system. Schur’s lemmas describe the limitations imposed on the

1These are rectangular cartesian, spherical polar, cylindrical polar, elliptic cylindrical, confocal ellip-
soidal, conical, oblate spheroidal and prolate spheroidal coordinates.
2Rotational parabolic, conical and spherical polar coordinates.
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Hamiltonian, which are that there be no matrix element connecting wave functions of
different symmetry types, and that all the eigenvalues belonging to one irreducible rep-
resentation of the symmetry group be equal. This last mentioned requirement is, of
course, the well-known relationship between symmetry and degeneracy. Every symmet-
ric system will show characteristic degeneracies, the multiplicity of which is prescribed
by the dimensions of the irreducible representations of its symmetry group. Yet, there
is no restriction arising from group theoretical reasoning which prevents the existence of
a higher multiplicity of degeneracy than required by Schur’s lemmas. Any degeneracy
of this kind is commonly called accidental due to a presumption as to its unlikelihood
[23].

A hidden symmetry is not necessarily of a geometric nature, but together with the
geometric symmetries already known, yields a group of symmetries large enough to
exactly account for all the observed degeneracies of the system. Classical mechanics
actually contains a reasonable source of hidden symmetries, the phase space having
twice the dimension of the configuration space in which the geometric symmetries are
evident. In other words, it is possible that there are additional symmetries of the phase

space as a whole which comprise the desired hidden-symmetry group.

It is well-known that the Hamiltonian associated with the 1/r potential in d dimensions is
in fact invariant under so(d+ 1) transformations instead of so(d) ones. For the harmonic
oscillator, so(d) is extended to su(d). To be more precise, the hidden-symmetry algebra
for the 1/r-potential consists of so(d + 1) for states with energy E < 0, so(d,1) for
E > 0, and the algebra of the Euclidean group (of rotations and translations) in d + 1

dimensions for £ = 0.

In the present thesis, we construct the A" = 2 supersymmetric extensions of these two
models. We define the supersymmetric analogues of the Laplace-Runge-Lenz vector and
of the corresponding tensor for the oscillator. Using them, we express the Hamilto-
nians in terms of the quadratic Casimir operators of the associated hidden-symmetry
algebras and obtain the spectra algebraically. Eigenvalues of H and the corresponding

degeneracies are fixed by the representation theory of those algebras.

We conclude the first part of the thesis with an attempt to construct a relationship
between these two potentials. In the non-supersymmetric case, such relations are known
under the name of Euler-, Levi-Civita-, Kustaanheimo-Stiefel- or Hurwitz-transforma-

tions, depending on the dimensions d. For the supersymmetric case, we propose an
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algebraic version of these transformations by rewriting the Laplace-Runge-Lenz vector

in terms of creation and annihilation operators.

We finally show how the Hamiltonian H = (ip)? on RY, in the presence of particular
Abelian gauge potentials, can be identified with the Hamiltonian of the two-dimensional
Wess-Zumino model on a spatial lattice. Here, the dimension N grows with the number
of lattice points. In this way, we bridge the gap from supersymmetric quantum mechanics
to field theories.

The remainder of the thesis is concerned with the application of supersymmetry to field
theories in three Euclidean dimensions. Again, we consider N = 2 extended supersym-
metry. We construct a particular field theory as a dimensionally reduced theory from
(3 + 1)-dimensional Minkowski space. This allows us to construct zero modes of Dirac
operators in three dimensions. The existence of such zero modes has been obscure until
1986 [24, 25|, when first examples were explicitly constructed. Only recently, a whole
class of examples was given by Adam, Muratori and Nash [26]. Matters are complicated
in three dimensions due to the absence of an index theorem & la Atiyah and Singer,

which, if valid, would give a lower bound on the number of zero modes.

We construct zero modes of the Dirac operator as supersymmetry variations around
bosonic field configurations. We prove that, for instanton-like configurations, normaliz-
able solutions cannot be obtained in flat space R3. After compactification to a three-
torus, R® — T2, however, such solutions can be constructed, and we present some ex-
amples: 't Hooft’s constant-curvature solutions and the associated zero modes. For non-
Abelian theories we derive the three-dimensional analogue of the Jackiw-Rebbi modes.
These are zero modes in the presence of a Yang-Mills-Higgs monopole system. Similar
reasoning is applied to a further reduced theory in two Euclidean dimensions, where

vortex configurations are shown to yield zero modes of the Dirac operator, too.



2. Supersymmetric Quantum

Mechanics

In this Chapter we define the notion of a supersymmetric quantum mechanical system,
identify the Dirac operator as a particular supercharge and construct additional super-
charges. Their existence — corresponding to a higher amount of supersymmetry — is
shown to put strong restrictions on our theory. Subsequently we focus on the case of
N = 2 extended supersymmetry. We show, how this symmetry can be used to construct
zero modes of Dirac operators and apply our formalism to Dirac operators defined on
CP™. The results of Sections 2.1-2.5 have been published in [AK2].

2.1. The Setting

Supersymmetric quantum mechanics describes systems with nonnegative Hamiltonians

H that can be written as’
1 ..
5in: E{Qi,Qj}’ 1,] = 1,...N, (21)
with Hermitian supercharges (; that anticommute with an involutary operator I',
{Q;, T} =0, =T, r?=1. (2.2)

" possesses eigenvalues +1, and we choose the convention, to call the (+1)—eigenspace

the bosonic and the (—1)-eigenspace the fermionic subsector of our theory. Accordingly,

!Note that in the literature [19, 27] various definitions of supersymmetric quantum mechanics exist.
For an account on their mutual relationship cf. [28].
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the Hilbert space H decomposes as

H=HpdHp, Hp=PH, Hp=PH, Pe=-(1+D).  (23)

N | —

A theory with A/ =1 is said to have (simple) supersymmetry and, for N’ > 2, to have
N-extended supersymmetry. The supercharges @; map Hp into Hr and vice versa,
so they transform bosonic states into fermionic ones and back. The superalgebra (2.1)
implies that they commute with the Hamiltonian, [@Q;, H] = 0, and thus generate super-
symmetries of the theory. First examples of such structures were studied by Nicolai [29]
and Witten [17, 30]. They considered one-dimensional systems with all operators real-
ized as 2 x 2-matrix operators. The (); are matrices of first-order differential operators,

and the matrix entries of H are ordinary Schrédinger operators.

In the case of N' = 1, every eigenstate of H = Q? > 0 with positive energy is paired
by the action of @Q)1: for example, if |B) is a bosonic eigenstate with positive energy,
then |F') ~ Q1 |B) is a fermionic eigenstate with the same energy. Eigenstates with zero
energy are annihilated by the supercharge, and hence have no superpartner. In a basis,
where [' = 03 ® 1, ()1 has the form

0 Af
Ql = P_Q1P+ + P+Q1P_ = (A 0 ) . (24)

The index of ); counts the difference of bosonic and fermionic zero modes,
ind Q; = dimker A — dimker AT = n% — n%. (2.5)

Supersymmetry is spontaneously broken if and only if there exists no state which is left
invariant by (),, or equivalently, if there are no zero-energy states. Thus, ind (); # 0 is

sufficient for supersymmetry to be unbroken.

For N’ = 2 there are two roots of H,

H=Q?=@Q2 {Q,Q:}=0, Ql=q.. (2.6)

This will be the most important case in our subsequent studies of the hydrogen atom and

the harmonic oscillator. Later on, we will also use the complex nilpotent supercharge



2. Supersymmetric Quantum Mechanics 10

Q= %(Q1 +1iQ,) and its adjoint Q'. The superalgebra in that case reads
H={Q,Q"}, @ =Q"=0, (@, H] = 0. (2.7)

If there are N = 4 supercharges present, H = Q? = Q3 = Q2 = Q3, we find the following

nontrivial anticommutation-relations,

{Q,Q"1={Q.Q"}=H, (2.8)

where

Q=5@+iQ), Q=@+, (29

2.2. Supersymmetry and the Euclidean Dirac Operator

In this Section, we identify iI) as a distinguished supercharge of the Hamiltonian H =
(iP)?, and we try to enlarge the superalgebra by constructing additional charges. Here,
i) is the Dirac operator on a d-dimensional Riemannian manifold M in the background
of certain gauge field configurations. We will study the consequences of imposing a
given amount of supersymmetry (in particular, N'=1,2,4 and 8). A higher degree of
supersymmetry puts stronger restrictions on the theory. The geometry of the underlying
space on which our theories are defined, as well as admissible gauge field configurations
must satisfy certain conditions. Obviously, N' = 1 supersymmetry is always realized in
this setting (Q; = iI)). N = 2 can be realized on Kihler manifolds of real dimension
d = 2n and for background fields that commute with the complex structure. Hyper-
Kéhler manifolds with d = 4n plus gauge fields that commute with three complex

structures correspond to N = 4.

Let gmn be the metric on M. We will use vielbeine €2, which have (flat) Lorentz indices
a,b = 1,2,...d and (curved) coordinate indices, m,n = 1,2,...d. gmn and the flat

metric d,, are related as follows,

Gon = €% €% 6,p, 5% = g™mel eb (2.10)
where ¢™" is the inverse of g,,,. The Clifford algebra is generated by the Hermitian
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matrices v* (or v™ = el'v*), satisfying
{7*,9°} = 26, {Y™,y"} = 2¢™. (2.11)

As mentioned above, in even dimensions, d = 2n, simple supersymmetry, with N' = 1,
is generated by the supercharge

Q1 =1il) =iy Dy, (2.12)
The generally- and gauge-covariant derivative (acting on spinors)

1
Dy = Oy + Wi + Ay = O + Zwmawab + AAT4 (2.13)

contains the connection w and the gauge potential A, together with the generators
7% =3l
covariantly constant,

72,7%] and T of spin rotations and gauge transformations. The y-matrices are

Dy = 7" + Tp? + [y 7] = 0. (2.14)

Here, I'], are the Christoffel symbols,

n 1 n
I‘mp = 59 k (amgkp + apglcm - aIcgmp) . (2'15)

The involutary operator I" in (2.2) can be identified as
F=vy.=ay...7% (2.16)

where the phase « is chosen such that I' is Hermitian and squares to 1, o2 = (—)%2. In
this way, we identify bosonic and fermionic states as states with positive and negative

chirality, respectively.

The commutator of two covariant derivatives can be expressed in terms of the field

strength F},, and the curvature tensor R,,,,

[Dma Dn] = fmn = an + Rmn, (217)
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where
Frun = OmAn — On A + [Am, Ar] = Fp, T4, (2.18)
Ron = Omwn — Opwm + [wim, wn] = iRmmbfy“b,
with Riemann curvature tensor
Rinab = OmWnab — OnWmab + Wy Wneb — Whg Wincb- (2.19)
Thus, our supersymmetric Hamiltonian is given by
H = Q= ()’ = ~"" DDy~ 57" (2.20)

Note that the two covariant derivatives in (2.20) act on different types of fields. The
derivative on the right acts as defined in (2.13), whereas the derivative on the left acts

on a spinor with an additional coordinate index,
D, ¥, = 0,9, +w, ¥, —I? ¥, 4+ A, T,. (2.21)

Next, we want to enlarge the superalgebra to the case N' > 2. Motivated by the
construction of non-standard Dirac operators and the results obtained in [31], we choose

the following ansatz for the additional supercharges,
Q) =iI"A"D,y,. (2.22)

This also reflects the fact, that the free Dirac operator i@ and iI™~"d,, lead to the same

square for any orthogonal matrix I.

The anticommutator of two such charges with different matrices I and J gives

1 1
{Q),Q())} = —E(IJt + JINY™{D,,,D,} — 57"‘”(1% + J'FD)
— {7 Dy(J7)? + (J7)" Dy(I7)?} Dy (2.23)
For I = J, we read off that Q(I) squares to our Hamiltonian H in (2.20), if and only if

mn __ t\ymn _ t —
g = (IIN™,  Fpn = (I'FD)m,  Dyl?, = 0. (2.24)
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In particular, this implies that the tensor field I must be covariantly constant. The

corresponding integrability condition reads
0=1I",[Da, D)l = I",, RrsapI®,, — Rinnap, O Ry = (I'RI)pp, (2.25)
and (2.24) implies that the same relation holds for the gauge curvature, too,
Fon = (I'FI) . (2.26)
Result: the charge
QU) =iI",y" D, (2.27)

with real matrix I, is Hermitian and squares to H in (2.20), if and only if the following

conditions hold,
D,, I =0, II' =1, [I,F]=0. (2.28)
The trivial solution I = 1 gives us back the original Dirac operator,
Q(1) =ilp = iy™D,,. (2.29)

In view of (2.1), Q(1) should anticommute with all other supercharges,

1

= —5 I+ 1" {Dpn, D}, (2.30)

0= {Q(1), )}

so I must be antisymmetric. Because of (2.28), it squares to —1, hence it defines an
almost complex structure [32, 33] on (the tangent bundle of) our manifold M. Since

is covariantly constant, M must be a Kahler manifold.

On any Kahler manifold M, and in a gauge field background where the gauge field
strength F,,, commutes with the complex structure, the Hamiltonian H in (2.20) pos-
sesses two supercharges, (1) and Q(I). Now this can easily be generalized to higher

supersymmetry.
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Result: the N charges
Q1) =ip and Q) =iI™ "Dy, i=12,...N —1, (2.31)
are Hermitian and generate an extended superalgebra (2.1), if and only if
{L, I} = 26,1, Il = I, D, I; =0, [I;, F] = 0. (2.32)

Observe that, if {I,..., I}, F'} satisfy the conditions, then also {Ii,...,Ix.1, F} do,
where I 1 = L11,... I}, provided £k = 4n + 2. It follows, for example, that the su-
peralgebra with three supercharges can always be extended to a superalgebra with four

supercharges, so N’ = 3 implies N' = 4, and similarly, N' = 7 implies V' = 8.

From (2.32) we read off that the covariantly conserved complex structures form a d-
dimensional real representation of the Euclidean Clifford algebra with /' —1 y-matrices.
From the theory of Clifford algebras it is known that a matrix realization for the v’s —
and thus for the I; — exists only in certain dimensions. This implies that the dimension
of M cannot be arbitrary. We call the matrix representation #rreducible, if only 1
commutes with all y-matrices. Taking into account that all matrices have to be real,
these irreducible representations exist only in particular dimensions, which we summarize
in Table 2.1.

N [8+1 |8 +7|8+8
#y 8n 8n+6|8n+T7
d 16™ 8.16™ | 8-16™

Table 2.1.: Supersymmetry (N'), number of v matrices (#+), vs. dimension of M (d).

2.3. Higher Supersymmetries

Let us consider N/ = 4 first. Observe that this case is not contained in Table 2.1. The
reason for that is the following: the Clifford algebra with N'— 1 = 3 generators can be

realized in four dimensions in two inequivalent ways, by either choosing selfdual (SD) or
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anti-selfdual (ASD) matrices,

SDZ il :i0'0®0'2, i2:i0'2®0'3, i3 210'2®0'1 - —ilig,
ASD: I~1 = i0'3 ® 09, INQ = iO'Q ® 00, I~3 = iO'l X o9 = flfg, (233)

The dimension of the matrices I; (which equals the dimension of the manifold) must be
a multiple of four, d = 4n, so we define I; = I;®1,,. They generate two commuting so(3)
subalgebras of s0(4n). The conditions (2.32) imply that the curvature tensor (R,;) and
gauge field strength (Fy;) commute with all three ;. For example, in four dimensions
both must be selfdual or anti-selfdual. A four-dimensional manifold with (anti-)selfdual
curvature is hyper-Kéhler. More generally, a 4n-dimensional manifold is hyper-Kahler
if it admits three covariantly constant and anticommuting complex structures. We see
that (i/0)? admits four supersymmetries if and only if the underlying space M is hyper-
Kahler and the gauge field strength commutes with the three complex structures. We
remark that other choices for the complex structures than those obtained from (2.33)

are possible.

According to Table 2.1, we can find six or seven real and antisymmetric matrices I;, for

example the eight-dimensional (irreducible) matrices

IL=101 R0y R0y, I3=i00Q0 ®0g, I5=1i09® 02 ® 07,

INQ :iO'3®0'0®0'2, I~4 :iO'Q®O'3®O'(), ING :iO'0®0'2®0'3, (234)

tensored with 1,. Thus we can satisfy (2.32) in 8n dimensions. In eight dimensions

there is no nontrivial solution to
[;,F]=0, i=1,...,7, (2.35)

since the only matrix commuting with all I; in (2.34) is the identity matrix. Hence, the
manifold must be flat, and the gauge field strength must vanish. In eight dimensions,
only the free Dirac operator admits an A/ = 8 supersymmetry. However, in 8n dimen-
sions with n = 2,3, ..., there are nontrivial solutions to the constraints in (2.32). For
example, every field strength (Fy) = 1z ® F with antisymmetric F' commutes with the
I; listed in (2.34).
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2.4. N =2 and Number Operators

Let us now focus on the case N' = 2. We have seen that, on any Kéhler manifold
M, the Dirac operator admits such an extended supersymmetry, if the field strength
commutes with the complex structure. In a suitably chosen orthonormal basis, I is given
by I =ioy ® 1. In this basis, [I, F] = 0 is equivalent to

Uu Vv
Fy = : Ut = -0, Vi=V. (2.36)
-vV.uj.

Now we use the complex nilpotent charges

Q =5 (QU) +1Q(D) = "D, (2.31)
where
Yt = PP, P = %(11 +il)*,. (2.38)

P projects onto the n-dimensional I-eigenspace corresponding to the eigenvalue —i, its
complex conjugate, P, onto the n-dimensional eigenspace +i. These two eigenspaces are
complementary and orthogonal, P + P = 1 and PP = 0. The 1* and their adjoints

form a fermionic algebra,
{v* 9" = {0 h 9"} =0, {9, 9"} = 2P, (2.39)

and we can define a number operator,

1 1 o
N = §¢Z¢a =1 (d + il b) . (2.40)

The factor % is due to the fact that only n of the 2n creation operators are linearly

independent. The eigenvalues of N are raised and lowered by ! and ¢,

[N, 9] = POyt = o, [N, 9% = =P’ = —4°. (2.41)
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N commutes with the covariant derivative, because D,,I = 0 is equivalent to
(D, Nl = 0N + [wi, N] = 0, (2.42)
therefore () decreases N by one, while Q' increases it by one,

[N,Q =-Q, [N,Q=¢q" (2.43)

The corresponding real supercharges are given by
Q) =Q+Q'=ip,  QU)=iQ"-Q)=i[N,i]. (2.44)

The Clifford vacuum |0}, which is annihilated by the action of any of the 1%, has particle
number N = 0. The raising and lowering operators 1/*" and % are linear combinations
of v* and therefore anticommute with I" in (2.16). Hence, they map left- into right-
handed spinors and vice versa. Since the Clifford vaccum |0) is unique, and since T"|0)
is annihilated by all ¥%,

P*(I'|0)) = =I'p*[0) =0, (2.45)

we conclude that |0) has definite chirality. It follows that all states with even N have
the same chirality as |0), and all states with odd N have opposite chirality,

[=+(-)", (2.46)

depending on the choice of & in (2.16). Thus, bosonic and fermionic states in our theory
can equivalently be described as states with even or odd particle number and positive

or negative chirality.
The n linearly independent raising operators give rise to the following grading of the

Clifford space,

C=C®C®..dC,,  dimC,= (Z) (2.47)

Subspaces are labelled by their particle number,

N\CP =p-1. (2.48)
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In particular, the one-dimensional subspace Cy is spanned by |0), and the n-dimensional
subspace C; by the linearly independent states %7 |0). Along with the Clifford space,

the Hilbert space of all square integrable spinor fields on M decomposes as
H=He®@H 1 ®...® M, (2.49)

Since the Hamiltonian commutes with N, it leaves each H,, invariant, whereas the nilpo-

tent charge () maps H,, into H,_;, and its adjoint Q' maps H, into Hyypq.

2.5. Superpotentials on Kahler Manifolds

We have seen that the super-Hamiltonian (i/0)? admits an extended supersymmetry if
it commutes with the number operator NV or, equivalently, if the complex supercharge
is nilpotent and decreases the particle number by one. Then the manifold is Kahler and
the complex structure commutes with the gauge field strength. Now we shall see that
this in turn is the condition for the existence of a superpotential g from which the spin

connection and gauge potential can be derived.

Let M be a Kéhler manifold of real dimension d = 2n. First, we summarize some well-
known facts concerning these spaces. Kahler manifolds are particular complex manifolds,
and we may introduce complex coordinates (z#,z") with p, i = 1,...,n [32]. The real

and complex coordinate differentials are related as follows

oz* N i _
B mo_— fugLem S _ m _— i q,m
dz E dz™ = fhdz™, dz e dz™ = fEdz™, (2.50)
or™ m o™ .

Vanishing of the Nijenhuis tensor,
0=N} =101, —1"oI';, — I' 0;I' , + I' O I, (2.52)

is the integrability condition for the dz* to be differentials of complex coordinate func-

tions z#. This condition is automatically satisfied on a Kahler manifold.
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The f* and f, are left and right eigenvectors of the complex structure,
SR = —ifl and 1" fir = —if", w=1,...,n. (2.53)

Since I is antisymmetric with respect to the scalar product (A, B) = ¢"" A, B, the

eigenvectors with different eigenvalues are orthogonal in the following sense,
9" ot = gmnf 3 5 = 0. (2.54)
Identity and complex structure possess the spectral decompositions
O =fufn+fafn, Ay =fufa—fafh (2.55)
and the relations 02#/0z” = §# and 0z /0z" = 0 translate into

fufm =6t and fhfm=0. (2.56)

v

With (2.54) the line element takes the form
ds® = gppdz™dz" = 2h,,;dzd2", hyo = hop = Gun ' f5s (2.57)

where the h,; are derived from a real Kahler potential K as follows,

0’K
0z*0z¥

By = = 0,0,K. (2.58)
Covariant and exterior derivatives split into holomorphic and antiholomorphic pieces,

D =dz"D,+dz"D,;, d=dz"0,+dz"d, =0+ 0, (2.59)
and the only nonvanishing components of the Christoffel symbols are

F[pu/ = h’pﬁauhﬁl/ - hp(_fa(ﬂu/K’ Fglj - hﬁaaﬁhmy = hﬁaagﬁle. (260)

Along with the derivatives the forms split into holomorphic and antiholomorphic parts.
For example, the first Chern class, ¢; = (271) 'h,»d2z#dz”, is a (1, 1)-form and the gauge
potential A = A,dz* + A;dz* a sum of a (1,0)- and a (0,1)-form. With the help of
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(2.60) the covariant derivative of a (1,0)-vector field can be written as

D,(B"9,) = (8,B" +T%,B")0, = (8,B” + h** (0,hs,)B")0, = h**0,(ha,B")0,.

