Nullmoden des Dirac-Operators im Feld von
Solitonen und magnetischen Monopolen

Diplomarbeit

Friedrich-Schiller-Universitat Jena
Physikalisch-Astronomische Fakultat

eingereicht von Andreas Kirchberg
geboren am 19. Januar 1976 in Leinefelde



1. Gutachter: Prof. Dr. phil. habil. Andreas Wipf
2. Gutachter: Prof. Dr. rer. nat. habil. Reinhard Meinel

Tag der Verleihung des Diploms: 25. Oktober 2000



Contents

1. Introduction

2. ¢* Theory
2.1. The Model . . . . . . . . . .
2.2. Fermionic Quantization . . . . . ... ... ... .. ... ... ... ..
2.3. The Polyacetylene Story . . . . . . .. ... .. ...
2.4. Index Theorem . . . . . . . . . . . . . e
2.5. Results. . . . . . .

3. Derrick’s Theorem

4. The 't Hooft-Polyakov Monopole

4.1. The Model . . . . . . . . e
4.2. Topology . . . . . ...
4.3. Monopoles . . . . . . . . L
4.4. The Qiop=1 Example of 't Hooft and Polyakov . . . ... ... ... ...
4.5. Fermionic Quantization . . . . . . . . ... Lo

4.5.1. Isospinor Fermion Fields . . . . . .. .. ... ... ... ......

4.5.2. Tsovector Fermion Fields . . . . . . . ... ... ... ... .....
4.6. Index Theorem . . . . . . . . .. .. . e
4.7. Some Remarks on the Julia-Zee Dyon . . . . .. .. ... ... ......
4.8. Quantum Interpretation . . . . . . . . ... Lo
4.9. Results. . . . . . . . o e

5. Instanton Fields

5.1. Euclidean Yang-Mills Theory in R* . . . . . .. ... ... .. .......
5.2. Instanton Configurations. . . . . . . . ... ... ... ... ... ..
5.3. Fermions in Instanton Fields . . ... ... ... ... .. ... ......
5.4. Explicit Form of Zero Modes . . . . . . . .. ... .. o L.
5.5. Index Theorem . . . . . . . . . . . . ..
5.6. Quantum Interpretation . . . . . . . .. ... Lo oo

5.6.1. Suppresion of Tunneling . . . . . .. ... .. ... ...

5.6.2. The Spectral Flow . . . . . . .. ... ... ... ... ... ..

6. Summary and Outlook

13
13
17
22
24
24

26

28
28
30
31
33
36
37
40
41
42
43
43

44
44
48
52
o4
o6
o7
o7
58

62



Contents

A. Callias-Bott-Seeley Index Theorem
A.1. Introduction - The Problem . . . . . . ... ... .. ... .........
A.2. General First Order Operators . . . . . . . .. ... .. ... ..
A.3. An Index Formula for Dirac Operators . . . . . . .. ... ... .. ....
A4. Example: the Kink . . . . . . . . . . . ... ... .. oo
A.5. Example: SU(2) Monopole . . . . .. ... .. ... ... ...

B. The Atiyah-Singer Index Theorem
B.1. Basic Definitions . . . . . . . . . .o e
B.2. An Index Formula for Euclidean Dirac Operators . . . . . . . . ... ...
B.3. Examples: 2 and 4 Dimensions . . . . . . . . ... ..o



1. Introduction

Philosophy is written in this great book of the Universe which is
continually open before our eyes, but we cannot read it

without having first learnt the language and the characters

wn which it is written.

It is written in the language of mathematics and the characters
are triangles, circles and other geometrical shapes without the
means of which it is humanly impossible to decipher a single word;
without which we are wandering in vain through a dark labyrinth.

Galileo Galilei, "The Assayer”

To understand nature in all its details and to describe the surrounding world with the
help of some fundamental principles has been a dream of mankind since the very be-
ginning. In order to achieve such an understanding, people are still investigating how
nature works and how it is designed at its deepest level.

Is nature made up from some elementary building blocks? The ancient Greek were
the first who tried to answer this question. They intended to solve the problem simply by
thinking about it, without making any experiment at all. DEMOCRIT claimed that there
were such building blocks, tiny, indivisible, immortal, and he introduced the notion
atom (greek atomos = indivisible). But the majority agreed with ARISTOTLE, who
assumed that the structure of matter is continuous. During the middle ages the european
alchemists also took this point of view and people forgot about the ideas of DEMOCRIT.

It was not until the beginning of modern science in the seventeenth century, when
first experiments were performed in order to prove or vitiate these hypotheses. DALTON,
a british teacher and chemist, often called father of modern atomic theory and chemistry,
published a famous book A New System of Chemical Philosophy in 1808, in which he
explained his theories: all matter is made up from atoms and all atoms of a certain
chemical element are identical, whereas atoms of different elements have different masses
and properties. Soon scientist were able to classify those atoms and to determine their
intrinsic properties, and in 1870 the Russian chemist MENDELEJEV published his periodic
table of the elements. Ingenious experiments revealed the sizes of such atoms: they are
as small as 10~ centimeters.
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Between 1894 and 1897 THOMSON analysed the cathode rays that had been dis-
covered in 1858: it turned out that atoms are not indivisible, but all of them contain
negatively charged electrons, which can be emitted under the influence of an electric field.
In 1902 LorD KELVIN proposed a model of the atom that was later called THOMSON’s
Model: a positively charge ball with imbedded electrons.

