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1. Introdu
tion

Philosophy is written in this great book of the Universe whi
h is


ontinually open before our eyes, but we 
annot read it

without having �rst learnt the language and the 
hara
ters

in whi
h it is written.

It is written in the language of mathemati
s and the 
hara
ters

are triangles, 
ir
les and other geometri
al shapes without the

means of whi
h it is humanly impossible to de
ipher a single word;

without whi
h we are wandering in vain through a dark labyrinth.

Galileo Galilei, "The Assayer"

To understand nature in all its details and to des
ribe the surrounding world with the

help of some fundamental prin
iples has been a dream of mankind sin
e the very be-

ginning. In order to a
hieve su
h an understanding, people are still investigating how

nature works and how it is designed at its deepest level.

Is nature made up from some elementary building blo
ks? The an
ient Greek were

the �rst who tried to answer this question. They intended to solve the problem simply by

thinking about it, without making any experiment at all. Demo
rit 
laimed that there

were su
h building blo
ks, tiny, indivisible, immortal, and he introdu
ed the notion

atom (greek atomos = indivisible). But the majority agreed with Aristotle, who

assumed that the stru
ture of matter is 
ontinuous. During the middle ages the european

al
hemists also took this point of view and people forgot about the ideas of Demo
rit.

It was not until the beginning of modern s
ien
e in the seventeenth 
entury, when

�rst experiments were performed in order to prove or vitiate these hypotheses. Dalton,

a british tea
her and 
hemist, often 
alled father of modern atomi
 theory and 
hemistry,

published a famous book A New System of Chemi
al Philosophy in 1808, in whi
h he

explained his theories: all matter is made up from atoms and all atoms of a 
ertain


hemi
al element are identi
al, whereas atoms of di�erent elements have di�erent masses

and properties. Soon s
ientist were able to 
lassify those atoms and to determine their

intrinsi
 properties, and in 1870 the Russian 
hemistMendelejev published his periodi


table of the elements. Ingenious experiments revealed the sizes of su
h atoms: they are

as small as 10

�8


entimeters.

3
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Between 1894 and 1897 Thomson analysed the 
athode rays that had been dis-


overed in 1858: it turned out that atoms are not indivisible, but all of them 
ontain

negatively 
harged ele
trons, whi
h 
an be emitted under the in
uen
e of an ele
tri
 �eld.

In 1902 Lord Kelvin proposed a model of the atom that was later 
alled Thomson's

Model: a positively 
harge ball with imbedded ele
trons.

In 1910 Rutherford and his 
ooperators dis
overed (with the help of alpha-parti
le

s
attering experiments) that every atom 
ontains a very tiny, positively 
harged and

massive 
ore. These results were published in 1911 and the Rutherford Model was

born. The nu
leus of the lightest element hydrogen is 
alled proton (greek protos =

the �rst one). In 1932 Chadwi
k identi�ed the se
ond 
omponent of the nu
leus and


alled it neutron be
aused it is ele
tri
ally neutral and its mass is 
lose to the mass of

the proton.

At that time the set of all known fundamental building blo
ks 
onsisted of photons,

ele
trons, protons and neutrons. This was enough to explain all observed phenomena.

Almost. Already in 1931 Pauli postulated the existen
e of an additional neutral parti
le,

nowadays known as the neutrino, for the purpose of explaining the beta-de
ay 
onsis-

tently, whi
h 
auses for instan
e the transmutation from tritium into helium. Without

the neutrino the spin and energy 
onservation laws would have been violated. Cowan

and Reines veri�ed the existen
e of the neutrino in 1956.

Furthermore the Dira
 equation, already dedu
ed in 1928, predi
ted the existen
e

of so-
alled antimatter: all parti
les have mirror images of the same mass but opposite


harge. Anderson observed the �rst antiparti
le, the positron, in 1932. The antiproton

has been dis
overed in 1955.

Still this is not the end of the story: owing to the 
areful investigation of the high

energy 
osmi
 radiation and the use of 
apable a

elerators, more and more fundamental

parti
les 
ame into play: muons, tauons with their asso
iated neutrinos, pions, kaons,

B-mesons, sigmas, 
his. . . , all of them together with their antiparti
les.

So their number be
ame larger and larger, smashing the hope of the s
ientists that

nature 
an be des
ribed in a simple and elegant fashion at its deepest level. All those

parti
les are 
hara
terized by their quantum numbers, su
h as mass, 
harge, spin and

baryon number.

Table 1.1.: Nu
leons and Pions.

Parti
le Mass[MeV℄ Spin Charge

Proton p 938.3

1

2

+1

Neutron n 939.6

1

2

0

Pion �

+

139.6 0 +1

Pion �

0

135.0 0 0

Pion �

�

139.6 0 -1
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But while tabulating the system of all elementary parti
les people dis
overed some

symmetries among them. Parti
les with very similar properties 
an be arranged in so-


alled multiplets, indi
ating that some more fundamental theory should relate them to

ea
h other. As illustrative examples we list the nu
leon doublet and the pion triplet in

Table 1.1.

In 1961 Gell-Mann [1℄ and Ne'eman [2℄ showed the possibility of arranging those

multiplets into larger families, 
alled supermultiplets

1

, 
f. Figures 1.1, 1.2 and 1.3. Here

S and I

3

denote strangess and the third 
omponent of isospin as quantum numbers of

the parti
les. Gell-Mann 
alled this model The Eightfold Way and he was able to

predi
t the existen
e of the 


�

parti
le, whi
h was de
ted right at that time.
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2

baryons.

One year leater, Ne'eman and Goldberg-Ophir made the suggestion that ea
h

baryon is made up from three more fundamental building blo
ks: ea
h 
arrying baryon-

number

1

3

as well as fra
tional ele
tri
 
harge. Gell-Mann [3℄ and Zweig [4℄ improved

this model in 1964, independent of ea
h other they published a more pre
ise formulated

theory: all known hadrons are made up from some fundamental building blo
ks, 
alled

quarks

2

. They labeled them by a new intrinsi
 property, the quark 
avour: there are

u (up), d (down) and s (strange) quarks. The previously (ex
ept for the 
ontext of


rystallography) unfamiliar mathemati
al notions of group theory were used here. The

underlying symmetry group turned out to be the group of spe
ial unitary 3�3 matri
es,

SU(3)

f

, where f indi
ates that this symmetry refers to the 
avour of the quarks. This

is an approximate symmetry, broken by the di�erent quark masses. Today three more

quarks are known: 
 (
harm), b (bottom) and t (top).

Soon physi
ists realized that within some hadrons two or three of the quarks should be

in the same quantum me
hani
al state (for instan
e the 


�


onsists of the 
ombination

fsssg), but sin
e quarks are fermions this would violate Pauli's ex
lusion prin
iple. Han

1

These should not be 
onfused with the multiplets of supersymmetri
 theories.

2

Adopted from the book Finnegans Wake by James Joy
e.
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Figure 1.3.: De
uplet of heavy baryons with spin

3

2

.

and Nambu [5℄ proposed a way out by the introdu
tion of a new quantum number, the


olor. Now all quarks 
ome in three di�erent 
olors whi
h are 
alled red, blue and green,

a

ordingly the antiquarks are antired, antiblue or antigreen. All baryons and mesons

are 
olorless 
ombinations of those 
olored quarks.

In this way the number of fundamental parti
les got redu
ed drasti
ally. Only leptons

and quarks remain as the universal 
onstituents of matter. They appear in three families

and are listed in Table 1.2 together with their basi
 properties. The de�nite answer to

the question, where the di�erent values of the masses 
ome from, is still not known.

Table 1.2.: Leptons and Quarks.

Leptons Charge Mass [MeV℄ Quarks Charge Mass[MeV℄

�

e

0 < 3 � 10

�6

u +

2

3

1 : : : 5

e -1 0:511 d �

1

3

3 : : : 9

�

�

0 < 0:19 
 +

2

3

1115 : : : 1350

� -1 105 s �

1

3

75 : : : 170

�

�

0 < 18:2 t +

2

3

169000 : : : 179000

� -1 1777 b �

1

3

4000 : : : 4400

Besides the 
lassi�
ation of all fundamental building blo
ks, a 
omprehensive des
rip-

tion of nature also in
ludes the 
hara
terization of the for
es that a�e
t those parti
les.

Today all known phenomena 
an be as
ribed to four fundamental for
es. They in
lude

the familiar gravitation and ele
tromagnetism, whi
h suÆ
e to des
ribe all dire
tly ob-
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servable e�e
ts on earth and in the 
osmos, as well as the more unfamiliar for
es of the

weak and strong intera
tion.

The gravitational for
e is the �rst one, that has been des
ribed quantitatively in

physi
s: by Newton's theory, published in 1687 in his famous Philosophiae Naturalis

Prin
ipia Mathemati
a. Spe
ial properties of gravitation are its universality and weak-

ness: gravity a�e
ts all kinds of matter and energy. At the level of elementary parti
le

physi
s and at energies that are a

essible today it is mu
h too weak, to 
ause observable

e�e
ts. Ex
ept for the sear
h for an uni�ed theory of all for
es it does not play any role.

Einstein's General Theory of Relativity, su

eedingNewton's theory and published

in 1916, is a 
lassi
al gauge theory of gravitation. The gauge freedom of this theory is

the possibility of 
hoosing an arbitrary 
oordinate system, the asso
iated gauge group

is the group of di�eomorphisms on the underlying manifold.

Up to now no su

essful quantum theory of gravitation has been formulated, this

remains as one of the most important problems in theoreti
al physi
s. During the last

years people have been working intensively on theories of supergravity and superstrings,

hoping to derive a uni�ed des
ription of gravitation and the three other for
es in this

way.

For a long time mankind has been a
quainted with the ele
tromagneti
 for
e, too.

This for
e di�ers from gravity, sin
e it is not universal: only 
harged parti
les are af-

fe
ted, whereas neutral parti
les like neutrinos do not feel this for
e. Between 1855

and 1865 Maxwell was able to formulate the basi
 laws of ele
tromagnetism, thereby

unifying ele
tri
 and magneti
 intera
tions. People realised that this theory possesses

a residual freedom, the freedom of 
hoosing a de�nite form of the gauge potential, but

did not atta
h value to this. Nowadays ele
trodynami
s is known to be a U(1) gauge

theory, exa
tly due to this fa
t.

Sin
e Maxwell's theory obeys the laws of spe
ial relativity from the very begin-

ning, this remained the 
orre
t des
ription until 1948. At that time the quantum version

of ele
trodynami
s, 
alled quantum ele
trodynami
s (QED), was established indepen-

dently of ea
h other by Tomonaga, Feynman [6, 7℄ and S
hwinger [8℄. In QED the

ele
tromagneti
 for
es between 
harged parti
les are mediated by the ex
hange of virtual

photons. In a perturbative approa
h all pro
esses 
an be des
ribed by Feynman dia-

grams, like in Figure 1.4, and translated into formulas via the 
orresponding Feynman

rules. After renormalization physi
al observables 
an be 
al
ulated. This theory turned

out to be extraordinary su

essful. For instan
e, the 
al
ulated magneti
 moment of the

ele
tron is in agreement with the experimental value with an a

ura
y of 10

�10

.

Physi
ists got the �rst hint for the existen
e of the weak for
e already in 1896, when

Be
querel dis
overed radioa
tivity. The �-de
ay of the un
harged neutron into a

proton and an ele
tron 
annot be explained in the 
ontext of ele
tromagnetism:

n! p+ e

�

:

The weak intera
tion turned out to be the reason for this pro
ess. The �rst problem

that people en
ountered, the 
ontinuous spe
trum of the emitted ele
trons, was solved by

Pauli as stated above by introdu
ing the neutrino, whi
h 
arries the remaining energy
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e

�

e

�

e

�

e

�




Figure 1.4.: Feynman graph for the 
ollision of two ele
trons (tree-level).

and the missing angular momentum:

n! p+ e

�

+ ��

e

:

The weak intera
tion is very short-ranged, sin
e 1982 we know (from the masses of the

Z and W

�

bosons determined at CERN) that it is mediated only over distan
es that

are smaller than 10

�18

meters. An e�e
tive des
ription of weak intera
tion pro
esses is

given by the Fermi Model.

Glashow [9℄, Salam [10℄ and Weinberg [11℄ managed to unify ele
tromagnetism

and weak intera
tion within the ele
troweak model, as a gauge theory with gauge group

SU(2)� U(1).

It was not until 1932 when physi
ists realised the existen
e of an additional for
e: the

strong intera
tion. The dis
overy of the neutron for
ed people to introdu
e this new in-

tera
tion in oder to explain, how protons and neutrons 
an form stable nu
lei. Obviously,

the strong intera
tion only a
ts over a very short distan
e: ele
tromagnetism suÆ
es to

explain the observed orbits of the ele
trons as well as the out
ome of Rutherford's

s
attering experiments. Its range is limited to distan
es of order of nu
lear sizes, typi-


ally 10

�15

meters. Furthermore the strong for
e does not show universality: parti
les

that intera
t via this for
e are 
alled hadrons. In the 1960s the quark model of matter

was established. Sin
e that time the strong intera
tion is understood as the intera
tion

between quarks whi
h binds them to nu
leons and other hadrons. The for
e between nu-


leons, the nu
lear for
e, is a rudiment of the mu
h stronger for
e between those quarks.

It turned out that the intera
tion between the quarks is mu
h easier to understand than

the 
ompli
ated for
e that a
ts between the nu
leons. This theory of quark intera
tion

is quantum 
hromodynami
s (QCD), the gauge theory of strong intera
tions. The gauge

symmetry of QCD is 
olor symmetry, and the 
orresponding symmetry group is SU(3)




,

where 
 refers to the 
olor (red, green, blue) of the quarks. This symmetry is taken to

be an exa
t symmetry of nature.
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The four known intera
tions between matter parti
les, gravity, ele
tromagnetism, strong

and weak for
e, reinterpreted as gauge intera
tions, as well as their basi
 properties, are

listed in Table 1.3.

Table 1.3.: Fundamental For
es.

For
e Range A�e
ts Gauge Boson Spin Mass[GeV℄

gravitational in�nite all matter graviton 2 0

ele
tromagneti
 in�nite ele
tri
 
harges photon 1 0

weak 10

�18

leptons, quarks W

�

, Z 1 80.4 / 91.2

strong 10

�15

quarks 8 gluons 1 0

In the 
ourse of the 20th 
entury the so-
alled Standard Model

3

of elementary parti
le

physi
s has been established. This model turned out to be very powerful in predi
ting

the produ
tion of parti
les in a

elerator experiments, 
ross se
tions, lifetimes, de
ay

widths and so on.

The Standard Model des
ribes the intera
tion of the fundamental building blo
ks of

nature, whi
h are quarks and leptons, as quantum gauge intera
tions with gauge group

SU(3)




� SU(2)� U(1).

Re
ent experiments at LEP indi
ate that even the ultimate missing parti
le, the

Higgs boson (whi
h is needed to give �nite mass to the parti
les) has been dis
overed,

thereby 
ompleting this model. But up to now only four su
h events have been dete
ted

and the results still have to be 
on�rmed.

At the dawning of the 21st 
entury this is the (preliminary) answer of modern physi
s

to the question of the an
ient Greeks about the stru
ture of nature.

Now we will fo
us on the fourth intera
tion: the gauge theory of strong intera
-

tions, quantum 
hromodynami
s. QCD is still under investigation and | sin
e the


orresponding �eld equations are highly nontrivial | many problems are unsolved, in

parti
ular the problem of quark 
on�nement: quarks do never o

ur as single parti
les,

they always form quark-antiquark pairs (mesons) or 
ome as three-quark bound states

(baryons). Among the many me
hanisms put forward to explain this phenomenon, the

most transparent is probably the so-
alled dual Meissner e�e
t [17, 18℄, whi
h has

re
ently be
ome popular due to its partial 
on�rmation in latti
e experiments and the

expli
it veri�
ation in some supersymmetri
 models. Furthermore QCD exhibits the

spontaneous breakdown of 
hiral symmetry (�SB): sin
e the masses of the up and down

(and to a lesser extent of the strange) quark are very small 
ompared to typi
al strong

intera
tion energy s
ales

�

QCD

� 0:2GeV;

3

For an introdu
tion to the Standard Model and the basi
 
on
epts of lo
al gauge theory, see for

instan
e the books by Ne'eman and Kirsh [12℄, Halzen and Martin [13℄, Ebert [14℄ and Geyer

[15℄. All experimental data are taken from the 2000 Review of Parti
le Physi
s [16℄.
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the theory is approximately invariant under SU(2)

L

� SU(2)

R

transformations (or un-

der SU(3)

L

� SU(3)

R

transformations, respe
tively). This is 
alled 
hiral symmetry.

However, we do not see any parti
le degenera
y patterns as
ribable to su
h symmetries.

The resolution to this paradox is that the physi
al va
uum is not invariant under these

symmetries: 
hiral symmetry is spontaneously broken [19℄.

In this work we are going to analyse a spe
ial 
lass of eigenfun
tions of the Dira


operator D= , 
alled zero modes. Our zero modes will turn out to be 
losely related to

this spontaneous breakdown: from the experimental data we 
an determine the value

of the quark 
ondensate with the help of QCD sum rules due to Shifman, Vainshtein

and Zakharov [20, 21℄:

<

�

  >= �(230MeV )

3

:

This 
ondensate is related to the spe
tral density of the Dira
 operator �(�) near zero

eigenvalues by the Banks-Casher relation [22℄

<

�

  >= ���(� = 0):

The signi�
an
e of the quark 
ondensate is the fa
t that it is an order parameter for the


hiral symmetry breaking in the QCD va
uum.

On the other hand, in the ultraviolet limit, the quarks show asymptoti
 freedom: at

high momentum the for
es between them vanish and every quark 
an move almost as a

free parti
le.

In this diploma thesis we study some quantum �eld theoreti
al models that might be

relevant for realisti
 quantum �eld theories. Realisti
 quantum �eld theories are diÆ
ult

to solve be
ause they are governed by nonlinear operator equations. In the usual per-

turbative treatment, that turned out to be so su

essful in quantum ele
trodynami
s,

we have to start with the solution of the linearized (free) �eld equations and then to

in
orporate the e�e
ts of intera
tions as a power series expansion in the 
oupling 
on-

stant. For QCD | in whi
h we are mainly interested in | the 
oupling 
onstant is

of order unity and perturbation theory does not work. Furthermore some fundamental

properties of quantum �eld theories 
annot be obtained in this approa
h.

Therefore we pro
eed in a di�erent way: the operator Euler-Lagrange equations are

treated as C -number �eld equations and are solved by methods of 
lassi
al mathemat-

i
al physi
s. Quantum me
hani
s is regained either by expanding the quantum theory

around the 
lassi
al solution in a power series of the 
oupling 
onstant or by quantizing

the 
lassi
al solution in a semi
lassi
al or WKB approximation. In su
h an approa
h

the nonlinearity of the system is retained at all stages in the 
al
ulation. These non-

perturbative methods have led to new insights into the properties of quantum �eld

theories.

The 
lassi
al equations of motion usually yield a 
ertain number of trivial solutions,

as well as some nontrivial, solitoni
 solutions. Often these nontrivial 
lassi
al solutions

suggest a parti
le interpretation: they have �nite energy, are lo
alized in spa
e, are

stable and 
an be boosted to give linearly moving solutions, whi
h 
arry momentum and

display the proper relationship between mass, momentum and energy. These obje
ts are
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alled solitons, even though they are not solitons in the stri
t sense of soliton theory.

Ex
ept in the sine-Gordon model, none of the 
lassi
al solutions en
ountered in high

energy physi
s really keeps its shape after 
ollision. Nevertheless the notion soliton

(instead of the more a

urate solitary wave) is used throughout the modern literature.

Therefore we will use it in this diploma thesis as well.

In parti
ular we will explore three kinds of nontrivial �eld 
on�gurations: the kink

solution in the �

4

theory, the 't Hooft-Polyakov monopole and the instanton solution

whi
h o

ur in Yang-Mills-Higgs and pure Yang-Mills theories, respe
tively. After an

appropriate de�nition they turn out to 
arry topologi
al 
harges.