Let us introduce complex vielbeine e, = €40, and e* = e2dz*, such that hz, = $6asedel.

The components of the complex connection can be related to the metric hy, and the

vielbeine with the help of Leibniz’ rule and (2.60),
i o
(2.61)

wﬁaeﬁ = Dyeq = Dy(€,0,) = (0ueq)0, +egIh,
= (0,€%)0, + €2h*? 0, (hs,)0, = W*° D, (€ hs,)0, = eﬁhpﬁau(egh@)eﬁ.

Comparing the coefficients of eg yields the connection coefficients w?,. The remaining

coefficients are obtained in the same way, and one finds
(2.62)

wﬁa = eﬂaaueaa, wﬁa = egaueg, wg@ = eﬁagﬁeaa,
where, for example, €7 = hPef. Having recapitulated these facts, we are ready to

rewrite the Dirac operator in complex coordinates. For that we insert the completeness

relation (2.55) in il = iy"6™D,, and obtain
iD=Q+ Q= 2iy"D, + 2" D,, (2.63)

where we have introduced the independent fermionic raising and lowering operators,
(2.64)

1 N
O LA

and the complex covariant derivatives
(2.65)

Dy = fiDn, Dp=f3Dpn.
Of course, the supercharge @) in (2.63) is just the charge in (2.37) rewritten in com-
plex coordinates. Unlike the annihilation operators 1%, the fermionic operators ¥* are

independent. They fulfill the anticommutation relations
(2.66)

() = W ey =0, {90} = e,
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where h*” = fF f”™ is the inverse of h,; in (2.57). This can be seen as follows,

= = 2.54 - — 2.55 = 2.56 =
Wiy = fmpo . prp G2 g gngo gy o O gy G50 gn (g g7y

The operators ¥* lower the value of the Hermitian number operator,
N = 2hg, i, (2.68)
by one, while the 1% raise it by one. The proof is simple,
[N, 7] = 2k [W1* 0¥, 7] = —2hp, {0T, 7 " = —hp, BFOY” = —y°. (2.69)
With (2.55) the fermionic operators in (2.39) and (2.64) are related as follows,
m— Leg piryman = o pmon Tm—l(ﬂ i)™ " = 2 frpih (2.70)
,(/) _5( +1)n7_fu¢7 1/) _2 — W)Y =4 ) :
and we conclude that the number operators in (2.40) and (2.68) are indeed equal,
]_ TR .|V
§¢Tm¢m = 20 [} [ = 2hg, Ty (2.71)

Now we are ready to prove that in cases where (il))? admits an extended supersymmetry
there exists a superpotential for the spin and gauge connections. Indeed, if M is Kahler

and the gauge field strength commutes with the complex structure,
Fon = (I'FI) i, (2.72)
then the complex covariant derivatives commute,
[Dy, D)) = Fu = [ f} Foun = 0. (2.73)

This is just the integrability condition (cf. Yang’s equation [34]) for the existence of a

superpotential ¢ such that the complex covariant derivative can be written as
Dy=90,97"'=0,+9(0u97") =0+ wu+ Ay (2.74)

This useful property is true for D, acting on any (possibly charged) tensor field on a
Kéhler manifold, provided (2.72) holds. If the Kéhler manifold admits a spin structure,
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as for example CP" for odd values of n, then (2.74) holds true for a (possibly charged)

spinor field, too.

Of course, the superpotential g depends on the representation according to which the
fields transform under the gauge and Lorentz group. One of the more severe technical
problems in our applications is to obtain g in the representation of interest. It consists
of two factors, g = gag,. The first factor g4 is the path-ordered integral of the gauge
potential. According to (2.62) and (2.74) the matrix g, in the vector representation is
just the vielbein e#?. If one succeeds in rewriting this g, as the exponential of a matrix,
then the transition to any other representation is straightforward: one contracts the
matrix in the exponent with the generators in the given representation. This will be

done for the complex projective spaces in Appendix B.

Now let us assume that we have found the superpotential g. Then we can rewrite the

complex supercharge in (2.63) as follows,
Q =2"D, = gQog™!, Qo= 2140, Ui =g Uy (2.75)
Here, the annihilation operators 1* are covariantly constant,
Dyt = 80" + T + [y, 4] = 0. (2.76)

The relation (2.75) between the free supercharge @)y and the g-dependent supercharge
(@ is the main result of this Section. It can be used to determine zero modes of the Dirac
operator as follows. With (2.44) we find

iPU =0 = QU =0, Q=0 (2.77)

In sectors with particle number N = 0 or N = n one can easily solve for all zero modes.
For example, Q' automatically annihilates all states in the sector with N = n, such that
zero modes only need to satisfy Q¥ = 0. Because of (2.75), the general solution of this

equation reads

U = f(2)gp!t-- 4|0y, (2.78)

where f(Z) is some antiholomorphic function. Of course, the number of normalizable

solutions depends on the gauge and gravitational background fields encoded in the su-



2. Supersymmetric Quantum Mechanics 23

perpotential g. With the help of the novel result (2.78) we shall find the explicit form
of the zero modes on CP" in Appendix B.

With the construction of zero modes we conclude our investigations concerning the
implications of supersymmetry on the geometry of the manifold and the possible gauge
field content. We have identified iJ) as a particular supercharge of the Hamiltonian
H = (iP)®. There exists a second supercharge (square-root of H), if M is a Kihler
manifold and if [F, I] = 0. We have demonstrated how N = 3 implies N' = 4, which is
equivalent to M being hyper-Kéhler and F,,, being (anti-)selfdual in d = 4 dimensions
(more generally, [F, I;] = 0 for the three complex structures I; which are defined on the
tangent bundle of M). Similarly, ' = 7 implies N' = 8, and we have seen that in
d = 8 dimensions only the free Dirac operator in flat space admits such a high amount

of symmetry.

2.6. The Supersymmetric Coulomb Problem

In the following Sections we restrict our attention to the flat space R? and Hamilto-
nians with scalar superpotentials. For two prominent examples, the 1/r-potential of
the Coulomb problem, as well as the r2-potential of the harmonic oscillator, we derive
the supersymmetric generalizations and solve the eigenvalue problem for the associated

super-Hamiltonians by purely algebraic means. The basic results have been published
in [AK1].

2.6.1. The Coulomb Problem and its Symmetries in d Dimensions

We will use the notion Coulomb problem and hydrogen atom simultaneously, thereby we
refer to the 1/r-potential in any dimension d, although this potential solves the Poisson
equation in three dimensions only. It is well known [35] that the three dimensional
Coulomb problem exhibits a hidden or dynamical symmetry algebra so(4) ~ su(2)xsu(2)
that is bigger than the obvious rotational symmetry algebra so(3) ~ su(2). On the level

of classical mechanics, not only the components of the angular momentum vector

L=rxp, (2.79)
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are conserved quantities, but in addition, for this particular potential, there exists the

conserved Laplace-Runge-Lenz? vector [37]

62

1
C=—-pxL-——r, (2.80)
m r

where m is the reduced mass of the two-body system, and e represents the electro-
magnetic coupling constant in the case of an electron moving in the field of a nucleus,
or the gravitational coupling constant, for a planet moving under the influence of the

gravitational field of the sun.

Quantum mechanically, one defines the Hermitian Laplace-Runge-Lenz vector operator,
C=_"(pxL-Lxp) ¢ (2.81)
= — — - —r. )
2m p p T

Pauli [35] calculated the spectrum of the hydrogen atom, by exploiting the existence of

this conserved operator. He noticed, that the components of L, together with

m
K=, |—=C (2.82)

which is well-defined and Hermitian on bound states (with negative energies), generate
the so0(4) algebra,

[Laa Lb] = ih€gpeLe, [Laa Kb] = ihegp K, [Kaa Kb] = ihe€gpeLe. (283)

Furthermore, the Hamiltonian

h? e?
—%A - (2.84)

H =

can be expressed in terms of K2+ L?, one of the two second-order Casimir operators of

this algebra,

me? 1

H=— . 2.85
2 K2+ L°+h? (2.85)

The remaining Casimir operator K - L vanishes identically on wave functions. This

condition singles out the symmetric representations of s0(4), and the eigenvalues of H

2 A more suitable name for this constant of motion would be Hermann-Bernoulli-Laplace vector [36].
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as well as the degeneracies of the corresponding energy levels can be read off from text

books on group theory, e.g. [38].

Let us generalize these facts to arbitrary dimensions d. It will turn out that, in all cases,
the algebra of rotations, so(d), generated by the components of the angular momentum
operators Lg,, can be extended to the true symmetry algebra so(d + 1) by combining
them with the components of an appropriate generalization of the Laplace-Runge-Lenz
vector (2.81).

The Schrodinger equation in d dimensions can be simplified to

HY = BV, H:p2—g, Po=—id,, a=1,...d, (2.86)

if we introduce dimensionless coordinates: distances are measured in units of the Comp-
ton wavelength A. = hi/mec, 7 is twice the fine-structure constant and the dimensionless

energy F is measured in units of mc?/2. The central force is attractive for positive 7.

The d-dimensional generalization of the angular momentum (pseudo)vector L is given

by the antisymmetric matrix Lg,
Loy = TaPo — ToPa, a,b=1,2,...,d, (2.87)
and its components generate the familiar so(d) commutation relations,
[Lab, Lea) = i(0acLivg + vaLac — 6aaLic — ObcLaa)- (2.88)
Generalizing the Laplace-Runge-Lenz vector to d dimensions,

Zq
Co = Laspy + poLap — 77T , (2.89)

we find that its components €, commute with the Hamiltonian and form a vector with

respect to d-dimensional rotations induced by L,
[Laba Cc] = i((saccb - 6bcca)- (290)
The commutator of C, and C} is proportional to the product of L,, and H,

(Ca, Cy] = —4iLgy H. (2.91)
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In analogy to the three dimensional case, we rescale the components C, on the subspace

of bound states (with negative energy),

1
K, = Coa, such that K,, K| =iLg. 2.92
m [ b] b ( )

The generators Ly, and K, form a closed algebra of dimension 3d(d + 1). Using the

combinations

Lip = ., AB=1,2,...d+]1, (2.93)

one verifies that this algebra is, in fact, so(d + 1),
[Lag, Lep] =i(0acLpp + 6BpLlac — dapLec — dcLap). (2.94)
The square of the Laplace-Runge-Lenz vector,
C,C" = —4K,K°H =n° + (2L L™ + (d — 1)*)H, (2.95)

can be solved for the Hamiltonian,

o 7 772
H=p" — = =— . 2.96
p r (d — 1)2 + 40(2) ( )

C(2) is the second-order Casimir operator of the dynamical symmetry algebra so(d + 1),

1 1
Co) = 5LABLAB = 5LabLa” + K, K" (2.97)

It remains to characterize all those representations of this algebra that are realized in
our Hilbert space of square-integrable functions, # = L,(R?). In three dimensions,
they are fixed by the observation that K - L vanishes, so only symmetric representa-
tions appear. In general, the question of which representations are realized cannot be
answered by studying algebraic properties of so(d + 1), but we must analyze the action
of the differentiation/multiplication operators on wave functions on R". This will be

done in Appendices A.1 and A.2 for the case of even and odd dimensional spaces. The
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rotation groups for odd/even dimensions belong to different series in the Cartan classifi-
cation of semi-simple Lie algebras [39], therefore we have to treat these cases separately.

Nevertheless, the final results are of the same form for any d.

Here we just summarize our results from the appendices. Only the symmetric represen-
tations of so(d + 1) appear. They correspond to the set (£,0,...,0) of eigenvalues for
the Cartan generators, or equivalently, to the Young tableau of the form [1] | [/].

Highest weight states are given by

Uy o = zfe’”’”, Yo = y n (2.98)

—1+4+20

where z; is the complex coordinate in the z; — x5 plane. The dimension of the corre-
sponding representation (the whole multiplet can, of course, be obtained by acting with

all lowering operators on Wy, ) is given by

t+d L+d—2
i = — . 2.
dim V ( ’ ) ( /9 ) (2.99)

The Casimir operator in a symmetric representation characterized by ¢, takes values
Coy =Ll +d—1), {=0,1,2,... (2.100)

Therefore, the energy eigenvalues are given by

2met 1

E,=— .
¢ R (d—1+20)?

(2.101)

The appearance of the accidental degeneracy — phrased in the language of representation
theory — corresponds to the following branching rule: the totally symmetric representa-
tions of s0(d+1), labelled by an index ¢, decompose into representations of its subalgebra
so(d) as

AL LT Loy — Lol e[ [ Je...e[1] | [/

where all representations on the right hand side possess the same energy Ey;. In d = 3

(2.102)

so(d)’
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dimensions we find the following well-known results,

dimV,, = (£+1)* = n?

Coy = L(L+2) = (n—1)(n+1), (2.103)
me* 1
B =5

where we have identified the principal quantum number n=0+1=1,2,...

2.6.2. N =2 Supersymmetric Quantum Mechanics

In this Section we want to show how the Coulomb problem (or any other higher dimen-
sional quantum system) can be embedded into a supersymmetric theory. For this we

take the complex nilpotent supercharges from Section 2.1 and write the Hamiltonian as

H={Q,Q"}, @=Q"=0. (2.104)

Let us specify details of the theory we are going to investigate. We take M to be
2d-dimensional Euclidean space and consider Abelian gauge fields. In that case, the
superpotential contains the gauge connection only. We may use the polar decomposition
for the superpotential, ¢ = UR, with unitary U and positive Hermitian R. One can
show that g and R generate gauge-equivalent potentials, thus, we can always choose
g = R = e™X. In addition we assume x and all other quantities to be independent of
half of the coordinates. Effectively, we remain with d coordinates x® and 2d Hermitian

dta wherea = 1,2...,d. For a fixed choice of the complex structure,

~y-matrices v* and 7y
the complex nilpotent supercharges contain the linear combinations 1* = %(fy“ — iydte)

and 9} = 1(7, + i741a) of the latter ones.
We find

{%a, 0]} = Gap, {tba, s} = {01, i} =0, a,b=1,2,....d. (2.105)

The Clifford vacuum |0) is annihilated by 1,, and we can construct the finite-dimensional
Clifford space by acting with ¢! on |0). As before, the particle number is given by
N = 22:1 ¥i1?. The superpotential g = e™X, with x = x(x1,...,%q), gives now rise to



2. Supersymmetric Quantum Mechanics 29

the following supercharge (cf. the deformation (2.75))

Q=9Qug ' =i v*(0u+0.x), Q =g"'Qlg=1> v*(0.—0dux), (2.106)

a

where the free supercharge and its adjoint are given by
Qo =0, Qb =iya,. (2.107)

From (2.105) it follows that Q3 = 0, and since @ and @, are related by a similarity
transformation, @ is nilpotent, too. Since @ (Q') contains one fermionic annihilation

(creation) operator, we conclude that

[N,Ql=-Q, [N,Q=¢q" (2.108)
The Hamiltonian (2.104) is now given by the 2¢ x 2%-matrix Schrédinger operator,

0%x

J— 2 a b =
H= (=A+(VX)"+8x) L =23 "Xt where o= 520

a,b

(2.109)

The nilpotent supercharge @) gives rise to the following Hodge decomposition of the
Hilbert space,

H=QH®QHDker H, (2.110)

where ker H is finite dimensional and spanned by the zero modes of H. Indeed, on the

orthogonal complement of ker H we may invert H and write
Hy = (QQ"+ Q' QH"Hy =Q (QH'Hy) + Q" (QH 'Hy) . (2.111)

The supercharge () maps every energy eigenstate in QTH N ‘H, with positive energy
into an eigenstate in QH N H,_; with the same energy. Its adjoint maps eigenstates in
QH NH, into those in Q'H N H,,; with the same energy. With the exception of zero
energy states, there is an exact pairing between bosonic and fermionic eigenstates (or
equivalently, between eigenstates with even and odd particle number N). Generically,
one expects to find the situation depicted in Figure 2.1.
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Q' Q' Q' Q'
7—{0 0 > M, 0 > Hy \\ Ha—2 —“Q— Ha-1 —"Q— Ha
\\
QH Q'H | QH QTH | QN QH | QH Q' | QH QfH

Figure 2.1.: Generic spectra of a supersymmetric Hamiltonian in d dimensions.
2.6.3. The Supersymmetric Laplace-Runge-Lenz Vector

For the particular case of a spherically symmetric superpotential, x = x(r), we can
define conserved total angular momenta J,;. As is common in quantum mechanics, J,,

contains an orbital part L., and a spin part Sy,

Job = Lo+ Saby  Lab = Tals— ToPas  Sap = —i(¥]th — W), (2.112)
The supercharge and its adjoint read
Q=i0%0, + xof), QN =i(0, —x.f), f=x7". (2.113)

A prime denotes differentiation with respect to the argument 7. @ and Q' are scalars
under so(d) rotations, induced by the combined action of L, (acting on the z and 0

indices) and S, (acting on v and ') indices.

Next, we define the supersymmetric generalization of the Laplace-Runge-Lenz vector.
It will turn out that such a conserved vector only exists for the particular potential
X = —Ar, which corresponds to a matrix Hamiltonian (2.109) that contains the Coulomb

problem as its bosonic subsector with N = (0. Motivated by the structure of C, in the
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ordinary case (2.89), we take the following ansatz for the supersymmetric version,

Co = Juops + poJur + To f (1) A. (2.114)

First, for C, to be a vector, the operator A must be a scalar under generalized rotations.
Second, in the zero-particle sector N = 0, C, should coincide with (2.89). Third, A
should commute with the particle number N, since the J,; do. A should not contain
derivatives, since all derivatives are encoded in the J,,p, terms. The most general ansatz

for A, subject to these conditions is
A=al — BN —~51S, S =1tz (2.115)
The constants o, 8 and v and the function f (r) can be determined from the requirement
[Ca, Q] = 0 =[C,,Q"), (2.116)
which implies that C, really generates symmetries of our Hamiltonian,
[C,, H] = 0. (2.117)
It turns out that only f(r) = f(r) can yield a vanishing commutator. Furthermore,

[Ca, Q) = 2{ fthy + ['Swp}Jup + Bf2aQo +ifza{(B+)rf + 70, }S
+i{f1ha + f'Sz}(1 —d — A) +iyzer 1f(d— N —1)8S. (2.118)

The terms containing derivatives,
fxa(B = 2)Qo + 2ir(f + rf)S0, +i(vf — 2rf')Sza,, (2.119)
cancel, provided
f=-x1 X = —Ar, B=—y=2. (2.120)
We remain with

[Co, Q) = iAr Ha—d+ 1) (g — z,r 15), (2.121)
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which vanishes for &« = d — 1. Hence, a supersymmetric extension of the Laplace-Runge-

Lenz vector exists for x = —Ar and is given by
Co = Jaopy + PoJap — Ao LA, A= (d—1)1—-2N +25'8S. (2.122)
The choice x = —\r for the superpotential yields the following supersymmetric extension

of the Coulomb Hamiltonian,
H=-A+) -\ A (2.123)

Restricted to the sector with N = 0, this is the Hamiltonian of the hydrogen atom?.

In more general situations, we can have any ordinary quantum mechanical system as

the N = 0 subsystem of a supersymmetric theory. In that case, we have the relation

x = log vy (2.124)

between the superpotential xy and the ground state wave function ¢y of the quantum

system. For the hydrogen atom this implies
Qo ~ €Xp —Ar  — X = —Ar, (2.125)

and for the harmonic oscillator (which we will briefly discuss in Section 2.7),

W

por~vexp—rt — x=—or% (2.126)

w
4
2.6.4. Algebraic Determination of the Spectrum

In analogy with the bosonic case (2.91), we calculate the commutator of the components

of the supersymmetrized Laplace-Runge-Lenz vector,
[Ca, Cy) = —4iJy(H — N?). (2.127)

This agrees with our earlier result, up to the shift in H and the replacement L., — Jyp-

In particular, on states with energy less than A2, the right hand side is positive, and we

3We have identified n = A\(d—1). The additional shift +? makes the lowest eigenvalue of this operator
to be equal to zero, as we expect for a supersymmetric theory.
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may do the following rescaling,

1
K,=—— C,, such that (Kq, Kp] = 1Jgp. (2.128)
402 _ H)

As before, K, and J,; can be arranged to form generators Jap of so(d + 1),

Ja K,
Jap = ’ ., AB=1,2,...d+1. (2.129)

- K, 0

Finally, we should calculate C,C* and express the Hamiltonian in terms of Casimir
operators. It turns out that this cannot be done so easily, but an additional piece of

information is needed. The calculation gives

CoC® = =2X7Jp J™ + (2JpJ® + (d — 2N — 1)*) QQ'
+ (2JJ" + (d — 2N +1)?) QQ". (2.130)

Now we need the Hodge decomposition (2.110) of our Hilbert space. The Hamiltonian
leaves this decomposition invariant, and we may consider each subspace separately. Since
Q* = 0 and Q™ = 0, we find H|,, = QQ" and H|,,, = Q'Q, so that we can solve
(2.130) in each of these subspaces,

d—2N —1)%)\?
H|,, = Q@ =2 2.131
‘QH Qe (d — 2N — 1)2 + 46(2) ’ ( 3 )

d—2N +1)2)\?
Hl o = Q1Q = A — 2.132
|QTH Qe (d — 2N + 1)2 + 46(2) ’ ( 3 )

where Cy) is the second-order Casimir of so(d + 1),
1 1

Coy = 5Jap "’ = S Ju" + K.K". (2.133)

All zero energy states are annihilated by @ and by Qf, and according to (2.130), the

second-order Casimir must vanish on these states,

C e = 0- (2.134)
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Hence, every normalizable zero mode ¥, of H transforms trivially under the dynamical

symmetry group, J4pWy = 0.

With (2.131) and (2.132), we have obtained the algebraic solution for the supersymmetric
Coulomb problem. Again, as in the bosonic case, we still have to decide which irreducible
representations of so(d + 1) are realized. This gives us the possible eigenvalues of C(y),

hence those of H and the corresponding degeneracies.