In 1910 RUTHERFORD and his cooperators discovered (with the help of alpha-particle
scattering experiments) that every atom contains a very tiny, positively charged and
massive core. These results were published in 1911 and the RUTHERFORD Model was
born. The nucleus of the lightest element hydrogen is called proton (greek protos =
the first one). In 1932 CHADWICK identified the second component of the nucleus and
called it neutron becaused it is electrically neutral and its mass is close to the mass of
the proton.

At that time the set of all known fundamental building blocks consisted of photons,
electrons, protons and neutrons. This was enough to explain all observed phenomena.
Almost. Already in 1931 PAULI postulated the existence of an additional neutral particle,
nowadays known as the neutrino, for the purpose of explaining the beta-decay consis-
tently, which causes for instance the transmutation from tritium into helium. Without
the neutrino the spin and energy conservation laws would have been violated. COWAN
and REINES verified the existence of the neutrino in 1956.

Furthermore the Dirac equation, already deduced in 1928, predicted the existence
of so-called antimatter: all particles have mirror images of the same mass but opposite
charge. ANDERSON observed the first antiparticle, the positron, in 1932. The antiproton
has been discovered in 1955.

Still this is not the end of the story: owing to the careful investigation of the high
energy cosmic radiation and the use of capable accelerators, more and more fundamental
particles came into play: muons, tauons with their associated neutrinos, pions, kaons,
B-mesons, sigmas, chis.. ., all of them together with their antiparticles.

So their number became larger and larger, smashing the hope of the scientists that
nature can be described in a simple and elegant fashion at its deepest level. All those
particles are characterized by their quantum numbers, such as mass, charge, spin and
baryon number.

Table 1.1.: Nucleons and Pions.

Particle | Mass[MeV] | Spin | Charge
Proton p 938.3 % +1

Neutron n 939.6 1 0
Pion 7wt 139.6 0 +1
Pion 7° 135.0 0 0
Pion 7~ 139.6 0 -1
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But while tabulating the system of all elementary particles people discovered some
symmetries among them. Particles with very similar properties can be arranged in so-
called multiplets, indicating that some more fundamental theory should relate them to
each other. As illustrative examples we list the nucleon doublet and the pion triplet in
Table 1.1.

In 1961 GELL-MANN [1] and NE’EMAN [2] showed the possibility of arranging those
multiplets into larger families, called supermultiplets’, cf. Figures 1.1, 1.2 and 1.3. Here
S and I3 denote strangess and the third component of isospin as quantum numbers of
the particles. GELL-MANN called this model The FEightfold Way and he was able to
predict the existence of the 2~ particle, which was dected right at that time.

K° K+

K- K" B” =
\ \ \ \ \ \
-1 0 +1 1 1 0 +1 b
Figure 1.1.: Octet of spin-0 mesons. Figure 1.2.: Octet of spin-1 baryons.

One year leater, NE'EMAN and GOLDBERG-OPHIR made the suggestion that each
baryon is made up from three more fundamental building blocks: each carrying baryon-
number 3 as well as fractional electric charge. GELL-MANN [3] and ZWEIG [4] improved
this model in 1964, independent of each other they published a more precise formulated
theory: all known hadrons are made up from some fundamental building blocks, called
quarks?. They labeled them by a new intrinsic property, the quark flavour: there are
u (up), d (down) and s (strange) quarks. The previously (except for the context of
crystallography) unfamiliar mathematical notions of group theory were used here. The
underlying symmetry group turned out to be the group of special unitary 3 x 3 matrices,
SU(3)s, where f indicates that this symmetry refers to the flavour of the quarks. This
is an approximate symmetry, broken by the different quark masses. Today three more
quarks are known: ¢ (charm), b (bottom) and t (top).

Soon physicists realized that within some hadrons two or three of the quarks should be
in the same quantum mechanical state (for instance the Q~ consists of the combination
{sss}), but since quarks are fermions this would violate PAULI’s exclusion principle. HAN

'These should not be confused with the multiplets of supersymmetric theories.
2 Adopted from the book Finnegans Wake by JAMES JOYCE.
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Figure 1.3.: Decuplet of heavy baryons with spin %

and NAMBU [5] proposed a way out by the introduction of a new quantum number, the
color. Now all quarks come in three different colors which are called red, blue and green,
accordingly the antiquarks are antired, antiblue or antigreen. All baryons and mesons
are colorless combinations of those colored quarks.

In this way the number of fundamental particles got reduced drastically. Only leptons
and quarks remain as the universal constituents of matter. They appear in three families
and are listed in Table 1.2 together with their basic properties. The definite answer to
the question, where the different values of the masses come from, is still not known.

Table 1.2.: Leptons and Quarks.