In a se
ond step we analyse the behaviour of fermions (quarks or leptons, depending

on the parti
ular model) in the ba
kground of those �elds. Of parti
ular interest are

so-
alled zero modes (or Ja
kiw-Rebbi modes): solutions of the eigenvalue equation

H = E ;

with eigenvalue E = 0, where H is the Dira
 Hamiltonian and  is the fermioni
 wave

fun
tion. In the kink and the monopole ba
kground we 
al
ulate these zero modes

expli
itly. Furthermore a powerful mathemati
al theorem, the Callias-Bott-Seeley

or CBS index theorem, 
an be used to 
al
ulate the index of appropriate di�erential

operators. This index is equal to the number of left-handed zero modes minus the

number of right-handed zero modes. It turns out that in the 
ases at hand there is

always only one spe
ies of fermions (either left- or right-handed) present. Therefore the

CBS index theorem 
an be used to determine the absolute number of fermioni
 zero

modes in the given ba
kground. The basi
 statement of this index theorem relates the

number of zero modes to the topologi
al 
harge (thereby disregarding the parti
ular

form of the soliton): whenever the ba
kground �eld possesses a topologi
al 
harge there

will be fermioni
 zero energy modes.

In the instanton 
ase we are dealing with four dimensional Eu
lidean spa
e. Now we


an do the same analysis, but we fo
us on zero modes of the Dira
 Operator D= itself:

D=  = 


�

D

�

 = 


�

(�

�

+A

�

) = 0:

Here the 


�

matri
es form the basis of the standard Cli�ord algebra and D

�

is the 
ovari-

ant derivative with gauge potential A

�

, whi
h is given by the instanton 
on�guration.

In Eu
lidean spa
e, D= is an ellipti
 di�erential operator and the question whether or not

D= shows zero modes is a nontrivial one (in Minkowski spa
e D= is hyperboli
 and usually

there are zero modes). Again those zero modes 
an be 
al
ulated and their expli
it shape


an be determined. Like kinks and monopoles, instantons possess a topologi
al 
harge,


alled Pontryagin index. The 
elebrated Atiyah-Singer or AS index theorem relates

again the number of zero modes (of D= ) to this topologi
al 
harge: the higher the 
harge,

the more zero modes are present. Afterwards the zero modes of the Dira
 operator 
an

be related to zero modes of the Dira
 Hamiltonian (here we use Weyl gauge)

H = �i�

i

D

i

by spe
tral 
ow arguments. As will be shown, fermioni
 zero modes in instanton �elds

are very important for an understanding of va
uum tuneling pro
esses, the anomaly of
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the axial 
urrent and the 
hange of axial 
harge.

In this diploma thesis we will use the following re
ipe again and again:

1. Given a parti
ular �eld theory, we explore the 
lassi
al equations of motion that

result from the Euler-Lagrange formalism.

2. We analyse in parti
ular the possible va
ua and give a des
ription of the entire

va
uum stru
ture.

3. Demanding �nite energy (or �nite Eu
lidean a
tion) results in a topologi
al 
las-

si�
ation of all possible stati
 solutions. These solutions are 
alled solitons.

4. Afterwards we use topologi
ally interesting solitons as 
lassi
al ba
kground �elds

and introdu
e fermions as quantum obje
ts in these ba
kgrounds.

5. We investigate the existen
e of zero modes of H (or D= respe
tively) and determine

the number of them as well as their shape by solving the equations of motion

expli
itly.

6. For all theories at hand there are powerful mathemati
al theorems, stemming from

the theory of di�erential operators, that predi
t the existen
e and number of su
h

zero modes by relating them to topologi
al invariants. We apply those theorems

to the parti
ular 
ases and 
ompare the results.

7. In a �nal step we analyse the physi
al 
onsequen
es that result from the existen
e

of those zero modes.

This work is organized as follows: in Chapter 2 we fo
us on a toy model, �

4

theory in

1+1 dimensional Minkowski spa
e. Chapter 3 explains Derri
k's theorem: why gauge

�elds are ne
essary in higher dimensions if we want to have nontrivial �eld 
on�gurations.

In Chapter 4 we use this insight and investigate SU(2) Yang-Mills-Higgs gauge theory

and its solitons, whi
h turn out to be magneti
 monopoles. In the simplest 
ase, the

't Hooft-Polyakov monopole of unit 
harge, we solve the fermioni
 equations of motion

expli
itly. In Chapter 5 we examine Eu
lidean solutions of pure SU(2) gauge theory.

The topologi
al solutions are 
alled instantons and are interpreted as tunneling events

in Minkowski spa
e. Finally we summarize all 
al
ulations and give an outlook, what


ould or should be done in the future. Appendix A 
ontains some basi
 de�nitions and

a sket
h of the proof of the CBS index theorem. In Appendix B the same is done for

the AS index theorem.



2. �

4

Theory

2.1. The Model

Let us 
onsider a s
alar �eld theory in 1 + 1 dimensional Minkowski spa
e. Given the

potential density V = V(�), the Lagrangian reads

L =

1

2

�

�

� �

�

�� V(�) =

1

2

_

�

2

�

1

2

�

0 2

� V(�); (2.1)

where dot (prime) denotes di�erentiation with respe
t to time (spa
e). The total energy

and therefore V(�) must be bounded from below, and by adding a suitable 
onstant we


an a
hieve V(�) � 0, furthermore V(�) should allow for at least two di�erent va
ua

(absolute minima). The famous �

4

- and the Sine-Gordon-Model with potentials

V(�) =

1

4

�

�

�

2

�

m

2

�

�

2

(2.2)

and

V(�) =

m

4

�

�

1� 
os

�

p

�

m

�

��

(2.3)

respe
tively, 
f. Figures 2.1 and 2.2, have been studied in detail.
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Figure 2.1.: The �

4

potential.
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We are looking for stati
 solutions � = �(x), with energy

E[�℄ =

Z

dx

 

1

2

�

0 2

+ V(�(x))

!

<1: (2.4)

The Euler-Lagrange equations

�L

��

� �

�

�L

�(�

�

�)

= 0 (2.5)

redu
e to

�

00

(x) =

�V(�)

��

(x): (2.6)

After multiplying both sides by �

0

and using the 
hain-rule we end up with

d

dx

 

1

2

�

0 2

!

=

d

dx

V(�(x)) (2.7)

1

2

�

0 2

= V(�) + 
: (2.8)

In order to have �nite energy the solutions must obey

lim

x!�1

V(�(x)) = 0; (2.9)

lim

x!�1

�

0

(x) = 0; (2.10)

implying 
 � 0. There are trivial solutions (often referred to as va
uum solutions and

labeled by an index 0): �(x) = �

0

= 
onst, with V(�

0

) = 0. But there are non-trivial

solutions, too. These solutions are 
alled solitons and are labeled by an index S. Due to

this fa
t di�erent se
tors emerge in our theory: a 
ertain number of va
uum se
tors as

well as soliton se
tors. All of them must be treated separately. A

ordingly the Hilbert

spa
e H - after quantization - 
onsists of the sum of orthogonal spa
es,

H = H

0

1

� : : :�H

0

n

�H

S

1

� : : :�H

S

m

: (2.11)

The equations of motion 
an be solved by quadrature

1

2

�

0 2

= V(�);

d�

dx

= �

p

2V(�);

x� x

0

= �

Z

�(x)

�(x

0

)

d

~

�

q

2V(

~

�)

: (2.12)

The 
onstant x

0

represents the invarian
e of the Lagrangian L =

R

Ldx under trans-

lations in x-dire
tion and 
an be 
hoosen arbitrarily. Sometimes this freedom 
auses
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trouble if we try to quantize the theory, the appropriate tool to 
ir
umvent these diÆ-


ulties is the method of 
olle
tive 
oordinates [23, 24℄.

We observe that equation (2.6) is equivalent to the problem of a parti
le moving

along x = x(t) in the potential �V(x), if we repla
e x ! t and � ! x, 
f. Figure 2.3.

Now the va
uum solutions 
orrespond to parti
les with zero energy, resting at one of the
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Figure 2.3.: The upside down potential.

maxima of the potential all the time, and the non-trivial solutions 
an be interpreted

as parti
les being on one of the tops of the potential at the beginning t! �1, moving

through the valley and ending at the se
ond maximum at late times t ! +1. By

general arguments we 
an 
on
lude that su
h non-trivial solutions always appear, if the


orresponding potential has at least two minima V(�) = 0. These soliton solutions share

many properties with usual parti
les, as we will see soon: they are lo
alized in spa
e,

have �nite energy (rest mass), under 
ertain 
onditions they 
an 
ollide without 
hanging

their shape, and by means of a Lorentz-transformation we 
an give them an arbitrary

velo
ity.

The following expli
it 
al
ulations are done within the �

4

theory, but the results

obtained below 
an easily be generalized to all theories that have a similar stru
ture of

the potential. From the Lagrangian

L =

1

2

(�

�

�)(�

�

�)� V(�) =

1

2

_

�

2

�

 

1

2

�

0 2

+

1

4

�

�

�

2

�

m

2

�

�

2

!

| {z }

U(�)

(2.13)

we get

L[�℄ = T [�℄� U [�℄; (2.14)

where

T [�℄ �

1

2

Z

dx

_

�

2

; U [�℄ �

Z

dx U(�): (2.15)
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The Euler-Lagrange equation of motion for the stati
 
ase (2.6) reads

��

00

�m

2

�+ ��

3

= 0; (2.16)

and has the solutions

�

0

1=2

(x) = �

m

p

�

(2.17)

and

�

S

1=2

(x) = �

m

p

�

tanh

 

m

p

2

(x� x

0

)

!

: (2.18)

The trivial solutions �

0

1=2

are the two di�erent va
ua (zero indi
ates the va
uum se
tor),

the non-trivial solutions �

S

1=2

are 
alled kink or antikink, respe
tively (S indi
ates the

soliton se
tor). They interpolate between the va
uum 
on�gurations when x goes from

�1 to +1 and di�er from the trivial solutions only in a small region around x

0

, 
f.

Figures 2.4, 2.5.
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The total energy of the va
uum solutions is zero a

ording to equation (2.4), whereas

the solitons 
arry energy (
lassi
al mass)

E =

2

p

2

3

m

3

�

: (2.19)

The

1

�

dependen
e of the energy is 
hara
teristi
 for nonperturbative solutions of the �eld

equations, i.e. these �eld 
on�gurations 
annot be found via a power series expansion

in �. Let us reformulate the last statements in a more sophisti
ated way: The solutions

of the �eld equation that we found are topologi
ally di�erent. We 
an 
lassify them
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a

ording to their behaviour at spatial in�nity. It is easy to guess, how one has to de�ne

an appropriate topologi
al 
harge Q

top

in this simple 
ase. Take

Q

top

(�) =

1

2

�

�

+

j�

+

j

�

�

�

j�

�

j

�

; (2.20)

where

�

�

= lim

x!�1

�(x): (2.21)

The va
uum solutions are topologi
ally trivial, i.e. Q

top

(�

0

1=2

) = 0, whereas the kink and

antikink 
arry 
harge 1 and �1, respe
tively. The demand for �nite energy for
es all

solutions to take on one of the va
uum values at spatial in�nity. Therefore all solutions

map the border of spa
e (in this parti
ular 
ase the points f�1;+1g) into the set of all

possible va
uum values (here this is

�

m

p

�

;�

m

p

�

	

). Both manifolds are zero dimensional

spheres: S

0

phys

and S

0

int

, respe
tively.

Result: All �nite energy solutions of our �

4

theory 
an be interpreted as mappings

S

0

phys

! S

0

int

and a

ording to this 
an be 
hara
terized by a number, the topologi
al


harge Q

top

.

2.2. Fermioni
 Quantization

Now we introdu
e fermions in all se
tors, taking the C -number �elds � as (spa
e depen-

dent) masses. This gives rise to a Hamiltonian H(�). The Hamiltonian a
ts on spinors

 , and in 1+1 dimensions we 
an realize the Dira
 algebra with the help of the Pauli

matri
es �

i

. We identify

� = �

2

; � = �

1

; 


0

= � = �

1

; 


1

= �� = i�

3

: (2.22)

A

ording to this

H(�) = �p+ g�� = �

2

p+ g�

1

�; (2.23)

with momentum operator p =

1

i

�

x

and 
oupling 
onstant g. Let us rewrite the spinor

in 
omponents  =

�

u v

�

>

. Charge 
onjugation symmetry is mediated by �

3

, sin
e

fH;�

3

g = 0. That means �

3

turns positive (negative) energy solutions in negative

(positive) one. We have to solve

H(�) = E ;

�

0 g�� �

x

g�+ �

x

0

��

u

v

�

= E

�

u

v

�

: (2.24)

This is equivalent to

�Eu+ g�v � v

0

= 0; (2.25a)

g�u�Ev + u

0

= 0: (2.25b)
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Let us �rst 
he
k whether there are zero modes present in one of these se
tors or not,

sin
e later on they will turn out to be essential for some unusual and unexpe
ted physi
al

e�e
ts. It is easy to see, that there are no normalizable modes in the va
uum se
tor, if

we insist on E = 0. Next, look for zero modes in the kink or antikink ba
kground. For

E = 0 the equations de
ouple, we 
an integrate both and get

u = exp�g

Z

x

dy �

S

1=2

(y); (2.26a)

v = exp+g

Z

x

dy �

S

1=2

(y): (2.26b)

The trivial solutions are u = 0 and v = 0. Now we have to use the expli
it form of �

S

1=2

and arrive at

I(x) = g

Z

x

dy �

S

1=2

(y) = �

mg

p

�

Z

x

dx tanh

�

m

p

2

x

�

= �g

r

2

�

log 
osh

�

m

p

2

x

�

+ 
onst: (2.27)

Therefore

u = exp�I(x) �

 


osh

�

m

p

2

x

�

!

�

q

2

�

g

; (2.28a)

v = exp+I(x) �

 


osh

�

m

p

2

x

�

!

�

q

2

�

g

: (2.28b)

We 
an 
ombine all these solutions, getting

�

0

0

�

;

�

0

v

�

;

�

u

0

�

;

�

u

v

�

:

For the kink only the third 
ombination is both nontrivial and square integrable, i.e.

only this is a physi
al solution, 
f. Figure 2.6. We normalize our zero mode

 

0

(x) = N

�

u(x)

0

�

; (2.29)

su
h that

1 =

Z

dx  

y

0

(x) 

0

(x): (2.30)

Observe that  

0

is eigenfun
tion of �

3

with �

3

 

0

=  

0

, i.e.  

0

is invariant under 
harge-


onjugation. Zero modes of the form

�

u 0

�

>

are 
alled left-handed. In the antikink
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Figure 2.6.: The zero mode shape.

se
tor we get a similar zero mode with upper and lower 
omponents inter
hanged, i.e. a

right-handed one, whi
h is invariant under 
harge 
onjugation up to a sign 
hange.

Now let us investigate the remaining spe
trum. For E 6= 0 we 
an express v in terms

of u (via equation (2.25b)) for both, the va
uum se
tor � = �

0

1=2

and the soliton se
tor

� = �

S

1=2

:

v =

1

E

(g�+ �

x

)u: (2.31)

Using this, equation (2.25a) reads

0 = �Eu+

g�

E

(g�+ �

x

)u�

1

E

(g�

0

+ �

2

x

)u�

g�

E

u

0

= (�E

2

+ g

2

�

2

� g�

0

)u� u

00

: (2.32)

This is a S
hr�odinger equation for u with potential g

2

�

2

� g�

0

and energy E

2

:

(��

2

x

+ g

2

�

2

� g�

0

)u = E

2

u: (2.33)

The expli
it form of �(x) yields

g

2

�

2

(x)� g�

0

(x) =

8

>

<

>

:

 

g

2

m

2

�

�

gm

2

p

2�

!

tanh

2

�

m

p

2

x

�

�

gm

2

p

2�

; � = �

S

1=2

g

2

m

2

�

; � = �

0

1=2

:

The va
uum se
tor is trivial: no zero mode, no bound solutions, just plane waves. On the

other hand: if the soliton pro�le is suÆ
iently weak there are no additional normalizable

bound solutions besides the zero mode [25℄. This is a restri
tion on m and �: if � is

large enough, then there is only one bounded state, the zero mode. In what follows we

shall assume that there is exa
tly one bound state. The generalization to two or more

bounded states is straight forward. Furthermore there are s
attering states for energies

E

2

�

g

2

m

2

�

. They are given by wave fun
tions u

k

and have eigenvalues E

2

k

= k

2

+

g

2

m

2

�

.

The positive energy solutions of the original Dira
 equation (2.24) 
an be expressed as

 

E

=

 

1

p

2

u

k

1

p

2E

(g�+ �

x

)u

k

!

; (2.34)
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the negative energy solutions are

 

�E

= �

3

 

E

=

 

1

p

2

u

k

�

1

p

2E

(g� + �

x

)u

k

!

: (2.35)

Consider E = �

q

k

2

+

g

2

m

2

�

< 0. The 
harge density at a given energy E (momentum

k) is

�

k

(x) =  

y

E

(x) 

E

(x) =

1

2

ju

k

j

2

+

1

2E

2

j(�

x

+ g�)u

k

j

2

=

1

2

ju

k

j

2

+

1

2E

2

(ju

0

k

j

2

+ g��

x

ju

k

j

2

+ g

2

�

2

ju

k

j

2

)

=

1

2

ju

k

j

2

+

1

2E

2

�

1

2

�

2

x

ju

k

j

2

�

1

2

�u

00

k

u

k

�

1

2

�u

k

u

00

k

+ g�

x

(�ju

k

j

2

)�

� gju

k

j

2

�

0

+ g

2

�

2

ju

k

j

2

�

; (2.36)

we use equation (2.32) in order to express u

00

in terms of u:

�

k

(x) =

1

2

ju

k

j

2

+

1

2E

2

�

1

2

�

2

x

ju

k

j

2

+ (E

2

� g

2

�

2

+ g�

0

)ju

k

j

2

+ g�

x

(�ju

k

j

2

)�

� gju

k

j

2

�

0

+ g

2

�

2

ju

k

j

2

�

= ju

k

j

2

+

1

4E

2

(�

2

x

ju

k

j

2

) +

g

2E

2

�

x

(�ju

k

j

2

): (2.37)

However, in the va
uum se
tor ju

k

j

2

is a 
onstant, as is �, so that the last two terms in

(2.37) vanish. Now we determine the total 
harge (fermion number) of a given state:

Q =

Z

dx

Z

dk

2�

�

k

(x): (2.38)

We renormalize this in su
h a way that the va
uum 
arries no 
harge at all. For the

empty (i.e. no fermions present) soliton se
tor we get

Q �

Z

dx

Z

dk

2�

(�

S

k

(x)� �

0

k

(x))

=

Z

dx

Z

dk

2�

(ju

S

k

(x)j

2

� ju

0

k

(x)j

2

)

| {z }

�1

+

Z

dk

2�

g

2E

2

�

ju

S

k

(x)j

2

�

k

(x)

�

x=+1

x=�1

: (2.39)

The �rst integral gives -1, be
ause we integrate over a 
omplete set in the va
uum se
tor,

while in the soliton se
tor the zero-mode  

0

is not in
luded. Now we 
an evaluate the

se
ond term, even without expli
it knowledge of the solutions u

S

k

. We des
ribe their

asymptoti
al behavior in terms of transmission and re
e
tion 
oeÆ
ients:

u

S

k

(x)! Te

ikx

for x! +1;

u

S

k

(x)! e

ikx

+Re

�ikx

for x! �1

(2.40)
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with (due to unitarity)

jT j

2

+ jRj

2

= 1: (2.41)

Therefore

Q = �1 +

Z

dk

2�

g

2E

2

(jT j

2

+ (jRj

2

+ 1))

m

p

�

= �1 +

gm

2�

p

�

Z

dk

1

E

2

= �1 +

gm

2�

p

�

Z

dk

1

k

2

+

g

2

m

2

�

= �1 +

gm

2�

p

�

gm

p

�

�

g

2

m

2

Z

d�

1

�

2

+ 1

= �1 +

1

2�

�

ar
tan �

�

+1

�1

= �1 +

1

2

= �

1

2

: (2.42)

So we en
ountered a 
uriosity: the existen
e of a zero mode within the spe
trum of

the Hamiltonian 
auses the fermion number to take on half-integer values - a novel and

fas
inating quantum me
hani
al phenomenon, whi
h was previously unsuspe
ted. These

results were published for the �rst time by Ja
kiw and Rebbi in [26℄. The fra
tional

value of Q arises essentially due to the fa
t that we ex
luded the zero mode from the

de�nition of Q, 
orresponding to the rule that in the ground state all negative energy

levels are �lled, whereas the rest of them remains uno

upied. That this is the 
orre
t

pres
ription 
an be seen from the following: after re
ognizing the existen
e of the zero

energy mode, we 
an reformulate the problem of fermion number fra
tionization in terms

of se
ond quantized wave operators. The standard (normal ordered) 
harge-
onjugation-

odd fermion 
harge density is [27℄

�(x) =

1

2

�

 

y

(x) (x) �  (x) 

y

(x)

�

: (2.43)

Together with the expansion of the wave fun
tion

 (x; t) =

X

n

�

a

n

f

n

(x)e

�iE

n

t

+ b

n

g

n

(x)e

+iE

n

t

�

+ 
  

0

(x); (2.44)

this gives the fermion number

Q =

Z

dx �(x)

=

1

2

X

n

(a

y

n

a

n

� a

n

a

y

n

)�

1

2

X

n

(b

y

n

b

n

� b

n

b

y

n

) +

1

2

(


y


� 



y

)

=

X

n

(a

y

n

a

n

� b

y

n

b

n

) + 


y


�

1

2

: (2.45)

It follows that with this 
hoi
e the zero energy states of the fermion in the solitoni


�eld have a fermion number +

1

2

or �

1

2

, a

ordingly as 


y

or 
 annihilates the state. The
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fermion numbers of all states in
luding the nonzero energy modes are half-integral. For

example if there is a se
ond fermion added to the Q = +

1

2

state, its fermion number

would be Q = +

3

2

, while if we took the Q = �

1

2

state and added a fermion to it, we

would get Q = +

1

2

for that new state. Thus one unique zero energy mode makes all

states have a half-integer fermion number and be
ome doubly degenerate.