The explicit expressions for the so(d + 1) Cartan generators, for the simple roots etc. in
terms of coordinates, derivatives and spinors 1% and 1! are again deferred to Appendices
A.1 and A.2 for even and odd values of d, respectively. The results given there can be
made plausible by the following arguments. With respect to so(d), all states in the
sector with N = 0 furnish (totally) symmetric representations of the form )
This we already know from the bosonic case. The states .. .4%7 |0) in Clifford space

form a (totally) antisymmetric representation of so(d), which is denoted by

eigenstates are in the tensor product of symmetric (wave functions) and antisymmetric

(Clifford structure) states. If we use the abbreviations

1| [

Divi— ., Di~OLL ],

L]

to characterize the various representations, we conclude that all states ¥ transform
according to the tensor product representation
1 L _ e -1 41 ¢
D,®D; =D, ,®D,” @D~ @D, (2.136)
Recall that £ is the order of the homogeneous polynomials in which we can expand our

wave functions, and g is the particle number of the sector in which ¥ lives*. Now,

all representations of the algebra of rotations so(d) that appear in the tensor product

4For special values of £ and p some subtleties arise: for ¥ € Hy (or ¥ € Hy), the first factor on the
left hand side of (2.136) becomes the trivial representation and we only obtain the fully symmetric
representations Dy on th right, in agreement with our earlier results. In the sectors H; (H4) the first
(the last) representation on the right hand side is absent. For linear functions with £ = 1, the second
representation on the right is missing. Finally, one should keep in mind that the representations
D} and DJ_ o of s0(d) are equivalent, and that for even dimensions the representations D} /o are
reducible: they contain a selfdual and an anti-selfdual multiplet.
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(2.136) should group together into multiplets of so(d + 1).

The branching rule in the supersymmetric case, which can be obtained from either [40]
or by using the package LiE [41], reads

¢ -1 1 ¢ -1 1
— D,oD."'®...0D,8D, D} @...@DP,ILO@. (2.137)

14
Dp‘so(d+1) -

Using the inverse of this relation, it turns out that in each sector with fixed particle
number p, all so(d) multiplets can be derived from just two multiplets of so(d + 1),
according to the rule

14 £
DleD

1 1 4 £+1 £
@+1‘5o(d—|—1) - D@)@(H@Dl @...@DJ—'D;’ +D@

-1 ‘so(d)'
There is one notable exception to these branching rules for even d. In the middle sector
Hn=q/2, the correct branching rule reads

Dy D, — D,®(leD'®...eDf)-DIf -D!-D},

so(d+1) so(d)”

In odd dimensions, d = 2n+1, the representations of so(d+ 1) that contain bound states
are depicted in Figure 2.2.

.‘.
Ho Hi Ho i"Q— n—1 Ho,
pi=—p!
. Df ==D}
. D?f 4_

— Dn—l :

D} = D)

Figure 2.2.: Distribution of bound states in d = 2n + 1 dimensions.

In all sectors but Hy we have ¢ € N. For H we have £ € Ny, and £ = 0 corresponds to
the trivial representation. The sectors H,~, turn out not to support any bound states,
see the discussion in Appendix A.3. Therefore it is sufficient to consider sectors with
N <n.
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1.
Ho Hi Ho & ‘Q— n—1 Ho,
. Df ==D}
sz —
=D

Figure 2.3.: Distribution of bound states in d = 2n dimensions.

Similarly, for even dimensions, d = 2n, we find the situation depicted in Figure 2.3.

For any d, the value of the second-order Casimir is given by

Cioy (DE) =d(t+p—1)+£(£—1) — p(p —1). (2.138)

©

For the odd-dimensional case, the dimension of this representation is given by (A.22),
where we have to set d = 2n — 1, and in the even dimensional case we can use (A.45)
with d = 2n. Additionally we must set (¢1,4,...,4,) = (£,1,...,1,0,...,0).

2
Using (2.138), we can determine all eigenvalues of the supersymmetric Hamiltonian
(2.123): in H, only the symmetric representations Df of so(d + 1) are realized. In
addition, Q|H0 =0, so we use (2.131),

d—1 1\’
H() . Eo(Dle) = /\2 — (m) AZ, E € No. (2139)

The index 0 at the energy E indicates the zero particle sector. The multiplet Df of
so(d + 1) is paired by the action of QT with a multiplet in the one-particle sector.
According to the Figures 2.2 and 2.3, there is an additional multiplet Df in H;. Tt is
paired by the action of Q' with states in the two-particle sector. Hence H = QQ' on
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this multiplet, and we can apply (2.131),

d—1 \?
EDPH=X—[-—") X N 2.14
(@ =x - (45) # te (2.140)
E\(Df) =)\ - _d=3 2)\2 (eN (2.141)
e d—1+2¢) 7 ' '

Note that £ = 0 does not occur in H;. In H, the state £ = 0 has vanishing energy and
hence is annihilated by Q' (instead of being mapped into ;). Now we can continue to

Ho, Hs etc. In each step we use

E,(D}) =Q'Q|, (D})=X - d+1-2p 2 leN (2.142)

or e Hp 0 d—1+20) "’ ’ ‘
d—1-2p\"

Ep(péﬂ):QQT\%(D;H):AQ— (m> : ¢eN. (2.143)

2.6.5. Some Examples: Two, Three and Four Dimensions

As an illustration, let us apply our results from the previous Section to the particular
cases d = 2,3 and 4. In the two-dimensional case, we emphasise that a supersymmetric
version of the Laplace-Runge-Lenz vector exists, contrary to what has been claimed
in the literature [42]. The three-dimensional quantum system is, of course, the most
interesting case. We have included the four-dimensional problem, since it already shows

all additional structures that will be present in higher dimensions.

The Hilbert space of the two-dimensional systems splits into three sectors,
H="HoDHi D Ho. (2.144)

The Hamiltonian is a 4 x 4-matrix. Acting on a basis of the form {|0),|1),]2),]12)},
where |1) = '1|0), [2) = 4?7 |0) and |12) = ¢'T)?1|0), it is given by

-1 0 0
H=-A+NX4+X 10 64—2z2m 2 0]. (2.145)
0 0 1

Obviously, for A > 0, there are no bound states in the two-particle subspace. Only the
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multiplets Df 20in o and D0 in H; give rise to bound states. There is one zero-energy

state (£ = 0), and the remaining eigenvalues are

1
Ep=22 -\ ?eN. 2.146
¢ (1+ 20)2 (2.146)
At E = )\? the continuum of scattering states starts, and we find the spectra depicted

in Figure 2.4 for the supersymmetric system.

HO Hl HQ E [)‘2]
m— m— —
[ R N B 8

s s i 9
S F .

Figure 2.4.: Eigenvalues of H from (2.123) in d = 2 dimensions.

For the interesting three-dimensional case we have the splitting
H="Ho®Hi1DHo D Hs, (2.147)

and the Hamiltonian is an 8 x 8-matrix. Restricted to the zero-particle sector it coincides
with the (shifted) Coulomb Hamiltonian,

_ 2 —1
H|, =-A+X -2\ (2.148)

In this sector, we find the ordinary hydrogen spectrum,
Er=X-)1+072 (2.149)

With the exception of the ground state, these states have partners in ;. There are no
additional bound states in H;, since their would-be partners in H, are in a sector which

does not admit any bound states. The spectra for the three-dimensional system can be
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found in Figure 2.5.

H, H, B[]

S A w

Figure 2.5.: Eigenvalues of H from (2.123) in d = 3 dimensions.
Finally, the four-dimensional system contains five subsectors,
H=HoDH D Hs®H3 D Ha. (2.150)
The Hamiltonian in the zero particle sector,

H|, =—-A+X -3\, (2.151)

admits a normalizable zero mode and a series D{ of bound states, similar to the three-

dimensional case. These states are paired with states Df in H; with the same energies,

3 2
E, =) - )\2(—) . 2.152
¢ <2£+3) (2.152)

Now we do find an additional series D in H;, together with the partner states Df in

H, and with energies
Ey= X — ) (204 3)7% (2.153)

According to our general considerations, the pairing ceases in this sector, and there are

no bound states, neither in H3 nor in H,. Figure 2.6 summarizes these results.
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Ho Hy Ho Hs Hy E [\
R — e L —
S N R SR PRRPRRRPNY RUSRSRSRPRPRPNTY P 16

v v v v v 25
T T T T 0

Figure 2.6.: Eigenvalues of H from (2.123) in d = 4 dimensions.

2.6.6. Concluding Remarks

We conclude this Section with some remarks: in the non-supersymmetric case, Itzykson
and Bander [43] distinguished between the infinitesimal and the global method to solve
the Coulomb problem. The former is based on the Laplace-Runge-Lenz vector and is the
method used here (for both, the non-supersymmetric and the supersymmetric theory).
In the global method one performs a stereographic projection of the d-dimensional mo-
mentum space to the unit sphere in d 4+ 1 dimensions, which in turn implies a so(d + 1)
symmetry algebra. It would be interesting to perform a similar global construction for

the supersymmetric systems, but so far this has not been accomplished.

2.7. The Supersymmetric Harmonic Oscillator

Having constructed the algebraic solution of the supersymmetric Coulomb problem, let
us briefly discuss a very similar procedure for the case of the d-dimensional supersym-
metric harmonic oscillator. In the Coulomb case, the whole construction is based on the
fact that, apart from the generators of rotations L,, (or Jg), there is an additional set
of operators, the components of the Laplace-Runge-Lenz vector C,, which also commute
with the Hamiltonian. Together they form generators of the true symmetry algebra
s0(d + 1) of this Hamiltonian. The construction can be applied in the usual bosonic

theory as well as in its supersymmetric version.

In this Section, we will use the well-known fact that the real symmetry algebra of the
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isotropic harmonic oscillator in d dimensions is su(d) rather than the algebra of rotations,
50(d). We will define the analogue of the (supersymmetric) Laplace-Runge-Lenz vector
and use this enlarged symmetry to obtain the algebraic solution.

2.7.1. Bosonic Case

The Hamiltonian of the harmonic oscillator,

1
H=p"+ Zuﬂrz, (2.154)

for a particle of mass m = % and in units where i = 1, can be rewritten as
a wd
H= o+ == =w(Ng +d/2 2.155
oD el + 5 = Vot df2), (2.155)

where we have introduced raising and lowering operators,

w 1 w 1
aZ = giﬂb — ﬁpb’ ap = g.ﬂ:b + \/—pr’ (2.156)
such that
[aa, ap] = [af, a]] = 0, [, a)] = Oap - (2.157)

Here Np denotes the number of (bosonic) excitations. The invariance of H under unitary

transformations is obvious in this notation. A change of basis
a—a ="Ua, a' - a'l =allU’, (2.158)

is a canonical transformation [44] since the commutation relations between the primed
operators are the same as (2.156)—(2.157) and the form of the Hamiltonian is unchanged,
provided Ut = UL

H commutes with the 3d(d — 1) components of the angular momenta

Loy = —Lpa = ToPp — Tppa = —1 (Cblab - U'Zaa) ; (2.159)
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as well as with all components of

T, =T, = %papb + gxaacb =alay + aaaz. (2.160)
The symmetric matrix 7" is the equivalent of the Laplace-Runge-Lenz vector, and it
seems that in the literature there is no name associated with it. 7" itself was discovered
in 1939 [45], much later than the Laplace-Runge-Lenz vector. Most likely the ease of
solving the equations of motion of the harmonic oscillator, both classically and quantum
mechanically, forestalled an active interest in finding the constants of motion, whereas,
as we have shown, the Laplace-Runge-Lenz vector plays a very useful role in obtaining

as well as exhibiting the solution of the hydrogen problem [23].

Observe that tr 7" = 2H, so T" contains only 3d(d + 1) — 1 independent components.

For what follows, it is convenient to use the shifted operators
Tup = Ty — 6 = alay + ala,. (2.161)

The commutation relations between the 1d(d — 1) + 3d(d + 1) — 1 = d* — 1 components
of L and T are

[Laba Lcd] = i((SacLbd + 5deac - (5adLbc - 6bcLad) y
[Lab: Tcd] = i(éachd - 5deac + 5adTbc - 5bcTad) 3 (2162)
[Taba Tcd] =1 (5acLbd + 5deac + 6adLbc + 5bcLad) .

They can be combined to form generators of su(d), cf. Appendix A.4.

The fact that the true symmetry algebra of the d-dimensional harmonic oscillator is
su(d) was published for the first time in [45]. The particular case of the two-dimensional
harmonic oscillator represents an interesting curiosity because its symmetry group is
definitely the unitary unimodular group and not its factor group, the three-dimensional
orthogonal group. This distiction is readily demonstrated because the two-dimensional
oscillator has degenerate levels of every integer multiplicity, and only odd-dimensional

representations can occur for the rotation group.
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Using

d d
4
TP+ L= To+ ) L= —H(H —w) —d(d - 2), (2.163)

ab=1 a,b=1

the Hamiltonian (2.154) can be expressed in terms of the quadratic Casimir operator
C(g) of su(d), cf. (A.78):

dw?

H? =
d—1

(c@) + 2d(d- 1)) . (2.164)

Since the su(d) algebra is realized on wave functions, only the symmetric representations
appear, very similar to the Coulomb case. Let us use our abbreviation Dé for Young
tableaux, cf. (2.135). From Appendix A.4, in particular formulae (A.80) and (A.83), we

can read off the eigenvalues of H and the degeneracies of the eigenspaces,

By—w(t+d/2), dim(v) =4tz

N TEESVR (2.165)

These are the well-known formulae: if ¢ is identified with the number Np of excitations,
dim(V;) in (2.165) is just the number of possibilities to distribute these excitations with

respect to the d independent one-dimensional oscillators.

The representations D{ of su(d) can be decomposed into representations of so(d) with

the help of the following branching rule,

Df|pa — Di®DI 0D ®... | (2.166)

so0(d)’

cf. (A.84). In Table 2.2 the representations of su(d), the energies and their degeneracies

as well as the representations of so(d) (for the particular case of d = 3) are shown.

2.7.2. Supersymmetric Harmonic Oscillator

The construction of the supersymmetric Hamiltonian parallels our discussion for the
Coulomb case in Section 2.6. As already mentioned there, the ground state wave function

of the harmonic oscillator ¢o(r) ~ exp —%r* implies the superpotential x(r) = —%r2
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Representations of su(3) L[] [ 1] [T 1]
Energy [w] 2| 3 ; >
Degeneracy 1] 3 6 10
Representations of so(3) ~su(2) (1 || ||[ | |®1|[ [ | |®[ |

Table 2.2.: d = 3 as a particular example.
With this choice, the Hamiltonian in (2.109) reads
H=p*+ %w%ﬂ +w (N —d/2) =w(Np + N). (2.167)
Restricted to the zero-fermion sector (N = 0), this is the standard bosonic oscillator,

shifted by —%w to have the lowest eigenvalue equal to zero.

In any other sector with fixed particle number N, the Hamiltonian corresponds to a
shifted harmonic oscillator. Therefore, eigenvalues and degeneracies in all sectors can be
read off immediately. Nevertheless, we will use the su(d) structure that is also present

in the supersymmetric case to derive the spectrum in an alternative way.

The components of T in (2.161) still commute with the Hamiltonian. But 7" is not
supersymmetric in the sense that 7" does not commute with @ and Qf. However, a

supersymmetric form of T can easily be obtained due to its simple structure,
Top = alay + ala, + iy + Yl (2.168)

Again, @ and Q' are scalars with respect to rotations induced by the total angular

momenta
Jap = Lgp + Sep = —1 <a:‘1ab — aZaa + 1/12% — w}:wa) ) (2.169)

The components of J and T' (in (2.168)) obey commutation relations similiar to (2.162).

As in the bosonic case, they can be combined to form generators of the su(d) algebra.
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The quadratic Casimir now reads (cf. (A.87))

2

1 T,
cm)::z(jﬂ4-J2)—-7ﬁ§. (2.170)

It is possible to express C(s) in terms of QQf and QfQ,

qmzé(d—1—mv+éi§i@y)QQT
41 (d+ 1 —aN+ ld_—lQTQ) Q'Q. (2.171)
w w d

Again, this is sufficient to derive the whole spectrum of H, due to the Hodge decompo-
sition (2.110) of the Hilbert space . On any of its eigenstates, H is either of the form
QQ' or QTQ. We thus find for H‘QH = QQ1:

dw dw?

H?>4+ ——(d—1—-2N)H =
1 VH=7

Co, (2.172)

and similar for H‘Qm = Q'Q:

H 4+ - (g4 1-2oN)H =

i Crz)- (2.173)

Since now only representations of the form Dé appear, we can read off the value of C(y)

and the dimensions of those representations from (A.87),

qm@%)=(p+£—1)0ﬁ—ﬁi§ii)+w2—p1+p—h (2.174)
o (d+¢—1)!
Aim (P2) = == D= i + =) (179

This fixes the eigenvalues of QQ' and Q'Q (and therefore those of H) as well as the
degeneracies of the energy eigenspaces. As a particular example we show the results for
d = 3 in Figure 2.7. There are four sectors with fermion number N = 0,1,2,3. The

energies together with their degeneracies and the pairings are indicated as well.
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Figure 2.7.: d = 3 as a particular example in the supersymmetric case.

2.8. Outlook I: Kustaanheimo-Stiefel Transformations

We conclude our discussion of the supersymmetric Coulomb problem and the harmonic
oscillator with the attempt to establish a connection between the two Hamiltonians.
In particular, we are interested in a transformation, which relates the former problem
in d dimensions to the latter one in D dimensions. In the non-supersymmetric case,
such transformations are known in the framework of classical mechanics [46], where
numerical studies of the 1/r-potential can be regularized by mapping the problem to
the r2-potential (including a scaling of time in the extended phase space). For the
problem of two bodies under the influence of their mutual gravitational attraction, one
uses the two-dimensional, or Levi-Civita transformation. For the analogous three-body
problem (a genuine three-dimensional problem), one employes the Kustaanheimo-Stiefel
transformation. In the quantum mechanical setting, this relation can be applied to
exactly solve the path integral for the Green function of the hydrogen atom, by rewriting

it in terms of oscillator variables [47].

A construction for the supersymmetric case can be found in [48]. There, however, only

the radial problem is analyzed, instead of the full problem we have in mind here.

Let us consider the non-supersymmetric case first. To find a connection between the
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two systems, we observe that the Schrodinger equation for the radial function R(u) of

the harmonic oscillator in D dimensions is given by

d°R D-1dR L(L+D-2) 2m 1
— - R+ — | E— -mw’v® | R=0. 2.176
du? v du u? T h? gt ( )
L=0,1,2,... are the eigenvalues of the angular momentum operator. If we define now
r = u?, and use the relations
1 2 2
1d :Qi 4 :2£+4rd— (2.177)

wdu dr’ du? dr dr?’

then (2.176) transforms into

d°R d—1dR I(l+d—2) 2m, n
— — ——— R+ — ( —) R =0, 2.178
dr? rdr r2 + h? €t r ( )
which is the radial Schrodinger equation for the Coulomb problem, provided we make

the following identifications

d==+1, 1== =—
2+7 2’ 6

D L me” - % (2.179)
The identification of (2.176) and (2.178) should be understood in a formal sense. In par-
ticular, since L takes values in Ny, the angular momentum eigenvalue [ of the Coulomb
problem in d dimensions takes on half-integer values. In (2.179), the oscillator frequency
w is transformed into the energy eigenvalue €, whereas the energy eigenvalue F deter-
mines the coupling constant 7. Odd values of D lead to half-integer values of d, which
cannot be given a sensible interpretation in terms of space dimensions. Thus, we restrict
our attention to the case where D is even. Additionally, such a transformation exists
for D=1 and d =1 [49].

The coordinate transformation, that includes also the angular dependence between coor-
dinates z;, ¢ = 1,...,d, of the Coulomb problem and u,, p=1,...,D, of the oscillator
is given by x = u? for D =1 and d = 1, by

)= ) =
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for D=2 and d = 2, by

X1 Uz —Ug U1 —U9 U1
To Uy Uus U9 U1 U9
= , (2.181)
I3 Uy U9 —Uz —Uy Uus
0 Uy —U] —Us U3 Uy
for D =4 and d = 3, and by
(551\ (U1 U2 Uus Ugy —Us —Ue —U7 —Us\ (U1\
T2 Us Us —UT —Ug Ui Uy —U3 —Uy Ug
T3 Us —Us Ug —Ur —Uz U —Ug U3 Usg
Ty Ur ug Us Us Uus Uy Uy U2 Uy
= , (2.182)
Ty Uug —Uy —Ug Us Uy —Usz —Ug Ui Us
0 Ug —UL Ug —U3 Ug —Us Ug —Uy Ug
0 Uz —Uq4 —Up (%) —Uur us Us —Ug Uy
\ 0 ) \U4 us —Ug2 —Up —Ug —Uy Ug Us / \Ug/

for D = 8 and d = 5. These transformations are known as Euler [50], Levi-Civita [51],
Kustaanheimo-Stiefel [52] and Hurwitz transformations [53], respectively. A theorem by

Hurwitz [53] states, that such transformations are possible only in D = 1,2,4 and 8.

This analytic approach is difficult to generalize to the supersymmetric case. In par-
ticular, it is unknown, how the relations (2.180)—(2.182) for the coordinates and the
corresponding formulae for the differentials translate into relations between the spinors
¥® and 1. There is, however, a more algebraic approach for the non-supersymmetric

case, outlined in [54].

We follow this approach for the particular case of the three-dimensional hydrogen atom.
There, the Hamiltonian H can be expressed in terms of the (rescaled) Laplace-Runge-
Lenz vector K and the angular momentum (pseudo)vector L as

/4 m

_TE L= K=,2c¢ 2.183
1+ K+ L7 ks —H (2.183)
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If we define the linear combinations
1 1
M:E(L-i—K), N:E(L—K), (2.184)
then orthogonality L - K = K - L = 0 and commutation relations,
[Laa Lb] = ieabch; [Lau Kb] = ieabcf{c; [Ka; Kb] = ieabcLCa (2185)
translate into
M? = N?, [My, My] = i€ape M., [Na, N3] = i€ap N, [M,, Ny] = 0. (2.186)

The algebra (2.186) can be realized in terms of four sets of bosonic creation and an-
nihiliation operators aq, as, a3, as and a]{, a%,ag,ai (cf. Schwinger’s oscillator model of

angular momentum [55]),

2 as Qs

1 1
M = iaTaa, N = ~blob, where a= (a1> , b= (a;;) . (2.187)

This is the analogue of the Kustaanheimo-Stiefel transformation (2.181). From (2.186)
we conclude that

M? = N(a) (N(a) + 2) =N?= N(b) (N(b) + 2), (2.188)

so the number operators N, and N associated with the two sets (a1, az) and (a3, a4)

of harmonic oscillators must be equal. Here

N = alay + abay, Ny = alas + alay. (2.189)

Now we can use (2.183) and express H in terms of N = N(g) = N,

2
/4
H=—-—""—— N=012,... 2.190
(N + 1)2 ? 7 7 ( )
The degeneracy of the energy levels can be computed as follows. For a given N, there
are N + 1 possibilities to excite oscillators no. 1 and no. 2. At the same time, there are
N + 1 possibilities for the remaining oscillators, no. 3 and no. 4, so together this gives

the (correct) degeneracy for the hydrogen spectrum, (N + 1)2.
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Result: We can start with the Coulomb-Hamiltonian, and reexpress the Laplace-Runge-
Lenz vector, the angular momenta etc. in terms of raising and lowering operators of four
harmonic oscillators. The symmetry condition K - L = 0 for the Coulomb systems yields
the restriction N = N for the excitations of the oscillators. Together, this gives the
correct eigenvalues and degeneracies for the Coulomb Hamiltonian. Note that one can
carry out a similar construction for the D = 2 and d = 2 case and, presumably, also for
D =8 and d=5.