Leptons | Charge | Mass [MeV] || Quarks | Charge Mass[MeV]
Ve 0 <3-107° +2 1...5
e -1 0.511 d -1 3...9
v 0 <0.19 c +2 1115...1350
T -1 105 s —1 75...170
vy 0 < 18.2 +Z 1 169000... 179000
T -1 1777 b —i 4000. . . 4400

Besides the classification of all fundamental building blocks, a comprehensive descrip-
tion of nature also includes the characterization of the forces that affect those particles.
Today all known phenomena can be ascribed to four fundamental forces. They include
the familiar gravitation and electromagnetism, which suffice to describe all directly ob-



CHAPTER 1. INTRODUCTION 7

servable effects on earth and in the cosmos, as well as the more unfamiliar forces of the
weak and strong interaction.

The gravitational force is the first one, that has been described quantitatively in
physics: by NEWTON’s theory, published in 1687 in his famous Philosophiae Naturalis
Principia Mathematica. Special properties of gravitation are its universality and weak-
ness: gravity affects all kinds of matter and energy. At the level of elementary particle
physics and at energies that are accessible today it is much too weak, to cause observable
effects. Except for the search for an unified theory of all forces it does not play any role.

EINSTEIN’S General Theory of Relativity, succeeding NEWTON’s theory and published
in 1916, is a classical gauge theory of gravitation. The gauge freedom of this theory is
the possibility of choosing an arbitrary coordinate system, the associated gauge group
is the group of diffeomorphisms on the underlying manifold.

Up to now no successful quantum theory of gravitation has been formulated, this
remains as one of the most important problems in theoretical physics. During the last
years people have been working intensively on theories of supergravity and superstrings,
hoping to derive a unified description of gravitation and the three other forces in this
way.

For a long time mankind has been acquainted with the electromagnetic force, too.
This force differs from gravity, since it is not universal: only charged particles are af-
fected, whereas neutral particles like neutrinos do not feel this force. Between 1855
and 1865 MAXWELL was able to formulate the basic laws of electromagnetism, thereby
unifying electric and magnetic interactions. People realised that this theory possesses
a residual freedom, the freedom of choosing a definite form of the gauge potential, but
did not attach value to this. Nowadays electrodynamics is known to be a U(1) gauge
theory, exactly due to this fact.

Since MAXWELL’s theory obeys the laws of special relativity from the very begin-
ning, this remained the correct description until 1948. At that time the quantum version
of electrodynamics, called quantum electrodynamics (QED), was established indepen-
dently of each other by TOMONAGA, FEYNMAN [6, 7] and SCHWINGER [8]. In QED the
electromagnetic forces between charged particles are mediated by the exchange of virtual
photons. In a perturbative approach all processes can be described by FEYNMAN dia-
grams, like in Figure 1.4, and translated into formulas via the corresponding FEYNMAN
rules. After renormalization physical observables can be calculated. This theory turned
out to be extraordinary successful. For instance, the calculated magnetic moment of the
electron is in agreement with the experimental value with an accuracy of 10710,

Physicists got the first hint for the existence of the weak force already in 1896, when
BECQUEREL discovered radioactivity. The ([-decay of the uncharged neutron into a
proton and an electron cannot be explained in the context of electromagnetism:

n—p+e .

The weak interaction turned out to be the reason for this process. The first problem
that people encountered, the continuous spectrum of the emitted electrons, was solved by
PAuULI as stated above by introducing the neutrino, which carries the remaining energy
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Figure 1.4.: Feynman graph for the collision of two electrons (tree-level).

and the missing angular momentum:
n—pte + .

The weak interaction is very short-ranged, since 1982 we know (from the masses of the
Z and W bosons determined at CERN) that it is mediated only over distances that
are smaller than 10~'® meters. An effective description of weak interaction processes is
given by the FERMI Model.

GLASHOW [9], SALAM [10] and WEINBERG [11] managed to unify electromagnetism
and weak interaction within the electroweak model, as a gauge theory with gauge group
SU(2) x U(1).

It was not until 1932 when physicists realised the existence of an additional force: the
strong interaction. The discovery of the neutron forced people to introduce this new in-
teraction in oder to explain, how protons and neutrons can form stable nuclei. Obviously,
the strong interaction only acts over a very short distance: electromagnetism suffices to
explain the observed orbits of the electrons as well as the outcome of RUTHERFORD'’s
scattering experiments. Its range is limited to distances of order of nuclear sizes, typi-
cally 10~'° meters. Furthermore the strong force does not show universality: particles
that interact via this force are called hadrons. In the 1960s the quark model of matter
was established. Since that time the strong interaction is understood as the interaction
between quarks which binds them to nucleons and other hadrons. The force between nu-
cleons, the nuclear force, is a rudiment of the much stronger force between those quarks.
It turned out that the interaction between the quarks is much easier to understand than
the complicated force that acts between the nucleons. This theory of quark interaction
is quantum chromodynamics (QCD), the gauge theory of strong interactions. The gauge
symmetry of QCD is color symmetry, and the corresponding symmetry group is SU(3).,
where ¢ refers to the color (red, green, blue) of the quarks. This symmetry is taken to
be an exact symmetry of nature.
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The four known interactions between matter particles, gravity, electromagnetism, strong
and weak force, reinterpreted as gauge interactions, as well as their basic properties, are
listed in Table 1.3.