Remark: in [28℄ this analysis has been extended to Dira
 equations that are not

symmetri
 under 
harge 
onjugation, due to the introdu
tion of a symmetry breaking

term:

H(�) = �

2

p+ g�

1

�+ �

3

�: (2.46)

Now the fermioni
 
harge be
omes

Q = �

1

�

ar
tan

�

�

�

�

gm

�

p

�

�

�

�

�

: (2.47)

In the 
onjugation symmetri
 limit, �! 0, and the previous result, Q = �

1

2

is regained.

2.3. The Polya
etylene Story

What does these results imply? Is this just a silly 
al
ulation or 
an one verify its

predi
tions? It turned out, that polymere physi
s indeed provides the opportunity to

do so. To understand this in detail, we have to deal with a very spe
ial substan
e -

polya
etylene. Polya
etylene 
onsists of 
hains of 
arbon atoms, with ele
trons moving

along the 
hains. So this is a one dimensional system. There are two kinds of bounds

between the 
arbon atoms: single bounds and double bounds. Let us imagine an in�nite

long 
hain.The displa
ement � of ea
h atom (with respe
t to the quasi-equilibrium with

equal spa
ing between all atoms) is the so-
alled phonon �eld � = �(x

i

).
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Figure 2.7.: Polya
etylene: A, B.

Detailed dynami
al 
al
ulations show [29, 30℄ that the energy density V(�) as a fun
tion

of 
onstant � has the double-well shape we are familiar with from our �

4

-theory. In

this 
ase the matrix stru
ture of the Hamiltonian H does not arise from spin. Rather,

this stru
ture arises through a linearized approximation and the two-
omponent wave
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fun
tions that are eigenmodes of H refer to the right-moving and left-moving ele
trons.

The �lled negative energy states are the valen
e ele
trons, while the 
ondu
ting ele
trons

populate the positive energy states [31℄. Now there are two degenerate va
ua 
alled A

and B. These 
orrespond to the va
uum solutions �

1;2

, 
f. Figure 2.7.

Imagine a 
hain, being in the A(B) va
uum at the very left, x ! �1, and in the

B(A) va
uum for x! +1. This is exa
tly what we 
alled the kink (antikink), 
f. Figure

2.8. The 
ir
le denotes an unpaired single ele
tron.
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Figure 2.8.: Polya
etylene: kink, antikink.

Finally 
onsider a polya
etylene sample in the B va
uum, but with two solitons along

the 
hain, and 
ompare this with the usual B va
uum by 
ounting the number of links,


f. Figure 2.9.
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Figure 2.9.: Polya
etylene: BAB vs. B.

Result: the two soliton state exhibits a de�
it of one link. If we now imagine separating

the two solitons a large distan
e, so that they are independent of one another, then ea
h

soliton 
arries a de�
it of half a link and the quantum numbers are split between the two

states. But we must remember that a link 
orresponds to two states: two ele
trons with

paired spin. Therefore the e�e
t of fra
tional 
harge is hidden here by this degenera
y.

So in polya
etylene a soliton 
arries a 
harge de�
it of one unit of ele
tri
 
harge. The

soliton state has net 
harge, but no net spin, sin
e all the ele
tron spins are paired. If

an additional ele
tron is inserted into to sample, the 
harge de�
it is extinguished, and

one obtains a neutral state, but now there is a net spin. These spin-
harge-assignments

(
harged-without spin, neutral-with spin) have been observed, the same holds for the
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emergen
e of a lo
alized ele
troni
 mode at mid-gap, i.e. at zero energy [32℄.

Materials with a slightly di�erent 
hain stru
ture, with two single bounds and one

double bound as fundamental period, have been analyzed in [33℄. Now there are three

degenerate ground states A;B and C, two types of kinks interpolating between A and

B or B and C respe
tively, as well as the 
orresponding antikinks. A 
arbon 
opy of

our analysis now predi
ts 
harges �

1

3

and �

2

3

. This spe
trum (in
luding gap states) is


on�rmed by numeri
al 
al
ulations and should be obtainable by experiment, too. One


andidate possessing an appropriate 
hain stru
ture is TTF-TCNQ (tetrathiafulvalene-

tetra
yanoquinodimethane) [33℄.

2.4. Index Theorem

The o

uren
e of a zero mode in the spe
trum of the Dira
 Hamiltonian H(�) in the

kink (or antikink) ba
kground of our theory is a 
onsequen
e of the powerful Callias-

Bott-Seeley index theorem [34, 35℄. This is a mathemati
al theorem that 
ounts the

number of zero modes of di�erential operators of a 
ertain 
lass and 
an be applied to

open spa
etime manifolds with an odd number of spa
e dimensions. The proof of the

theorem is sket
hed in appendix A

1

. Let us apply this theorem to our model. From the

Hamiltonian (2.23) we read o� the operator

L = �

d

dx

+ g�(x); (2.48)

where � is either �

0

1=2

or �

S

1=2

. The index formula redu
es to (A.34)

index L =

1

2

�

�

+

j�

+

j

�

�

�

j�

�

j

�

= Q

top

: (2.49)

In the va
uum se
tor the index vanishes identi
ally, in a

ordan
e with our expli
it result

that there are no zero modes. In the nontrivial se
tors we get

index L = �1: (2.50)

For the kink ba
kground index L = +1 means that the number of left-handed zero

modes minus the number of right-handed zero modes is equal to one, just as we found

it in the expli
it 
al
ulations: 1 � 0 = 1. Furthermore in the antikink �eld the same

di�eren
e is equal to minus one: 0� 1 = �1.

2.5. Results

There are �eld theories in 1 + 1 dimensional Minkowski spa
e, that allow for topologi-


ally nontrivial solitoni
 solutions. For detailed 
al
ulations we used the �

4

theory. It


ontains two va
uum se
tors as well as two soliton se
tors: the kink and the antikink

1

For basi
 de�nitions, please 
onsult this appendix.



CHAPTER 2. �

4

THEORY 25

se
tor. Within the va
uum se
tors we 
an solve the Dira
 equation and �nd that the

eigenfun
tions of the Hamiltonian are plane waves, starting at energies E

2

�

g

2

m

2

�

. For

smaller values of E we �nd a gap. In the soliton se
tors there are s
attering states for

suÆ
iently large energies, again there is a gap around zero energy, but now there is one

normalisable eigenstate of H exa
tly at E = 0. The zero energy mode signals quantum

me
hani
al degenera
y, and as a 
onsequen
e the solitons states are doublets

�

�

�

�

S

1=2

;�

E

.

The additional label � des
ribes a twofold degenera
y (in addition to the kink/antikink

doubling) whi
h is required by the zero energy fermion solution. These expli
it results

are in agreement with mathemati
al theorems whi
h state that in nontrivial ba
kground

�elds the Dira
 Hamiltonian always exhibits zero energy modes within its spe
trum.

The e�e
ts of fermion fra
tionization 
an be observed within the framework of solid

state physi
s.



3. Derri
k's Theorem

Now that we have investigated the 1+1 dimensional 
ase in detail, we are ready to

generalize our results to higher dimensions. Consider the standard Lagrangian for a

set of time independent s
alar �elds (arranged as a ve
tor) � = f�

a

g living in a D + 1

dimensional Minkowski spa
e

L =

Z

d

D

x

�

1

2

�

i

� � �

i

�� U(j�j)

�

: (3.1)

The potential U shall be non-negative, and we are looking for stati
, �nite energy solu-

tions. The energy is

E[�℄ =

Z

d

D

x

�

1

2

�

i

� � �

i

�

�

| {z }

U

1

[�℄

+

Z

d

D

x U(j�j)

| {z }

U

2

[�℄

: (3.2)

Both, U

1

and U

2

are non-negative. Now we introdu
e a one-parameter family of �eld


on�gurations de�ned by

�(x; �) � �(�x): (3.3)

For this family, the energy is given by

E

�

[�(x; �)℄ = U

1

[�(x; �)℄ + U

2

[�(x; �)℄;

= �

(2�D)

U

1

[�℄ + �

�D

U

2

[�℄: (3.4)

By Hamilton's prin
iple this must be stationary at � = 1. Thus,

�E

�

��

�

�

�

�

�=1

= 0;

(D � 2)U

1

[�℄ +DU

2

[�℄ = 0: (3.5)

For D > 2 this implies that both U

1

and U

2

must vanish. For D = 2 we are left with

U

2

[�℄ = 0: (3.6)

That means, that our �eld � must be a minimum of the potential everywhere. Therefore

the set of minima of the given potential U must be 
ontinuous, otherwise only the trivial

solution � = �

0

= 
onst is possible.

26



CHAPTER 3. DERRICK'S THEOREM 27

Result: in three or more dimensions there are no stati
, �nite-energy solutions at

all, in two dimensions there are solutions but only under very spe
ial 
ir
umstan
es (see

for instan
e the nonlinear �-model [23℄). In order to �nd solitons also within higher

dimensional theories, we have to modify the Lagrangian. This 
an be a
hieved by the

introdu
tion of higher spin �elds: gauge �elds. For the time being we will fo
us on

a 3+1 dimensional model. The simplest gauge theory, ele
trodynami
s or U(1) gauge

theory, in general does not 
ontain solitoni
 solutions [23℄. Thus we will deal with a

generalization of ele
trodynami
s: SU(2) non-Abelian gauge theory, that 
an be inter-

preted as a simpli�ed model of quantum 
hromodynami
s. This theory, its solitons and


orresponding zero modes will be analysed in the next 
hapter.



4. The 't Hooft-Polyakov Monopole

4.1. The Model

Consider s
alar �elds � = f�

a

(x; t)g and ve
tor �elds A

a

�

(x; t) with internal spa
e index

a = 1; 2; 3, living in 3+1 dimensional Minkowski spa
e. That means for any given a

�

a

transforms as a s
alar and A

a

�

as a ve
tor under Lorentz transformations. From the

basi
 prin
iples of gauge theory we know the Lagrangian [14℄

L(x; t) = �

1

4

G

a

��

G

a��

+

1

2

(D

�

�)

a

(D

�

�)

a

�

1

4

�(�

a

�

a

� F

2

)

2

; (4.1)

with �eld tensor

G

a

��

� �

�

A

a

�

� �

�

A

a

�

+ g�

ab


A

b

�

A




�

; (4.2)

and 
ovariant derivative

(D

�

�)

a

� �

�

�

a

+ g�

ab


A

b

�

�




: (4.3)

The real 
onstants g; F; � are parameters of the model. Observe that the potential for

the s
alar �elds �

a

is of the �

4

type again. A

a

�

are the SU(2) gauge �elds, �

a

form the

Higgs �eld. By 
onstru
tion L is invariant under lo
al SU(2) gauge transformations,

whi
h are de�ned as follows

�

a

(x; t) ! (U(x; t))

ab

�

b

(x; t); (4.4a)

(A

a

�

(x; t)L

a

)

b


! (U(x; t))

bd

(A

a

�

(x; t)L

a

+

i

g

1l�

�

)

de

(U

�1

(x; t))

e


; (4.4b)

where

(U(x; t))

b


� (exp(�iL

a

�

a

(x; t)))

b


; (4.5)

(L

a

)

b


= i�

ab


: (4.6)

L

a

are the three generators of SU(2) in 3 � 3 matrix representation, �

a

are group pa-

rameters, varying in group spa
e. To solve the 
orresponding �eld equations is a highly

nontrivial problem sin
e 15 
oupled nonlinear �elds are involved. From the Lagrangian

we get the equations of motion

�L

��

a

= ��(�

b

�

b

� F

2

)�

a

+ g�

a
d

A

d

�

(D

�

�)




;

�L

�(�

�

�

a

)

= (D

�

�)

a

;
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therefore

(D

�

D

�

�)

a

= ��(�

b

�

b

� F

2

)�

a

: (4.7a)

Furthermore

�L

�A

a

�

= �

1

2

�

da


A




�

G

d��

�

1

2

g�

e
a

A




�

G

e��

+ g�

fa


�




(D

�

�)

f

= g�

ba


�




(D

�

�)

b

� g�

d
a

A




�

G

d��

;

�L

�(�

�

A

a

�

)

= G

a��

;

yielding

D

�

G

a��

= g�

da


(D

�

�)

d

�




: (4.7b)

Due to the possibility of making a gauge transformation via (4.4a) and (4.4b), we 
an

always a
hieve A

a

0

(x; t) = 0. This spe
ial 
hoi
e of the �elds A

a

�

is 
alled Weyl or

temporal gauge. If we restri
t ourselves to time-independent, �nite energy solutions the

equations redu
e to

(D

i

G

ij

)

a

= g�

ab


(D

j

�)

b

�




; (4.8a)

(D

i

D

i

�)

a

= ��(�

b

�

b

)�

a

+ �F

2

�

a

; (4.8b)

with i; j = 1; 2; 3. The energy of su
h a �eld 
on�guration is

E =

Z

d

3

x

�

1

4

G

a

ij

G

a

ij

+

1

2

(D

i

�)

a

(D

i

�)

a

+

1

4

�(�

a

�

a

� F

2

)

2

�

: (4.9)

It rea
hes its minimum value E = 0 if A

a

i

(x) = 0, �

a

(x)�

a

(x) = F

2

and (D

i

�)

a

= 0, i.e.

�

i

�

a

= 0: the gauge �elds vanish and the Higgs �eld takes on its 
onstant va
uum value.

Several other solutions related to A

a

i

= 0 by gauge transformations, but sin
e (4.9) is

gauge invariant, all these solutions have E = 0, too. There is a degenerate family of

E = 0 solutions related by a global SU(2) symmetry, for any solution � = f�

a

g must

have �xed magnitude j�j = F but 
an point in di�erent (x-dependent) dire
tions in

internal spa
e.

Solutions with �nite energy must approa
h va
uum 
on�gurations at spatial in�nity

suÆ
iently fast:

r

3=2

D

i

� ! 0;

� � � ! F

2

;

but � needs not to go to the same dire
tion in internal spa
e when r ! 1. Why? We

require the vanishing of the 
ovariant derivative D

i

� and not the ordinary derivative �

i

�.

If we express the 
ovariant derivative in spheri
al polar 
oordinates, the �-
omponent

reads

(D�)

a

�

=

1

r

��

a

��

+ g�

ab


A

b

�

�




: (4.10)
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This 
ombination must fall o� fast enough,

��

a

��

needs not vanish as r !1 itself. A

a

i

�

1

r

for large r is 
onsistent with E <1, sin
e

E �

Z

d

3

x G

a

ij

G

a

ij

�

Z

dr d� d'

1

r

4

r

2

sin � �

Z

dr

r

2

<1: (4.11)

4.2. Topology

Result: di�erent internal dire
tions are allowed for � at spatial in�nity whereas the

modulus of � is �xed. We 
an identify the values of � at spatial in�nity with the

two dimensional sphere S

2

int

in internal spa
e, sin
e � � � = F

2

. Sometimes this is


alled va
uum-manifold and we 
an identify S

2

int

' SU(2)=U(1). On the other hand the

boundary of the three dimensional physi
al spa
e is a sphere S

2

phys

with radius1. This

is in one-to-one 
orresponden
e with the topology of the solutions of the �

4

theory, if we

repla
e S

0

by S

2

! As before we 
an draw the 
on
lusion: the requirement E <1 permits

only those �eld 
on�gurations � that are related to nonsingular mappings S

2

phys

! S

s

int

.

Again we would like to 
lassify all possible solutions. In order to do so we have to

borrow some fa
ts from topology. Let �

n

(S

m

) be the n-th homotopy group asso
iated

with mappings S

n

! S

m

[23, 36℄. Ea
h element of this group 
orresponds to a whole


lass of fun
tions S

n

! S

m

, all fun
tions within this 
lass 
an be 
ontinuously deformed

into one another. For small integers n and m the homotopy groups are known and

tabulated [37℄. It turns out that �

2

(S

2

), the group that is relevant for our 
onsiderations,

is isomorphi
 to the group of integers,

�

2

(S

2

) ' Z: (4.12)

I.e. ea
h �nite energy solution belongs to a 
ertain 
lass of fun
tions (referred to as

a se
tor). These 
lasses are numbered serially by integers Q

top

. As in 
hapter 2 these

integers are 
alled topologi
al 
harges. Q

top


ounts how often S

2

int

is 
overed, when S

2

phys

is traversed on
e. A

ording to the famous paper of Arafune, Freund and Goebel

[38℄ we 
an de�ne a 
onserved 
urrent

k

�

=

1

8�

�

����

�

ab


�

�

^

�

a

�

�

^

�

b

�

�

^

�




; (4.13)

where

^

�

a

�

�

a

j�j

: (4.14)

Be
ause of the antisymmetry of �

����

we have �

�

k

�

= 0, this 
onservation therefore

follows by 
onstru
tion, not from the dynami
s, k

�

is not a Noether 
urrent. Asso
iated

with k

�

is a 
onserved 
harge

Q

top

=

Z

d

3

x k

0

=

1

8�

Z

S

2

phys

d

2

�

i

(�

ijk

�

ab


^

�

a

�

j

^

�

b

�

k

^

�

a

); (4.15)
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whi
h turns out to be exa
tly our previously de�ned topologi
al 
harge. For a detailed

analysis and a proof see Rajaraman's book [23℄.

In the Q

top

= 0 se
tor � will tend to the same value as r ! 1 in any dire
tion or to

some (�; ')-dependent value that 
an be deformed so as to be (�; ')-independent. The

trivial va
uum solution �

a

= Æ

3a

F belongs to Q

top

= 0.

Figure 4.1.: The hedgehog solution.

An example for the Q

top

= 1 se
tor is the so 
alled hedgehog solution, 
f. Figure 4.1:

here � is pointing radially outward, the internal dire
tion of the �eld is parallel to the


oordinate ve
tor.

4.3. Monopoles

Why should we 
all these solitons magneti
 monopoles? To see this, let us �rst go to

ele
trodynami
s. In Maxwell's theory we have the equation of motion

�

�

F

��

= 4�j

�

(4.16)

and the Bian
hi identity

�

�

~

F

��

=

1

2

�

����

�

�

F

��

= 0: (4.17)

That means, there is an ele
tri
 
urrent j

�

but no magneti
 
urrent j

�

mag

. Therefore

there are no magneti
 monopoles in this theory and the symmetry between ele
tri
 and

magneti
 �elds somehow is broken. But there is the possibility to introdu
e magneti


monopoles and a magneti
 
urrent by hand into these equations in order to improve the
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symmetry:

�

�

F

��

= 4�j

�

;

�

�

~

F

��

= 4�j

�

mag

: (4.18)

The 
onsequen
es have been studied by Dira
 [39, 40℄ and S
hwinger [41℄. Quan-

tum theory only permits ele
tri
 and magneti
 
harges q and m that ful�ll the Dira


quantization 
ondition

m� q = n; n 2 Z: (4.19)

Furthermore a so 
alled Dira
 string arises. But these issues will not be dis
ussed here.