This algebraic approach can be extended — at least partially — to the supersymmetric

case. Let us focus again on D = 4 and d = 3. The super-extensions of M and N are

given by
14 t Lo t
M = E(a oo+ x'ox), N:§(b ob+¢'of), (2.191)
where
0= a1 , _ as : Y = ¢1 ’ 5 _ 7703 . (2.192)
a9 a4 1/]2 1/)4
Y1, ...,y are the fermionic annihilation operators for the super-oscillator in (2.105).

As pointed out in Section 2.6.4, we cannot express the Coulomb Hamiltonian H in terms
of C(3), but we have to utilize the Hodge decomposition (2.110). In the subspace QH we
find

2 —2N)%*p?
H — T2 _ ( 2.1
‘Q?—L QR =n (2—2N)24+4Cy’ (2.193)
4C() = 2N,y + 2Ny + 4Ny + 4Ny — 6N,y — 6N,
+ 12N + 12Ng) = AN(@) Ny = 4N Ny
n 4
+8 Y abanivm +8 Y alantf v (2.194)

m,n=1 m,n=3

So far, we have not suceeded in rewriting QQ in terms of Ny Ny, Niy) and Ng) only,
that is in terms of the number operators of the bosonic and fermionic oscillators. This

is work in progress, and we hope to be able to report on this soon.
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2.9. Outlook II: Supersymmetry on a Spatial Lattice

We conclude the first part of this thesis with some comments concerning supersymmetric
field theories in 1 + 1 dimensions on a spatial lattice and their relation to the super-
symmetric Hamiltonians we have discussed so far. Our results can be found in [AK3]
and will be discussed in much more detail in [56]. Unfortunately, there is not enough
space here to present everything explicitly, and thus some familiarity with Wess-Zumino
models in 1+ 1 dimensions is assumed for the moment. Lattice regularization transforms

our field theory into a problem of multi-dimensional quantum mechanics.

As an example, we consider the (1 + 1)-dimensional Wess-Zumino model with simple
supersymmetry in the continuum formulation. In the simplest case, this theory de-
scribes the interaction of a real scalar ¢ with a two-component Majorana spinor 1. The
Lagrangian in the on-shell formulation,

L= (8,00"¢ — (W' + iy — JW"p) (2.195)

|

is invariant under supersymmetry transformations
8¢ =Cop, &Y = —iddC — W'C. (2.196)

W (o) is the superpotential, and a prime denotes the derivative with respect to ¢. The
Noether procedure, which we carry out in detail for the supersymmetric gauge theories
in Chapter 3, yields the following Noether charge (supercharge) associated with the

transformation (2.196),

Q= / dz (7 — Durys + W) 0. (2.197)
Here, 7 is the momentum conjugate to ¢. The superalgebra reads

{Qi, @1} =2(H+ 2), {Q2Q2}=2(H—-2), {Q,Q2}=2P, (2.198)

with Hamiltonian H, spatial momentum P and central charge Z = [ dx%. We use the

representation

VY=0% 7=io®, pn=9"=-d, (2.199)
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for the y-matrices. Now we discretize space and leave time continuous, such that time
translations generated by the Hamiltonian remain symmetries of our theory. On the
one-dimensional lattice with NV equidistant sites and periodic boundary conditions, we
discretize the fields as follows,

o(z), m(x), Vo) —>  &(n),m(n),va(n), n=1,2,...,N. (2.200)

a = 1,2 indicates the upper/lower spinor component. Now derivatives become finite
differences and in [AK3] the most prominent ones — left/right derivative, symmetric
derivative, SLAC derivative — together with their various advantages and disadvantages
are discussed. The ultimate choice for the lattice derivative is of no importance for what

we are going to discuss here.

Lattice regularization always breaks part of the supersymmetry algebra, and we have
to be careful enough as to leave the part which contains H intact. We define the

Hamiltonian H,,; of the lattice theory to be square of the discretized supercharge )1,

Hypy = %{QI:QI} (2.201)
1

= S m) = 5 (8.80) + (W, W) + 3 (6 he) + (W', 046) — (W, 059),

such that supersymmetry of H,, is manifest. A bracket (.,.) denotes the sum over
all lattice points, as well as, possibly, the contraction of the spinor indices. A is the

following matrix,

0 0

(hp)as = (K0)as + (1)asW" = i (-af 0

) + (VO)aﬂW”
aof
= ~i(7)as0a = (1°)as0s + (v")asW". (2.202)

Here we decomposed the (unspecified) lattice derivative 0 into its Hermitian and anti-
Hermitian parts, ds = 3(0 + 0') and 9,4 = 3(0 — 97).

The point is now, that Hj,; can be written as the Hamiltonian of a supersymmetric
quantum system. Consider the Dirac operator iI) on the direct product of Euclidean
space and a torus, RY x TV with coordinates z" = (z™,z™), m,m = 1,2,... N, in
the background of the Abelian vector potential Ay, = (A, Am). After a dimensional

reduction, where the size R of the torus shrinks to zero, all fields become independent of
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the ™ coordinates. We impose the additional constraint, that A,, = 0 and find, using

our very definition (2.20) of the Hamiltonian,

(D) = 5 (0 + 542 — 27™ (B, (2.203)

DN | =

We included a factor % in order to adjust the prefactors. The lattice fields are identfied

with the coordinates and «-matrices of the quantum system as

o(n) =z, =(n) = —i%, Y(n) = % (12) : (2.204)
If we take the gauge potential
An(a?) = —(9'9)(m) + W' (¢(m)), (2.205)

where 0 is the lattice derivative and W’(¢(m)) is the discretized version of W'(¢), the
Hamiltonian of the lattice model (2.201) and the Hamiltonian of our quantum mechanical

system (2.203) are identical:

A2 = (0¢)2 + (W')2 —2(W',0"¢), (2.206)
—iy" Y (O Ar) = () (i +7°)1(n) 0 A, (2:207)

such that

1 1 1 1
Hom = 5(m,7) + 5(09,00) + 5 (W, W') + 5 (&, het) + (W', 040) — (W', 059).

Result: The Hamiltonian of the Wess-Zumino model in 1 4+ 1 dimensions on a spa-
tial lattice with N points can be mapped to the square of a Dirac operator defined on
RY x TV in the background of a specific Abelian gauge field. A similar construction
can be applied to Wess-Zumino models that consist of d copies of the simplest multiplet,
and to models with A/ = 2 extended supersymmetry. The map between supersymmetric
quantum mechanical systems and discretized field theories can now be used to explore
properties of the latter, like the calculation of ground state wave functions or the dis-
cussion of supersymmetry breaking. In addition, we would like to extend these ideas
to more realistic models in four dimensions. This is work in progress together with A.

Wipf, J.D. Lange and F. Brauer, and we will publish some of the results soon [AK3|.
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The second part of this thesis is devoted to the study of supersymmetric field theories. In
particular, we analyze properties of an A/ = 2 supersymmetric theory in three Euclidean
dimensions. This theory describes a vectormultiplet and a hypermultiplet in interaction.
We are interested in the behaviour of fermionic states in the background of bosonic field
configurations. To this end we construct zero modes of the Dirac operator in various
backgrounds. This operator contains the coupling of fermions to the gauge potential
A, as well as possible interaction terms of fermions with scalar fields. In this way we
obtain some information about the number of zero modes of Dirac operators in three

dimensions.

The question of how many zero modes the Euclidean Dirac operator possesses in a
given background configuration is important for many physical applications, e.g. for the
calculation of the fermionic determinant in the path integral [57] or for stability analyses

of bound state systems [58].

In even dimensions, where a 7, (the generalization of 5 in four dimensions) is definded,
one can apply the Atiyah-Singer' index theorem [59] to count the difference of zero
modes with positive and negative chirality. This index theorem, that holds for compact
manifolds without boundary, has been generalized to manifolds with boundaries (the
APS index theorem due to Atiyah, Patodi and Singer [60]) and to non-compact manifolds
[61]. In general, the index can be expressed as an integral over certain characteristic
classes and is related to topological invariants of the background configuration, like the
magnetic flux or the instanton number. This gives a first hint as to whether or not zero

modes are present. The number of zero modes is bounded from below by the absolute

!Recently, the Norwegian Academy of Science and Letters has decided to award the Abel Prize for 2004,
jointly to Sir Michael F. Atiyah, University of Edinburgh, and Isadore M. Singer, Massachusetts In-
stitute of Technology, ‘for their discovery and proof of the index theorem, bringing together topology,
geometry and analysis, and their outstanding réle in building new bridges between mathematics and
theoretical physics’, see http://www.abelprisen.no/en/.

o4
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value of the index. Often, a vanishing theorem can be applied, which states that zero
modes of positive or negative chirality are absent. In that case, the index gives the total

number of zero modes.

Explicit calculations of zero modes and the application of index theorems have been
performed for field configurations in a variety of theories, like planar systems in magnetic
fields [62], Dirac fields near magnetic flux strings [63], the fermion-vortex system in the
two-dimensional Abelian Higgs model [64], the Schwinger model [65], fermions on the
two-sphere [66], QCD on the two- and four-dimensional torus [67, 68], spetral flow and
sphalerons [69], intersecting vortices [70], instanton and meron fields in the continuum
[71] and on the lattice [72], (cosmic) strings and zero modes [73], string solitons with
torsion [74], domain walls [75], fermions on CP™ [76, 77, 78, 79|, and in knotted soliton
backgrounds [80], in supersymmetric instanton-backgrounds [81], for noncommutative
instantons [82] and for instantons and D-instantons in IIB supergravity [83]. These
days, fermionic zero modes are used to detect instanton and meron configurations on
the lattice [84].

The APS index theorem for manifolds with boundary has been applied to the cylinder,
the two-dimensional ball B? and B? x B? [85, 86, 87|, as well as to the four dimensional
ball B* [88]. We have generalized the last example to include gauge configurations with
an arbitrary profile function and have explicitly constructed the zero modes in this case.
Our results can be applied to instanton configurations that have undergone an Abelian

projection. We summarize the calculations for this example in Appendix D.

In odd dimensions, no such index theorem is available. There is the Callias-Bott-Seeley
index theorem [89] for zero modes of the Dirac Hamiltonian but not of the Dirac operator
itself. In that case, a Higgs field is needed, and it is the topology of the Higgs field that
determines the index in this case. This index theorem has been applied to magnetic

monopoles and dyons [90, 91] and to domain walls in supersymmetric gauge theories
[75].

Until 1986 it was not known whether there are zero-mode-supporting gauge field config-

urations A in three dimensions. First examples have been constructed in [24, 25]:

iy = (id — A)y =0, (3.1)
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where

3 231‘1333 — 231‘2 1
1—2? — 22 — 23

Here, a slash denotes the contraction with the vector of Pauli matrices, # = z;0°. In
a series of publications, Adam, Muratori and Nash [26] constructed a whole class of
examples, and in particular they showed that the dimension of the kernel of iI) can be
higher than one. It is now known that such zero modes exist and that their degeneracy
can in principle be large, growing like [d*z |B(z)[*? [25], where B is the magnetic
field.

In even dimensional cases zero modes can be constructed as supersymmetry variations
evaluated at a fixed background: for an instanton configuration [81, 83, 92] say, or for
a static monopole configuration [93]. The very idea of employing these variations to

generate zero modes goes back to Rossi in 1977 [94].

In this thesis we will prove that a similar construction cannot be carried out in the three-
dimensional case. We demonstrate this for a particular supersymmetric field theory,
which nevertheless exhibits all the general features. We show that one cannot obtain
the examples of Adam, Muratori and Nash, which are defined in flat space R?, in this
way. However, a further reduction of our theory to two dimensions admits nontrivial
vortex-like configurations and we can construct zero modes in these background fields.
For three-dimensional instanton fields in non-Abelian gauge theories, employing a version
of Derricks theorem, we show that only non-normalizable zero modes can be obtained
in this way. If we allow for a compactification to a three-torus, R?> — T2, then zero
modes can be constructed, and we present some examples: 't Hooft’s constant-curvature
solutions and the associated zero modes. In addition, we construct zero modes in the
background of a ’t Hooft-Polyakov monopole and relate our results to the well-known

Jackiw-Rebbi modes [90] from the four-dimensional case.

We start with an N = 2 supersymmetric field theory in (3 4 1)-dimensional Minkowski
space. Afterwards we reduce this theory to three-dimensional Euclidean space by com-
pactifying the time direction. We study properties of the reduced theory, construct

invariant background configurations and obtain zero modes of the Dirac equation.
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Apart from the review article by Sohnius [16], from which we take our conventions, there
are many other excellent reviews, lecture notes [95] and books [96] on supersymmetry

and supersymmetric field theories.

3.1. A Toy Model

The very idea of how to generate fermionic zero modes can be understood with the
help of the following simple example, which we borrow from [92]. Consider a quantum
mechanical system for a boson ¢ and a two-component Majorana fermion v, described

by the action
sl = [dr =3 [ar{@+ 0@ + 0+ 00O} 63)
S|, 1] is invariant under the supersymmetry transformations
§¢ = (o, 5 = o?¢¢ — U(z)C, such that oL = %Ct&(awjgﬁ —U).
The equations of motion associated with S|[¢, 1] are given by
&:UU+%W#MM Y = —c?U". (3.4)

For the particular function U(¢) = é (¢* — u?/)), which gives rise to the well-known
¢*-potential for the boson, we find the following BPS solution,

= F tan i7'—70 o = 0. )
i) =t h(ﬁ< >), Yo =0 (3.5)

This configuration? (a kink-solution for ¢ and vanishing ) is invariant under the re-
stricted class of supersymmetry variations that satisfy ( = P_(, where P, = %(]l +0?).

The remaining transformations, ( = P (, generate the following set of new solutions,

b1 = ¢o + 6o = o, 1 = tho + 0Py = \/ 43% cosh™? (%(7’ - 7'0)> C. (3.6)

2Due to translational invariance of our theory, the value of the collective coordinate Ty is not fixed.
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One readily verifies, that 1, is a zero mode of the Dirac operator, in the sense that it
satisfies its equations of motion (3.4), whereas the boson field satisfies the linearized
equation, without the bilinear term in 1. So we obtain a fermionic zero mode as super-
symmetry variation of a particular bosonic background configuration. This toy model
already exhibits all generic features in which we are interested in. In what follows, we

will extend these ideas to models that contain gauge interactions, too.

3.2. N =2 in d =4 Dimensions

Let us start by considering a supersymmetric field theory in 3 4+ 1 dimensions. These
models are well-studied subjects in the literature cited above, so we will recapitulate
them only briefly. The smallest spinor in this space is a Majorana spinor with four real
components, or equivalently, a Weyl spinor with two complex degrees of freedom. A
theory with A" = 2 extended supersymmetry contains two supercharges that can also be

combined into a Dirac spinor, or a pair of symplectic Majorana spinors.

First, we restrict ourselves to the Abelian case and consider a vector multiplet coupled
to a hypermultiplet. The vector multiplet V (A,, ', M, N, D) consists of the Abelian

vector potential A,, scalar fields M and N, and a triplet of real auxiliary fields D =

1wy
(D1, Dy, D3)?, as well as a pair of symplectic Majorana spinors A, i = 1,2. The X’
can be understood as two Dirac spinors, subject to the symplectic Majorana condition,

No=¢€iS A
Our conventions, together with some useful rules for calculations involving symplectic

Majorana spinors can be found in Appendix C.

All fields in a supersymmetry multiplet transform according to the same representation
of the gauge group. In particular, for U(1) gauge theory, the whole vector multiplet is

uncharged and thus transforms trivially,

Ogange Ay = Oul,  OgangeM = SgaugeN = Ogauge D = Ggauge N’ = 0. (3.7)

In the literature [16] it is shown, how V can be constructed out of an N' = 1 vector
multiplet and an A = 1 chiral multiplet. The degrees of freedom for the fields in V are

summarized in Table 3.1. Note that fermionic and bosonic degrees of freedom match
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both off-shell and on-shell.

Under the SU(2) R-symmetry, the automorphism group of the supercharges, the fields
transform as singlets (A,, M, N), as a doublet (\°) and as a triplet (D), respectively.

| Field | A, | M| N|DJXN]
d.of. off-shell | 3 1111 3 8
d.of. on-shell | 2 17110 4

Table 3.1.: Degrees of freedom (d.o.f.) for the N' = 2 vector multiplet.

The corresponding Lagrangian,
1 R | 1 1
Luector = = Fu F" + 5)\,&)\ + 50, MO"M + SO,NO"N + S D?, (3.8)

is invariant under the following supersymmetry transformations,

6A, =Gy, OM =iGN, 6N = —(ys\,

SN =1(F,5)¢" — J(M +iysN)¢ —i¢/r," - D, (3.9)

6D = T/ (;IN.
Here, 7 is the three-component vector of Pauli matrices. Later on, 7 should not be

confused with o, which is also the vector of Pauli matrices, but there the ¢™ serve as

representation of the Clifford algebra in three Euclidean dimensions.

One finds §Lyector = 0, Vi

vector? Where

(1, - o 1 o
Viector = Gi <§(F’“’% —iF"™)y, A+ EV“VVGU(M +irN)A + 5D rj’v“,\ﬂ) . (3.10)

The Noether current J* associated with the symmetry transformations (3.9) is given by

5»Cvector
5.0 *

(3.11)

JE =k —VE o where kM =
®p
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Explicitly, one has
JE = G | —(F" 5 + 1)y, AT + iy 48, (M + iysN) | AL (3.12)

The zero component of this current, when integrated over space, yields the supercharge

Q,
GQ' +Qi¢’ = /d3:v J°, (3.13)
such that
Q' = /d3x (—%(Fom% +iF")y,, + %(ﬂ'M +ivsmN) — %’yofym(?m(M + i’y5N)) p
Qi = / d*zAly° (—%(F Oy — iF"™)yy, — %(WM +ivsmN) — %v”vmam(M +isN )) :

Here, m); and 7y are the momenta conjugate to M and N. Supersymmetry variations

on any field ¢ are generated via its Poisson bracket,
{0, GQ' + QiC'}pr = b (3.14)
The commutator of two supersymmetry transformations is given by

(61,6214, = 60 Py \) — (1 4+ 2)
= 2P, A, + 210, (M + iysN — 4P A,) ¢, (3.15)

and

[6D,6@]p = 2Py ¢ i, (3.16)
where ¢ is one of the fields M, N, \* or D. This can be written as

[61), 6] = Siranstation + Sgauges (3.17)
where dgauge is defined in (3.7) with gauge parameter A given by

A =2 (M 475N — 4P A,) ), (3.18)
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The equations of motion for the fields in the vector multiplet are
0,F" =0OM =0ON = D =id\' = 0. (3.19)

As mentioned in the introduction, we would like to study the behaviour of charged matter
fields in supersymmetric gauge theories. To this end, we add an N' = 2 hypermultiplet
H(¢;, Fi, 1) to the theory. This hypermultiplet can be thought of two copies of N =1
chiral multiplets. It consists of two complex scalars ¢;, two complex auxiliary scalars F;
and a Dirac spinor ?. As for the vector multiplet, ¥ can also be considered as a pair of

symplectic Majorana spinors. The degrees of freedom are summarized in Table 3.2.

| Feld [é|F]¢]
d.of. offshell || 4 | 4 || 8 ‘
d.of. on-shell || 4 | O || 4 ‘

Table 3.2.: Degrees of freedom (d.o.f.) for the A/ = 2 hypermultiplet.

From the representation theory of the super-Poincaré algebra it is known, that any
hypermultiplet for A/ = 2 will contain particles of spin > 1, unless there is a central
charge Z which satisfies Z = +m [97]. Here m is the mass of the fields in H. If Z = +m
holds true, the multiplet becomes a short multiplet and one can get rid of the higher-spin

components.

For a massless hypermultiplet (the case that we are interested in) one finds the following

Lagrangian,
]_ ZT ]_ ,LT .7
‘Chyper = iau¢ oo + EF F; + lw(?hb (3-20)
The supersymmetry transformations
0; = 2Cip, 0 = —iC'F; —idC'i,  OF; = 26, (3.21)

leave the action invariant, 0 Luyper = 0, Vihy o, Where

hyper?

Ve = 0 (0% + 4" F) ¢+ G (2i50,6) 0. (3.22)
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The Noether current and the supercharges for the hypermultiplet can be calculated as

for the vector multiplet and become
JE = Py (0,0 + Gy " 0,0, (3.23)

such that (7, = @)

Q= / &z (14, + 7" 0" ¥, Qi= / &z ! (omgrs +9"0udi) . (3:24)

The supercharges induce the transformations (3.21) on the fields. The commutator of

two such transformations yields
[6(1)a 6(2)] = 6tra,nslation + 5central: (325)

where the action of the central charge on the components of H is given by

(5centra,l¢i - Fz 5centra,lw = (7’1/1, 5centralFi = D¢ia (326)

such that 6?2

central = L. The equations of motion,

O = Fi = i =0, (3.27)

imply that the central charge vanishes on-shell as required in the massless case.

In the next step, we want to couple the matter fields in the hypermultiplet to the vector
multiplet. By construction all fields in V' are uncharged under the U(1) gauge symme-
try. Nevertheless, the matter fields in H can transform in a different representation, in
particular, they can be charged. It is well-known [98], that no supersymmetric renor-
malizable self-coupling terms for H exist. Thus, the only interactions of N' = 2 matter
are gauge interactions. If we couple matter and gauge fields, the same supersymmetry
algebra must be represented on all fields, i.e. we must extend the algebra of transforma-
tions for the vector multiplet components to include the central charge and the algebra
on the matter fields to include a gauge transformation. This extension can be arranged

as follows. We set

5centra,1Au = OcentraM = 5centralN = central)\i = 5centralD =0, (328)
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and employ the minimal coupling prescription 0, —+ D, = 8, +1iA,. The Lagrangian
for the fully interacting theory is then given by [16]
L= 'Cvector + Lhyper + »Cinteraction
1 v i< i 1 1 1 2
= ——F,F" + N\ + =0,MO*M + =9,NO*N + -D
4 2 2 2 2
1 - 1.
+ 5 (Du) D" i + 10 Py + S FUF;
+igM A\ — PN ¢y — (M — iysN)ep
1. 1 .
= 58" (M + N*)¢i + S¢"'r,” - Dg;. (3.29)
Up to surface terms it is invariant under the supersymmetry transformations
§A, = iGy\, §M = iGN, SN = —(GiysX,

SN =i(F,S)¢" = J(M +iysN)¢' =i, - D, (3.30)
6D =1,/ (;@N,

for the fields in V' and
8 = 2Gb,

§F; = 2G;(ID +iM + vsN)yp — 2(:N ¢, (3.31)
S = —i'Fy — (i) + M +iysN)(' ¢y,

for the fields in H. Note that the supersymmetry transformations (3.30) are identical
to (3.9), so they are not modified by the presence of the hypermultiplet. The change in
L is given by

5£ - 6£vector + 5£hyper + »Cinteraction - auvua (332)
where

(1 - S :

VE=( (5(1*“ W —iFM )y, X" + %’Y“’Y”au(M +iysN)X
: 1 A .