Table 1.3.: Fundamental Forces.

Force Range Affects Gauge Boson | Spin | Mass[GeV] ‘
gravitational | infinite all matter graviton 2 0
electromagnetic | infinite | electric charges photon 1 0
weak 10~'® | leptons, quarks W=, Z 1 80.4 / 91.2
strong 1071° quarks 8 gluons 1 0

In the course of the 20th century the so-called Standard Model? of elementary particle
physics has been established. This model turned out to be very powerful in predicting
the production of particles in accelerator experiments, cross sections, lifetimes, decay
widths and so on.

The Standard Model describes the interaction of the fundamental building blocks of
nature, which are quarks and leptons, as quantum gauge interactions with gauge group
SU(3). x SU(2) x U(1).

Recent experiments at LEP indicate that even the ultimate missing particle, the
Higgs boson (which is needed to give finite mass to the particles) has been discovered,
thereby completing this model. But up to now only four such events have been detected
and the results still have to be confirmed.

At the dawning of the 21st century this is the (preliminary) answer of modern physics
to the question of the ancient Greeks about the structure of nature.

Now we will focus on the fourth interaction: the gauge theory of strong interac-
tions, quantum chromodynamics. QCD is still under investigation and — since the
corresponding field equations are highly nontrivial — many problems are unsolved, in
particular the problem of quark confinement: quarks do never occur as single particles,
they always form quark-antiquark pairs (mesons) or come as three-quark bound states
(baryons). Among the many mechanisms put forward to explain this phenomenon, the
most transparent is probably the so-called dual MEISSNER effect [17, 18], which has
recently become popular due to its partial confirmation in lattice experiments and the
explicit verification in some supersymmetric models. Furthermore QCD exhibits the
spontaneous breakdown of chiral symmetry (xSB): since the masses of the up and down
(and to a lesser extent of the strange) quark are very small compared to typical strong
interaction energy scales

AQCD ~ O.QGGV,

3For an introduction to the Standard Model and the basic concepts of local gauge theory, see for
instance the books by NE’EMAN and KIRsH [12], HALZEN and MARTIN [13], EBERT [14] and GEYER
[15]. All experimental data are taken from the 2000 Review of Particle Physics [16].
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the theory is approximately invariant under SU(2)z, x SU(2)g transformations (or un-
der SU(3)r x SU(3)r transformations, respectively). This is called chiral symmetry.
However, we do not see any particle degeneracy patterns ascribable to such symmetries.
The resolution to this paradox is that the physical vacuum is not invariant under these
symmetries: chiral symmetry is spontaneously broken [19].

In this work we are going to analyse a special class of eigenfunctions of the Dirac
operator Ip, called zero modes. Our zero modes will turn out to be closely related to
this spontaneous breakdown: from the experimental data we can determine the value
of the quark condensate with the help of QCD sum rules due to SHIFMAN, VAINSHTEIN
and ZAKHAROV [20, 21]:

< pp >= —(230MeV)>3.

This condensate is related to the spectral density of the Dirac operator p(A) near zero
eigenvalues by the BANKS-CASHER relation [22]

< pyp >= —mp(A = 0).

The significance of the quark condensate is the fact that it is an order parameter for the
chiral symmetry breaking in the QCD vacuum.

On the other hand, in the ultraviolet limit, the quarks show asymptotic freedom: at
high momentum the forces between them vanish and every quark can move almost as a
free particle.

In this diploma thesis we study some quantum field theoretical models that might be
relevant for realistic quantum field theories. Realistic quantum field theories are difficult
to solve because they are governed by nonlinear operator equations. In the usual per-
turbative treatment, that turned out to be so successful in quantum electrodynamics,
we have to start with the solution of the linearized (free) field equations and then to
incorporate the effects of interactions as a power series expansion in the coupling con-
stant. For QCD — in which we are mainly interested in — the coupling constant is
of order unity and perturbation theory does not work. Furthermore some fundamental
properties of quantum field theories cannot be obtained in this approach.

Therefore we proceed in a different way: the operator Euler-Lagrange equations are
treated as C-number field equations and are solved by methods of classical mathemat-
ical physics. Quantum mechanics is regained either by expanding the quantum theory
around the classical solution in a power series of the coupling constant or by quantizing
the classical solution in a semiclassical or WKB approximation. In such an approach
the nonlinearity of the system is retained at all stages in the calculation. These non-
perturbative methods have led to new insights into the properties of quantum field
theories.