In non-Abelian SU(2) gauge theory a magneti
 
urrent is present without having to alter

the Lagrangian or the �eld equations at all. The Maxwell theory is a theory with a lo
al

Abelian U(1) symmetry. This U(1) is a subgroup of our SU(2). Is it possible to imbed

an ele
tromagneti
 system as part of a ri
her system? What is the ele
tromagneti
 �eld

in this 
ase? Pi
king A

3

�

as the Maxwell potential is not gauge invariant. 't Hooft [42℄

presented a de�nition for the ele
tromagneti
 �eld

F

��

�

^

�

a

G

a

��

�

1

g

�

ab


^

�

a

(D

�

^

�)

b

(D

�

^

�)




; (4.20)

whi
h is gauge invariant and in regions where

^

�

a

= Æ

a3

it redu
es to F

��

= �

�

A

3

�

��

�

A

3

�

.

Now we determine the dual of F and its divergen
e

~

F

��

�

1

2

�

����

F

��

; (4.21)

�

�

~

F

��

=

1

2

�

����

�

�

F

��

=

1

2g

�

����

�

ab


�

�

^

�

a

�

�

^

�

b

�

�

^

�




=

4�

g

k

�

= 4�j

mag

�

: (4.22)

Therefore

k

�

g

is our magneti
 
urrent with k

�

being the topologi
al 
urrent de�ned in

(4.13). The magneti
 �eld

B

i

=

1

2

�

ijk

F

jk

(4.23)

has the property

�

i

B

i

=

1

2

�

ijk

�

i

F

jk

=

4�

g

k

0

; (4.24)

hen
e the total magneti
 
harge is equal to

m =

Z

d

3

x

k

0

g

=

Q

top

g

; (4.25)

where Q

top

is the topologi
al 
harge (4.15).
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4.4. The Q

top

=1 Example of 't Hooft and Polyakov

The previous topologi
al 
onsiderations 
an be done without really solving the equations

of motions. This will be the next step. We would like to use symmetry arguments in

order to simplify the equations (4.8a) and (4.8b). Our solution shall be invariant under

rotations up to gauge transformations, i.e. after a rotation R the �elds � and A

a

i

are

re
overed if one makes use of an appropriate global gauge transformation U at the same

time. We demand:

�(x) = U(R)�(R

�1

x)U

�1

(R); (4.26a)

A(x) = U(R)RA(R

�1

x)U

�1

(R): (4.26b)

The most general ansatz obeying this requirement is [43℄

�

a

(x) = Æ

ia

x

i

r

F (r); (4.27a)

A

a

i

(x) = �

aij

x

j

r

W (r) + Æ

a

i

W

1

(r) + x

i

x

a

W

2

(r); (4.27b)

but in our 
ase this 
an be redu
ed to [23℄

�

a

(x) = Æ

ia

x

i

r

F (r); (4.28a)

A

a

i

(x) = �

aij

x

j

r

W (r); (4.28b)

where F (r) and W (r) have to be 
hosen in su
h a way, that the �eld equations are

satis�ed. With the asymptoti
s F (r ! 1) ! F and W (r ! 1) !

1

gr

it mat
hes all

earlier requirements in
luding boundary 
onditions. In the next step we will 
he
k that

this parti
ular � �eld belongs to the Q

top

= 1 se
tor by 
al
ulating the magneti
 �eld

at large distan
es r ! 1. Plugging in our ansatz and the 
orrensponding asymptoti


behaviour of F and W into the equations

B

i

=

1

2

�

ijk

F

jk

; (4.29)

F

ij

=

^

�

a

�

i

A

a

j

�

^

�

a

�

j

A

a

i

+ g�

ab


^

�

a

A

b

i

A




j

�

1

g

�

ab


(D

�

^

�)

b

(D

�

^

�)




; (4.30)

yields after a lengthy but straightforward 
al
ulation:

F

ij

!

1

gr

2

�

aji

x̂

a

; (4.31)

B

i

!

1

2

�

ijk

1

gr

2

�

akj

x̂

a

=

1

gr

2

x̂

i

; (4.32)

in the limit r!1. This 
orresponds to a magneti
 monopole of strenght

1

g

in a

ordan
e

with Q

top

= 1. Be
ause A

a

0

= 0 and all �elds are time independent we have F

0i

= 0,
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therefore no ele
tri
 �eld is present. Our solution 
arries magneti
 but no ele
tri
 
harge.

We still have to solve the �eld equations to determine the shape of the fun
tions F (r)

and W (r). The parti
ular ansatz redu
es them to ordinary di�erential equations

r

2

K

00

(r) = K(r)(K

2

(r)� 1) +H

2

(r)K(r); (4.33a)

r

2

H

00

(r) = 2H(r)K

2

(r) + �H(r)(

1

g

2

H

2

(r)� r

2

F

2

); (4.33b)

where

K(r) � 1� grW (r); (4.34a)

H(r) � grF (r); (4.34b)

and prime denotes di�erentiation with respe
t to the argument r. This is a set of 
oupled

non-autonomous di�erential equations. Although mu
h simpler than the parent �eld

equations, these are still not easy to solve. Only in the Bogomolny-Prasad-Sommer�eld-

limit (BPS-limit) �! 0 the exa
t solutions are known [44, 45℄. In this limit we have

K(r) =

rgF

sinh(rgF )

; (4.35a)

H(r) =

rgF

tanh(rgF )

� 1: (4.35b)

This 
orresponds to

W (r) =

1

gr

�

F

sinh(rgF )

; (4.36a)

F (r) =

F

tanh(rgF )

�

1

gr

: (4.36b)

The shapes of these fun
tions are shown in Figure 4.2, with the spe
ial 
hoi
e of pa-

rameters g = 1 and F

�1

= 1 unit of length. As it must be, F (r) approa
hes its va
uum

value F for large r, and W (r) goes to zero like

1

r

in the same limit.

In the BPS-limit, where the potential energy of the Higgs �eld vanishes with �, we 
an

dedu
e a lower bound on the energy [23, 46℄. Let us 
al
ulate

E =

Z

d

3

x

�

1

4

G

a

ij

G

a

ij

+

1

2

(D

k

�)

a

(D

k

�)

a

�

=

1

4

Z

d

3

x

�

G

a

ij

� �

ijk

(D

k

�)

a

�

2

+

1

2

Z

d

3

x �

ijk

G

a

ij

(D

k

�)

a

| {z }

I

(4.37)

Now we integrate the se
ond integral by parts:

I =

1

2

Z

d

3

x �

ijk

�

k

�

G

a

ij

�

a

�

�

1

2

Z

d

3

x �

ijk

�

a

(D

k

G

ij

)

a

=

1

2

Z

d

3

x �

ijk

�

k

�

G

a

ij

�

a

�

�

Z

d

3

x �

a

(D

k

~

G

0k

)

a

=

1

2

I

S

2

d�

k

(�

kij

G

a

ij

�

a

); (4.38)
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P
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Figure 4.2.: The fun
tions W(r) and F(r).

where we used the Bian
hi identity

D

�

~

G

��

= 0;

~

G

a��

=

1

2

�

����

G

a

��

: (4.39)

The total energy is

E =

1

4

Z

d

3

x

�

G

a

ij

� �

ijk

D

k

�

a

�

2

+

1

2

I

S

2

d�

k

�

�

kij

G

a

ij

�

a

�

; (4.40)

and the surfa
e integral 
an be rewritten again. Consider

F

��

=

^

�

a

G

a

��

�

1

g

�

ab


^

�

a

(D

�

^

�)

b

(D

�

^

�)




: (4.41)

In the limit r !1 we have:

D

�

�

a

! 0;

^

�

a

!

�

a

F

;

B

k

=

1

2

�

kij

F

ij

!

1

2F

�

kij

G

a

ij

�

a

:

Therefore

I = F �

I

S

2

d�

k

B

k

= 4�mF =

4�Q

top

F

g

; (4.42)

thus

E =

4�Q

top

F

g

+

1

4

Z

d

3

x

�

G

a

ij

� �

ijk

(D

k

�)

a

�

2

�

4�Q

top

F

g

: (4.43)
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In any given Q

top

se
tor the energy E is minimized if and only if the Bogomolny 
ondition

G

a

ij

= �

ijk

(D

k

�)

a

(4.44)

is satis�ed. If the �elds satisfy these equations, then they minimize the stati
 energy in

the 
orresponding Q

top

se
tor, therefore they form a 
lassi
al solution in that se
tor. We


an 
he
k that the BPS-solution ((4.36a), (4.36b)) minimizes the energy in the Q

top

= 1

se
tor: a

ording to (4.9) the mass of the monopole is

M = E =

4�F

g

� 1

!

=

4�F

g

�Q

top

: (4.45)

For Q

top

> 1 or � 6= 0 no expli
it solutions are available so far [47℄. Numeri
al work

and arguments given by 't Hooft [42℄ and Polyakov [48℄ in their original papers indi
ate

that nonsingular, �nite energy solutions exist also for Q

top

= 1 and � 6= 0. For expli
it


al
ulations we have to restri
t ourselves to the monopole �eld with magneti
 
harge

Q

top

= 1.

4.5. Fermioni
 Quantization

Now that we identi�ed the 't Hooft-Polyakov monopoles as parti
ular topologi
ally in-

teresting solutions of the Yang-Mills-Higgs equations of motion ((4.8a), (4.8b)), we will

analyse fermions moving in the ba
kground of su
h monopoles, as we did in the �

4

theory.

Due to la
k of analyti
al solutions for higher 
harges Q

top

we will restri
t ourselves to this

expli
it example, 
losely following the 
al
ulations of Ja
kiw and Rebbi [26℄. Again we

use a Yukawa like 
oupling and 
an interpret the soliton �eld as spa
e-dependent mass.

We start with the Lagrangian

L = L

YMH

+ L

 

; (4.46)

where

L

YMH

= �

1

4

G

a

��

G

a��

+

1

2

(D

�

�)

a

(D

�

�)

a

�

1

4

�(�

a

�

a

� F

2

)

2

; (4.47)

L

 

= i

�

 

n




�

(D

�

 )

n

� gG

�

 

n

T

a

nm

 

m

�

a

: (4.48)

The 
ovariant derivative a
ts on spinors  as follows:

(D

�

 )

n

= �

�

 

n

� igA

a

�

T

a

nm

 

m

: (4.49)

Here g is the dimensionless Yang-Mills 
oupling 
onstant, G 
hara
terizes the strength

of the Yukawa 
oupling and is dimensionless, too. F is the va
uum expe
tation value

of the Higgs �eld � = f�

a

g as before. The matri
es T

a

, a = 1; 2; 3, 
hara
terize the

transformation properties of the fermions with respe
t to SU(2) isospin rotations. We

have

Æ

a

 

n

= iT

a

nm

 

m

;

[T

a

; T

b

℄ = i�

ab


T




: (4.50)
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Currently we are interested in the fundamental and adjoint representation, with T

a

nm

=

1

2

�

a

nm

and T

a

nm

= i�

nam

respe
tively. The Dira
 equation in the external potential of the

't Hooft-Polyakov monopole is

�

� � pÆ

nm

+ gW (r)T

a

nm

(��
^
r)

a

+ gGF (r)T

a

nm

r̂

a

�

�

 

m

= E 

n

: (4.51)

Rewrite the spinor in 
omponents

 

n

=

�

�

+

n

�

�

n

�

; (4.52)

then equation (4.51) be
omes

H

nm

�

�

m

=

�

� � pÆ

nm

+ gW (r)T

a

nm

(� �
^
r)

a

� igGF (r)T

a

nm

r̂

a

�

�

�

m

= E�

�

n

; (4.53)

sin
e we have 
hosen the following representation of the Dira
 matri
es:

� =

�

0 �

� 0;

�

; � = �i

�

0 1l

�1l 0

�

: (4.54)

This is a quite unusual representation, but suitable for the appli
ation of the Callias-

Bott-Seeley index theorem [34, 35℄, as we will see afterwards

1

.

The operator J = j+ I = l+ s+ I, the sum of orbital momentum, spin and isospin


ommutes with the Hamiltonian H in (4.53). The operators are expli
itly given by

l

i

=

1

i

�

ijk

x

j

�

k

; (4.55a)

s

i

=

1

2

�

i

; (4.55b)

(I

i

)

nm

=

�

1

2

(�

i

)

nm

for isospinor fermion �elds and

i�

imn

for isove
tor fermion �elds

: (4.55
)

The 
onservation of the total angular momentum follows from the spheri
al symmetry

of the ba
kground �eld, 
f. [49℄ and 
an be 
he
ked by a lengthy 
al
ulation.

4.5.1. Isospinor Fermion Fields

With isospinor fermion �elds the Dira
 equation may be written

E�

�

in

= (� � p)

ij

�

�

jn

+

1

2

gW (r)(� �
^
r)

a

ij

�

a

nm

�

�

jm

�

1

2

igGF (r)�

a

nm

r̂

a

�

�

im

= (� � p)

ij

�

�

jn

+

1

2

gW (r)(� �
^
r)

a

ij

�

�

jm

((�

a

)

T

)

mn

�

1

2

igGF (r)�

�

im

((�

a

)

T

)

mn

r̂

a

:

Upon de�ning 2� 2 matri
es M

�

by

�

�

in

=M

�

im

�

2

mn

(4.56)

1


f. appendix A
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and using �

2

�

>

= ���

2

, one obtains for M

�

the matrix equation

� � pM

�

�

1

2

gW (r)(� �
^
r)

a

M

�

�

a

�

1

2

igGF (r)M

�

�

a

r̂

a

= EM

�

: (4.57)

Now we expandM

�

in terms of two s
alar and two ve
tor fun
tions (writing them as a

sum over the identity and Pauli matri
es):

M

�

im

(r) = g

�

(r)Æ

im

+ g

�

a

(r)�

a

im

: (4.58)

The equation (4.57) is then equivalent to the following two equations

(�

a

� gW (r)r̂

a

�

1

2

gGF (r)r̂

a

)g

�

+ i�

ab


(�

b

�

1

2

gGF (r)r̂

b

)g

�




= iEg

�

a

;

(�

a

+ gW (r)r̂

a

�

1

2

gGF (r)r̂

a

)g

�

a

= iEg

�

: (4.59)

Now we show how the existen
e of zero-energy solutions 
an be investigated dire
tly

from (4.59). Let us multiply the �rst equation with (�

a

�

1

2

gGF (r)r̂

a

) and set E = 0:

(�

a

�

1

2

gGF (r)r̂

a

)(�

a

� gW (r)r̂

a

�

1

2

gGF (r)r̂

a

)g

�

= 0: (4.60)

In order to simplify this, de�ne

g

�

(r) = exp

�

1

2

g

Z

r

0

dr

0

W (r

0

)

�

~g

�

(r); (4.61)

then (4.60) takes the form

0 = K

ay

�

K

a

�

~g

�

; (4.62)

K

a

�

= p

a

+

1

2

igW (r)r̂

a

� igGF (r)r̂

a

: (4.63)

But the operators K

ay

�

K

a

�

(no sum) are non-negative; it follows that any solution to

(4.62) must satisfy

K

a

�

~g

�

= 0; (4.64)

whi
h implies

~g

�

(r) = N

�

exp

�

1

2

g

Z

r

0

dr

0

�

W (r

0

)�GF (r

0

)

�

�

: (4.65)

Sin
e ~g

�

(r) in
reases exponentially for r!1, we must have N

�

= 0. Substituting the

solution into (4.61) we �nd

g

+

(r) = N

+

exp

�

g

Z

r

0

dr

0

�

W (r

0

)�

1

2

GF (r

0

)

�

�

� Y

00

: (4.66)
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In the full partial wave analysis of the problem [26℄ this 
orresponds to the J = 0 partial

wave se
tor, as it should by symmetry arguments. Therefore our solution to the zero

energy equation is

M

+

im

(r) = g

+

(r)Æ

im

= N

+

exp

�

g

Z

r

0

dr

0

�

W (r

0

)�

1

2

GF (r

0

)

�

�

Æ

im

: (4.67)

Our zero mode wave fun
tion is of the form

�

+

in

= M

+

im

�

2

mn

= N

+

exp

�

g

Z

r

0

dr

0

[W (r

0

)�

1

2

GF (r

0

)℄

�

�

2

in

= N

+

exp

�

� g

Z

r

0

dr

0

[

1

2

GF (r

0

)�W (r

0

)℄

�

� fs

+

i

s

�

n

� s

�

i

s

+

n

g; (4.68)

where

s

+

=

�

1

0

�

; s

�

=

�

0

1

�

: (4.69)

P

S

f

r
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g

r
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p
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m

e
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r
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:
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Figure 4.3.: The zero mode pro�le (dashed line) and its density distribution.

The label i refers to Dira
 indi
es and n to the isospin 
omponents. Spin and isospin

form an antisymmetri
 singlet. The degrees of freedom of the spontaneously broken

isospin symmetry survive as spin degrees of freedom, and 
ouple to Dira
 spin ('spin

from isospin', 
f. [50℄). The radial pro�le of the zero mode and its density distribution

are shown in Figure 4.3, here the spe
i�
 
hoi
e of parameters is g = G = 1 and F

�1

= 1

unit of length. Fermion number 
onjugation is realized by

 

C

n

=

�

�

2

0

0 ��

2

�

�

2

nm

 

�

m

: (4.70)
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Our zero mode is fermion number self 
onjugate, sin
e 
onjugation simply reverses the

sign of the energy in (4.53).

4.5.2. Isove
tor Fermion Fields

In the isove
tor example we have T

a

nm

= i�

nam

and n; m take on values 1; 2; 3. The

Dira
 equation is of the form

�

(� � p)Æ

nm

� gW (r)r̂

n

�

m

+ gW (r)�

n

r̂

m

� igGF (r)�

nam

r̂

a

�

�

�

m

= iE�

�

n

: (4.71)

Now we are looking for zero modes E = 0 and basi
ally have to repeat the former

analysis. Now the equations are more 
ompli
ated, so the results 
an not be given in


losed analyti
 form. Ja
kiw andRebbi [26℄ again applied a partial wave de
omposition

and showed that there are no zero modes for total angular momentum J >

1

2

. However,

for J =

1

2

, two linear independent zero modes o

ur. They have the following form: the

lower 
omponents vanish as in the isospinor 
ase, and the upper 
omponent reads

�

+

n

= N

�

f

2

(r)�

n

+ (f

1

(r)� f

2

(r))r̂

n

� �
^
r

�

�; (4.72)

where either � = s

+

or � = s

�

, 
f. (4.69). f

1

(r) and f

2

(r) are determined as follows.

Let us 
onsider the exponentially de
reasing, nonasymptoti
 part of W (r):

�(r) �

1

r

� gW (r); (4.73)

and de�ne

H(r) =

1

2

�

gGF (r)�

�

0

(r)

�(r)

�

1

r

�

: (4.74)

H(r) vanishes at r = 0 and tends to a positive 
onstant for large r. Now solve the

di�erential equation

�u

00

(r) + (H

2

(r) +H

0

(r) + 2�

2

(r))u(r) = 0; (4.75)

for u(r) and take the solution that is regular at the origin. The fun
tions f

1

(r) and f

2

(r)

are given in terms of u(r) [26℄:

f

1

(r) =

1

r

2

u(r) exp

�

�

Z

r

0

dr

0

H(r

0

)

�

; (4.76)

f

2

(r) =

1

2r

2

�(r)

d

dr

�

r

2

f

1

(r)

�

: (4.77)

f

2

in
reases exponentially, whereas f

1

goes to zero like r

�2

. Ja
kiw and Rebbi [26℄

showed that by 
onstru
tion these spinors are zero energy solutions of the Dira
 equation.
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The twofold degenera
y of the isove
tor solution indi
ates that the solution has spin

1

2

.

With our 
hoi
e of Dira
 matri
es (4.54), fermion number 
onjugation is realized by

 

C

n

=

�

�

2

0

0 ��

2

�

 

�

n

: (4.78)

As before the only e�e
t of this 
onjugation, applied to our Dira
 equation (4.53), is

a 
hange of sign in the energy. Therefore our zero modes are fermion number self-


onjugate.

4.6. Index Theorem

We 
an apply the Callias-Bott-Seeley index theorem [34, 35℄ to our monopole ba
k-

ground �eld, too

2

. For massless fermions, isospinor T =

1

2

and isove
tor T = 1 
ase, we

get for monopoles within the Q

top

se
tor the following results. The index of the operator

L, whi
h is 
onstru
ted out of the Hamiltonian H, the di�eren
e in number of left- and

right-handed zero modes, is given by (A.50):

index L =

�

T (T + 1)� fmg(fmg + 1)

�

Q

top

:

In the isospinor 
ase

T =

1

2

; fmg = �

1

2

; Q

top

= 1; index L =

1

2

3

2

+

1

2

1

2

= 1;

and indeed we found one left-handed normalizable zero mode (and no right-handed one).