+2AS (D) — 1M (M + i N)y'yp + 5D - 79N + E’VNAJ(bTm(kayijz)

+ ¢(y*F; + D*¢;) ¢ (3.33)
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Later on we will make us of the fact, that we can add a Fayet-Iliopoulos (FI) term k- D
to £ in (3.29). Here, k is a constant (spacetime independent) three-component vector.
Due to the fact that the variation of D in (3.30) is a total divergence, adding k- D gives
only a contribution to the current V5 .,. Thus, the modified Lagrangian is still N' = 2

invariant.

The Noether current and the supercharges now read

T =G [—(F s + 1) + 190, (M + iy N )] A
+ G [V (Dudi)' +1(M + iy N) gtk ] ¢
+ 9 (Y9 (Dy i) — iv*(M + ivsN) s ¢’

1.
- §C,~7")\]sz -1 Ept ™y, (3.34)
and

. 1 -~ 1 1 .
Q= /d333 ({—i(Fom% +iF™) e + %(WM +ivsmN) — %’YO’Ymam(M +iysN) | A*
+ [(Dodi)t — Y°y™ (Dimti)! +i(M +i75N)¢1"9°] ¥

1 .
—Z”YO)\JTJ'Z : Tnfaﬁ””m) : (3.35)

Again, they induce the supersymmetry transformations (3.30)—(3.31) on the fields. The
commutator of two such transformations is given by (3.15)—(3.18) for the fields in V/,

and by

(6D, 6@)¢; = 21O D, + 2 (Fy — (M + inysN) ;)¢
[61),6®] ¢ = 2¢O D,, v + %4V (D2 +1(M — iy N))w — Nigy) '@, (3.36)
(60, 6@ F; = 24D D, Fy + 21 (DFD,, + M? + N?)¢;

—2i\p — 7% - Doy, +i(M — iysN)Fy) ¢F.

for the matter fields. This can be written as

(6D, 6@ = 2V y#¢P D, + 2™ (Beentral — iM + 15 N)CPP, (3.37)
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where the action of dcentral is given by (3.28) and

Ocentrat®i = Fi
Ocentral ¥ = (DZ +iM + '75N) (e /\Z¢Za
ScentratFy = (D2 + M? + N?) ¢; — 2idep — 7,7 - Dop; + 2iM F,

respectively. The equations of motion for our fields are given by
_ 1 .. 1 Y
OuF™ =y"y + §¢TZDV¢1' - E(D i) i,
OM =~y — ¢F':M,
ON = igyse — ¢ ¢ N,
iGN = —igl'yp — i€V ¢; Sy,
1 .. .
D= _§¢TZ¢J'Tz']a

and

D?¢; = 2i\p — (M* + N*)¢; + 7,7 - D¢y,
Py = iXg; + (M — iysN)op,
F,=0.

Once a FI term is included, the last equation in (3.39) becomes

1 . .
D = —§¢h¢j"'ij — k.

(3.38)

(3.39)

(3.40)

(3.41)

This concludes our recapitulation of the four-dimensional theory. Now we are ready to

reduce this theory to three dimensions, where novel results concerning fermionic zero

modes as supersymmetry variations will be derived.

3.3. Reduction to d = 3 Dimensions

In this Section, we are going to reduce our model from 3 + 1 dimensions to three Eu-

clidean dimensions. We use the simplest possible reduction and consider all fields to

be independent of the time coordinate. Equivalently, we could consider a spacetime
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manifold S x R3, where the time direction t is compactified to a circle of radius R.
Now, all fields can be expanded into Fourier series with respect to the parameter ¢. If we
shrink the circle, R — 0, the energy of all excited Fourier modes grows like 1/R?. For
very small radii, all these modes decouple because of their high energies, and only the
lowest Fourier mode, the one that is in fact independent of ¢, survives. There are other
reductions that deal with (some of) the excited modes, too, but since we are interested

in deriving a simple three dimensional model, our naive ansatz is sufficient.

The dimensional reduction of the individual terms in (3.29) will be discussed in the
following. Let us call the zero component of the vector potential ¢, ¢ = Ay, which is
now taken to be time-independent. Accordingly, the field strength F},, decomposes into

two parts, F,, — (Fun, Fom). Using
FOm = a0"4m - aon = - m¢a (342)

we find

1 1 1
_Z .UI/FIW — _Zanan + Eam(bam(b (343)

All other bosonic fields are reduced similarly,

1 1
SOMOM 20, MO M,
1 1
1 1

-D* — _-D”

2 2

During the reduction process, one should keep in mind that the reduced fields need to
by rescaled by factors of v/ R, where R is the compactification radius. This must be done

in order to guarantee their canonical dimensions, e.g.

1
d=4 d=3
F}i——m,u—_n - \/—RF;nn . (345)

The same holds for coupling constants, which we have set to unity in our original theory.

Afterwards, the scale factors can be combined in each term of the Lagrangian to yield
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an overall factor R~!, which cancels the time integration,

/ d*z L, — / dt / d*z R7'Ls = / d*z Ls. (3.46)

Now, all fields have their canonical three dimensional mass dimensions. Observe that in
the following we rescaled the dimensionful three-dimensional coupling constants and set
them to unity again, in order to simplify our formulae. At each step they can be made

explicit on dimensional grounds.

The reduction of fermionic terms is usually the most involved part. A spinor in the
original space must be decomposed into spinors in the reduced space. Here, because
of our particular choice (C.6) for the y-matrices, this can be done rather easily. Every
four-component spinor in four dimensions decomposes into two two-component spinors

in three dimensions,

w=<¢‘> S ow, (3.47)
v

14 are independent two-component Dirac spinors in three dimensions. Similarly, one

finds for the symplectic Majorana spinors,

A
/\1:<)\> . N (3.48)
_|_

Note that A? (the symplectic partner of \!) gives no further independent fields. In

particular, the kinetic term for A\ in (3.29) reduces to
%Xiax‘ S DLdA — D_dA (3.49)

Summarizing (3.43)—(3.49), the vector part of £ in (3.29) reduces to

1 1 1
- _anan o Vm¥PUm¢ — _amMamM
4 * 2(9 $0m® 2

1 - - 1
— §amNamN +id @A —id PN+ §D2. (3.50)
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At the same time, the hypermultiplet part gives

— 5 (Dnd) (D) + 5676:6% + i, Do,
DY~ D — Budtos + SFE (3.51)

and the interaction part reduces to

i (Apho + Atpy) + 16 (N o + N, o)
— (A F PN )b —i(h 0N + -0’ AT )
— 9y (M +iN)yp_ — (M —iN)py

SF(M? + N?)gu+ g"r] - D (35

N~

Adding all terms from above, and using the definition (C.32) of the charge-conjugate
spinor )¢, the reduced Lagrangian is given by

[— _% PR+ %8m¢8m¢ - %8mM8mM _ %amNamN
— (D08 (D) + i Iy — it Do + i, — A
— P ¢ — gty +i6T (A + A Py) — 1WA+ P A
+ i (A_ct— + Apetpy) — (Y die + P_Ac) o
B (M INYS — G (M — N,

1 .. 1 .. 1 1 ..
— §¢TZ(M2 4+ N2 ¢2)¢Z + §¢Tz7_i3 -D¢; + §D2 + EFhFi- (3.53)
Note the wrong sign in the kinetic term for ¢. This is a generic and presumably unavoid-
able feature of Euclidean supersymmetric theories. The sign problem has already been
studied soon after the very invention of supersymmetry [99], and has attracted renewed

interest recently [100].

The reduction of the supersymmetry parameters ¢* yields two independent Dirac spinors,
(4. They serve as parameters in the reduced theory, which exhibits therefore N' = 2
supersymmetry, too. For the reduction of supersymmetry transformations we proceed

along the same lines, e.g., using the explicit form of the y-matrices, we find

00 =049 = iGN —  i(GAr+CA = A —AG). (3.54)
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The supersymmetry transformations of the remaining fields in the (four-dimensional)

vector multiplet are given by

0Am = —1({10™Ap — (Lo™A_ + A_o™( — A 0™ ),

OM =1(CAo + A — Al = Ay, (3.55)
SN =GA —C A — A+ A,

6Ay = i(F,0)C F d¢Cs = J(M FiN)( —iDsCs — i(Dy 4 iD2)Cqe

Here, D; are the components of D. The remaining variations reduce to

51 = 2049 +2C Py, 5pa = 2(_cth— + 20 ey, (3.56)
Sty = —Co(iFy + (M £iN)¢y) — Cze(iFe + (M £iN)go) + (¢ + 1) ((x01 + Cacda).

Invariance of £ under these transformations follows from the invariance of £ in 3+1
dimensions or can be checked explicitly. The equations of motion in the reduced theory
can be derived as Euler-Lagrange equations of £ in (3.53) or by reducing (3.39). Both

ways, we obtain

DG = 66,6 — Bathy — Dtb,
O Frun = 0™ —B-0"_ — 26" D+ - (Dud)' 6,
ighs = FigM s + igotuc, (3.57)
AM = tpp_ +p_thy + o' M,
AN =itppp_ — i 1y + ¢T N,
D= ¢l

for the fields in the vector multiplet, and

D?¢; = —2iA 0 — 2\ ap, + (M?* + N? — ¢* + %czﬁ““qﬁk)(m,
D¢y = =20 ot — 2iA ety + (M? + N? — ¢ + %(b““qﬁk)(bg,
Py =A@ +idjcds + (M +iN)Y_ + ¢ty (3.58)

iD= —iXi g1 —iX ey — (M —iN)ps — ¢¢p-,
F,=F"=0,
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for the matter fields.

In the next Section, we will use these variations to construct bosonic background field
configurations that are invariant under half of the supersymmetry transformations. Af-
terwards, we study the fermionic equations in these background fields. In four dimen-
sions, this procedure is known to generate zero modes of the corresponding Dirac oper-

ator, e.g. for the case of a static monopole and for instanton fields [81, 93, 83].

3.4. Background Fields and Zero Modes

The most general ansatz for a bosonic background configuration contains all bosonic
fields (A, ¢, M, N, D, ¢;, F;) whereas all fermionic fields (¢4, A1) are set to zero.

One verifies that in such a background configuration the supersymmetry variations of

the spinors satisfy the linearized equations

(i) — ¢)(01) = ip1(0A ) +1ida(0Asc) + (M +iN)(5%-),

(i + ¢)(0y-) = —1¢1(5)\+) i¢2(6A—c) — (M —iN)(6%4), (3.59)
id(6X1y) = —io" (69_) + g2 (004, )
id(6A-) =i (6¢4) — ig2(0Y_c),

provided the scalars ¢; satisfy their equations of motion (3.58).

Now we ask: under which conditions on the bosons do the fermionic variations vanish at
the background? For arbitrary variations with independent parameters (; and (_, only
trivial backgrounds (involving constant scalar fields) are invariant. Therefore, we look for
configurations that are invariant under only half of the supersymmetry transformations.
In particular, the parameters (. will no longer be independent, but we relate them to

each other in a Lorentz-invariant way. We consider the following three cases,

(=G~ (=G~Cal~—C, G=00C=¢ (3.60)

Let us focus on the first case. Then, setting dA+ = 0 implies the following conditions on
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the bosonic fields,
¢ = M + const., B =-VN, D =0. (3.61)

Here, B is the magnetic field, the dual of the field-strength F},, in three dimensions,

1

The Bianchi identity,
V-B=-AN =0, (3.63)

implies that N vanishes, since we are interested in square-integrable solutions only: any
harmonic function on R? is either zero or not normalizable. Non-normalizability of N
implies that the spinor-variations in this background are non-normalizable, too, and we
have to set N = 0. Accordingly, the field strength vanishes, and we can choose A =0
for the gauge potential. Furthermore, D = 0 in (3.61) can be expressed in terms of ¢;

and reads
olir,ip; = —2k. (3.64)
Here k is the constant vector in the FI term and can be choosen as
t
k=k(0 0 1), k>0 (3.65)

Note, that the left hand side of (3.64),

¢y + 1%y 2(u1u3 + Ugls)
o' g = | —igles +igT¢1 | = | 2(uius —uouz) |, (3.66)
oM 1 — %o u? + ud — ui — ul

is the standard Hopf map [33, 101], if we restrict the fields to

|¢1]* + |p2|* = const. (3.67)
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We have used the parametrization
(}51 =u; + iUQ, ¢2 = Us + iU4, (368)

to make the relation to the Hopf map more transparent. Under this map, the following

equivalence class of fields is mapped to the same point,
¢i ~ eV, ¢l ~ e YT, (3.69)
Using this fact, (3.64) with the choice (3.65) reads
¢, =0, |po|” = 2k. (3.70)
The 14 variations on this restricted background read
0ps = (¢ £id — M)(cdo. (3.71)

To find an invariant background, we set them to zero, and take the sum and the differ-

ence,

(6 — M)Ceo =0, i =0, (3.72)

with solution ¢ = M and ¢, = const. Here, the fields ¢ = M are not restricted
any further. Summarizing, if we allow for a general N/ = 1 variation (no additional

restrictions on (), the only solution for an invariant bosonic background is
A=0, F,,=0, N=0, ¢=M, ¢1=0, ¢y=const. (3.73)

If we apply a general N' = 2 supersymmetry variation to this configuration, it can be
decomposed into a (, = (_ variation, which vanishes by construction, and a remaining

(y = —(_ = ( variation, which yields

Sy = —2d¢C, 0y = £2¢¢a(c. (3.74)

One verifies that these variations of the spinors satisfy the Dirac equations in the back-
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ground, e.g.

(ia’f - ¢)5¢+ = i¢2(5/\+c) + M(S?/)— = —21¢2(a¢§)c - ¢5¢+a (3-75)

such that 14 is a solution of the Dirac equation

i@o0, = +2idadeCe. (3.76)

Let us come back to the remaining two cases in (3.60). Upon setting 6 A+ = 0, they turn
out to yield even more restricted configurations: vanishing gauge fields and constant

scalar fields.

Result: In three Euclidean dimensions, only a very restricted class of bosonic back-
ground fields are invariant under half of the supersymmetry transformations. In partic-
ular, the gauge field must vanish in order to find normalizable configurations. Acting
with the unbroken supercharge on such a background yields zero modes of the Dirac
operator, but for fermions interacting with the scalar fields only. In particular, the zero
mode examples of Adam, Muratori and Nash, for Dirac operators in three dimensional
gauge fields, cannot be obtained in this way. In the subsequent Sections we are going
to apply a similar construction to other physical situations, where we are able to derive

more interesting results.

3.5. N =2 Vortices

Let us consider a more restricted bosonic background, where only the gauge field A and

the scalars ¢; are nonzero. The Lagrangian (3.53) for these fields reduces to

L= (Fon+ 5 (Dnd) (D) + (61,76 + k(@0 0) + 5K, (377

where we included a FI term k- D. For k = 0, that is without FI term in the action,

we can use the BPS trick [102] and write

L= F+ 5 (D) (D) + (617, 76)" > 0 (378)
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But now the BPS equations imply
and we are left with trivial solutions only. For nonvanishing k, in particular with our

convention (3.65), we find

1 1 1 - 1 1
L= 533 + 533 + §|D¢1‘2 + §‘D¢2|2 + §(D3¢i)T(D3¢i)
1 1. .
+ g((ﬁ”(ﬁz + ¢2T¢1)2 + §(1¢1T¢2 — 1¢2T¢1)2
1
+ 2 (101° = [6f* + 2k — 2B3)° + kBs

> kB;. (3.80)
Here we have introduced the complex covariant derivatives,
D =0 +iA, D =0 +iA, (3.81)

with respect to the complex coordinate

0 - 0
2 %

(3.82)

z =1 + ixo, Z =11 — ix9, 0=

and B; are the components of the magnetic field (pseudo)vector B. In this case, the
BPS equations

Bl - B2 - 0,
D(bl = 07 D¢2 = Oa D3¢Z = 07 ¢T1¢2 = 0: (383)
41| — ¢2]? + 2k — 2B3 = 0,

will allow for nontrivial solutions. We solve these equations using complex gauge fields

and find, in particular,

Fzz - Fzz - O, FZZ == _B3. (384)
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In analogy with the discussion for supersymmetric quantum mechanics, the covariant

derivatives can be deformed as

D = gog™*, g=eX, A = —idy, (3.85)

D =g '0g, g=-eX, A =i0y. (3.86)
From (3.83) and in the gauge A3 = 0 we conclude
¢ =ef(2), b2 =e¥h(2). (3.87)

A and A (and therefore ) must be independent of z3 in order to satisfy (3.83). This
effectively reduces our three-dimensional theory to a two-dimensional one, where all

fields only depend on z and z. It remains to solve the BPS equations,

oMy =0, (3.88)
|1]* = |p2|” + 2k — 2B3 = 0. (3.89)

They imply that at each point one of the scalar fields vanishes. We choose h(2) = 0, so
¢2 = 0. With By = Fj, = 400X, (3.89) translates into the Liouville equation,

e |f(2)]> + 2k — 2Ax = 0. (3.90)

A general solution (y, f) of this equation gives rise to BPS solutions A and ¢; of our
theory, but is usually inacessible due to the intricacy of the differential equation. Let
us construct particular solutions with radial symmetry, x = x(r). Here, r is the radial

coordinate in the complex z plane. If we call the angular coordinate 6, we find
A, =0 and Ap=x" (3.91)

With the ansatz

Ag =Y a_r)’ ¢y = eXf(2) = f(r)e™, m € 7Z, (3.92)
r
the Liouville equation translates into

d'(r) = g( F2(r) + 2k), (3.93)
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and f(z) in (3.92) is a holomorphic function, df(z) = 0, if the following holds

f=2L(a(r) +m). (3.94)

=

Equations (3.93) and (3.94) are the standard BPS equations for the Nielsen-Olesen
vortex [103] of magnetic flux ® characterized by the integer m. No analytic solutions to
this coupled system of differential equations are known, but numerical ones have been
found, see for instance [104]. The same equations have also been derived in [105] starting

with a supersymmetric gauge theory in d = 2 dimensions.

Let us assume now that we are given a BPS solution (A, ¢1). Then we can check that this
solution is invariant under half of the supersymmetry transformations, and the unbroken

transformations generate solutions of the Dirac equation. If we split the two-component

Cs = <§ﬂ) , (3.95)
Ca2

and use the BPS equations, as well as (3.55)—(3.56), we find

Sty = +iDg, (CJF?) . 6Ay = 2iBs ( 0 ) . (3.96)
0 Ca2

Obviously, the background is invariant under transformations generated by (y;. The

supersymmetry parameters as

remaining variations generate zero modes which satisfy

iPo)y = +ig6As —  iD6Ys £ 2Bz (CO ) =0, (3.97)
F2
idods = Fig'oyp  — i@ + ¢ Doy (%2) =0. (3.98)

Result: Given a BPS solution (A, ¢;) of our theory described by the Lagrangian £ in
(3.77), we can construct one zero mode 1+ in the background of the gauge potential
A and in interaction with the scalar ¢;. In addition, we can generate a zero mode A,
which is uncharged with respect to A. The Atiyah-Singer index theorem applied to
two-dimensional vortex-configurations [62, 106] predicts the existence of m charged zero

modes. One of them can be obtained as a supersymmetry variation in our theory.
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3.6. Applications to Non-Abelian Theory

In this final Section we repeat our previous considerations, but now for a non-Abelian
gauge group. In this case, it is sufficient for our purposes to study the vector multiplet
V, since the spinors there are charged under the gauge group (in contrast to the Abelian
case). In particular, all fields in V' transform according to the adjoint representation of

the gauge group.

The vector multiplet of N' = 2 Non-Abelian gauge theory is well-known (see e.g. [16]),

and the corresponding Lagrangian is given by

1 1 1 1
L=tr (_i o %AW“DM)J + 5(DuM)(D*M) + 5 (D,N)(D*N)
1o, 1< i 1 9 1.9

where, tr denotes the trace over gauge group indices.

The supersymmetry transformations are given by

SN =i(F, )" — D(M +iysN)¢" + v5C[M, N] — igjr;' . D, (3.100)
6D = 7,7 (DX + [\, M] — 5[\, N]).

Like in the Abelian case, one shows that the corresponding action is invariant under

these transformations. The commutator of two transformations gives
6D, 6P = Sranstation + Sgauge, (3.101)
with gauge parameter
A =2 (M +iysN — 4 A,)C®., (3.102)
Using the abbreviation

[, Ty] = ifAPCPPTyOTA, (3.103)
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for any matrix I' in spinor space, the equations of motion can be written as
D, F" = —%[/\,-, v’A'l —i[M, D"M] —i[N, D"N],
DM = %, X] = [N, [N, M],
D?’N = —%[5\1,75)\"] — [M,[M, N]], (3.104)

D = 0.

The linearized equations of motion for the fermions hold on-shell, so we have
iD(6AY) = —[M +iysN, 6N (3.105)

for a bosonic background field configuration (A4,, M, N).

3.6.1. Reduction to d = 3 Dimensions

The reduction of £ to three dimensions can be carried out along the same lines as for

the Abelian theory. The result is in this case

L=tr (-%anan + %(qub) (D) — %(DmM)(DmM)

- %(szv)(pmjv) N DA, — DA
- 5‘+[¢7 )‘-l-] - 5‘—[4): )‘—] + 5‘+[M7 )‘—] + /_\—[Mv )‘+] - ij‘-I- [Na )‘—]
1

HAN, A~ [, M — 56, N + ¢

[M, N)? + %D2> : (3.106)

As before, ¢ is the zero component of the four-dimensional vector potential, ¢ = A,

and the kinetic term for ¢ in (3.106) has the wrong sign. Supersymmetry variations and
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equations of motion reduce to

6 =i (A +C A — A ¢ —A(y),
0Ap, = —1 (o™ — Co™A + A 0™ — A\yo™(y),
OM =i(A +C A=A — A y), (3.107)
SN = (A —C Ay — A+ A Gy,
0As = i(F,0)Cx F P¢Cs — i[¢, M FiN|(z + D(M FiN)(x
+ [M, N|C+ —iD3(s — i(Dy +1iD3) (e,

and

Dy F = M=, 0"A_] = M4, 0" A\4]
+i[M, D, M| +i[N, D,N| —i[¢, D, ¢,
D*¢ = [Ar, M)+ Ao, M)+ [M [M, ¢]] + [N, [N, ¢]],
D*M = A, A ]+ A, A + [N, [N, M]] = [¢, [, M]], (3.108)
D*N = —i[Ap, A ] +i[A, A ] + [M, [M, N]] - [6, [¢, N]],
DAy = F[M FiN, \g] £ [¢, \L],
D =0.