The classical equations of motion usually yield a certain number of trivial solutions,
as well as some nontrivial, solitonic solutions. Often these nontrivial classical solutions
suggest a particle interpretation: they have finite energy, are localized in space, are
stable and can be boosted to give linearly moving solutions, which carry momentum and
display the proper relationship between mass, momentum and energy. These objects are
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called solitons, even though they are not solitons in the strict sense of soliton theory.
Except in the sine-Gordon model, none of the classical solutions encountered in high
energy physics really keeps its shape after collision. Nevertheless the notion soliton
(instead of the more accurate solitary wave) is used throughout the modern literature.
Therefore we will use it in this diploma thesis as well.

In particular we will explore three kinds of nontrivial field configurations: the kink
solution in the ¢* theory, the ’t Hooft-Polyakov monopole and the instanton solution
which occur in Yang-Mills-Higgs and pure Yang-Mills theories, respectively. After an
appropriate definition they turn out to carry topological charges.

In a second step we analyse the behaviour of fermions (quarks or leptons, depending
on the particular model) in the background of those fields. Of particular interest are
so-called zero modes (or JACKIW-REBBI modes): solutions of the eigenvalue equation

Hip = Ev,

with eigenvalue £ = 0, where H is the Dirac Hamiltonian and 1 is the fermionic wave
function. In the kink and the monopole background we calculate these zero modes
explicitly. Furthermore a powerful mathematical theorem, the CALLIAS-BOTT-SEELEY
or CBS index theorem, can be used to calculate the index of appropriate differential
operators. This index is equal to the number of left-handed zero modes minus the
number of right-handed zero modes. It turns out that in the cases at hand there is
always only one species of fermions (either left- or right-handed) present. Therefore the
CBS index theorem can be used to determine the absolute number of fermionic zero
modes in the given background. The basic statement of this index theorem relates the
number of zero modes to the topological charge (thereby disregarding the particular
form of the soliton): whenever the background field possesses a topological charge there
will be fermionic zero energy modes.

In the instanton case we are dealing with four dimensional Euclidean space. Now we
can do the same analysis, but we focus on zero modes of the Dirac Operator I itself:

B)"/) =y, Dytp = ’)/M(au + AM)T/) =0.

Here the -y, matrices form the basis of the standard Clifford algebra and D, is the covari-
ant derivative with gauge potential A,, which is given by the instanton configuration.
In Euclidean space, I is an elliptic differential operator and the question whether or not
D) shows zero modes is a nontrivial one (in Minkowski space ) is hyperbolic and usually
there are zero modes). Again those zero modes can be calculated and their explicit shape
can be determined. Like kinks and monopoles, instantons possess a topological charge,
called Pontryagin index. The celebrated ATIYAH-SINGER or AS index theorem relates
again the number of zero modes (of ) to this topological charge: the higher the charge,
the more zero modes are present. Afterwards the zero modes of the Dirac operator can
be related to zero modes of the Dirac Hamiltonian (here we use Weyl gauge)

H = —i;D;

by spectral flow arguments. As will be shown, fermionic zero modes in instanton fields
are very important for an understanding of vacuum tuneling processes, the anomaly of
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the axial current and the change of axial charge.

In this diploma thesis we will use the following recipe again and again:

1.

Given a particular field theory, we explore the classical equations of motion that
result from the Euler-Lagrange formalism.

. We analyse in particular the possible vacua and give a description of the entire

vacuum structure.

. Demanding finite energy (or finite Euclidean action) results in a topological clas-

sification of all possible static solutions. These solutions are called solitons.

. Afterwards we use topologically interesting solitons as classical background fields

and introduce fermions as quantum objects in these backgrounds.

. We investigate the existence of zero modes of H (or ) respectively) and determine

the number of them as well as their shape by solving the equations of motion
explicitly.

. For all theories at hand there are powerful mathematical theorems, stemming from

the theory of differential operators, that predict the existence and number of such
zero modes by relating them to topological invariants. We apply those theorems
to the particular cases and compare the results.

. In a final step we analyse the physical consequences that result from the existence

of those zero modes.

This work is organized as follows: in Chapter 2 we focus on a toy model, ¢* theory in
1+ 1 dimensional Minkowski space. Chapter 3 explains DERRICK’s theorem: why gauge
fields are necessary in higher dimensions if we want to have nontrivial field configurations.
In Chapter 4 we use this insight and investigate SU(2) Yang-Mills-Higgs gauge theory
and its solitons, which turn out to be magnetic monopoles. In the simplest case, the
't Hooft-Polyakov monopole of unit charge, we solve the fermionic equations of motion
explicitly. In Chapter 5 we examine Euclidean solutions of pure SU(2) gauge theory.
The topological solutions are called instantons and are interpreted as tunneling events
in Minkowski space. Finally we summarize all calculations and give an outlook, what
could or should be done in the future. Appendix A contains some basic definitions and
a sketch of the proof of the CBS index theorem. In Appendix B the same is done for
the AS index theorem.



2. ¢* Theory

2.1. The Model

Let us consider a scalar field theory in 1 4+ 1 dimensional Minkowski space. Given the
potential density V = V(¢), the Lagrangian reads

1

_ 1 _ 12 1 12
L= 50,0 0" = V() = 56° — 5¢'> = V(9), (21)

where dot (prime) denotes differentiation with respect to time (space). The total energy
and therefore V(¢) must be bounded from below, and by adding a suitable constant we
can achieve V(¢) > 0, furthermore V(¢) should allow for at least two different vacua
(absolute minima). The famous ¢*- and the Sine-Gordon-Model with potentials

2

V(g) = ix(as? - mT)Q (2.2)

and

0= (1o (L) o3

respectively, cf. Figures 2.1 and 2.2, have been studied in detail.