In the isove
tor 
ase

T = 1; fmg = 0; Q

top

= 1; index L = 1 � 2� 0 = 2;

again in agreement with our expli
it results.

Remark: The same 
al
ulations 
an be 
arried out with mass term m

�

 

n

 

n

in the

Lagrangian. Now the existen
e of zero modes depends on the relation of the 
oupling


onstants. Zero modes are present, if the mass is suÆ
iently small, m < gGF . This 
an

be 
he
ked expli
itly [51℄ and on the other hand is 
ontained in the general form of the

index theorem [34℄.

Furthermore the index theorem 
an be used to determine the number of parameters

needed to 
ompletely des
ribe a monopole: a

ording to Weinberg [52℄ the dimension

of the moduli spa
e of a given monopole 
on�guration with 
harge Q

top

is equal to twi
e

the number of zero energy modes of fermions in the adjoint representation. Therefore

this 
on�guration belongs to a 4Q

top

�1 parameter family of solutions (after subtra
tion

of an overall 
harge rotation, whi
h is of no physi
al signi�
an
e).

2

For de�nitions and detailed 
al
ulations see Appendix A.
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4.7. Some Remarks on the Julia-Zee Dyon

Julia and Zee [53℄ re
ognized, that there are also dyons, i.e. ele
tri
ally and magneti-


ally 
harged soliton solutions within this model. Instead of A

a

0

= 0 one takes

A

a

0

(x) =

x

a

gr

2

J(r); (4.79)

with J(r)! 0 as r ! 0. Now the �eld equations read

r

2

K

00

(r) = K(r)(K

2

(r)� J

2

(r) +H

2

(r)� 1); (4.80a)

r

2

H

00

(r) = 2H(r)K

2

(r) + �H(r)(

1

g

2

H

2

(r)� r

2

F

2

); (4.80b)

r

2

J

00

(r) = 2J(r)K

2

(r): (4.80
)

Again these equations 
an be solved in the BPS-limit �! 0 only. The solutions are [45℄

K(r) =

rgF

sinh(rgF )

; (4.81a)

H(r) = 
osh 


�

rgF

tanh(rgF )

� 1

�

; (4.81b)

J(r) = sinh


�

rgF

tanh(rgF )

� 1

�

; (4.81
)

with an arbitrary real 
onstant 
. The ele
tri
 
harge is

q =

Z

d

3

x �

i

E

i

= �

8�

g

Z

1

0

dr

J(r)K

2

(r)

r

=

4�

g

sinh
: (4.82)

Nevertheless the asymptoti
 magneti
 �eld is the same and

m =

1

g

: (4.83)

This 
on�guration redu
es to the 't Hooft-Polyakov monopole in the limit 
 ! 0. Now

we 
an analyze the properties of fermions within the dyon ba
kground as well. This was

also done by Ja
kiw and Rebbi [26℄. The main results are the following: the Dira


equation (4.53) now a
quires on the right-hand side an additional term T

a

nm

r̂

a

J(r)

r

 

m

.

The 
omplexity of the equations prevents us from solving them expli
itly. However, the

zero-energy solutions 
ontinue to exist, for both isospinor and isove
tor fermions. The

lower 
omponents no longer vanish but the upper one keep their shape. Fermion number


onjugation remains una�e
ted by this and the zero energy solutions are self-
onjugate.

The expli
it 
onstru
tion of the zero modes is given in the paper by Gonzalez-Arroyo

and Simonov [54℄.
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4.8. Quantum Interpretation

A full quantum �eld theoreti
al treatment of the fermion-monopole system is quite

diÆ
ult [55, 23℄. But in analogy to the kink 
ase we 
an dedu
e the following properties:

the Hilbert spa
e 
onsists of trivial parts, 
onstru
ted around the va

um solutions

of the Yang-Mills-Higgs equations of motion, and nontrivial parts, 
onstru
ted around

monopoles of 
harge Q

top

= �1;�2; : : :. The 't Hooft-Polyakov monopole of 
harge

Q

top

= 1 as well as the 
orresponding dyon 
hange their properties if fermions are

present. The monopole be
omes a degenerate doublet with fermion number �

1

2

. The

solitons are spinless, sin
e no spin degree of freedom is found in the 
lassi
al solution.

In the isove
tor 
ase we �nd a fourfold degenera
y, be
ause now an additional spin-

1

2

degree of freedom is present. Therefore we expe
t to �nd two operators a

s

with s = �

1

2

.

The basi
 feature, that the anti
ommutation relation fa

s

; a

y

s

g = 1 for ea
h s requires two

states j�i 
arrying fermion number n = �

1

2

remains true also in this 
ase. But sin
e we

have now two independent pairs of operators, the soliton states will be produ
t ve
tors

of the form jii ji

0

i with fermion numbers +1 for j+i j+i, �1 for j�i j�i and 0 for j+i j�i

and j�i j+i. Thus there are four degenerate soliton states.

4.9. Results

We analysed the SU(2) Yang-Mills-Higgs equations of motion and were able to 
las-

sify all solutions of the 
orresponding �eld equations a

ording to their topologi
al


harges Q

top

. Spheri
al symmetry allows for an analyti
al des
ription of the Q

top

= 1-'t

Hooft-Polyakov monopole in the so 
alled BPS-limit. In the ba
kground �eld of su
h

a monopole the Dira
 equation for fermions in the fundamental and adjoint represen-

tation exhibits one or two zero energy modes, respe
tively. This leads in 
lose analogy

to the �

4

theory to fermion number fra
tionization, as well as to a degenera
y of the

fermion-monopole states. All these expli
it results are again in agreement with the

Callias-Bott-Seeley index theorem. Furthermore the analysis 
an be extended to

dyons with Q

top

= 1 and arbitrary ele
tri
 
harge.



5. Instanton Fields

5.1. Eu
lidean Yang-Mills Theory in R

4

In this 
hapter we are going to analyse the Eu
lidean Dira
 equation

D=  = 


�

(�

�

+A

�

) = 0; (5.1)

in the ba
kground of instantons. What are instantons? Instantons are lo
alized �nite-

a
tion solutions of the 
lassi
al eu
lidean �eld equations of a given theory. In the fol-

lowing se
tions we will dis
uss the properties of instantons of pure SU(2) gauge theory

in Eu
lidean four-spa
e. First we are going to des
ribe in detail the model under 
on-

sideration, then we will 
lassify all possible solutions and �nally derive the expli
it form

of the instanton ba
kground �elds. Afterwards we analyse how fermions behave in su
h

�elds, dis
uss the zero modes and relate our results again to an important mathemati
al

theorem, the Atiyah-Singer index theorem

1

.

The Eu
lidean version of a theory involves repla
ing the Minkowskian metri
 g

��

by

the Eu
lidean metri
 Æ

��

. The spa
etime ve
tor (x

�

)

Mink

is repla
ed by (x

�

)

Eu
l

. Now

the theory is left invariant under O(4) rotations rather than Lorentz transformations.

Obviously there is no di�eren
e between upper and lower 
omponents and in what follows

we will use only the latter. The requirement of �nite energy now is repla
ed by the

demand for �nite Eu
lidean a
tion. Pure SU(2) gauge theory means that - in 
ontrast

with the Yang-Mills-Higgs theory - there are no Higgs �elds present and the Lagrangian

redu
es to

L = �

1

4

G

a

��

G

a

��

: (5.2)

For the su

eeding it is very 
onvenient to 
hoose the gauge �eld matri
es A

�

to be anti-

Hermitean and to absorb the 
oupling 
onstant in the �elds. Now g will only appear as a

prefa
tor in the a
tion S. The value of g is unimportant for our 
lassi
al 
al
ulations. We

need to take 
are of it only in the 
ontext of quantum theory, where absolute values of S

(in units of ~) play a fundamental role for the 
al
ulation, e.g. of transition amplitudes.

Let

A

�

= g

�

a

2i

A

a

�

; (5.3)

1


f. Appendix B.

44
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where the generators satisfy

�

�

a

2i

;

�

b

2i

�

= �

ab


�




2i

: (5.4)

The Eu
lidean a
tion of a given �eld 
on�guration A

�

is

S =

1

4g

2

Z

d

4

x G

a

��

G

a

��

= �

1

2g

2

Z

d

4

x tr

�

G

��

G

��

�

; (5.5)

with this de�nition S is non-negative. Independent of the 
hoosen gauge (remember the

gauge freedom des
ribed in 
hapter 4, the same holds here) we 
an de�ne the zero a
tion


on�gurations. They are given by

G

��

(x) = 0: (5.6)

This is realized by

A

�

(x) = 0; (5.7)

but while (5.6) is a gauge invariant statement, (5.7) is not. With A

�

= 0 also the gauge

transformed �eld

A

0

�

(x) = U(x)(A

�

(x) + �

�

)U

�1

(x) = U(x)�

�

U(x)

�1

(5.8)

des
ribes a zero a
tion 
on�guration. Fields of the form (5.8) are 
alled pure gauges.

Here U(x) is any element of SU(2) in its 2 � 2 matrix representation. One 
an show

that G

��

= 0 if and only if A

�

is of the form (5.8) [23℄.

Finite-a
tion solutions must approa
h su
h a pure gauge 
on�guration suÆ
iently

fast at spatial in�nity. In fa
t G

��

must fall to zero faster than

1

r

2

, where

r

2

= x

�

x

�

= x

2

1

+ x

2

2

+ x

2

3

+ x

2

4

is the radius in four dimensions. This implies the boundary 
onditions

lim

r!1

A

�

(x) � U(x)�

�

U

�1

(x); (5.9)

and we 
an assign to every �nite-a
tion 
on�guration A

�

an SU(2) valued fun
tion U at

spatial in�nity. Spatial in�nity 
orresponds to a three-dimensional sphere with radius

r =1 and is 
alled S

3

phys

.

Sin
e U depends only on the Euler angles �

1

; �

2

and �

3

of S

3

phys

we 
annot de�ne

a radial derivative of U , whereas A

�

(x) may have a nonvanishing radial 
omponent at

in�nity. We 
an over
ome this diÆ
ulty by making a gauge transformation, su
h that the

radial 
omponent vanishes identi
ally everywhere. Suppose A

r

6= 0 and let us 
onstru
t

the gauge fun
tion

~

U(x) = P

�

exp

Z

r

0

dr

0

A

r

(x

0

)

�

; (5.10)
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where P denotes path ordering. Now 
al
ulate the radial 
omponent of the gauge trans-

formed �eld

A

0

r

(x) =

~

U(x)A

r

(x)

~

U

�1

(x) +

~

U(x)�

r

~

U(x)

�1

;

=

~

U(x)(A

r

(x)�A

r

(x))

~

U (x)

�1

= 0: (5.11)

Hen
e we 
an rewrite the boundary 
ondition (5.9)

A

0

�

(x)

�

�

�

�

S

3

phys

= U(�

1

; �

2

; �

3

)�

�

U

�1

(�

1

; �

2

; �

3

): (5.12)

This enables us to make a homotopy 
lassi�
ation

2

. The gauge fun
tions U provide

mappings from the boundary of Eu
lidean four-spa
e S

3

phys

into the group spa
e of

SU(2) whi
h is known to be isomorph to a three dimensional sphere in internal spa
e,

sin
e every matrix U in the de�ning representation of SU(2) 
an be parametrized by

U = i(a

1

�

1

+ a

2

�

2

+ a

3

�

3

) + a

4

1l, with

P

�

a

�

a

�

= 1. That means

U : S

3

phys

! S

3

int

; (5.13)

and again we refer to topology and borrow the following two fa
ts: �rst, the third

homotopy group of the target sphere S

3

is isomorph to the group of integers Z,

�

3

(S

3

) ' Z; (5.14)

all fun
tions U 
an be 
lassi�ed a

ording to their topologial 
harge, whi
h in this 
ontext

is 
alled Pontryagin index, Q

Pont

2 Z. With this we 
an also 
lassify all �nite-a
tion

solutions, a

ording to their behaviour at in�nity. Se
ond, this topologi
al 
harge for a

given �eld 
on�guration A

�


an be 
al
ulated via the formula

Q

Pont

=

Z

d

4

xQ

Pont

(x) = �

1

16�

2

Z

d

4

x tr

�

~

G

��

G

��

�

; (5.15)

where the dual �eld strength is de�ned as in 
hapter 4,

~

G

��

=

1

2

�

����

G

��

: (5.16)

2

Furthermore the boundary 
onditions allow for an e�e
tive 
ompa
ti�
ation R

4

! S

4

. This will

turn out to be important, sin
e the Atiyah-Singer index theorem, whi
h we are going to dis
uss

afterwards, is appli
able only in the 
ase of 
ompa
t manifolds.
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Q

Pont

(x) 
an be rewritten in the following way

tr G

��

~

G

��

= tr

�

(�

�

A

�

� �

�

A

�

)

~

G

��

+ (A

�

A

�

�A

�

A

�

)

~

G

��

�

= tr

�

(�

�

A

�

� �

�

A

�

)

~

G

��

+A

�

[A

�

;

~

G

��

℄

�

= tr

�

(�

�

A

�

� �

�

A

�

)

~

G

��

�A

�

�

�

~

G

��

�

= tr �

����

�

(�

�

A

�

)(�

�

A

�

+A

�

A

�

)� �

�

(A

�

�

�

A

�

+A

�

A

�

A

�

)

�

= tr �

����

2�

�

�

A

�

�

�

A

�

+

2

3

A

�

A

�

A

�

�

; (5.17)

where we used D

�

~

G

��

= 0 and

tr �

����

(�

�

A

�

)A

�

A

�

=

1

3

tr �

����

�

�

(A

�

A

�

A

�

):

Finally

Q

Pont

(x) = �

�

k

�

; (5.18)

k

�

= �

1

8�

2

�

����

tr A

�

�

�

�

A

�

+

2

3

A

�

A

�

�

: (5.19)

In regular gauge (i.e. no singularities in the interior) we 
an use Stokes theorem to get

Q

Pont

=

Z

d

4

x Q

Pont

(x) =

I

S

3

phys

d�

�

k

�

: (5.20)

On the surfa
e at in�nity we have G

��

= 0, therefore

0 = �

����

G

��

= 2�

����

(�

�

A

�

+A

�

A

�

); (5.21)

leading to

Q

Pont

=

1

24�

2

I

S

3

phys

d�

�

�

����

tr (A

�

A

�

A

�

)

=

1

24�

2

I

d�

�

�

����

tr

�

U(�

�

U

�1

)U(�

�

U

�1

)U(�

�

U

�1

)

�

: (5.22)

A 
on
eptional proof that Q

Pont

really 
ounts, how often the target spa
e S

3

int

is 
overed

when the basis spa
e, i.e. the boundary S

3

phys

, is traversed on
e, is given in [23℄.

Remark: we 
an distort the boundary S

3

into a large 
ylinder with spa
elike hy-

persurfa
es R

3


orresponding to the 
oordinates x

i

; i = 1; 2; 3, 
f. Figure 5.1. In Weyl

gauge, A

4

= 0, there are only 
ontributions from the abutting fa
es and the topologi
al
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Figure 5.1.: Boundary of spa
e.


harge 
an be 
al
ulated as the di�eren
e of two winding numbers (Chern-Simons num-

bers) of the gauge �eld 
on�guration at x

4

= �1 and x

4

= +1, respe
tively.

Q

Pont

= Q

CS

(+1)�Q

CS

(�1); (5.23)

where

Q

CS

=

1

16�

2

Z

d

3

x�

ijk

tr

�

A

i

�

j

A

k

+

2

3

A

i

A

j

A

k

�

: (5.24)

In this language a more suggestive interpretation is possible: �eld 
on�gurations with

Pontryagin index Q

Pont

start at a 
ertain �eld 
on�guration A

i

(�1) with Chern-Simons

number Q

CS

(�1). As the Eu
lidean time x

4

goes by, the gauge �elds evolve and end

up at a di�erent 
on�guration A

i

(+1), now with Chern-Simons number Q

CS

(+1) =

Q

CS

(�1) + Q

Pont

. In order for the whole gauge �eld to have �nite a
tion, both 
on-

�gurations A

i

(�1) have to be pure gauges. This �eld 
on�gurations, reinterpreted as

tunneling events in Minkowski spa
e, are 
alled instantons. Now we are going to derive

the expli
it form of these instantons. Like in the 
ase of the 't Hooft-Polyakov monopole

we use a tri
k to solve the highly nontrivial equations of motion.

5.2. Instanton Con�gurations

Consider the inequality

�

Z

d

4

x tr

��

G

��

�

~

G

��

�

2

�

� 0: (5.25)

With

tr (G

��

G

��

) = tr (

~

G

��

~

G

��

) (5.26)
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this is equivalent to

�

Z

d

4

x tr (G

��

G

��

) � �

Z

d

4

x tr (G

��

~

G

��

); (5.27)

that is

S �

8�

2

g

2

jQ

Pont

j: (5.28)

The �eld equations are derived from the a
tion prin
iple ÆS[A

�

℄ = 0. This variation 
an

be done separately in every homotopy se
tor. S rea
hes its absolute minimum

S =

8�

2

g

2

jQ

Pont

j (5.29)

if and only if

~

G

��

= �G

��

: (5.30)

Field 
on�gurations, that satisfy (5.30) are 
alled selfdual �elds or anti-selfdual �elds,

respe
tively. Every (anti-)selfdual �eld 
on�guration is a solution of the equations of

motion, sin
e they minimize the a
tion S. It is mu
h easier to �nd a solution of the

duality equations than to solve the equations of motion.

Remark: observe that in the (anti-)selfdual 
ase a
tion S and topologi
al 
harge

Q

Pont


oin
ide up to a fa
tor. A

ording to the review arti
le by S
h

�

afer and Shuryak

[56℄ all solutions of the equations of motion that are neither selfdual nor anti-selfdual

are just saddle-points and not extrema of the a
tion.

Following the book by Rajaraman [23℄, we make the ansatz

A

�

(x) = i

�

�

��

�

�

log �(x) (5.31)

where

�

�

��

�

1

2

��

a��

�

a

;

and

��

a��

� �

a��

� Æ

a�

Æ

�4

+ Æ

a�

Æ

�4

are the so-
alled 't Hooft symbols. Let us 
al
ulate the �eld strength and its dual

G

��

= i

�

�

��

(�

�

�

�

log �� (�

�

log �)(�

�

log �))

� i

�

�

��

(�

�

�

�

log �� (�

�

log �)(�

�

log �))� i

�

�

��

(�

�

log �)

2

; (5.32a)

~

G

��

= i

�

�

��

(�

�

�

�

log �� (�

�

log �)(�

�

log �))

� i

�

�

��

(�

�

�

�

log �� (�

�

log �)(�

�

log �)) + i

�

�

��

�

�

�

�

log �; (5.32b)
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where we used

1

2

�

����

�

�

��

= �

�

�

��

: (5.33)

Requiring

~

G

��

= G

��

is equivalent to two equations, the �rst one gives an identity, the

se
ond one reads

�

�

�

�

log �+ (�

�

log �)

2

= 0: (5.34a)

This 
an be written as

��

�

= 0: (5.35)

The only nonsingular solution for � is � = 
onst and therefore A

�

= 0. But singular �

will yield in addition nontrivial, nonsingular gauge �elds A

�

.