Like in the four-dimensional theory, one verifies that the linearized field equations hold

on-shell, and that they are given by

D(6A_) = [M +iN, 61| — [6,6)_], (3.109)
iP(ONy) = —[M —iN,5)_] + [é, 6, ]. (3.110)

3.6.2. Background Fields and Zero Modes

Similar to the Abelian case, we would like to study which background field configu-
rations are invariant under half of the supersymmetry variations. Let us first analyze
a background that consists of gauge fields only (a three-dimensional instanton). The

bosonic variations vanish at this background, and the spinor variations give

SAs = i(F,0)Cs. (3.111)
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So this background is invariant if and only if F,,, = 0. This is in contrast to the four
dimensional case, where instanton configurations break half of the supersymmetry vari-
ations, say the ones with left-handed parameters, whereas right-handed supersymmetry

parameters give rise to zero modes of the Dirac operator [81, 83].

Still, we can construct zero modes of the Dirac operator in these three dimensional
instanton fields. Provided the equation of motion for F,,, and the Bianchi identity hold,
we find with J\ from (3.111),

iPs: = 0. (3.112)

It turns out that these modes are not normalizable, since

mn— mn

oA = /d% tr OATSN = %/d?’x CHFA FA 1)¢ ~ S[A]CTC. (3.113)

Here, S[A] is the action associated with the field configuration A. As we will show
using a particular form of Derricks theorem [107], there are no finite-action solutions to
the equations of motion for the gauge potential in any Euclidean dimensions except for

d = 4. Assume A(x) is such a configuration in d dimensions. Define the action
sl = — / Ay tr Fo () Ey (), (3.114)
and the following one-parameter family of gauge field configurations,
Ay(x) = NA(\x). (3.115)
The action for the members of this family is given by (y = Az)

1
S[A,\]z—z/dda:trF’\ F

mn— mn

1
=—; / d%y A"IN%r Frn (Y) Frun (9)

= M5 A]. (3.116)
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Since A(z) is a solution, we have

04 0S[A,]
)N N

= (4 — d)S[A]. (3.117)

So either d = 4, and there can be nontrivial solutions, or d # 4, but then S[A] = 0
implying F,,, = 0, and there are only trivial solutions. In particular, for d = 3, there
are no instanton configurations which are invariant under half of the supersymmetry
transformations, and possible non-normalizable instanton configurations give rise to non-

normalizable zero modes only.

As a way out, we can consider our theory on a three-dimensional torus T3. There,
nontrivial gauge field configurations exist, and they will give rise to square-integrable
zero modes. For our construction, we need instanton configurations on T3. Not much
is known about such configurations, and the situation is similar to the better studied
torus T* [68, 108]. In general, no explicit (anti-)selfdual connections on T* are known,
except for constant-curvature solutions, the 't Hooft instantons [109], which exist for
some choices of the torus size. Here we present some analogous solutions for the three-

dimensional case. Let the size of the torus be L x L x L, and consider the gauge potential
Ay = aTzo, Ay = T4, A3 =0, (3.118)

with nonvanishing curvature component
Fio = -T(a+ p). (3.119)

Here, T is a fixed linear combination of the generators of the gauge group, e.g. of SU(2).

Obviously, D,,F,,, = 0 is satisfied, and we generate the zero mode
SA=iT(a+ B)o’¢,  iPéA=0. (3.120)

The cocycle condition for gauge fields on the torus [68] restricts the possible values of «

and [,

2mn 2mm
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Another example is given by

A1 = CET(EQ, A2 = ﬁT{I}g, Ag = 0,
Fio =—aT,  Fp=-pT,  DnpFmn, =0, (3.122)
6\ =iT(ao® + Bo)¢,  ilp6A =0,

where the cocycle condition again implies (3.121).

3.6.3. Jackiw-Rebbi Modes in d = 3

As we have seen in the previous Subsection, configurations that consist of gauge fields A
only do not yield interesting solutions in the case of R3. If, in addition, we switch on one
of the scalar fields, say M, invariant backgrounds turn out to be possible. We will focus
on the case with nontrivial A and M, but the other scalars yield similar results. For
definiteness, let us choose the gauge group SU(2) with generators T4 for what follows.

In this case, the variations read

A =i(F,0)¢ + DM, (3.123)
SA_ =i(F,0)(. — DMC(,. (3.124)
For N’ = 1 supersymmetry transformations, with { = {, = —i{_, we find
oA+ = —idA_ = (i(F,0) +iDM) C. (3.125)
These variations vanish, if
Dy M = By, (3.126)

where By is the chromomagnetic field. Assuming this equation to hold, the unbroken

supersymmetry generator (¢ = ¢, =1i(_) yields the zero modes

SAy = i6A_ = 2i(F, o), (3.127)
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which satisfy the Dirac equation in this particular background, e.g.
iDoN, = 2[M, PM]C. (3.128)

Here we have used the Bianchi identity and the equation of motion for F,, (3.108).

Now we should solve the equations of motion for the bosonic fields. The bosonic part
of our theory corresponds to the time-independent four-dimensional Georgi-Glashow
model (Yang-Mills-Higgs model) with vanishing coupling, A — 0, so we expect to find

the well-known 't Hooft-Polyakov monopole solutions [110].

Rewriting the Lagrangian for A and M,
1 1
—L=tr (Zanan + §(DmM)(DmM)> , (3.129)

and applying the BPS trick gives

1 1

L= (F2, + epni(De M) + ZemnkF,;‘n(DkM)A > Q, (3.130)
1

Q= Ze,,m,cF;,‘in(D,CM)A. (3.131)

BPS solutions of the equations of motion,
D, F., =iM, D, M], D?*M =0, (3.132)
satisfy the first-order differential equation (BPS bound)
Fh = Femnn(DpM)™. (3.133)
The ansatz
M* = § 4,2, M(r), A = €amprpAlr), (3.134)
for BPS states yields the set of coupled equations,

~A*r+ A £ (M —rAM) =0, (3.135)
~A'r =24+ (M +1°AM) = 0. (3.136)
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As usual, they are much easier to solve than the second-order problem,

%A’ + A" = 3A% — PP A — M® =P MP A% =0, (3.137)

éM’ —4AM + M" = 22 Mr? = 0. (3.138)

The normalizable solutions are given by?

1 My 1 Mo
A= —— + B M=+t—F " (3.139)

r2  rsinhrM,’ 72 T rtanh rMy

For definiteness, let us take the BPS equation (3.133) with the plus sign. The results

for the other case are just copies of the ones to be obtained in a moment.

With ( = (, =i(_ we find

SA =6y =i0A_ = 2i(F,0)(¢
= 1T [6ak(4A + 2A'7) + 24z, (2A% — 2A'r71)] 07¢, (3.140)

where A is given by (3.139). One easily checks that 0\ has finite norm and solves the

corresponding Dirac equation,

iP(6)) —i[M, )] = 0. (3.141)

The two independent components of )\ represent two zero modes of the Dirac operator
in the background of a 't Hooft-Polyakov monopole. These zero modes are the so-called
Jackiw-Rebbi modes that have been determined in [90] (in the framework of static d = 4
Yang-Mills-Higgs theory). Two adjoint zero modes are to be expected for the monopole

of charge one on general grounds, because of the Callias index theorem [89].

The construction of zero modes in the adjoint representation of the gauge group (here
SU(2)) for the 't Hooft-Polyakov monopole concludes our considerations for the non-

Abelian case.

3The constant M is the vacuum expectation value of M at infinity, a remnant of the Yang-Mills-Higgs
theory with nonvanishing coupling A.



4. Summary and Conclusions

In this thesis we have shed some new light on the connection between Dirac operators and
supersymmetry. Dirac operators — viewed as particular realizations of supercharges —
are used to define supersymmetric systems in quantum mechanics, while supersymmetry

gives us the possibility to construct zero-eigenvalue solutions of the Dirac equation.

In the first part of the thesis we have defined the notion of a supersymmetric quantum
system, which is characterized by the existence of a supercharge (), that commutes with
the Hamiltonian H, and an involutary operator I', which anticommutes with (. A par-
ticular class of such theories can be constructed as follows: take the Dirac operator i)
on a Riemannian manifold M in the background of gauge field configurations, charac-
terized by the gauge curvature F'. Define the Hamiltonian to be the square of this Dirac
operator, H = (i]p)%. Then, i) serves as a supercharge of H. The existence of I" restricts
M to be even-dimensional, since in this case we can use I' = ,, the generalization of

75 in any even dimension.

Having defined systems with simple (or N' = 1) supersymmetry, we may ask the following
question: Under which conditions are there additional supercharges for this Hamiltonian?
It turns out that the existence of additional charges (i.e. A/ > 1) puts restrictions on the

dimensionality and the geometry of M as well as on the possible gauge field content.

We have shown how number operators N and superpotentials g can be defined, provided
N > 2. Using the latter, we can deform the supercharges into their free counterparts,
which leads to an elegant solution for the zero modes of the Dirac operator. We have

applied this method to Dirac operators on CP".

Given the ground state wave function, any quantum mechanical system can be general-
ized to a theory with ' = 2. Among all examples in nonrelativistic quantum mechanics,
the Coulomb problem and the harmonic oscillator potential are special, since they pos-

sess hidden or dynamical symmetry algebras that are larger than those generated by the

85
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angular momenta. In the Coulomb case, the existence of the conserved Laplace-Runge-
Lenz vector implies a symmetry algebra so(d + 1) for bound state wave functions. For
the oscillator potential, there exists a conserved symmetric tensor of second rank, which
implies the algebra su(d). In the non-supersymmetric case one can use the hidden sym-
metry algebras in order to solve the eigenvalue problems of the associated Hamiltonians
in a purely algebraic way. We have generalized this procedure to the case with N' = 2
supersymmetry by constructing the supersymmetric versions of the Laplace-Runge-Lenz
vector and of the second-rank tensor. These conserved quantities have been used to find
the algebraic solutions. In view of similar results for the non-supersymmetric case, we
have speculated on a possible extension of Kustaanheimo-Stiefel transformations to the
supersymmetric situation. While such an algebraic approach looks promising, its details

are beyond the scope of this thesis and left to future work.

To pave the way to the field theory case, we have identified our supersymmetric Hamil-
tonians with those of interacting (1 + 1)-dimensional Wess-Zumino models on a spatial
lattice. This identification has been established for theories with N =1 and N' = 2
supersymmetry and can be used to determine ground states, degeneracies etc. for the
lattice theory. The extension of our ideas to more realistic theories in 3 + 1 dimensions

is currently work in progress.

The second part of this thesis is devoted to the study of supersymmetric field theories.
Like in the previous examples, we have focused on theories with N' = 2 extended su-
persymmetry. Our aim was to derive some new information about the possibility and
degeneracy of zero modes of Dirac operators in three dimensions. In odd dimensional
spaces, almost nothing is known about such modes, whereas in even dimensions index

theorems can be used to derive lower bounds on their number.

We have considered those supersymmetric gauge theories that are appropriate for our
construction and reduced them to three Euclidean dimensions: for Abelian gauge the-
ories we have analyzed the coupling of a hypermultiplet H to the vector multiplet V.
In the case of non-Abelian theories we have argued why it is sufficient to consider the
vector multiplet V' only. In analogy to the even-dimensional case, a method has been
proposed how to generate zero modes of Dirac operators as supersymmetry variations

in the background of bosonic field configurations.

For R? we have proven that zero modes obtained in this way are either trivial (in the
sense that they couple only to the scalar fields rather than the gauge field), or they
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are non-normalizable. Nontrivial solutions are found upon compactification to a three-
torus, R® — T3. We have illustrated our construction with some examples: 't Hooft’s

constant-curvature solutions on T? and the corresponding zero modes.

We have simplified our model further by ignoring the dependence on the third coordi-
nate, effectively reducing the dimensions to two. In this way we were able to construct
zero modes of Dirac operators in the background of vortex fields. Due to translational
invariance in the third direction, these zero modes are non-normalizable in R3, albeit in

a controlled manner.

In the course of our studies, zero modes of Dirac operators in the background of Yang-
Mills-Higgs monopoles turned out to be the most interesting solutions in the non-Abelian
setting. Here, we employed the BPS trick in order to find the monopole profile functions
and generated the zero modes as supersymmetry variations around that background.
The zero modes obtained in this way correspond to the Jackiw-Rebbi modes of the

static four-dimensional theory.

Summarizing, the proposed method to generate zero modes of Dirac operators as super-
symmetry variations around bosonic background field configurations yields interesting
results for a variety of situations. However, for the particular case of a fermion in the
background of an Abelian gauge field on R?, only limited insight can be gained this way.
The question whether such a background may support zero modes remains unanswered

so far and clearly deserves further study.
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A. Representation Theory

In this Appendix we collect all basic facts concerning Lie algebras, that are needed in

the main body of the thesis (cf. [111, 112] for a more detailed discussion of these issues).

We discuss properties of the A,,, B, and D, series in the Cartan classification of simple
Lie algebras, more precisely of their compact real forms, su(n+1), so(2n+1) and so(2n).
Let us consider the B, and D,, series first. We start with D,,, since in even dimensions
we can introduce complex coordinates which turn out to be very useful. Afterwards, we

can add one more real coordinate and deal with B,,.

We shall construct the relevant irreducible representations of the total angular momen-

tum operators
Jab = TaPy — TpPa — i <¢l¢b - w,wa) ,  ab=1...4d, (A1)
satisfying the so(d) commutation relations
(Jabs Jea] = 1(8acdbd + OpaJac — daaJbe — ObeJad), (A.2)
on wave functions in
H, = Loy(RY) x €6 with p=0,...,d. (A.3)

The fermionic operators 1, have been introduced earlier in Section 2.6.2. It is convenient,
to use the Cartan-Weyl basis consisting of generators H; in the Cartan subalgebra and

one raising and one lowering operator E, and E_, for every positive root «,

[Hi, E)] = ;E, and [E,,E ,J=a-H with E ,=E]. (A.4)

101
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A.1. The D, Series

As mentioned above, it is very convenient to introduce complex coordinates in our even-
dimensional space R¢, d = 2n. For that, we fix a particular form for the complex

structure I and write

1 1

Z; = E(xm—l +iz9;), Zi = E(@i—l — izy;), (A-5)
1 = 1

8,- = = azg'q - 'ami ’ az = = 81'27;71 + .89021 ) A.6
75O —i00) 7 i0;,:) (4.6)

for i+ = 1,...n. Similarly, we define two sets of complex creation- and annihilation
operators

1

¢1~L = %(wgi—l + iwgi)’ ‘1_51 = (wgz’—l - w;z‘)a (A-7)

V2 V2
¢; = %(%11 —ithy), &= %

for 2 = 1,...n. The only non-vanishing anticommutators are

(Vai—1 + ithy), (A.8)

{¢:, 01} = {6i, 8]} = b . (A.9)

From the algebra (A.2) we read off, that Jia, J34, Js6 etc. form a set of commuting
operators. In fact, these n operators can be chosen as a basis of the Cartan subalgebra.

Thus, the generators in the Cartan subalgebra take the simple form
H; = Joi_19i = 2:0; — %;0; + ¢;~r¢z’ - CEICEZ ; 1=1,...,n. (A.10)
There are two types of raising operators,

Ea = (JQi_l,Qj_l + JQ«L"QJ' — iJQi_l,Qj + iJQZ’,Qj_l) with root o = €; — €, (All)

N =

and

1 . . .
Ea = §(J2i—1,2j—1 - Jgi’gj + 1J2i_1’2j —+ 1:]21',2]'_]_) with root o = € + €4, (A12)
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where i < j is assumed. In terms of the complex coordinates/operators they read

E, = (ziaj — z;0; + qb;rgbj — gﬁl(ﬂ) with root o =e; —ej, (A.13)
B, =

|_u| |_|._¢.| —_

(zigj — ngi + ¢ZTQ3]- — qﬁ;q;z) with root o =e; +e;. (A.14)

The corresponding lowering operators are just the adjoints of the raising operators. The

operators (H;, E,, E_,) satisfy the commutation relations (A.4). The n simple roots are
a;=¢€—€11, 1<i<n and «a,=e€, 1+e,, (A.15)

and the corresponding raising operators have the form

1 ~ .
E; = T (ZiaiJrl = Zip10; + ¢I¢i+1 - ¢;’r+1¢i) =6 Gy, (A.16)
for 1 <i<n, and
1 _ _ ~ _
E, = I <Zn—lan — 2p0p—1 + ¢L—1¢n - ¢L¢n—1) , = ¢€n_1+en. (A17)

With the help of the Weyl vector

1
655204:(n—1)61+(n—2)62+---+en_1, (A.18)
a>0
where the sum extends over all positive roots, we may calculate the dimension of an
arbitrary faithful representation of s0(2n). Such a representation is determined by its
Young tableau which contains at most n rows. The length ¢; of row ¢ is bigger or equal

to that of row ¢+ 1. Hence, a Young tableau is given by n non-negative ordered integers

b2l > 2>l >y, (A.19)
and has the form
1 A
© 1 ——— b . p<n. (A.20)
1] 16,
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We use Weyls dimension formula [111],

) a, A+ 6
dimy = OE[O ﬁ, (A.21)

for a representation characterized by the highest weight A. Correspondingly, the repre-

sentation D ¢ has the dimension

dim (Dll,...,fn) — H

1<r<s<n

b+ bg+2n—1r—8 b, — by +s—r
2n—r—s s—r '

(A.22)

For the second-order Casimir invariant of these representations one obtains the formula

Coy (D) = "4, (4 + 2n — 2r). (A.23)

In particular, for the completely symmetric representations D¢%0 =Df ~[1] | [¢],
these formulae simplify to

Cioy(Df) =€((+d—2), and dim (D)= (“‘Z‘ 1) - <€:f; 3). (A.24)

For the completely antisymmetric representations D! = D] ~ |— , they yield
@(D,) = p(d—p), an im (D)) = o) (A.25)

Simultaneous eigenstates of all n generators H; in the Cartan subalgebra have the form
n — _
[z p.B),  |p.D)=o1" ... 0P dl" ... [P |0), (A.26)
i=1

where m;,m; € Ng and p;,p; € {0,1}. The vacuum |0) is annihilated by all particle
lowering operators v, or equivalently by all ¢; and ¢;. The H,-eigenvalues of these

states are m; — m; + p; — P;-

Next we must construct the highest weight states which are annihilated by all raising

operators. Every such state determines an irreducible representation. The eigenvalues of
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H; on a highest weight state is equal to the length ¢; of the Young tableau corresponding
to the irreducible representation which is determined by this weight. The d + 1 space-
independent highest weight states are

o) =|p,P) with p1>...>p,>p.>...>p and Y (pi+p)=p. (A27)

There is an additional highest weight state in the p = n particle sector, that arises since

in this sector we have selfdual and anti-selfdual configurations. It is given by

p1:---:pn71:pn:1, pn:plz---:ﬁnflzo- (A28)
Clearly, the particle number p uniquely specifies these state since the p; and p; are
ordered. These states define the completely antisymmetric representations

1 1 1
D, for p<n and D,~D

2n—p

for p>n. (A.29)

We used the following fact: a Young tableau, the first column of which has length

n < p < 2n, gives rise to the same multiplet as the tableau with first column of length

J4

2n — p < n. In the following one should replace 'Dé by Dj,,_,, if p exceeds n. Also note

that Dy ~ D, is the one-dimensional trivial representation 1.

The highest weight states in the zero-particle sector are
. ~ 21 [0) (A.30)

and they give rise to the completely symmetric representations Df spanned by the
harmonic polynomials of order £. The relevant irreducible representation of so(2n) in
the p-particle sector is gotten by tensoring the antisymmetric representation Dpl with a
symmetric representation Df. We use
1 ¢ _ e -1 £+1 ¢

D,®D; =D, ,®D, ®@D," ®@D, 4. (A.31)
Note that for p = 1 and/or ¢ = 1 there appear only three representations in this
decomposition. For p = 1 the first representation and for £ = 1 the second representation
on the right hand side in (A.31) are absent. Also note that for p = n the first and last

representations are equivalent. The second to last representation Dé“ on the right hand
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side has highest weight state

Vil +1,p) =2 |p), (A.32)

as it is the product of the highest weight states of Dé and Df. To find the highest weight

state of the other representations we observe that the operators

rS = T, = 2k + zidi, (A.33)
rSt =zt = Zigl + 2], (A.34)

which have been introduced in (2.115), commute with the total angular momentum and
hence map highest weight states into highest weight states. Since S decreases and S'
increases the particle number by one, we find the state
p+1 .
Vallyp+1) =18Vl —1) =Y (=) 2zig] ... ... 0L, 20 [0), (A.35)

i=1

which is highest weight state of the last representation, Dé 41, in the decomposition
(A.31). Here ¢! indicates, that ¢! is omitted in the product.

The missing two highest weight states correspond to those representations (in the tensor
product of a symmetric and an antisymmetric representation) that one obtains by taking
the trace over two suitable indices. Note, that this operation is equivalent to acting with
St. Thus

7;(& P — 1) = STys(ga 0 — 1)a (A36)

is the highest weight state of Dé_l in the decomposition (A.31). For the remaining

highest weight state we make the ansatz
T.(l—1,p) = (SST—i—ozSTS)yS(E—l,p) . (A.37)

As {S, ST} = 1, this state may have a component in the direction of J;(¢—1, p). However,
for the choice @ = —1, the highest weight state

7;(£_ 1: P) = [S’ ST] ys(f_ 1: p) ’ (A38)
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is orthogonal to Vs (¢ — 1, p).

In this way, we obtained the four highest weight states Y, Y,, 7s and 7, corresponding
to the four Young tableaux on the right hand side of (A.31).