V(¢) V()
o |4 ¢ i
Figure 2.1.: The ¢* potential. Figure 2.2.: The sine-Gordon potential.

13
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We are looking for static solutions ¢ = ¢(z), with energy

E[¢] = /d$<%¢,2 +V(¢(a:))> < 0. (2.4)

The Euler-Lagrange equations

oL oL
— —0y=7>—=0 2.5
95~ " 000,9) 29
reduce to
oy _ V()
'(x) = 52 (@) 26)
After multiplying both sides by ¢’ and using the chain-rule we end up with
ALy} - 4
" (2¢ ) = V) 27)
1
4% = V(@) +e (28)

In order to have finite energy the solutions must obey

lim V(¢() = o (29)
xgrinooﬁ(x) = 0, (2.10)

implying ¢ = 0. There are trivial solutions (often referred to as vacuum solutions and
labeled by an index 0): ¢(z) = ¢og = const, with V(¢g) = 0. But there are non-trivial
solutions, too. These solutions are called solitons and are labeled by an index S. Due to
this fact different sectors emerge in our theory: a certain number of vacuum sectors as
well as soliton sectors. All of them must be treated separately. Accordingly the Hilbert
space H - after quantization - consists of the sum of orthogonal spaces,

H=H®..oH oH o...0H. (2.11)

The equations of motion can be solved by quadrature

1

S0 = V),
dp
L= /),
o(z) 5
r—1xz0 = :I:/ i (2.12)
$(z0) 4 /2V(¢)

The constant z represents the invariance of the Lagrangian L = [ Ldz under trans-
lations in z-direction and can be choosen arbitrarily. Sometimes this freedom causes
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trouble if we try to quantize the theory, the appropriate tool to circumvent these diffi-
culties is the method of collective coordinates [23, 24].

We observe that equation (2.6) is equivalent to the problem of a particle moving
along = = z(t) in the potential —V(z), if we replace z — ¢ and ¢ — z, cf. Figure 2.3.
Now the vacuum solutions correspond to particles with zero energy, resting at one of the

—V(z)

Figure 2.3.: The upside down potential.

maxima of the potential all the time, and the non-trivial solutions can be interpreted
as particles being on one of the tops of the potential at the beginning ¢ — —o0, moving
through the valley and ending at the second maximum at late times ¢ — +o00. By
general arguments we can conclude that such non-trivial solutions always appear, if the
corresponding potential has at least two minima V(¢) = 0. These soliton solutions share
many properties with usual particles, as we will see soon: they are localized in space,
have finite energy (rest mass), under certain conditions they can collide without changing
their shape, and by means of a Lorentz-transformation we can give them an arbitrary
velocity.

The following explicit calculations are done within the ¢* theory, but the results
obtained below can easily be generalized to all theories that have a similar structure of
the potential. From the Lagrangian

L= 5(0u8)(0"9) ~V($) = 5 - (%as'? + (- m72>2> (2.13)
\ ~ ,
we get
1) = TI4] - Ulg), (2.14)
where

(4] = %/dx 8, Ulg) = /d:z: U(g). (2.15)
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The Euler-Lagrange equation of motion for the static case (2.6) reads
—¢" —m?p+ \p® =0, (2.16)
and has the solutions

#jalo) =+ (2.17)

and

¢f/2($) = :I:% tanh <%($ - avo)) . (2.18)

The trivial solutions ¢? /o Are the two different vacua (zero indicates the vacuum sector),
the non-trivial solutions ¢f /o are called kink or antikink, respectively (S indicates the
soliton sector). They interpolate between the vacuum configurations when z goes from

—o0 to +00 and differ from the trivial solutions only in a small region around z, cf.
Figures 2.4, 2.5.

¢7 (x) 3 ()

Figure 2.4.: The kink shape (zy = 0). Figure 2.5.: The antikink shape (zp = 0).

The total energy of the vacuum solutions is zero according to equation (2.4), whereas
the solitons carry energy (classical mass)

g 22m’

) (2.19)

The % dependence of the energy is characteristic for nonperturbative solutions of the field
equations, i.e. these field configurations cannot be found via a power series expansion
in A. Let us reformulate the last statements in a more sophisticated way: The solutions
of the field equation that we found are topologically different. We can classify them
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according to their behaviour at spatial infinity. It is easy to guess, how one has to define
an appropriate topological charge Qiop in this simple case. Take

_ 1 b+ _ ¢_—] 2.90
Qent®) =316~ 3575 (220
where

b= lim $(z). (2.21)

The vacuum solutions are topologically trivial, i.e. Qtop(¢? /2) = 0, whereas the kink and
antikink carry charge 1 and —1, respectively. The demand for finite energy forces all
solutions to take on one of the vacuum values at spatial infinity. Therefore all solutions
map the border of space (in this particular case the points {—o00, +00}) into the set of all
possible vacuum values (here this is {%, —%}) Both manifolds are zero dimensional

respectively.