Example: for

� =

1

jxj

2

(5.36)

we 
al
ulate

�� = �4�

2

Æ

4

(x);

��

�

= 0: (5.37)

The same result holds for the more general form

�(x) = 1 +

Q

Pont

X

i=1

�

2

i

(x� a

i

)

2

; (5.38)

with real 
onstants a

i�

and �

i

. After a gauge transformation this will yield the Q

Pont

-

instanton solution. In the simplest nontrivial 
ase we get the one-instanton solution,

Q

top

= 1. Using

y

�

= x

�

� a

�

; (5.39)

we have

�(x) = 1 +

�

2

y

2

: (5.40)

The gauge �eld reads

A

�

(x) = �2i�

2

�

�

��

y

�

y

2

(y

2

+ �

2

)

= �i��

a��

�

a

�

2

y

2

(y

2

+ �

2

)

; (5.41)
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and is singular at y = 0. The singularity 
an be removed by a gauge transformation

mediated by

U

1

(y) =

1

jyj

(y

4

1l + iy

j

�

j

): (5.42)

We 
al
ulate

U

�1

1

�

�

U

1

= �2i

�

�

��

y

�

y

2

; (5.43)

therefore A

�


an be written

A

�

=

�

2

y

2

+ �

2

U

�1

1

�

�

U

1

; (5.44)

and after a gauge transformation we get

A

0

�

= U

1

(A

�

+ �

�

)U

�1

1

=

�

�

2

y

2

+ �

2

� 1

�

(�

�

U

1

)U

�1

1

= �

y

2

y

2

+ �

2

(�

�

U

1

)U

�1

1

=

y

2

y

2

+ �

2

U

1

�

�

U

�1

1

: (5.45)

With the abbreviations

�

��

�

1

2

�

a��

�

a

;

�

a��

� �

a��

+ Æ

a�

Æ

�4

� Æ

a�

Æ

�4

;

we 
an express

U

1

�

�

U

�1

1

= �2i�

��

y

�

y

2

; (5.46)

and �nally have

A

0

�

(x) = �2i�

��

y

�

y

2

+ �

2

= �2i�

��

(x� a)

�

(x� a)

2

+ �

2

= �i�

a��

�

a

(x� a)

�

(x� a)

2

+ �

2

: (5.47)

This is the gauge transformed instanton solution whi
h is non-singular everywhere, pro-

vided that � 6= 0. It has the following properties: the selfdual �eld strength is

G

0

��

= 2i�

a��

�

a

�

2

((x� a)

2

+ �

2

)

2

; (5.48)

for x!1 the �eld redu
es to a pure gauge A

0

�

! U

1

(x)�

�

U

�1

1

and the a
tion is

S = �

1

2g

2

Z

d

4

x tr

�

G

0

��

G

0

��

�

=

48�

4

g

2

Z

d

4

x

1

(y

2

+ �

2

)

4

=

8�

2

g

2

; (5.49)

therefore Q

Pont

= 1.
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The same analysis 
an be done for the anti-instanton, the anti-selfdual solution of

the Yang-Mills equations of motion with Q

Pont

= �1. In this 
ase the gauge �elds read

A

0

�

(x) = �2i

�

�

��

(x� a)

�

(x� a)

2

+ �

2

= �i��

a��

�

a

(x� a)

�

(x� a)

2

+ �

2

: (5.50)

Remark: the identi�
ation instanton and anti-instanton, as well as Q

Pont

= �1 is

merely a matter of de�nition.

The �eld equations are invariant under translations, this is re
e
ted by the four free

parameters a

�

, s
ale invarian
e leads to the emergen
e of one parameter �, global gauge

rotations 
orrespond to three free parameters. In total there are eight free parameters.

Brown, Carlitz and Lee [57℄ proved, that a solution in the Q

Pont

se
tor has exa
tly

8Q

Pont

degrees of freedom

3

. Usually the overall gauge orientation is �xed, so e�e
tively

the Q

Pont

instanton solution exhibits 8Q

Pont

� 3 degrees of freedom. For the Q

Pont

-

instanton solution

A

�

(x) = i

�

�

��

�

�

�

log

�

1 +

Q

Pont

X

i=1

�

2

i

y

2

i

��

; (5.51)

we �nd

S =

8�

2

g

2

�Q

Pont

: (5.52)

The a
tion of an Q

Pont

-instanton solution is equal to Q

Pont

times the a
tion of the

single instanton solution. This is a remarkable property for solutions of non-linear �eld

equations.

5.3. Fermions in Instanton Fields

Now we are ready to study the behaviour of fermions within the ba
kground of su
h

instanton 
on�gurations. In parti
ular we are interested in zero modes of the Eu
lidean

Dira
 operator. We use the 
hiral representation for the 
 matri
es. In Eu
lidean spa
e

we 
an 
hoose all of them to be anti-Hermitean




i

�

�

0 �

i

��

i

0

�

; 


4

� i

�

0 1l

1l 0

�

; 


5

� �


1




2




3




4

=

�

�1l 0

0 1l

�

: (5.53)

They obey the following relations




y

�

= �


�

; f


�

; 


�

g = �2Æ

��

: (5.54)

3

They point out a remarkable 
onne
tion between the dimension of the moduli spa
e of an instanton


on�guration, i.e. the number of free parameters, and the number of zero modes of fermions in the

adjoint representation of SU(2): the number of free parameters is exa
tly twi
e the number of those

zero modes. In Appendix B we show, how to 
ount the number of zero modes and we �nd that there

are

2

3

� 1 � (1 + 1) � (2 + 1) �Q

Pont

= 4Q

Pont

zero modes, therefore the dimension of the moduli spa
e

is 8Q

Pont

.
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The Hermitean Dira
 operator is

D= = 


�

D

�

= 


�

(�

�

+A

�

): (5.55)

Let

�

�

� (�

i

; i1l); ��

�

� (�

i

;�i1l);

with the properties

2Æ

��

= �

�

��

�

+ �

�

��

�

; (5.56a)

2i

�

�

��

= i��

a��

�

a

=

1

2

(�

�

��

�

� �

�

��

�

); (5.56b)

2i�

��

= i�

a��

�

a

=

1

2

(��

�

�

�

� ��

�

�

�

): (5.56
)

The Dira
 operator 
an be written as

D= =

�

0 iD

4

+ �

i

D

i

iD

4

� �

i

D

i

0

�

=

�

0 �

�

D

�

���

�

D

�

0

�

: (5.57)

With the proje
tors

P

�

�

1

2

(1l� 


5

); P

+

=

�

0 0

0 1l

�

; P

�

=

�

1l 0

0 0

�

; (5.58)

the 
orresponding Weyl operators read

D

+

= D= P

+

=

�

0 �

�

D

�

0 0

�

; (5.59a)

D

�

= D= P

�

= D

y

+

=

�

0 0

���

�

D

�

0

�

; (5.59b)

and a

ording to this we de�ne the Lapla
ians

4

+

= D

�

D

+

=

�

0 0

0 ���

�

�

�

D

�

D

�

�

; (5.60a)

4

�

= D

+

D

�

=

�

��

�

��

�

D

�

D

�

0

0 0

�

: (5.60b)

Sin
e [D= ; 


5

℄ = 0 on the spa
e S of all zero modes, we 
an 
hoose all of them to be

eigenfun
tions of 


5

as well. Let

S

�

= f : D=  = 0; 


5

 = � g (5.61)

be the set of all zero modes with positive or negative 
hirality, respe
tively. In our

representation zero modes of positive 
hirality have 
omponents

�

0 �

�

>

2 S

+

and
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are 
alled right-handed, whereas

�

� 0

�

>

2 S

�

have negative 
hirality and are 
alled

left-handed.

In order to analyse 4

�

, we 
al
ulate

��

�

��

�

D

�

D

�

=

1

2

(��

�

��

�

� �

�

��

�

� �

�

��

�

+ �

�

��

�

)D

�

D

�

=

1

2

(�2Æ

��

+ 4i

�

�

��

)D

�

D

�

= �D

�

D

�

+ 2i

�

�

��

[D

�

;D

�

℄

= D

2

� 2i

�

�

��

G

��

(5.62)

For selfdual �elds

�

�

��

G

��

vanishes sin
e

�

�

��

is anti-selfdual. D

2

= �(iD)

2

< 0 is a

negative operator

4

, as a 
onsequen
e 4

�

and D

�

do not have any zero modes. The

index of D

+

equals the total number of zero modes in an instanton �eld (the index of

D

�

equals the number of zero modes in an anti-instanton �eld). In an instanton �eld all

zero modes have positive 
hirality and are right-handed, in an anti-instanton �eld they

have negative 
hirality and are left-handed. Now we want to derive the expli
it form of

those zero modes.

5.4. Expli
it Form of Zero Modes

To �nd the zero modes in an instanton �eld we still have to solve the equation

�

�

D

�

� = 0: (5.63)

� is a 2 � 2 matrix be
ause it 
arries spin and isospin indi
es. In this derivation we

follow 
losely the work of Grossman [61℄. Using the fa
t that �

>

�

= ��

2

��

�

�

2

we 
an

bring the �-matri
es to the right an get

(�

�

+A

�

)'��

�

= 0; (5.64)

where

' = ��

2

: (5.65)

Now we take the Q

Pont

-instanton solution of the form

A

�

= i

�

�

��

b

�

; b

�

= �

�

log �;

1

�

�� = 0; (5.66)

and expand ' in terms of the �

�

(be
ause the �

�

form a basis of all 2� 2-matri
es)

' � �iM

�

�

�

: (5.67)

4

First of all D

2

is a non-positive operator, D

2

� 0. But by the very de�nition there are no zero modes

of D

�

in the Q

Pont

6= 0 se
tor, sin
e the instanton number of any redu
ible 
onne
tion vanishes

[58, 59, 60℄, therefore D

2

< 0.
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Then equation (5.63) reads

2i

�

�

��

(�

�

M

�

�

1

2

b

�

M

�

) + (�

�

M

�

+

3

2

b

�

M

�

) = 0: (5.68)

Sin
e

�

�

��

is a tra
eless tensor, we 
an take the tra
e of (5.68) and get the following:

�

�

��

(2�

�

M

�

� b

�

M

�

) = 0; (5.69a)

�

�

M

�

+

3

2

b

�

M

�

= 0: (5.69b)

De�ne

N

�

� �

�1=2

M

�

; (5.70)

so the 
orresponding equations are

�

�

N

�

� �

�

N

�

� �

����

�

�

N

�

= 0; (5.71a)

�

�

(�

2

N

�

) = 0: (5.71b)

If we make the ansatz

N

�

� �

�

h+ g

�

; (5.72)

with �

�

g

�

= 0, we 
an derive g

�

from an antisymmetri
 (and be
ause of the additional

three free parameters also anti-selfdual) tensor g

�

= �

�

X

��

. From (5.71a) it follows

� X

��

= 0; (5.73)

admitting only singular 
ontributions or 
ontributions that are non-vanishing at in�nity.

Therefore we have g

�

= 0. If we furthermore set

h �

!

�

; (5.74)

then equation (5.71b) implies � ! = 0. Now we spe
ify our � and list the possible

harmoni
 solutions !. Taking the form that exhibits 5Q

Pont

+ 4 degrees of freedom for

the Q

Pont

instanton 
on�guration

� =

Q

Pont

+1

X

i=1

�

2

i

(x� a

i

)

2

; (5.75)

one obtains Q

Pont

+ 1 solutions (yielding non-singular wave-fun
tions) of the form

!

(k)

=

�

2

k

(x� a

k

)

2

; k = 1; 2; : : : ; Q

Pont

+ 1: (5.76)

Although ea
h !

(k)

as well as � are singular, the singularities mat
h, so that the resulting

M

(k)

�

= �

1=2

�

�

�

!

(k)

�

�

(5.77)
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are non-singular and normalizable. Finally

�

(k)

= �iM

(k)

�

�

�

�

2

; k = 1; 2; : : : Q

Pont

: (5.78)

Remark: these are only Q

Pont

independent solutions, sin
e

P

Q

Pont

+1

k=1

M

(k)

�

= 0.

Now let us 
on
entrate on the Q

Pont

= 1 instanton se
tor again. With �

2

! 1,

ja

2

j ! 1 su
h that

�

2

ja

2

j

= 1 and a

1

� a, �

1

� � and y � x� a, we have

A

�

= �i��

a��

�

a

�

2

y

�

y

2

(y

2

+ �

2

)

; (5.79)

� = �2U

�1

1

(y)

�

2

(y

2

+ �

2

)

3=2

�

2

: (5.80)

This is the gauge �eld and the 
orresponding zero mode in the singular gauge, 
f. (5.41).

After a gauge transformation ba
k to regular gauge via U

1

we end up with the regular

form

A

�

= �i�

a��

�

a

y

�

y

2

+ �

2

; (5.81)

� = �2

�

2

(y

2

+ �

2

)

3=2

�

2

: (5.82)

This agrees with the result by 't Hooft [62℄. The full right-handed spinor  (x) with

its four Dira
 and two isospin 
omponents is given by

 (x) �

�

2

((x� a)

2

+ �

2

)

3=2

0

B

B

B

B

B

B

B

B

B

B

�

�

0

0

�

�

0

0

�

�

0

�1

�

�

1

0

�

1

C

C

C

C

C

C

C

C

C

C

A

: (5.83)

5.5. Index Theorem

The number of fermioni
 zero modes in the ba
kground of a given Eu
lidean Yang-Mills

�eld 
on�guration with topologi
al 
harge Q

Pont


an be determined with the help of

the Atiyah-Singer index theorem [63, 64℄. The number of zero modes with positive


hirality (n

+

) minus the number of zero modes with negative 
hirality (n

�

), i.e. the

index of the Weyl operator D

+

, 
an be expressed as

5

:

index D

+

=

Z

M

D


h(G) =

1

(D=2)!

�

i

2�

�

D=2

Z

M

D

tr G

D=2

; (5.84)

5

For de�nitions and a proof see appendix B.
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whi
h in our 
ase (D = 4) redu
es to

index D

+

=

1

2!

�

i

2�

�

2

Z

S

4

tr G

2

= �

1

8�

2

Z

S

4

tr G

2

= �

1

16�

2

Z

d

4

xtr G

��

~

G

��

= Q

Pont

= n

+

� n

�

: (5.85)

With the help of our vanishing theorem (see se
tion 5.4) we 
an 
on
lude, that in an

Q

Pont

instanton �eld there are exa
tly Q

Pont

zero modes and all of them are of positive


hirality, whereas in a jQ

Pont

j anti-instanton �eld there are jQ

Pont

j zero modes but all of

them are of negative 
hirality. The 
al
ulations �a la Grossman are in agreement with

the predi
tions of the Atiyah-Singer index theorem.

5.6. Quantum Interpretation

The existen
e of zero modes of the Dira
 operator in the instanton �elds implies some

astonishing physi
al e�e
ts. Massless fermions will lead to a suppression of the tunnel-

ing amplitude between gauge �eld 
on�gurations with di�erent Chern-Simons numbers.

Furthermore zero modes give rise to the so-
alled level 
rossing, the eigenvalues of the

Dira
 Hamiltonian vary with time, some of them 
ross zero and 
hange their sign. These

e�e
ts will be dis
ussed in the next subse
tions.

5.6.1. Suppresion of Tunneling

Interpret the instantons in R

4

as tunneling events in 3+1 dimensional Minkowski spa
e

and let us 
onsider the transition from a gauge �eld 
on�guration with Chern-Simons

number Q

CS

(�1) at t = �1 to Q

CS

(+1) at t = +1 in the presen
e of massless

fermions. Quantization via the path integral formalism [65, 66, 67℄ results in the tran-

sition amplitude

hQ

CS

(�1) Q

CS

(+1)i =

Z

DA

0

�

D D

�

 expS: (5.86)

Gauge �xing terms are understood to be in
luded. The prime denotes integration only

over �elds A

�

with appropriate topologi
al 
harge Q

top

= Q

CS

(+1) �Q

CS

(�1). The


ombined a
tion of Yang-Mills and Fermi �elds is given by

S = S

A

+ S

 

; (5.87)

S

A

= �

1

2g

2

Z

d

4

x tr G

��

G

��

;

S

 

=

Z

d

4

x

�

 D=  =

Z

d

4

x  

y




�

(�

�

+A

�

) :
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The fermions 
an be integrated out exa
tly, sin
e the a
tion depends on those �elds in

a bilinear fashion. So we get

hQ

CS

(�1) Q

CS

(+1)i = NdetD=

Z

DA

0

�

expS

A

: (5.88)

This transition amplitude vanishes identi
ally sin
e the Dira
 operatorD= has zero modes.

Massless fermions suppress the tunneling between topologi
ally disti
t va
ua of the Yang-

Mills �elds. If the fermions 
arry mass m, all eigenvalues are shift, the determinant no

longer vanishes and tunneling is possible again.

5.6.2. The Spe
tral Flow

The equations of motion for a massless Dira
 �eld formally 
onserve the axial-ve
tor


urrent j

5

�

(x) =

�

 (x)


�




5

 (x) as well as the ve
tor 
urrent j

�

(x) =

�

 (x)


�

 (x). This

would imply 
hiral U(1)
 U(1) symmetry. But the bilinear produ
t

�

 (x) (y) diverges

in quantum �eld theory as x approa
hes y. Therefore one has to de�ne these 
urrents

more 
arefully, and in doing that we 
hoose a gauge invariant regularization. A

ording

to S
hwinger [68℄ this 
an be done by separating the two points slightly

j

5

�

=

�

 

�

x+

1

2

�

�




�




5

P

�

exp

�

�

Z

x+

1

2

�

x�

1

2

�

A

�

dx

0

�

��

 

�

x�

1

2

�

�

; (5.89)

similarly for j

�

. If one 
al
ulates the divergen
e of both rede�ned 
urrents one gets [23℄

�

�

j

�

(x) = 0; (5.90)

�

�

j

5

�

(x) =

i

8�

2

tr G

��

~

G

��

= �2i�

�

k

�

= �2iQ

Pont

(x); (5.91)

where Q

Pont

(x) is the Pontryagin density. The divergen
e of the axial-ve
tor 
urrent

no longer vanishes at the quantum level, the 
lassi
al symmetry is violated and we

ent
ountered what is 
alled an anomaly. The appropriate Noether 
harge, whi
h is not


onserved anymore, is the so-
alled axial 
harge Q

5

, whi
h is equal to the number of

parti
les with positive 
hirality minus the number of parti
les with negative 
hirality:

Q

5

=

Z

d

3

xj

5

0

: (5.92)

For the 
hange in Q

5

we get from (5.91)

4Q

5

� Q

5

(t = +1)�Q

5

(t = �1) = 2Q

Pont

: (5.93)

This 
hange is equal to two times the Pontryagin index of the ba
kground �eld: instan-

tons 
ause the axial 
harge to 
hange. How 
an one understand this?

Consider the Dira
 Hamiltonian H in Weyl gauge, whi
h is given by

H = ��

4

 = �


4




i

(�

i

+A

i

) = �i�

i

D

i

 ; (5.94)
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and depends on x

4

via the gauge �elds. For ea
h �xed value of x

4

we 
an solve the

eigenvalue equation

H(x

4

) 

x

4

(x) = �(x

4

) 

x

4

(x): (5.95)

We know that the Hamiltonians at x

4

= �1 and x

4

= +1 in the instanton ba
kground

di�er only by a unitary gauge transformation. Therefore they have the same spe
trum.

But as the 'time' x

4

goes by these eigenvalues are subje
t to 
hange and a parti
ular

eigenmode needs not to 
ome ba
k to its starting value but may be shifted upwards or

downwards.

The spe
tral 
ow of H is de�ned as the number of modes 
hanging their negative

energy eigenvalues to positive ones minus the number of modes 
hanging their eigenvalues

the other way round. A generalization of the Atiyah-Singer index theorem by Atiyah,

Patodi and Singer immediately leads to the following

Theorem: Spe
tral Flow

The number of zero modes of the Dira
 operator is equal to the spe
tral 
ow of the Dira


Hamiltonian.

A rigorous mathemati
al proof 
an be found in the literature [69℄. Here we are going

to use some physi
al arguments in order to substantiate this theorem. Let us assume that

the ba
kground �elds are slowly-varying and allow for an adiabati
 approximation

6

. We

rewrite the wave fun
tion, by separating the x

4


oordinate, as the produ
t of a fun
tion F

whi
h depends solely on x

4

and a fun
tion  

x

4

whi
h depends on the spatial 
oordinates

x = fx

1

; x

2

; x

3

g and parametri
ally on x

4

:

 (x; x

4

) = F (x

4

) 

x

4

(x); (5.96)

we have

��

4

F (x

4

) 

x

4

(x) = HF (x

4

) 

x

4

(x) = �(x

4

)F (x

4

) 

x

4

(x);

�

dF

dx

4

= �(x

4

)F (x

4

); (5.97)

and the solution is

F (x

4

) = F (0)� exp

�

�

Z

x

4

0

d��(�)

�

: (5.98)

Obvioulsy  (x; x

4

) is normalizable if and only if � is positive for x

4

! +1 and negative

for x! �1.

The existen
e of Q

Pont

zero modes of the Dira
 operator (with positive 
hirality) in

an Q

Pont

-instanton �eld ne
essarily implies that Q

Pont

fermioni
 levels 
ow from negative

to positive values. We have the spe
trum indi
ated in Figure 5.2. Sin
e the spe
trum of

6

For a more general proof, whi
h does not require the �elds to 
hange adiabati
ally, see the paper by

Christ [70℄.
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Figure 5.2.: Level 
rossing in the se
tor with positive 
hirality, Q

Pont

= 2.