A.2. The B, Series

The algebra so(2n + 1) of rotations has the same rank as its subalgebra so(2n). Hence,

we may still use the Cartan generators (A.10), that is
Hz' = JQi_l’Qi = Zzaz - Zigi + QSIQSZ - Qg;rqu s 1= 1, o, N (A39)

We use the complex coordinates (A.5) and the complex creation- and annihilation opera-
tors (A.7), supplemented by the last coordinate 24 and the last creation and annihilation
operator w; and 1. Clearly, the raising operators (A.14) are still raising operators of

$0(2n + 1) with the same positive roots. But since

dimso(2n + 1) = dimso(2n) + 2n, (A.40)
rank s0(2n + 1) = rank so(2n), (A.41)

there are n positive (and n negative) roots missing. The positive roots are

1 : 1 - _

E, = NG (Joic1,a +1J2i0) = T (ziaa:d — 240; + Plbg — %051) , =g, (A.42)
where 1 <4 < n. The first n — 1 simple roots are the same as in (A.16), but the the last
one is replaced by e,. Hence, the raising operators corresponding to the simple roots

read

[ =

E; = - (Ziai+1 — Zi410; + ¢Z¢i+1 — ¢_51+1¢_5z> ) (A.43)

—

with root @« = ¢; — ;41 (1 < i < n), and

.| =

By = < (2002, — 4By + 8lt6a — 0160 (A.44)



A. Representation Theory 108

with root @ = e,. The Young tableaux are identical to those of s0(2n) and hence
are characterized by n ordered non-negative integers ¢1,...,#¢,. The dimensions of the

corresponding representations read

n

20, +d—2t b+l +d—r—sb,—ls+s—r
: L1yl Il t II T s r s
t=1 1<r<s<n

and the formula for the second-order Casimir is the same as for the so(2n) algebra,

Coy (D) =" (4 +d — 2r). (A.46)

Also the rules for tensor products are identical to those of so0(2n).

Since the simple roots are different, the highest weight states have a slightly different
form, too. The simultaneous eigenstates of the n generators in the Cartan subalgebra

read

fa) [[4"2" P ), |p,g,p) = 61" .. plPgpligl? .. i7" |0),  (A.47)

2

where m;, m; € Z and p;,q,p; € {0,1}. The d + 1 constant highest weight states are

o) =1p,¢;P) With p1>...>p,>q¢>pu>... 2P, (A.48)

where p = > (p; + pi) + g denotes the particle number. The highest weight of Dé“ in

the decomposition

D,®Df =D, oD ' eD" &D/,,, (A.49)

is again determined by the highest weight state
Vs(l+1,0) =2 |p) - (A.50)
As in even dimensions, one may use the scalar operators

rS = Tathy = 2i0; + Zid; + Taa, (A.51)
rSt =z, 0l = z0l + 26! + T4, (A.52)
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to obtain the highest weight states

ya(zap—i_l) :rSys(£7@+1) - Dé—Ha
T.(lp—1)=SV(l,p—1) — D¢
E(g_lap) = [S’ST]yS(E_Lp) — Déila

(A.53)

of the remaining irreducible representations in (A.49).

A.3. Eigenstates of the Supersymmetric Hydrogen Atom

In the main body of the thesis we have seen, that the total angular momenta J,; in
(2.112) together with the generalized Laplace-Runge-Lenz vector K, in (2.128) combine
to generators of the algebra so(d + 1),

Jap = . (A.54)

The algebra so(d) with generators J,; discussed in the previous two parts of the Ap-
pendix, must be embedded into the dynamical algebra, for d = 2n, so(2n) C so(2n+ 1),
and for d = 2n + 1, so(2n + 1) C so(2n + 2).

So far we have not considered which highest weight states of the dynamical symmetry
group are normalizable. This is necessary as only energies corresponding to normalizable
states belong to the spectrum of the Hamiltonian. Now we explicitly construct these
states in all subspaces H, C H. In Section 2.6.4 we have seen that for any ¢ > 1 there

are only one or two irreducible representations of so(d + 1), namely
DLC (HoNQ'H) and DL, C (H,NQH), (A.55)

the multiplet Dé belonging to Q"H,,_; and the multiplet Dé 41 belonging to the subspace

QHpi1- It suffices to construct the highest weight states \Pﬁ_w_(Dé +1) of the latter

multiplets. The highest weight states WY (D[) of the first set of multiplets in (A.55)
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are then just their superpartners,
v (DY =Qtwe (DY (A.56)
h.w. © h.w ©/" .

Actually, we only need to calculate the highest weight states U (Df,,) for p < d/2
because of the duality transformation (p,\) <> (d — p,—\), which leaves the Hamilto-
nian (2.123) invariant. Observe that for any normalizable H-eigenstate ¥ € QM the

transformed state QT is normalizable, as can be seen from
(Q'W, QW) = (¥,QQ'W) = (¥, HY) = E(¥, D). (A.57)

Without calculating the highest weight states we can argue in which sectors bound states
cannot exist. For that purpose we consider the Hamiltonian (2.123). It is easy to see
that the Hermitian operator S'S, where S has been defined in (2.115), is an orthogonal
projector, and hence has eigenvalues 0 and 1. It follows at once that for p > d/2 the
operator A in (2.122) is negative and hence H > A\?. We conclude that H has no bound
states in the sectors H,s4/2. On the particular sector H, the operator A has both
positive and negative eigenvalues. We expect that in this sector only one of the two

representations (for each £) of the dynamical symmetry algebra contains bound states.

After these general considerations we proceed with computing the highest weight states
‘I’ff_w_(Dgf +1) in the subspace H,NQ#H. Again we treat even- and odd-dimensional spaces

separately.

Even dimensions: so(2n + 1) has the same rank as the algebra of rotations, so(2n),
and we can repeat our construction in Appendix A.2, where we extended so0(2n) to
50(2n + 1). Of course, we should take into account that the entries in the last column
and last row of Jsp are the components of K,. The Cartan generators are those in
(A.39) and the first n — 1 raising operators are given in (A.43). But the last raising
operator (A.44) is replaced by

1 1
E,=— (K4 1+1Ky) ~ —(Cy_1 +1C
ﬂ(dl ld) \/i(dl ld)

+2(0]0: + 61:) bn — Ar' 2, A. (A.58)

Since the simple roots of so(d) are positive roots of the dynamical symmetry algebra, a
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highest weight state of so(d + 1) is automatically a highest weight state of so(d), similar
as in the purely bosonic case. Since the two groups share the same Cartan generators,

the highest weight state ¥ (Df,,) of so(d 4+ 1) must also be a highest weight state of

the multiplet D/, of so(d). From the branching rule (2.137) and the tensor products
(2.136) it follows, that this highest weight state must be the state V,(¢, p + 1) given in

(A.35). Hence we are lead to the ansatz
Uy (Do) = F(1)Vall o + 1) (A.59)

It remains to determine the radial function f(r) such that ¥}  is annihilated by E,.
With E,, from (A.58) one finds the following equation for f,

(d—1420)f + XNd—1—2p)f =0, (A.60)

such that the relevant highest weight states in the gp-particle take the form

d—l—Qp)\

VP (Dgin) = Yally o+ D)™, with e = ————7

(A.61)

As ) is assumed positive, these are bound states for p < n.

Odd dimensions: The rank of the dynamical symmetry algebra so(2n+2) exceeds the
rank of the algebra of rotations, so(2n + 1), by one. The Cartan generators are given

by the n operators H; in (A.10), supplemented by

Hyp1 =Ky~ Cy
~ —2z4A + (270, + d — 1)8,
— 20} (0:0; + 6:0;) + 2(810; + BL8:)a — Ar 3 yA. (A.62)

The raising operators are the n — 1 operators E; in (A.43) plus the two operators

Ea = (Jd—Z,d + Kd_1 - in_Q + in—l,d)a O = €p — €nti, (A63)

N =D =

E; = (Jd—Q,d — Kd—l -+ in_Q + in—l,d), Q= €y + €n+1- (A64)

All highest weight states are annihilated by these two raising operators. It is convenient
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to use two linear combinations of these operators, in particular

| 1 - f
Bn = 5 (Bat By) = 5 (2000, — 240, + 0lba = wlon) (A.65)

i 1
E(Ea—Ea)Nﬁ

Invoking similar arguments as in even dimensions we are lead to the following ansatz

E,.1= (Cg—a +1Cy4_1). (A.66)

U (Dh) = F(r)Vall, o+ 1), (A.67)

for the highest weight state of Df,, C H,. This function is annihilated by all E;<p.
The condition E, ¥y = 0 yields the same differential equation for the radial function

f(r) as before, and we obtain

d—1—2p/\

Uy (Dé+1) =Yoo+ 1)e7 ™", with g, = d-1+2

(A.68)

For positive A these states are normalizable for all p < n. The last Cartan generator,

H, ., ~ C,, annihilates this state and thus it has the correct weight.

The remaining highest weight states: We have argued that the highest weight state

ot (Dfy1) € MHpia is the superpartner of Uf (DS

o+1) in (A.68). A simple calculation

yields
\Ijiﬁfvrvl (D£+1) = QT\I’SW.(D&@H)
=i((A =) SVl p+ 1) + (C+ 9Vl 9+ 1)) e (A69)

for this state. This shows that ‘Ilf;’tvl (D; +1) is a linear combination of the two highest
weight states YV, and Y, of so(d) given in formulae (A.32) and (A.35). These states lead

to the second series of bound-state multiplets in the sectors H,, with p =1,...,n.

A.4. The A, Series

Finally, we summarize some basic facts concerning the Lie algebra su(d). They are
needed for the discussion of the harmonic oscillator example. More details can be found
in 38, 39, 112, 113].
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Let » = d — 1 be the rank of su(d). Accordingly, » Cartan generators H; can be

constructed, that are related to the components of the conserved tensor 1" as follows

1
Hi=§(Tiz'—Ti+1i+1)a 1=1,2,...r1. (A.70)

With the definition
ep(Hj) =1(0jp — j41p) 5 (A.71)

the set of all possible roots is given by o, =€, — e, p,¢ =1,2,...,7, p # g, positive

roots are ay,, where p < ¢, and the simple roots are given by a; = ej—e;41, 7 =1,2,...7.

The raising and lowering operators corresponding to the root characterized by p and ¢

are given by Ef? = %qu +iL,,, the ones corresponding to simple roots are

| ‘
By =5 (T £iLjj1). (A.72)

One easily verifies
[H;,Hj] =0, [E',E']=6;H; [H;, E’) = +A"EL, (A.73)

with Cartan matrix
(2 \’
-1 2 -1
AY = , i,j=1,2,...7. (A.74)
-1 2 -1
\ 2

The quadratic Casimir operator of su(d)

d?-1

Coy= Y kapT*T?, (A.75)

A,B=1
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can be written in the Chevalley-Serre basis as

C) = Z GiH'H + ) E*E™ (A.76)

ij=1 o

Here T4 are the generators, k4p denotes the Killing metric and
| .
Gyj = Zmin(i, j) - (d — max(i, 7)), (A.77)

is the so-called quadratic form matrix (the inverse of A¥). The second sum in (A.76)

extends over all roots o. In terms of T, and L, the Casimir reads

1 (Toa)®
Ca) = 1 (T2 + LZ) T (A.78)
The eigenfunctions of the bosonic harmonic oscillator are given by
d
(a})™ (af)™... (al)"10),  Np=) ni (A.79)
i=1

These wave functions furnish totally symmetric representations of su(d), corresponding
to Young tableaux of the form [1] [ [¢]= Df, where £ is equal to the number Ng of

excitations.

The value of the quadratic Casimir in those representations is given by

62
C(Q) (Dlz) = E(ﬁ +d— 1) — E . (A.80)

This can be obtained as follows [39]: A Young tableau with n,o, rows of length b1, ... by,

and with nc, columns labeled by a4, .. .a,_, and a total number B of boxes, corresponds

to a representation of su(d) with value of the quadratic Casimir

Nrow Mol

B
Crzy = B(d — E)-i—be =) al (A.81)
i=1 i=1

The dimension of this representation can be obtained via the Hook formula: let the pairs
(1,7) label the boxes of a given Young tableau, with ¢ numbering the rows from top to

bottom, and j numbering the column from left to right. hA;;, the hook length, is the
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number of boxes which belong to the hook that has (i, ) as its upper left hand corner.

Then the dimension of the representation ist

, d—i+j
= - 4 A.82
dim H R (A.82)
(4,4)
in particular
: o (d+2-1)

A given representation of su(d) can be decomposed with respect to its subalgebra so(d)
via the following branching rule [41, 112]

Df|,g —Di®D{ *®D{ ®... (A.84)

|so(d)'

The symmetric state Df provides an irreducible representation of su(d). Taking traces
is not a su(d) invariant operation. At the same time this state forms a representation
of so(d), but now traces can be taken and this eliminates two boxes from the tableau.
This procedure can be iterated and yields the right hand side of (A.84).

In the supersymmetric case we replace Ly, by Ju and Ty, by its supersymmetric gener-

alization. Now representations of the form Dé appear, since any state

M1, -1 D1, - pa) = (@)™ .. (@)™ (P (h)Pe|0) (A.85)

lies in the tensor product of completely symmetric states (generated by the bosonic
raising operators aZ) and completely antisymmetric states (generated by the fermionic

raising operators )
Di{®Ds=D},, ®D. (A.86)

Observe that in any sector with fixed particle number N two representations of su(d)

appear: Df ., and Df; (cf. Figure A.1).
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d—1

. . . Qf Q . .
N=0 :+ N=1 - N=2 T > ¥ N=d-1: N=d
pt <—— p! : :
' D2f<—f = pf f f
DQ{__“—_. :
— !,
-—

Figure A.1.: Representations of su(d) distributed with respect to the different sectors.

One finds (via (A.81) and the Hook formula (A.82))

2

1 T
Co) = Z(TQ +J%) - -

4d’
£—1
Co) (DE) =(p+£-1) (d— %) +0 -+ p— 4, (A.87)
—1)!
dim (DY) — (d+¢—1)

(d—p)l(p—-DE-D(p+L-1)

The branching rules for these representations read as follows [112]:

— DD ?eoD M e ... oD leDeD e .

¢
Dp|su(d) so(d)’ (A.88)

On the right hand side the p = g series in even dimensions — in case it appears — has to
be taken twice, again, corresponding to the selfdual and the anti-selfdual representations
of so(d).
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The ubiquitous two-dimensional CP™ models possess remarkable similarities with non-
Abelian gauge theories in 3+1 dimensions [114]. They are frequently used as toy models
displaying interesting physics like fermion-number violation analogous to the electroweak
theory [115] or spin excitations in quantum Hall systems [116]. Their instanton solu-
tions have been studied in [117], and their N = 2 supersymmetric extensions describe

integrable systems with known scattering matrices.

As a particular application of our considerations on theories with A/ = 2 supersymmetry,
we consider the Dirac operator on the Kahler manifolds CP™. As outlined in Section
2.5 for the general situation, we shall calculate the superpotential g in (2.74) and the

explicit zero modes of the Dirac operator.

B.1. Complex Projective Spaces

First we briefly recall those properties of the complex projective spaces CP" that are
relevant for our purposes. The space CP™ consists of complex lines in C"*! inter-
secting the origin. Its elements are identified with the equivalence classes of points
u=(u,...,u") € C"™\{0},

[u] = {v = Au|)\ € C*}, (B.1)

such that CP™ is identified with (C"*1\{0})/C*. In each class there are elements with
unit norm, % - u = > #wu? = 1, and thus there is an equivalent characterization as a
coset space of spheres, CP" = S"*!/S'. The u’s are homogeneous coordinates of CP".
We define the n + 1 open sets

Up = {u e C"™u* £ 0} c C*\{0}, (B.2)

117
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the classes of which cover the projective space. The n 4+ 1 maps
or: C"— U], =[z"...,1,...,2"], (B.3)

where the k" coordinate is 1, define a complex analytic structure. The line element on
(Dn—l—l,

ds* =Y dw/dw’ = du-da, (B.4)
j=0

can be restricted to S?"*1/S! and has the following representation on the k' chart,

ds? = ( Ny %d2ﬁ> - (ﬁdzﬂ + a—udzﬁ) . (B.5)
Ozt ozZk M [

We shall use the (local) coordinates
1 2 — 2
u:goo(z):;(l,z)EUo, where p*=14Zz-2=1+77 (B.6)

for representatives with non-vanishing u°. With these coordinates the line element takes

the form

1 1
ds® = Edz -dz — E(Z -dz)(z - dz), (B.7)

and is derived from a Kihler potential K = In p?. This concludes our summary of CP™.

To couple fermions to the gravitational background field we must find a complex or-
thonormal vielbein, ds? = e%f,5e?, and write it as the exponential of a matrix. We

obtained the following representation for the vielbein of the Fubini-Study metric (B.7),

e* = ejd2 = p! (]Pau + p_lQau) dz*, (B.8)
ea = €30, = p (P¥, + pQ",) Ou- (B.9)

Here, we have introduced the matrices

zzt z2t b
]P:]l_r—2 and Q= z=(z'...2")". (B.10)

)
7"2
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They satisfy
P? =P, Q= Q, PQ = QP =0, Pf =P, Qf =Q, (B.11)

and hence are orthogonal projection operators. For the particular space CP?, the viel-
beine are known, and can be found in [77]. These known ones are related to those in
(B.9) by a local Lorentz transformation. We have not seen explicit formulae for the
vielbeine for n > 2 in the literature. Expressing the vielbeine in terms of projection
operators as in (B.9) allows us to relate the superpotentials in different representations.
From (2.62) and (B.9) we obtain the connection (1,0)-form

Zy (1 L =P e -
wﬁﬂ = _E <§Paﬁ + Qaﬁ) + IOTZ IPaMZﬁ. (B12)

B.2. Zero Modes of the Dirac Operator

In this Subsection we want to determine the zero modes of the Dirac operator i) on
CP". We use the method proposed at the end of Section 2.5. Actually, only for odd
values of n a spin bundle S exists on CP". We can tensor S with L¥/2, where L is the
generating line bundle, and k takes on even values. In the language of field theory this
means that we couple fermions to a U(1) gauge potential A. For even values of n, there
is no spin structure, so S does not exist globally. Similarly, for odd values of k, LF/?
is not defined globally. There is, however, the possibility to define a generalized spin
bundle S, which is the formal tensor product of S and L¥/2) k odd [76]. Again, in the
language of field theory, we couple fermions to a suitably chosen U(1) gauge potential

with half-integer instanton number. In both cases, the gauge potential reads

k k ~

A= 5@ ~du = 2(8 — 9)K = ga0g," + gL_lggL, (B.13)
ga = e/ = (141274, (B.14)
with corresponding field strength
_ k_
F=dA=(0+0)A=-00K. (B.15)

2
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ga is the part of the superpontential g = g,94 that gives rise to the gauge connection

A. It remains to determine the spin connection part g,,.

Using (B.9) and (B.10), equation (2.62) can be written in matrix notation as (w,)% =
(89,5~ 1)%;, where

S = p(P + pR) (B1D exp (PInp+ Qlnp?) = exp ((IL + Q) In p). (B.16)

From the matrix form of S in (B.16) we read of the superpotential g, in spinor repre-

sentation,
g, = exp (i(%ﬁ + Qap)7* In p) , (B.17)
where we have introduced
v = %ha,vﬂ] =2 9P, =291 P =2l (B.18)

Next, we study zero modes of @ and Q' in the gauge field background (B.13). In the
sector of interest with N = n, the superpotential g, in spinor representation simplifies

as
9ol y_, = (1 + r?)"i,  since |, = 20%. (B.19)
All states in the N = n sector are annihilated by Qf. Zero modes ¥ satisfy in addition

0= QV = 2iy" D,V = 2iyp* g0, ' ¥, 0= gaGw- (B.20)

Using (B.13) and (B.19) we conclude that

T n+l—%Lk —

U =gf(z)pf - [0) = (1+ %) 77 f(2)y -y |0), (B.21)

with some antiholomorphic function f. Normalizability of ¥ will put restrictions on the
admissible functions f. Since the operators Z"0p (no sum) commute with d, and with

each other, we can diagonalize them simultaneously on the kernel of d,. Thus, we are
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let to the following most general ansatz

fm = (Zi)m1 R i L Zmi =m. (B.22)

There are (™™') independent functions of this form. The solution ¥ in (B.21) is

square-integrable if and only if
|9|? = /dvol (det h) UTW
e / 0 / dr p2mr2n1(q 42yt (B.23)
so normalizable zero modes in the N = n sector exist for

m=0,1,2,...,g=-(k—n—1). (B.24)

DN | —

Note, that ¢ is always integer-valued, since k is odd (even) if n is even (odd). Also
note, that there are no zero modes in this sector for £ < n + 1 or equivalently ¢ < 0. In
particular, for odd n and vanishing gauge potential there are no zero modes, in agreement
with [78].

For ¢ > 0, the total number of zero modes in the N = n sector is

Z(m:f;1>=%(Q+1)(q+2)--.(q+n). (B.25)

Similar considerations show that there are no normalizable zero modes in the N = 0
sector for ¢' < 0, where ¢' = —%(k +n+1). For ¢ > 0 there are zero modes in the
N = 0 sector, and their number is given by (B.25) with ¢ replaced by ¢'.

Observe, that the states in the N = 0 sector are of the same (opposite) chirality as the
states in the N = n sector for even (odd) n. The contribution of the zero modes in those

sectors to the index of ilp is given by

L@@+ hn),  g=gk-n-1), (B.26)

for all g € Z.
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On the other hand, the index theorem on CP™ reads [79]

ind ip = - ch(L7*?) A(CP™) = %(q +1)(g+2)...(qg+n), (B.27)
where ch and A are the Chern character and the fl—genus, respectively. Note, that this
index coincides with (B.26). This leads us to conjecture, that for positive (negative) k
all normalizable zero modes of the Dirac operator on the complex projective spaces CP"
with Abelian gauge potential (B.13) reside in the sector with N =n (N = 0) and have
the form (B.21).

We can prove this conjecture in the particular cases n = 1 and n = 2. For CP! we have
constructed all zero modes. The same holds true for CP? for the following reason: Let
us assume that there are zero modes in the NV = 1 sector. According to (2.46) they have
opposite chirality as compared to the states in the N = 0 and N = 2 sectors. Hence,
the index would be less than the number of zero modes in the extreme sectors. On the
other hand, according to the index theorem, the index (B.27) is equal to this number.

We conclude that there can be no zero modes in the N = 1 sector.

Finally, note the possibility to carry out a similar construction for other interesting
manifolds, like Taub-NUT space, where the explict zero modes can be compared with

the corresponding index theorem [77].



C. Conventions: Field Theory

The conventions we use in the field theory part of the thesis are summarized in this
Appendix. In particular, we present the conventions for the chiral representation of
~v-matrices in four dimensions, our gauge theory conventions and some rules for spinor-

calculations in three and four dimensions.
With these conventions we closely follow those of Sohnius [16].

We use four dimensional Minkowski space M'? with metric 7, = (+,—, —, —). Greek

indices p, v, ... run from 0 to 3, latin indices m, n, ... run from 1 to 3.