H is symmetri
 [71℄, there are also Q

Pont

fermioni
 modes with negative 
hirality, that

interpolate between positive eigenvalues at x

4

= �1 and negative values at x

4

= +1,


f. Figure 5.3.
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Figure 5.3.: Level 
rossing in the se
tor with negative 
hirality, Q

Pont

= 2.

For a jQ

Pont

j anti-instanton �eld it is the other way round. The expli
it form of the wave

fun
tion  

x

4

(x) at the 
ross-over point in the one instanton �eld, where H = E = 0,

has been 
al
ulated by Kiskis [72℄.

Interpretation: Pro
esses that 
hange the winding number are a

ompanied by the

absorbtion and emission of fermions, depending on their 
hirality. In terms of the se
ond

quantization the one parti
le state 
orresponds to a situation where all negative energy

states and the lowest positive energy state are �lled and all other positive energy states

are empty. Now in the presen
e of an instanton one of the negative energy states is

shifted to positive values, one parti
le with positive 
hirality emerges. At the same time

one of the positive energy states with negative 
hirality turns into a negative energy

state. The parti
le vanishes in the Dira
 Sea. As an illustrative example we 
ould

imagine the spe
trum whi
h is indi
ated in Figure 5.4.

In total the instanton �eld 
an turn a negative 
hirality parti
le into a positive 
hirality
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one (by winding from one va
uum 
on�guration to another one). We �nd that the

total 
harge is 
onserved, sin
e 4Q = 1 � 1 = 0, but the axial 
harge 
hanges 4Q

5

=

1 � (�1) = 2, in a

ordan
e with the anomaly equation (5.93). In fa
t no fermion ever


hanges its 
hirality, all of them just move one level up or down. The axial 
harge is

said to 
ome from the bottom of the Dira
 Sea [56℄. In this way one 
an understand how

instantons 
an 
hange the total axial 
harge of the system.

Remark: these e�e
ts 
an expli
itly be shown using a toy-model (the S
hwinger

model on a 
ir
le), see the book by Bertlmann [73℄ pp. 227-233. 't Hooft [74℄ gives

the following pi
torial des
ription of how an instanton a�e
ts fermions:

An instanton is like a little door, that suddenly appears, opens to let one or several

parti
les through, to or from this in�nite reservoir 
alled the 'Dira
 sea', and then 
loses

and disappears.[...℄ What an instanton does in quantum 
hromodynami
s is the follow-

ing: it turns the energy of one right heli
ity parti
le state from positive to negative and

does the opposite to one left heli
ity state. So one right heli
ity parti
le will seem to dis-

appear and a left heli
ity parti
le pops up. It is as if a right heli
ity parti
le transmuted

into a left heli
ity one! This is why heli
ity is no longer 
onserved, and 
onsequently the

algebra that was asso
iated with it breaks down.



6. Summary and Outlook

In this diploma thesis we analysed a variety of �eld theoreti
al models: the �

4

model

in 1 + 1 dimensions, the SU(2) Yang-Mills-Higgs theory in 3 + 1 dimensions and pure

SU(2) Yang-Mills theory in Eu
lidean four-spa
e.

All models exhibit nontrivial 
lassi
al solutions, whi
h are 
alled kink, 't Hooft-

Polyakov monopole and instanton, respe
tively. The kink and the monopole are solitons,

i.e. solutions of the 
lassi
al �eld equations with parti
le-like properties: they have �nite

energy, are lo
alized in spa
e, 
an be boosted and display the 
orre
t relationship between

energy, momentum and mass. Furthermore they 
annot be found in a perturbative

expansion sin
e they depend in an nonanalyti
al fashion on the 
oupling 
onstant. The

instanton turned out to be a tunneling event in Minkowski spa
e and a pseudo-parti
le

in Eu
lidean spa
e.

All those �eld 
on�gurations are stable for topologi
al reason, they 
an be 
lassi�ed

a

ording to the homotopy groups �

0

(S

0

), �

2

(S

2

) and �

3

(S

3

) respe
tively, and therefore


arry topologi
al 
harge. In these 
on�gurations, the �elds approa
h di�erent degenerate

va
ua as one approa
hes spatial in�nity in di�erent dire
tions. The va
ua are 
hosen

in su
h a fashion that they 
annot be 
ontinuosly deformed to a single va
uum. This

guarantees the stability of the soliton, and gives rise to a new type of quantum number:

the topologi
al 
harge. Due to 
onservation of this 
harge these obje
ts are stable.

In a se
ond step we used the soliton and instanton 
on�gurations as ba
kground

�elds and analysed the behaviour of fermions in these �elds. Sin
e the 
orresponding

equations of motion are quite simple (in the 
ase of the kink solution) or 
an be redu
ed

drasti
ally (like in the 
ase of the 't Hooft-Polyakov monopole and the instanton) due

to symmetry arguments, an expli
it solution is possible.

In the models with an odd number of spa
e dimensions we investigated the Dira


Hamiltonian and its zero modes

H = 0:

Now the total number of zero modes 
an simply be 
ounted. On the other hand we used

the Callias-Bott-Seeley index theorem to determine their number and afterwards


ompared both results.

In the kink and the monopole 
ase the existen
e of fermioni
 zero energy modes

leads to some important physi
al e�e
ts. First of all the soliton states be
ome multiply

degenerate: soliton plus empty fermioni
 zero mode and soliton plus �lled zero mode


arry the same energy. As a se
ond e�e
t the fermion number no longer takes on only

integer values but be
omes fra
tional.

62
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The predi
tions from the kink model 
an be tested in solid state physi
s: the phonon

�eld of polya
etylen exhibits a �

4

potential, the ele
trons show a zero energy mode (at

mid-gap) and the fra
tionization is re
e
ted in a wrong spin-
harge assignment: neutral


hains of polya
etylen 
arry spin, whereas 
harged 
hains are spinless. Both e�e
ts have

been observed experimentally.

Sin
e the relevant properties are the same, the 't Hooft-Polyakov monopole is assumed

to show these e�e
ts, too.

In the instanton �eld we did a similar analysis, but now we started with the Dira


operator D= and examined its zero modes

D=  = 0:

Zero modes of the 
orresponding Dira
 Hamiltonian 
an be related to the zero modes

of the Dira
 operator by spe
tral 
ow arguments. We have shown, how the Atiyah-

Singer index theorem 
an be used to 
ount their number: the number of zero modes is

proportional to the topologi
al 
harge of the ba
kground �eld.

Also in the instanton 
ase those zero modes have important physi
al 
onsequen
es:

massless fermions suppress the tunneling between topologi
ally distin
t va
ua, in the

massive 
ase, the pro
ess in Minkowski spa
e that 
orresponds to the instanton �eld, is

a

ompagnied by a 
hange of axial 
harge 4Q

5

. Therefore the U(1) axial symmetry of

the theory breaks down, and this solves the famous U(1) problem.

Perhaps the pro
edures, theorems and results that have been given in this diplom

thesis 
an be aplied to some | up to now | unresolved problems.

Studying 
hiral symmetry breaking requires an understanding of quasi-zero modes,

the spe
trum of the Dira
 operator near the � = 0 eigenvalue, sin
e the order parameter

for this phase transition, the quark 
ondensate <

�

  >, is related to the spe
tral density

�(�) by the Banks-Casher relation [22℄

<

�

  >= ���(� = 0):

If there is only one instanton the spe
trum 
onsists of a single zero mode, plus a 
on-

tinuous spe
trum of non-zero modes. But if there is a �nite density of instantons, the

spe
trum is 
ompli
ated, even if the ensemble is very dilute. The zero modes are ex-

pe
ted to mix, so that the eigenvalues spread over some range 4�. A pre
ise des
ription

of the faith of zero modes within su
h an ensemble would 
ontribute to a better under-

standing of the ground state of QCD as well as of the 
hiral symmetry breaking. The

fermions 
ould be simulated on a latti
e and furthermore one 
ould try to 
al
ulate the

exa
t eigenmodes of D= in an instanton-antiinstanon ba
kground.

The question, whether or not the two main e�e
ts of low temperature QCD, 
hiral

symmetry breaking and 
on�nement are related, is not answered yet. One of the phys-

i
al s
enarios of 
olor 
on�nement is based on the idea of monopole-antimonopole pair


ondensation in the va
uum state of quantum Yang-Mills theory. The 
hiral symmetry

breaking is supposed to happen due to the in
uen
e of instanton 
on�gurations.

Re
ently a new de
omposition of the Yang-Mills 
onne
tion A

�

has been proposed

by Cho [75, 76, 77℄, Fadeev and Niemi [78, 79, 80℄ and Shabanov [81, 82℄. This is a
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generalization of the Abelian proje
tions introdu
ed by 't Hooft and is supposed to

give a new e�e
tive des
ription of the low energy phase of QCD. There we rewrite

A

a

�

= �

a

�

+ C

�

n

a

+W

a

�

;

with 
oupling 
onstant g and

�

a

�

= g

�1

�

ab


(�

�

n

b

)n




;

W

a

�

n

a

= 0:

This gives an e�e
tive theory for the unit ve
tor �eld n

a

. The proje
ted gauge �eld �

a

�

depends on A

a

�

and n

a

.

Fermioni
 zero modes of this 
onne
tion are still under investigation. Naively the

Pontryagin index of the �-�eld vanishes be
ause this is an redu
ible 
onne
tion, but

sin
e the Higgs �eld n turns out to be singular, a 
areful analysis is needed.

For the time beeing we have to analyse the one instanton 
on�guration. The unit

ve
tor in 3-dire
tion, n

a

= Æ

a3

, is related to the standard Hopf map

n

H

=

0

�

2x

1

x

2

+ 2x

3

x

4

2x

1

x

4

� 2x

2

x

3

x

2

1

+ x

2

3

� x

2

2

� x

2

4

1

A

by the same gauge transformation U

1

(
f. 
hapter 5) that takes the singular form of the

instanton �eld to the regular form and ba
k [60℄. Hopf maps are maps

S

3

! S

2

; (6.1)

and 
an be 
hara
terized by a topologi
al invariant, the Hopf index.

The 
onne
tion between this Hopf index, the topologi
al 
harge of the instanton


on�guration and the magneti
 
harge of monopoles that arise after proje
tion, as well

as the 
onne
tion between 
on�nement and 
hiral symmetry breaking in this Faddeev-

Niemi de
omposition are subje
t of 
urrent resear
h [83, 84, 85, 86, 87, 88℄.



A. Callias-Bott-Seeley Index Theorem

A.1. Introdu
tion - The Problem

In this appendix we give some basi
 ideas, how to derive index theorems for Dira


operators on open spa
es of odd dimension, 
losely following the work of Callias [34℄.

The derivation is not straight forward but 
onsists of many Lemmata and Propositions

that are needed in order to substantiate the main theorems. Some of those intermediate

steps are sket
hed, for the remaining details see [34℄.

We are interested in Dira
 equations in Minkowski spa
e with non-degenerate stati


(time-independent) modes. Su
h a Dira
 equation 
an be written in the form

H =

�

0 L

L

y

0

�

 = i�

t

 ; (A.1)

where L is an ellipti
 operator on odd-dimensional Eu
lidean spa
e. We will see that L

has a nonvanishing index. The general idea is to use tra
es of the type

Tr (e

�tL

y

L

� e

�tLL

y

) (A.2a)

or

Tr

��

z

L

y

L+ z

�

s

�

�

z

LL

y

+ z

�

s

�

; (A.2b)

where the tra
e is taken in the Hilbert spa
e as well as over Dira
 and internal indi
es.

On a 
ompa
t manifold either of these tra
es gives the index for any value of t or z,

be
ause all eigenvalues are dis
rete and the spe
trum of LL

y

and L

y

L is the same up to

a di�erent number of zero modes.

Proof: let  

�

be an eigenfun
tion of L

y

L:

L

y

L 

�

= � 

�

;

then we �nd a 
orresponding eigenfun
tion of LL

y

with the same eigenvalue

LL

y

(L 

�

) = L(L

y

L) 

�

= �(L 

�

):

On an open spa
e we get the index by taking the limit t ! 1 for (A.2a) or z ! 0 for

(A.2b), 
f. [89℄. We will use the se
ond one with s = 1.
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We study Dira
 operators that arise in Yang-Mills theories with both gauge and

Higgs �elds. The most general Dira
 equation in D + 1 dimensional Minkowski spa
e is

�

i�

i

�

i


 1l

m

+ �

i


A

i

(x)� � 
 �(x)

�

 (x; t) = �i�

t

 (x; t): (A.3)

Here  (x; t) is a 2pm-
omponent spinor. The 2p� 2p Dira
 matri
es are given by

�

i

=

�

0 Æ

i

Æ

i

0

�

; � = i

�

0 �1l

p

1l

p

0

�

; (A.4)

where the D p� p matri
es Æ

i

satisfy an Eu
lidean Dira
 algebra

Æ

i

Æ

j

+ Æ

j

Æ

i

= 2Æ

ij

1l

p

: (A.5)

The 
oeÆ
ients are given by Hermitean m � m matri
es A

i

(x) and �(x). They are

assumed di�erentiable and bounded in x and

lim

jxj!1

A

i

(x) = 0; (A.6)

and �(x) approa
hes a 
onstant as jxj ! 1. Now separate the time variable

 (x; t) =  (x)e

iEt

; (A.7)

and express (A.3) as an eigenvalue problem

H =

�

0 L

L

y

0

��

 

+

 

�

�

= E

�

 

+

 

�

�

; (A.8)

where L is a �rst order pm� pm matrix di�erential operator on R

n

:

L = iÆ

i

�

i


 1l

m

+ Æ

i


A

i

(x) + i1l

p


 �(x); (A.9)

L

y

is the Hilbert spa
e adjoint of L. We are interested in stati
 (t-independent) solutions,

i.e. the E = 0 eigenspa
e. For these solutions we have

L  

�

= 0; (A.10a)

L

y

 

+

= 0: (A.10b)

The dimension of the E = 0 spa
e is given by

k � k

+

+ k

�

; (A.11)

where

k

+

� dim ker L

y

; k

�

� dim ker L: (A.12)

We 
annot in general determine k, but we 
an �nd a formula for

index L � k

�

� k

+

= dim ker L� dim ker L

y

; (A.13)
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in terms of the behaviour of the operator L at in�nity. Sometimes one 
an �nd either

k

+

or k

�

a priori, see [89℄ and 
hapter 5. Then our formula will determine k.

De�nition : L is Fredholm if both k

�

and k

+

are �nite and L is 
losed [90, 91℄.

If L is Fredholm, so are L

y

; LL

y

and L

y

L. In what follows we will restri
t ourselves

to this spe
ial 
lass of operators.

A property of the index whi
h will turn out to be extremly useful in the derivation of

the index formula is its homotopy invarian
e: If t ! L(t) is a norm 
ontinuous map of

the interval [0,1℄ into the spa
e of Fredholm operators then index L(0) = index L(1). It

is also invariant under perturbations that are 
ompa
t relative to the original operator,


f. [91℄, p. 445.

De�niton: If H is a Hilbert spa
e, B : H ! H is 
ompa
t relative to L : D(L) !

H;D(L) � H, if B is 
ompa
t as an operator D(L)! H, where D(L) is equipped with

the norm k:k + kL:k.

We need pre
ise 
onditions that tell us, when an operator of the form (A.9) is Fred-

holm. For more general 
ases one 
an use the

Theorem 1: (Seeley) Let A =

P

j�j�m

a

�

(x)

�

i

�

�x

�

�

be a di�erential operator, where

the a

�

(x) are bounded and their derivatives are 
ontinuous and vanish at 1. Then A is

Fredholm if there are 
onstants 
 and C su
h that

�

�

X

j�j=m

a

�

(x)�

�

�

�

� 
j�j

m

8x 2 R

n

;

(i.e. A is uniformly ellipti
) and

�

�

X

j�j�m

a

�

(x)�

�

�

�

is bounded away from 0 for jxj � C. Conversely, if A is Fredholm then there exist su
h


onstants 
 and C.

Proof: see [92℄.

Restri
ted to the form (A.9) of L, we get the

Corollary: The operator L de�ned by (A.9) is Fredholm if j�(x)j � B for jxj � C

where B and C are positive 
onstants. The index of L is equal to the index of

~

L if

~

L is

an ellipti
 operator su
h that

~

L = iÆ

i

�

i


 1l

m

+ i1l

p


 U(x) (A.14)

for jxj > C, where U(x) is the Hermitean unitary matrix

U(x) � j�(x)j

�1

�(x);

j�(x)j = (�

y

(x)�(x))

1=2

: (A.15)

Remark: That means that the index of L 
an be expressed solely in terms of the Higgs

�eld �. The parti
ular properties of the gauge �elds, determined by the equations of

motion, are nonrelevant in this regard.

Proof: Let

L

1

= iÆ

i

�

i


 1l

m

+ i1l

p


 �(x): (A.16)
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L is Fredholm if and only if L

1

is Fredholm sin
e the fa
t that the A

i

(x) are bounded

and vanish as jxj ! 1 implies that the term Æ

i


A

i

(x) is L

1

-
ompa
t, by the Relli
h

Lemma. Noti
e that

L

y

1

L

1

= ��

2

1l� Æ

i


 �

;i

(x) + 1l

p


 j�(x)j

2

: (A.17)

Sin
e �(x) is C

1

and asymptoti
ally homogeneous we have

L

y

1

L

1

� ��

2

1l�

�

j�j

1l +B1l; (A.18)

where B is su
h that j�(x)j

2

> B. The operator on the righthand side has a dis
rete

spe
trum of eigenvalues 
ontained in (�1; B), so that if B > 0 it is Fredholm. Then so

is L

y

1

L

1

and therefore L

1

as well. The one parameter family of operators

L(t) = tL

1

(t) + (1� t)

~

L = iÆ

i

�

i


 1l

m

+ i1l

p


 [t�(x) + (1� t)U(x)℄; (A.19)

for 0 � t � 1, is a homotopy of L

1

to

~

L within the 
lass of Fredholm operators. Thus

~

L

has the same index as L

1

and L.

A.2. General First Order Operators

We now derive some general formulas for �rst order ellipti
 operators with arbitrary


oeÆ
ients. These formulas readily yield the index theorem. Consider an arbitrary

operator L, whi
h is assumed to be 
losed on a dense domain D(L) in a Hilbert spa
e

K, whi
h is the dire
t sum of M 
opies of another Hilbert spa
e H, K =

L

M

i=1

H. L is

a matrix of operators on H, L = [L

ij

℄, i; j = 1; 2:::M .

De�nition: Given an operator A = [A

ij

℄ on K we de�ne the internal tra
e of A, tr A

to be the following operator on H

tr A =

X

i

A

ii

; (A.20)

with domain

T

M

i=1

D(A

ii

).

For L as in (A.9) the operators LL

y

and L

y

L are selfadjoint and positive. If z is a

non-negative real number, (LL

y

+ z)

�1

and (L

y

L + z)

�1

are bounded operators on K

and

B

z

� z tr

�

(L

y

L+ z)

�1

� (LL

y

+ z)

�1

�

(A.21)

is a bounded operator on H. Let f(z) = Tr B

z

, where Tr denotes the tra
e in the

Hilbert spa
e H: if f�

k

g

1

k=1

is an orthonormal basis for H, then Tr B =

P

1

k=1

(�

k

; B�

k

).

Now, under 
ertain assumptions, the index of L 
an be expressed in terms of the tra
e

of B

z

on H.

Lemma 1: Suppose K, H, L, B

z

are as above and furthermore L : D(L) ! K is
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Fredholm and B

z

is tra
e-
lass on H, and Tr jB

z

j is bounded for z in a domain C in the


omplex plane having z = 0 as a limit point. Then

index L = lim

z!0

f(z): (A.22)

Proof: Sin
e L is Fredholm, so are L

y

L and LL

y

and the zero eigenvalues of L

y

L and

LL

y

are isolated. Obviously ker L

y

L = ker L and ker LL

y

= ker L

y

. Let P

+

be the

proje
tion on ker L

y

L and P

�

the proje
tion on ker LL

y

. Then the operator

~

B

z

= tr

z

L

y

L+ z

� tr P

+

� tr

z

LL

y

+ z

+ tr P

�

= B

z

� tr P

+

+ tr P

�

(A.23)

is tra
e-
lass sin
e B

z

is and P

�

are �nite dimensional proje
tions. Further lim

z!0

~

B

z

=

0 strongly. Let f�

k

g

1

k=1

be an orthonormal basis. Then the series

Tr

~

B

z

=

1

X

k=1

(�

k

;

~

B

z

�

k

) (A.24)


onverges absolutely and uniformly for z 2 C and the limit of ea
h term as z ! 0 is 0.