C.1. Clifford Algebra

The Clifford algebra in four dimensions is generated by ~*,

{7} =2n™. (C.1)

75 = 17%y'9?*y® anticommutes with all ,. We define X* = L[y#,7"], such that

. . 1

PER = —%ﬁ“”v” + %Tl””v“ =3¢, (C.2)
i i 1

YA = +§77“p’YV - 577'/’)7“ - 56“'/’)07075, (C.3)

holds. The intertwiners which relate different representations of the Clifford algebra

satisfy

AyPFATE = it CiIyiC = —H, B=CA, (C.4)

123
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and the Dirac-conjugated and the charge-conjugated spinors are given by
v=9y\A, e =CPt =CAW* = By (C.5)

Here, * denotes complex conjugation.

C.2. Chiral Representation

The chiral representation for v matrices is very convenient for our dimensional reduction.

0 ot -1 0
B ’ = , C.6
R I I e

ot =(1,0r), =1, —-0), o= (c',0% %), (C.7)

It is given by

where

o is the three-vector of Pauli matrices,
01 0 —i 1 0
ol = , o= ' , o® = , (C.8)
10 i 0 0 -1

oMo = 6™ 4 iRk, (C.9)

that satisfy

The intertwiners are given by

0 1 ic2 0 0 io?

To check the properties of A, B and C, we need

olo™o? = —(o™)!, o’0c™0o? = —0o™, o’oto’ = (6")', o’5"0* = (o*)'. (C.11)
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Furthermore,

D o = L(oheY —otah), G = L(ahet — 5Yh). (C.12)
0 om )’ 4i ’ 4

A four-component spinor ¥ decomposes into its positive and negative chirality parts ¢,

Y= (z;) , (C.13)

We define a symplectic Majorana condition by (7,7 = 1,2)

. L . 0 )
N o=iely O = ISA;,  S=-0'®o’ = ( ’ ) . (C.14)

-2 0

Here, symplectic refers to the metric €/, which can be used to raise and lower indices.

Some useful identities involving this matrix S:
SyS =ak, S8 =7 S04 APS =4 "0 S8 = -y (C.15)
Some identities for symplectic Majorana spinors:

X = —XmClead™, GV = —Xm Y Cene™,
GsX = —XmYsClene™, GY"vsx? = +Xm " ysClene™, (C.16)
GV X = =XV - A Ceand™,  GEP X = X Z CPene™.

In particular (i = j), they imply

Gx'=—xiC"  Y'X = —xiC Grsxt = =X
Gy X = X" ¢ GV = =X, GE X = s (C.17)
GOy = X" S G st = =X MG
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Furthermore (for any Pauli matrix 7¢ and the vector 7 of Pauli matrices),
0= (™ + 5;"5%) (),
0 =1070," — 0,0} — €pne™™, (C.18)
Lo ka0
The Fierz identity we need for spinors in four dimensions reads
ACx = —XC = 7 (X7°C) — 28,50 (XE7C) + 157, (X1577C) — 15 (X75€)- (C.19)
C.3. Gauge Theory
In the Abelian case we use the conventions
D, =0, +iA,
Fl = —i[Dy, D,] = 0,A, — 0,Ay, (C.20)
(ip)? = -D,D" + (F,%), (F,X) = F,x".
Under a gauge transformation
Ay o AL =e (A4, —i0,)e" = A, + 044, (C.21)
charged fields transform as
o — ¢ =ébly, (C.22)
such that
5gaugeAu = auAa 5gaugeS0 = iA(P' (023)
The magnetic field is given by
1
By = —€kun F™,  Fpp = €muB*,  (F,0)=F,,0™ =-B 0. (C.24)

2
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In the non-Abelian theory we consider all fields ¢ in the adjoint representation,

Dyp = 0 +i[Ay, @],
F/u/ - —i[Dua D,,] = auAu - ajAu + i[A“, A,,], (C'25)

(1m)290 = _DNDMSO + [(Fa E)a (P]
We use Hermitian generators T4 of the gauge group and real structure constants f48¢,

(T4, TP =if4B8°TC  tr TATE = %5“. (C.26)

C.4. Three Dimensional Theory

We dimensionally reduce our theories from M3 to three dimensional Euclidean space
M?30. Observe, that after the dimensional reduction in time direction is carried out,
we change the metric from —d,,, to the more common +d,,,. Now we need no longer

distinguish between upper and lower vector and tensor indices.

The Dirac conjugate reduces to
o =Ll = ¢l (C.27)

We write a pair of symplectic Majorana spinors A1? and a Dirac spinor 1) as
A 2\* _
Al = R I L D L (C.28)
)\_|_ 0'2)\i 1/14_

%Xiax' = NP — I FA_. (C.29)

in particular,

For the intertwiners in three dimensions we choose

A=1, C=o°, B=CA' =07’ (C.30)
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such that
Ao A7 = o™ = o™, C'o™C = —(c™)". (C.31)
Charge conjugated spinors are defined as
Aic = BAL = o?\%, Aic = Moot (C.32)
The charge conjugation matrix satisfies

BB =—1, so () =By =BBY™ =—1. (C.33)



D. APS Example in d = 4 Dimensions

In this Appendix we consider zero modes of the Dirac operator iI) in a particular gauge
field background A, on the four dimensional ball with radius R, M = B*. The boundary
of M is a three-sphere, OM = S3.

Since there is a boundary, we cannot apply the Atiyah-Singer index theorem as men-
tioned in the main part of the thesis. Instead, we have to impose boundary conditions
for the eigenfunctions of the Dirac operator. Bag boundary conditions [118] are local
boundary conditions, which do not allow for any zero modes. We prefer the non-local
APS boundary conditions which admit zero modes. In that case, the difference of the
number of left- and right-handed zero modes can be counted using the Atiyah-Patodi-

Singer (APS) index theorem for manifolds with boundary.

We apply the APS index theorem to the very particular case at hand. For a detailed
introduction we refer to one of various books on index theorems [119], to the very clear

review article [77], and, of course, to the original mathematical papers [60].

The calculations that we present in this Appendix have been carried out in [88] for the
case of constant selfdual gauge fields. We generalize these results to arbitrary profile
functions and we calculate the zero modes explicitly. The number of zero modes we find
agrees — as it should — with the expression for the index. In fact, only zero modes of one
chirality are present, so the absolute value of the index is equal to the number of zero

modes.

We finally show, how our results can be applied to background configurations, that result

from Abelian projected instanton fields.

129
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D.1. The APS Index Theorem

In four Euclidean dimensions we use the chiral representation,

0
v=|_ "), o.=(a,i1), &,=(o,—il), (D.1)
o 0
such that
—1 0
_ _ _ D.2
Y5 = — V172734 (0 ﬂ) (D.2)

The Euclidean Dirac operator reads

N . 0 Lf Dy+iDs Dy +iD;
=0, +14,) = (L o) e (—D2+1D1 p-ing)) Y

Due to the spherical symmetry of M, it is appropriate to use polar coordinates,

1 = rsinfsin ¢, Ty = 7 sin f cos ¢y, (D.4)
23 = 7 €08 f8in ¢ho, Z4 = 1 €08 6 COS ¢y, (D.5)

where
0<r<R, ogegg, 0 < ¢y, < 210 (D.6)

The covariant derivatives can be written as

. 0 i
Dy +iD; = *i% <sin 0D, + " Dy £ — D¢1), (D.7)
T rsin 6
. - )
Dy £iD; = ¥ (cos oD, — 2Dy D¢2>. (D.8)
r rcos @

Applicability of the APS index theorem requires L to be of the following form,
L=10,+B, L'=-10,+B. (D.9)

This form of L must hold at least locally, in a collar neighborhood of the boundary. L
in (D.3) is not of this form, so the APS formula does not hold yet. As has been pointed
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out in [86, 120], a phase transformation is needed to transform L into (D.9). This can
be accomplished by the following change of basis, together with the gauge choice A, =0

for the vector potential,

N 0

¢_H,z:(0 M>¢, L—L=MLN"', L' Li=NL'M~'  (D.10)

where

M = +Vr3sinfcosf

ei¢+

0 inf “ig-
N = Vr3sinf cosf CO.S S ¢ . ;
—sinf cosf 0 e
e+ 0
, D.11
( 0 ) 011

b= (6% 6).

The result is called the APS standard form of i) [77]. In the new basis, L is given by
(D.9), with operator

1 ( 1 41Dy, +iD,, Dy +icot 0Dy, —itan 0D¢2) (o1

r \—Dy+icot 0D¢1 —itan 9D¢2 % — iD¢1 — iD¢2

Note, that L is of the form (D.9) not only close to the boundary r ~ R, but for all values

of r. Later, this fact will be used for the construction of zero modes.

The APS index theorem reads!

1
ind i) = dimker L' — dimker L = e

- F/\F+%(h—n(0)). (D.13)

For manifolds with boundary, there is a correction term to [ F'A F, given by the above

combination of

sgn A

S (D.14)

h = dimker B, n(s) = Z
A#0

Here, B is the boundary operator, B = B(R), whose eigenvalues are denoted by A, and

1Note, that our convention for the normal derivative pointing outward, exchanges the réle of L and
L1, compared to the inward normal convention used in the mathematical literature.
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n(s) is the n-function associated with B. n(0) is called the spectral asymmetry.

In [88] the selfdual Abelian field

1
A, = §M772Vx,,, Fu = 0,4, — 0,A, = -1, M, (D.15)

has been analyzed. Here, M is a constant and 7, are the selfdual 't Hooft symbols
121],

1

Napw = €auv + 5au51/4 - 5au5u4a Napy = Eeuuponapa- (D'16)
In polar coordinates, this field configuration is given by
L 9. 2 Ly 9. o
A, =0, Ag =0, Ay = §Mr sin® 6, Ay, = §Mr cos” 6, (D.17)

and the operator B(r) in (D.12) reads

B(r) = 1 i+ ’i8¢1 + 104, - w(r) 891+ i‘cot 08¢.1 — itan 60,, (D.18)
7 \—0p+icot 00y —itanf0,, 5 —i0p, — 10y, + pu(r)
where we have introduced
Ly o
p(r) = §M7’ ) (D.19)
The eigenvalue problem for the boundary operator,
B(R)wA(£2) = Awa(Q), (D.20)

where 2 indicates the dependence on 6, ¢; and ¢,, has been solved in [88]. Details of
the calculation can be found there. Here we just state the main results: there are three

different series, given by

1
I: MR==-+p—u(R), p=12,...,

2
1

I1: /\R:§+p+,u(R), p=1,2,..., (D.21)
1

II: AR==+(p+puR)2—4u(R)N, p=2,3,..., 1<N<p-—1.

2
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In all cases, the degeneracy of the eigenvalue ) is given by deg()\) = p.

Accordingly, h and n(s) in (D.14) get contributions from all three series,

h = h1 + hir + b, n(s) = m(s) + nu(s) + mu(s), (D.22)

e =3 B b)) oy L

= Ipts B 2’
m(s) = Zpsg; (f: ++ :(“()1‘?), p# —n(R) -3, (D.23)

- Zp2(|a+—|s I ) o= i+ WB)) — SN,

=1

Regularization of these sums via the Hurwitz {-function is understood. Whether or not
any of the series gives a contribution to h, depends on the value of |u(R)|+ 3. Therefore

we decompose this expression into its integer and fractional part,
1
|u(R)|+§:l+p, 1=0,1,2,..., 0<p<l. (D.24)
Suppose p # 0 first, so |u(R)| + 3 is not integer, and
heFO 4 pf70 = (D.25)

Furthermore, for p # 0, the conditions in (D.23) are empty, and we find for the contri-

butions to the n-function

70 (0) + ni7°(0)
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This can be rewritten as
n7”*(0) +nf7°(0)
= ——l I—=1)+ hm -
( (Z lp+1 +pls b
- l+p - 1—-1—p )
Z p+1+pl* pz_; Ip+1—l—pls‘1 pz_; p+1—1-pl
= 1
=—I(l-1)+1 —
2( )+sl—%<zlq+1+l+p\s—1
- l+p > 1—-1-
; lg+1+1+pl Z |q+1— plt Z Iq+1—p|s
1
= —il(l—l)—i-f(—l,l-l-l-i-p) — (I +p)C0,1+14p)+
+¢(-L1-p) —(1-1-p)0,1-p)
1
=p*4+2p—p+ 3
1
—I(l—1)+p+ = (D.27)
12’
where we used the properties
1 1 1 1
- _ 1.2)= — =224+ Zp - — D.2
of the Hurwitz (-function. If p = 0, so that [u(R)| + 3 = | = 1,2,..., vanishing
eigenvalues are present for p = — 1, and their multiplicity is [ — 1, thus
R0 4 0 = 1. (D.29)
A similar calculation as (D.27) gives
p=0 p=0 2
oot =1- 3 (D.30)
Independent of p = 0 or p # 0, the series I and II give the contribution
1
ht + b — 1 (0) — 11 (0) = 1(1 — 1) — u(R)* — (D.31)

12
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to the boundary term in the APS index formula (D.13). Finally, one easily shows that

A = 0 cannot be obtained in series III, so hj;; = 0. The n-invariant in this case is [88]

1

=——. D.32
Thit 12 (D.32)
Thus, the total contribution to the index is given by
h—mn(0)=1(1—1) — u(R)% (D.33)
The bulk term gives
1 2M? 1
— | FAF= dz1dzedzsdzs = —p(R)? D.34
812 Q72 /M 21dT2dT3dT4 2#( )% ( )
and the index reduces to
Cg 1
ind i) = El(l —1). (D.35)

Here, [ is the integer part of |u(R)| + 3.

D.2. Zero Modes of i)

In the next step, we will calculate the corresponding zero modes of iI) explicitly. After
the transformation (D.10), the zero modes ¢ = (¢ ¥)!, satisfy

sy (0 LT (@) _
#i- (0 ) (5) -0 o3

Let us formulate the APS boundary conditions at r = R for this problem. These bound-
ary conditions guarantee, that Lt is the adjoint of L, so ilp is a self-adjoint operator.
For more details we refer to [77, 85, 86]. Close to the boundary we expand our functions

in terms of the eigenfunctions wy of the boundary operator B as
3=>_ Hlr)w(), (D.37)
A
K= o(rw(Q). (D.38)
A
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APS boundary conditions require, that the sum in (D.37) contains only contributions
for A > 0, and the sum in (D.38) contains only A\ < 0 contributions®. In this case, all
zero modes satisfy

!
A =-), for A>0, (D.39)
f>‘ r=R

!
Pl Z4n for A<O, (D.40)
Ixlr=Rr

and this mimics the square-integrability property for zero modes in the limit R — oo,

the profile functions have negative slope at the boundary.

Zero modes 1[1 are normalizable, if they satisfy

R R
/ drdS || =/ FdrdQ |62 < oo, (D.41)
0 0

where dQ = dfd¢;d¢s,, due to the transformation (D.10).

Now we are ready to determine all normalizable zero modes that satisfy APS boundary

conditions. For a fixed value of A (in one of the three series (D.21)), we use the ansatz
()5,\(7‘, Q) = f,\(r)w,\(Q). (D42)

Since L = 18, + B on all of M (and not only close to M), we can use this product
ansatz globally3. Now, L, = 0 implies

"R
fr) = e [ TAuO)ar (D43
The dependence A(u(r)) can be read off from (D.21). For series I we find
1 1. 1 Moo
Ar)R = §—|—p—§Mr ) i) =r2Ped™. (D.44)

Normalizability requires p < 0, but this is not contained in (D.21), so there are no

2These are right handed boundary conditions. They give rise to the APS index formula (D.13). One
can also define left handed boundary conditions, where the sums in (D.37) and (D.38) contain
contributions from A > 0 and A < 0 only. In this case, the sign of h in (D.13) is reversed [85].

30bserve, that wy(Q,r) is not a eigenfunction of B(r) in the strict sense, but gives back a r-dependent
eigenvalue.
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solutions in this case. Similarly one shows, that there are no APS zero modes in case II

and case III. Altogether, there are no APS zero modes of L. It remains, to analyze
Ly, =0, X = ga(r)wa(€2). (D.45)
We find
" R ! !
a(r) = exp+/ F)\(u(r ))dr'. (D.46)

In case I this can be integrated and gives

1 1 2
NPR =5 +p— Mr®  gy(r) =r"Tie 17, (D.47)

Normalizability requires p > —1, whereas the APS condition reads AR < 0 or, equiva-
lently, p < pu(R) — 5. All values p = 1,2,..., [u(R) — 3] are allowed, where [z] is the
biggest integer less than (or equal to) z. Observe, that in this case only u(R) > 0 gives

rise to zero modes. Since the degeneracy of A is given by p, we find

=12t fum g =g [u-g] (Ju-3] +1) =5e-0 oay

zero modes of L, where [ is given in (D.24).

In cases II and III no zero modes are present for p > 0. For p < 0, case I and case II
are interchanged, and one obtains the same number of zero modes (we have to replace
by |p| in (D.48)). Thus, the total number of normalizable APS zero modes of L' is
given by

o= 510- 1) (D.49)

Result: for the selfdual constant gauge field (D.15), we have evaluated the APS index

formula and find
.. 1
ind i) = El(l —1). (D.50)

In addition, we have calculated the zero modes explicitly. It turned out, that there are
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no zero modes of L, and the number of zero modes of L' is given by

#x = %l(l —1). (D.51)

We observe, that all zero modes have the same chirality, and the index (which counts the
difference of zero modes with positive and negative chirality) equals the total number of

zero modes in this case.

If we replace the selfdual gauge field by its anti-selfdual counterpart (ﬁzy instead of 772,/
in (D.15)), the index changes sign, and the réles of L and L' are interchanged.

D.3. Arbitrary Profile Function

Let us generalize the above results to arbitrary profile functions. That means, we con-

sider the gauge potential

1
AN = §M(T)nzul‘w
!

M
Fl“’ = _nZVM - ﬂ(nzomywa + 7721/%%)’ (D52)

FAF=(2M?+ MM'r) dvol.

Observe, that the boundary operator B and its eigenvalue problem are not affected by

this generalization, provided we define now
1 9 1
ulr) = M), B+ =1+ p (D.53)
In particular, the boundary contribution to the index formula is given by

h—n(0)=1(-1) - u(R)% (D.54)
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The bulk contribution can be written as a surface integral an yields

1 1
— | FAF=_— 3(2M? + MM'r)drdQ
=gy A g2 M?" ( + r)dr
B od /1
— d Il _M2 4
/0 U (8 (r)r )
1 1
= gM2(R)R4 = Eu(R)Q. (D.55)
The index formula reads
indiw—i/ FAF+2(h=n0) = ~1(1—1) (D.56)
~ 82/, g\ T =g ’ '

where [ is defined in (D.53). Given any profile function, the corresponding zero modes
can be calculated as above, if one takes into account that M = M(r).

Let us apply these results to the Abelian projected instanton field in SU(2) gauge theory.
Instantons in four dimensional gauge theories are known to possess zero modes. These
finite-action configurations allow for a compactification R* — S*. On that compact

space, the Atiyah-Singer index theorem can be applied and yields
. 1
ind [A] = s tr FAF = y[A] (D.57)

so there are at least v[A] zero modes of the Dirac operator, where v[A] is the instanton
number (or Pontryagin index) of the field configuration. On the other hand, instantons
and monopoles are intimately related in the Polyakov gauge and in a more complicated
way in any Abelian gauge [122]. This correlation can be established after an Abelian
projection of the instanton configuration. Using our method described above, we can
now answer the quesion, whether there are fermionic zero modes in Abelian projections.
Generically, the action for such a projected configurations is no longer finite. Therefore
we cannot compactify the Euclidean space to a sphere as before, and the Atiyah-Singer
index theorem — which holds for compact spaces only — cannot be applied. As a way
out, we consider the instanton configuration on a four-dimensional ball of radius R and
impose APS boundary conditions for the fermions on the boundary. In the end, we will
study the limit of large radii, which should be comparable to the non-compact case, once

R is much larger than the instanton size p.

We answer the question from above for the one instanton configuration in regular gauge,
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which is given by

204 1z,
AmpA A v
A=A T dx,, AL = 7“2!;-;)2' (D.58)

Here T4 are the generators of the gauge group and p is the size of the instanton. The

action density and the Atiyah-Singer index formula for this background are given by

S[A] = / tr FAF =812, (D.59)

ind [A] = v[A] = # /tr FAF=1. (D.60)

After an Abelian projection [123], the gauge field is reduced to its third component,

23,2y
_ 43 _ Yl
o =A, =57 el (D.61)
For the projected configuration we find
Sla] = /tr FAF ~logR, (D.62)
1
Vo] = @/trF/\F: 1. (D.63)

So after the Abelian projection, the topological charge is unchanged, whereas the action
diverges logarithmically with the radius R — oco. Compactification of such divergent
configurations is not possible (cf. Uhlenbecks theorem). As mentioned before, we can
consider the gauge field (D.61) on a four-dimensional ball of finite radius R. Comparing
(D.52) with (D.61), we identify the profile function®

4

thus the index theorem predicts

S+ p” ] [ SR — p” ] . (D.65)

1 1
# = 5[([ - 1) = 5 [2(R2 + pQ) 2(R2 +,02)

4The isospin up/down components of the spinor decouple after the projection, and we can consider
each problem separately. They only differ by the sign in (D.64).
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This number is zero for R < v/3p and jumps to one for R > v/3p. In particular, for

R — o0 exactly one zero mode survives for each color orientation.

Finally, we calculate this zero mode explicitly, using the method proposed earlier. We

have
1 1 \
Ar)R = S tpt §M(r)r , (D.66)
g(r) = r”+%(r2 +0°) p=12,... (D.67)

Normalizability requires p > —1, which is automatically satisfied, and APS boundary
conditions imply

1 2R? 3R2 — 2
p< [ p } : (D.68)

0> ARR=z+p— - e
AR =54 i 2(R? + p?)

so we find exactly one zero mode (with p = 1) for both, the upper and the lower isospin
component, if R > \/gp. Otherwise there is no zero mode, in agreement with the index

theorem.

For R > v/3p the APS zero mode reads

. 0 - _ 2 2 2\ —1 0
b= ()2) y X = g)\(T)w)\(Q) =r ( +p ) (\/m) ) (D'69)

Y= (0) ., xX=M1x=(*+p*)"" (0> . (D.70)
X 1

In the last step we have revoked the transformation (D.10). In fact, we also used the
particular form of w,(£2), that we have not stated explicitly before, but which can be
found in [88]. ||¢||* diverges like log R for R — oc.

This zero mode should be compared with the zero mode of the standard charge one

instanton, which is normalizable on R* and given by [124]

0
Y= ( ) , X~ (r? + ,02)_g x color orientation. (D.71)
X

We will publish the results of this Appendix soon [AKA4].
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