Thus

lim

z!0

Tr

~

B

z

= 0;

lim

z!0

f(z) = lim

z!0

Tr

~

B

z

+Tr P

+

� Tr P

�

= index L: (A.25)

Now we �nd the bridge between the region z ! 0 where the index is 
omputed (a

ording

to Lemma 1), and z !1 where Tr B

z

is 
omputed expli
itly.

Lemma 2: With all the assumptions and de�nitions pre
eding Lemma 1, suppose B

z

is

tra
e-
lass for z in a domain C. Then f(z) = Tr B

z

is analyti
 for z 2 C.

Proof: Let f

N

(z) �

P

N

k=1

(�

k

; B

z

�

k

). Then ea
h f

N

(z) is analyti
 and f

N

(z) is bounded

for all N and all z in a 
ompa
t subset of C. Thus f(z) = lim

N!1

f

N

(z) is analyti
 in

C.

Now the analyti
 fun
tion f(z) 
an be expressed as

2f(z) = lim

R!1

Z

S

D�1

R

dS

i

J

i

z

(x; x) +

Z

d

D

xA

z

(x; x); (A.26)

with suitable de�ned fun
tions J

z

and A

z

, see [34℄, Proposition 1. In the spe
ial 
ase

of (A.9) that we are interested in, the bulk 
ontribution of A

z

vanishes and we are left

with an integral over the boundary S

D�1

1

:

f(z) =

1

(1 + z)

D=2

Q[U ℄; (A.27)

Q[U ℄ =

1

2

�

D�1

2

�

!

�

i

8�

�

D�1

2

lim

R!1

Z

S

D�1

R

tr

�

U(x)

�

dU(x)

�

D�1

�

: (A.28)

For a proof see [34℄.
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A.3. An Index Formula for Dira
 Operators

Together with Lemma 1 this gives the �nal result:

Theorem 2: Let L be a �rst order di�erential operator on R

D

, D odd, whi
h up to

C

1

zero order terms vanishing at in�nity is of the form

L = iÆ

i

�

i


 1l

m

+ i1l

p


�(x); (A.29)

where the Æ

i

are 
onstant p� p matri
es, p = 2

(D�1)=2

, satisfying the algebra

Æ

i

Æ

j

+ Æ

j

Æ

i

= 2Æ

ij

1l

p

: (A.30)

�(x) is a m � m Hermitean matrix of C

1

fun
tions su
h that j�(x)j � B > 0 for

jxj � C, where B and C are 
onstants, further �(x) homogeneous of order 0 as x!1.

Let U(x) � j�(x)j

�1

�(x). Then the index of L is given by

index L =

1

2

�

D�1

2

�

!

�

i

8�

�

D�1

2

lim

R!1

Z

S

D�1

R

tr

�

U(x)(dU(x))

D�1

�

; (A.31)

where (dU)

D�1

is the (D � 1)st power of the matrix dU with the di�erentials being

multiplied by exterior multipli
ation.

Remark: The formula (A.31) remains essentially the same if D is even, and it gives

trivially that index L = 0 in that 
ase, for any L of the form (A.9).

A.4. Example: the Kink

Consider D = 1 spa
e dimension, only one internal degree of freedom and L of the form

L = �

d

dx

+ �(x); (A.32)

where �(x) is a real valued fun
tion on R. Observe that this exa
tly 
oin
ides with the

upper right part of the Hamiltonian of our �

4

theory in 
hapter 2. Let

lim

x!�1

�(x) = �

�

<1: (A.33)

Then we 
an apply (A.31) and get

index L =

1

2

�

�

+

j�

+

j

�

�

�

j�

�

j

�

: (A.34)

The va

um se
tors have vanishing index, whereas kink and antikink 
arry index +1

and �1, respe
tively.
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A.5. Example: SU(2) Monopole

We study the Dira
 equation for an isospin T parti
le in the �eld of a stati
 system of

SU(2) magneti
 monopoles in 3 + 1 dimensional Minkowski spa
e. We have the gauge

potentials and Higgs �eld

A

i

(x) = A

a

i

(x)T

a

;

�(x) = �

a

(x)T

a

+m; (A.35)

with a running from 1 to 3. �

a

is a ve
tor in internal spa
e and takes on its �xed va

um

expe
tation value �

a

�

a

= F

2

as jxj goes to in�nity. m is the mass of the fermions. The

generators of isospin rotations are

[T

a

; T

b

℄ = i�

ab


T




; T

a

T

a

= T (T + 1)1l: (A.36)

The 
on�guration

A

a

0

= 0; A

a

i

= A

a

i

(x); �

a

= �

a

(x); (A.37)


ould arise as a stati
 �nite energy solution of the 
oupled Yang-Mills-Higgs equations

in the absen
e of fermions. If this is the 
ase, A and � = f�

a

g meet the earlier require-

ments

1

. This 
on�guration represents a system of total magneti
 
harge (Krone
ker

index, Brouwer degree, Poin
are-Hopf index, homotopy number) [38℄

Q

top

= �

1

8�

Z

S

2

1

�

ab


�

a

d�

b

d�




: (A.38)

Q

top

is essentially the degree of the mapping � : S

2

phys

! S

2

int

, where S

2

phys


orresponds

to the boundary of the physi
al spa
e and S

2

int

to the possible values of the �eld � with

�xed length. The index formula redu
es to (D = 3)

index L =

i

16�

Z

S

2

1

tr UdUdU; (A.39)

where U = j�j

�1

� = (�

y

�)

�1=2

�. What is left is to evaluate this (A-independent)

integral. Let therefore �

�

(x);  

�

(x) be the eigenvalues and eigenve
tors of �(x):

�(x) 

�

(x) = (�

�

(x) +m) 

�

(x): (A.40)

At jxj ! 1 those �

�

are just �T;�T + 1; : : : ; T � 1; T (for the moment we 
an take

F = 1, sin
e the index depends only on the ratio

m

F

, �nally we 
an go ba
k to arbitrary

F ). Now we have to verify [93℄ the formula

�

j

U =

X

�

2

�

�

(x)� �

�

(x)

sign�

�

(x)( 

�

(x); �

j

�(x) 

�

(x))

�

 

�

(x)( 

�

(x))

y

; (A.41)

1

For a dis
ussion of the asymptoti
 behaviour 
f. 
hapter 4.
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where (: ; :) denotes the inner produ
t in the �nite-dimensional spa
e of the matrix �(x)

and the sum is over all � and � where the produ
t (�

�

(x) +m)(�

�

(x) +m) is negative.

In the next step we perform matrix multipli
ation and tra
e operation in order

to 
al
ulate the index via (A.39). This 
an be done as follows: at ea
h point x let

�

a

(x); �

a

1

(x); �

a

2

(x) be an orthonormal set of three-ve
tors. The following 
al
ulations

are performed at spatial in�nity. There �

a

is a ve
tor with �xed length and we have

�

j

�

a

= 


1j

�

a

1

+ 


2j

�

a

2

�

j

�(x) = �

j

(�

a

T

a

+m) = 


1j

T

1

+ 


2j

T

2

; (A.42)

with

T

0

� T

a

�

a

= ��m; (A.43a)

T

i

� T

a

�

a

i

; i = 1; 2: (A.43b)

These T

i


an be arranged to form raising and lowering operators

T

�

� T

1

� iT

2

; (A.44)

with

T

�

 

�

=

p

T (T + 1)� �

�

(�

�

� 1) 

��1

: (A.45)

Conversely

T

1

=

1

2

(T

+

+ T

�

); T

2

=

1

2i

(T

+

� T

�

): (A.46)

Then it is easy to 
al
ulate the following matrix elements

( 

�

; T

1

 

�

) =

1

2

Æ

�

�

;�

�

�1

p

T (T + 1)� �

�

(�

�

+ 1)

+

1

2

Æ

�

�

;�

�

+1

p

T (T + 1)� �

�

(�

�

� 1); (A.47a)

( 

�

; T

2

 

�

) =

1

2i

Æ

�

�

;�

�

+1

p

T (T + 1)� �

�

(�

�

� 1)

�

1

2i

Æ

�

�

;�

�

�1

p

T (T + 1)� �

�

(�

�

+ 1): (A.47b)

Let fmg be the largest eigenvalue of �

a

T

a

smaller than m, or, if there is no su
h eigen-

value, the smallest eigenvalue of �

a

T

a

minus one. Then only (�

�

; �

�

) = (fmg; fmg+ 1)

and (�

�

; �

�

) = (fmg+ 1; fmg) 
ontribute, sin
e �

�

and �

�

have to di�er exa
tly by �1

(otherwise all matrix elements vanish due to the Krone
ker Æ in (A.47a) and (A.47b))

and the values �

�

+m and �

�

+m have di�erent sign, therefore (�

�

+m)(�

�

+m) < 0,

so they appear within the sum (A.41). With this information, a short 
al
ulation gives

tr UdUdU = 2i

�

T (T + 1)� fmg(fmg + 1)

�




1i




2j

dx

i

dx

j

: (A.48)
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Using

�

ab


�

a

d�

b

d�




= 


1i




2j

dx

i

dx

j

(A.49)

and formula (A.38) for Q

top

we get

index L =

i

16�

Z

S

2

1

tr UdUdU

= �

1

8�

�

T (T + 1)� fmg(fmg + 1)

�

Z

S

2

1

�

ab


�

a

d�

b

d�




=

�

T (T + 1)� fmg(fmg + 1)

�

Q

top

: (A.50)

For arbitrary F repla
e m by

m

F

in this formula. For Q

top

= 1 and m = 0 two 
ases have

been studied by Ja
kiw and Rebbi [26℄:

� Isospinor 
ase

T =

1

2

;

�

m

F

�

= �

1

2

;

with index

1

2

�

3

2

+

1

2

�

1

2

= 1.

� Isove
tor 
ase

T = 1;

�

m

F

�

= �1;

with index 1 � 2� 0 = 2.

Remark: Here

m

F

and an eigenvalue of � 
oin
ide, and therefore the 
ontinuum

spe
trum extends down to zero. So zero is no longer isolated, L not Fredholm.

But Weinberg [94℄ argues, that there are no 
ontributions from the 
ontinuum

to the index and (A.31) is still appli
able.

The general formula (A.31) is in agreement with the expli
it 
al
ulations.



B. The Atiyah-Singer Index Theorem

B.1. Basi
 De�nitions

Consider the eigenvalue equation of the Eu
lidean self-adjoint Dira
 operator

D= '

n

(x) = 


�

(�

�

+A

�

)'

n

(x) = �

n

'

n

(x): (B.1)

The '

n

form an orthonormal basis. Sin
e f


�

; 


5

g = 0 we have

D= 


5

'

n

(x) = ��

n




5

'

n

(x); (B.2)

so 


5

takes eigenfun
tions with positive eigenvalues into eigenfun
tions with negative

eigenvalues and vi
e versa. In the subspa
e S of zero modes

S � f'

0

n

: D= '

0

n

= 0g; (B.3)

we have

[D= ; 


5

℄'

0

n

= (D= 


5

� 


5

D= )'

0

n

= 0; (B.4)

and therefore 
an 
hoose the zero modes to be eigenfun
tions of 


5

with positive or

negative 
hirality. Let

P

�

�

1

2

(1l� 


5

); (B.5)

and 
onstru
t

'

0

n�

(x) � P

�

'

0

n

(x); (B.6)

with




5

'

0

n�

(x) = �'

0

n�

(x); D= '

0

n�

(x) = 0: (B.7)

The index of ea
h self-adjoint operator vanishes by de�nition,

index D= = dim ker D=

y

� dim ker D= = 0; (B.8)

and nothing 
an be said about the number of zero modes of D= . Instead of D= we analyse

the Weyl operators

D

�

� D= P

�

: (B.9)

74
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We have

D

y

�

= D

�

; (B.10)

furthermore de�ne Lapla
e operators a

ording to

4

+

� D

y

+

D

+

= D

�

D

+

; (B.11a)

4

�

� D

y

�

D

�

= D

+

D

�

: (B.11b)

On the spa
es of zero modes S

�

of positive and negative 
hirality,

S

�

= f'

0

n�

: 


5

'

0

n�

= �'

0

n�

g; (B.12)

they a
t as shown in Figure B.1, for instan
e

D

+

'

+

= D= P

+

P

+

' = D= P

+

'

=

1

2

D= (1l + 


5

)' =

1

2

(1l� 


5

)D= ' = P

�

D= '

= �P

�

' = �'

�

: (B.13)
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Figure B.1.: The zero mode spa
e.

The index of the Weyl operator is given by

index D

+

= dim ker D

+

� dim ker D

y

+

= dim ker D

+

� dim ker D

�

= n

+

� n

�

; (B.14)

the index of D

+

is the number of zero modes with positive 
hirality (n

+

) minus the

number of zero modes with negative 
hirality (n

�

). Furthermore

index D

�

= �index D

+

: (B.15)

Now we want to �nd a 
onne
tion between the index of a di�erential operator D (later

D = D

+

) and the heat kernel of the 
orresponding Lapla
e operators4

+

= D

y

D; 4

�

=
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DD

y

. In the 
ase of a 
ompa
t manifold M, the spe
trum of 4 is dis
rete and ea
h

eigenvalue has �nite degenera
y.

Lemma 1: The spe
trum of nonzero eigenvalues of 4

+

and 4

�

is the same.

Proof: suppose the eigenvalue equation

4

+

�

�

= D

y

D�

�

= ��

�

: (B.16)

Then D�

�

=  

�

is an eigenfun
tion of 4

�

with the same eigenvalue

4

�

 

�

= DD

y

D�

�

= �D�

�

= � 

�

: (B.17)

Remark: this argumentation does not hold for zero modes, the number of zero modes

may be di�erent for both operators.

Lemma 2: ker 4

+

= ker D; ker 4

�

= ker D

y

.

Proof: We have ker 4

+

= ff : 4

+

f = 0g and ker D = ff : Df = 0g. If Df = 0

then automati
ally 4

+

f = D

y

Df = 0 and if f 2 ker 4

+

, so we have 0 = (D

y

Df; f) =

(Df;Df) and 
onsequently Df = 0, i.e. f 2 ker D.

B.2. An Index Formula for Eu
lidean Dira
 Operators

With the de�nitions E

+

= f�

�

g (eigenfun
tions of 4

+

) and E

�

= f 

�

g (eigenfun
tions

of 4

�

) we have the following

Theorem 1: index and heat kernel

index D = tr

E

+

e

�t4

+

� tr

E

�

e

�t4

�

; 8t > 0: (B.18)

Proof:

tr

E

+

e

�t4

+

� tr

E

�

e

�t4

�

=

X

�;�

�

D

�

�

e

�t4

+

�

�

E

�

X

�; 

�

D

 

�

e

�t4

�

 

�

E

=

X

�

e

�t�

�

X

�

�

h�

�

�

�

i �

X

 

�

h 

�

 

�

i

�

=

X

�

e

�t�

�

dim E

+

(�)� dim E

�

(�)

�

and, sin
e for � 6= 0 the dimensions of E

+

(�) and E

�

(�) are equal,

tr

E

+

e

�t4

+

� tr

E

�

e

�t4

�

= e

�t�0

�

dim E

+

(0)� dim E

�

(0)

�

= dim ker 4

+

� dim ker 4

�

= dim ker D � dim ker D

y

= index D: (B.19)

In the 
ase of our Weyl operator we have the

Theorem 2:

index D

+

= tr

S




5

e

�tD=

2

; 8t > 0: (B.20)
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Proof:

index D

+

= tr

S

+

e

�tD

�

D

+

� tr

S

�

e

�tD

+

D

�

= tr

S

+

e

�tD=

2

P

+

� tr

S

�

e

�tD=

2

P

�

= tr

S=S

+

�S

�

e

�tD=

2

(P

+

� P

�

)

= tr

S




5

e

�tD=

2

� tr 


5

e

�t4

: (B.21)

Here we used a power series expansion of the exponential fun
tion as well as the 
y
li


property of the tra
e operation.

What is left is to evaluated the right-hand side of equation (B.21). In order to do

this, we expand the fun
tion e

�t4

into eigenfun
tions �

n

(x) of 4 [73℄. Applied to a

square integrable test fun
tion ' we get

e

�t4

'(x) =

Z

dy e

�t4

X

n

�

n

(x)�

�

n

(y)'(y)

=

Z

dy

X

n

e

��

n

t

�

n

(x)�

�

n

(y)'(y)

�

Z

dy G

4

(x; y; t)'(y): (B.22)

The operator e

�t4

has a kernel fun
tion, the heat kernel

G

4

(x; y; t) =

X

n

e

��

n

t

�

n

(x)�

�

n

(y) =

D

x e

�t4

y

E

; (B.23)

whi
h sati�es the so-
alled heat equation

4G

4

(x; y; t) = �

�

�t

G

4

(x; y; t): (B.24)

This allows for the 
al
ulation of the index via the Fujikawa pro
edure [95, 73℄: expand

the heat kernel into Seeley 
oeÆ
ients a

n

,

G

4

(x; y; t) =

1

(4�t)

D=2

exp

�

�

(x� y)

2

4t

�

X

n

a

n

(x; y)t

n

; (B.25)

pi
k up the t-independent part and perform t! 0. In D dimensions only the 
oeÆ
ient

a

D=2


ontributes. For the Dira
 operator we �nd a

0

� 1l, a

1

� G, a

2

� G

2

; : : :.

For general even dimensional 
ompa
t manifolds M

D

follows the Atiyah-Singer

index theorem. Atiyah and Singer have shown [63, 64℄, that the analyti
 index de�ned

in (B.14) equals another index whi
h is fully determined by topology and therefore 
alled

topologi
al index. This is a topologi
al invariant. Moreover, it 
an be expressed as an

integral over 
ertain 
hara
teristi
 
lasses, whi
h 
an be found expli
itly for a given

di�erential operator.
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In the 
ase of the Dira
 Operator D= 
ontaining the Yang-Mills gauge potential A =

A

a

�

dx

�

T

a

the 
hara
teristi
 
lasses are determined by the Chern 
hara
ter.

De�nition: the Chern 
hara
ter 
h(G) is given by


h(G) = tr exp

�

i

2�

G

�

= r +

i

2�

tr G+

1

2!

�

i

2�

�

2

tr G

2

+ : : : ; (B.26)

where r is the dimension of the group, and G is the 
urvature two-form

G = dA+A

2

: (B.27)

Theorem: Atiyah-Singer index theorem

index D

+

=

Z

M

D


h(G): (B.28)

The integral is taken over the 
ompa
t manifoldM

D

with dimension D, so the D=2-th

term is pi
ked up

index D

+

=

1

(D=2)!

�

i

2�

�

D=2

Z

M

D

tr G

D=2

: (B.29)

B.3. Examples: 2 and 4 Dimensions

Example: in D = 2 dimensions we get

index D

+

= �

1

4�

Z

dx �

��

F

��

= �

1

2�

Z

S

2

F: (B.30)

This equation 
an be used to determine the number of zero modes lo
alized near vortex-

like 
on�gurations in planar ele
trodynami
s [96℄, but will not be dis
ussed here.

Example: in D = 4 dimensions we get in the same way

index D

+

=

1

2!

�

i

2�

�

2

Z

S

4

tr G

2

= �

1

8�

2

Z

S

4

tr G

2

; (B.31)

observe that the index is equal to the topologi
al 
harge of the Yang-Mills ba
kground

�eld de�ned in 
hapter 5:

index D

+

= Q

Pont

: (B.32)

Interpretation: in a ba
kground �eld with Pontryagin index Q

Pont

the number of zero

modes with positive 
hirality minus the number of zero modes with negative 
hirality is

equal to Q

Pont

.

Due to the tra
e operation the index depends on the representation of the gauge

group. In the fundamental representation of SU(2), where tr T

a

T

b

= �

1

2

Æ

ab

the index

of D

+

is equal to Q

Pont

, in the adjoint representation we have tr T

a

T

b

= �2Æ

ab

and

the index of D

+

is equal to 4Q

Pont

. In general, for fermions in the representation with

isospin T , we have [97, 98℄

index D

+

= n

+

� n

�

=

2

3

T (T + 1)(2T + 1)Q

Pont

: (B.33)
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