. q0 0
spheres: Sphys and S;,,

Result: All finite energy solutions of our ¢* theory can be interpreted as mappings
Sghys — Siont and according to this can be characterized by a number, the topological

charge Qiop-

2.2. Fermionic Quantization

Now we introduce fermions in all sectors, taking the C-number fields ¢ as (space depen-
dent) masses. This gives rise to a Hamiltonian H(¢$). The Hamiltonian acts on spinors
1, and in 141 dimensions we can realize the Dirac algebra with the help of the Pauli
matrices 0. We identify

a=0%B=0",7"=p8=0"y" = Ba =i (2.22)
According to this
H(¢) = ap+gBd = o’p+go'¢, (2.23)

with momentum operator p = %(9,3 and coupling constant g. Let us rewrite the spinor

in components 1 = ( U v )T. Charge conjugation symmetry is mediated by o3, since
{H,03} = 0. That means o3 turns positive (negative) energy solutions in negative
(positive) one. We have to solve

H(¢)¢=E¢,(g¢g_ax g¢58"”><z>:E<Z>. (2.24)

This is equivalent to

—Eu+gdv—v' = 0, (2.25a)
gpu — Ev+u' = 0. (2.25b)
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Let us first check whether there are zero modes present in one of these sectors or not,
since later on they will turn out to be essential for some unusual and unexpected physical
effects. It is easy to see, that there are no normalizable modes in the vacuum sector, if
we insist on E = 0. Next, look for zero modes in the kink or antikink background. For
E =0 the equations decouple, we can integrate both and get

u = eXP—Q/ dy 75 (v), (2.26a)
v = exp+g / dy ¢7/5(y). (2.26b)

The trivial solutions are u = 0 and v = 0. Now we have to use the explicit form of qﬁf /2
and arrive at

I(x) = g/ dy qu/Q(y) =i%/ dz tanh (%x)
:I:g\/glog cosh <%$> + const. (2.27)

Therefore

x>>¢ﬁg, (2.28a)
x>>iﬁg. (2.28b)

u = exp—I(z)~ <cosh<

Sk

Sk

v = exp+I(z)~ <cosh <
We can combine all these solutions, getting

(0)-G)(8)-(3)

For the kink only the third combination is both nontrivial and square integrable, i.e.
only this is a physical solution, cf. Figure 2.6. We normalize our zero mode

Po(z) :N( “(0‘”) > , (2.29)
such that

1= [ do ij(o)in(o). (2.30)

Observe that 1 is eigenfunction of o® with 031y = 1, i.e. 1 is invariant under charge-
conjugation. Zero modes of the form ( u 0 )T are called left-handed. In the antikink
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[¢o()]”

Figure 2.6.: The zero mode shape.

sector we get a similar zero mode with upper and lower components interchanged, i.e. a

right-handed one, which is invariant under charge conjugation up to a sign change.
Now let us investigate the remaining spectrum. For F # 0 we can express v in terms

of u (via equation (2.25b)) for both, the vacuum sector ¢ = ¢(1]/2 and the soliton sector

¢ = ¢f/2:

1
v = E(g(ﬁ + Oy )u. (2.31)
Using this, equation (2.25a) reads
— _pus 9 s o2y 92
= (B’ +¢°¢" —g¢")u—u". (2.32)

This is a Schrédinger equation for v with potential g?¢? — g¢' and energy E?:
(2 +g°¢" —gd)u = Eu (2.33)

The explicit form of ¢(z) yields

g’m® 4 gm® | 402 <ﬂ> gm2, — 48
G293 (z) — g (2) = ( * m) RS ARC
9/7\717 ¢:¢[1]/2

The vacuum sector is trivial: no zero mode, no bound solutions, just plane waves. On the
other hand: if the soliton profile is sufficiently weak there are no additional normalizable
bound solutions besides the zero mode [25]. This is a restriction on m and A: if A is
large enough, then there is only one bounded state, the zero mode. In what follows we
shall assume that there is exactly one bound state. The generalization to two or more
bounded states is straight forward. Furthermore there are scattering states for energies
E? > L;\n?. They are given by wave functions u; and have eigenvalues E,% =k’ + @.
The positive energy solutions of the original Dirac equation (2.24) can be expressed as

1
_(,
ve ( (96 + 00 ) ’ (234
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the negative energy solutions are

1
— P = Va2
Vo T ( ~ 73799 + duJu ) | (2:35)

Consider E = —y/k? + @ < 0. The charge density at a given energy E (momentum
k) is
1 2
W“ax + g¢)uy|
1
= Slukl” + ooz (luil® + 9d0slurl® + g°¢?ux |?)
1

1 _ I
— gl + 5 (OB ~ Gt — g+ a0n (B ) -

peln) = hlahinla) = lul? +

= ol + ), (2.36)
we use equation (2.32) in order to express u” in terms of u:

1
po) = gl + g (5P + (B = 26 + gl + g0, (ohuel) -

dluld +g2¢2|uk|2)

=l e (@) + =L O (Blun]?). (2.37)

9
AE? 2E?

However, in the vacuum sector |ug|? is a constant, as is ¢, so that the last two terms in
(2.37) vanish. Now we determine the total charge (fermion number) of a given state:

Q= /dx/%pk(a@). (2.38)

We renormalize this in such a way that the vacuum carries no charge at all. For the
empty (i.e. no fermions present) soliton sector we get

@ = [ [ 58 - b
r=-400
= / o [ Sr(ui @) - b)) + / %%[wimm(z)] - (239)
1

T=—00

~~

The first integral gives -1, because we integrate over a complete set in the vacuum sector,
while in the soliton sector the zero-mode 1) is not included. Now we can evaluate the
second term, even without explicit knowledge of the solutions uf . We describe their

asymptotical behavior in terms of transmission and reflection coefficients:

ug (z) — Teik® for x— 400,

uf (v) — % + Re=*®  for 1 — —o0 (2.40)
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with (due to unitarity)

T +R* =

[a—y

(2.41)

Therefore

dk
@ = —1+ [ G2 (TR + (RP + 1)

gm 1
dk
271_\/_ kQ + 92m2

1
9m_ | qg—

71'\/_ E?

LR L
VA

= -1+

14 gm_gm A / de
21V A VA g2m? &2 +1

= —1+%[arctan§]w:—l+§:—%. (2.42)
So we encountered a curiosity: the existence of a zero mode within the spectrum of
the Hamiltonian causes the fermion number to take on half-integer values - a novel and
fascinating quantum mechanical phenomenon, which was previously unsuspected. These
results were published for the first time by JACKIW and REBBI in [26]. The fractional
value of () arises essentially due to the fact that we excluded the zero mode from the
definition of @), corresponding to the rule that in the ground state all negative energy
levels are filled, whereas the rest of them remains unoccupied. That this is the correct
prescription can be seen from the following: after recognizing the existence of the zero
energy mode, we can reformulate the problem of fermion number fractionization in terms
of second quantized wave operators. The standard (normal ordered) charge-conjugation-
odd fermion charge density is [27]

plo) = 3 [ (@)(a) -~ w0 )] (2.43)

Together with the expansion of the wave function

P(z,t) = Z |:anfn($)e_iEnt + bngn (x)e+iEnt:| + ¢ o (), (2.44)

n

this gives the fermion number
Q = /dxmm
1 1
- = e — b b)Y+ Z(ete — ot
= Z —apal) — 3 Z(bnbn bybl) + 2(0 c—cch)

= Z( an—bTb)—i-cc—% (2.45)

n

It follows that with this choice the zero energy states of the fermion in the solitonic

field have a fermion number -I-2 or —1i, accordingly as ¢ or ¢ annihilates the state. The

29
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fermion numbers of all states including the nonzero energy modes are half-integral. For
example if there is a second fermion added to the Q = -I—% state, its fermion number
would be Q = —I—%, while if we took the @ = —% state and added a fermion to it, we
would get Q = -I—% for that new state. Thus one unique zero energy mode makes all
states have a half-integer fermion number and become doubly degenerate.

Remark: in [28] this analysis has been extended to Dirac equations that are not
symmetric under charge conjugation, due to the introduction of a symmetry breaking
term:

H(¢) = o*p+ gotg + ole. (2.46)

Now the fermionic charge becomes

1 agm
@ = —— arctan —‘ 2.47
- i (2.47)
In the conjugation symmetric limit, ¢ — 0, and the previous result, QQ = —% is regained.

2.3. The Polyacetylene Story

What does these results imply? Is this just a silly calculation or can one verify its
predictions? It turned out, that polymere physics indeed provides the opportunity to
do so. To understand this in detail, we have to deal with a very special substance -
polyacetylene. Polyacetylene consists of chains of carbon atoms, with electrons moving
along the chains. So this is a one dimensional system. There are two kinds of bounds
between the carbon atoms: single bounds and double bounds. Let us imagine an infinite
long chain.The displacement ¢ of each atom (with respect to the quasi-equilibrium with
equal spacing between all atoms) is the so-called phonon field ¢ = ¢(x;).

SV VA VI VN
N Y VNV AN 4

Figure 2.7.: Polyacetylene: A, B.

Detailed dynamical calculations show [29, 30] that the energy density V(¢) as a function
of constant ¢ has the double-well shape we are familiar with from our ¢*-theory. In
this case the matrix structure of the Hamiltonian H does not arise from spin. Rather,
this structure arises through a linearized approximation and the two-component wave
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functions that are eigenmodes of H refer to the right-moving and left-moving electrons.
The filled negative energy states are the valence electrons, while the conducting electrons
populate the positive energy states [31]. Now there are two degenerate vacua called A
and B. These correspond to the vacuum solutions ¢y o, cf. Figure 2.7.

Imagine a chain, being in the A(B) vacuum at the very left, x — —oo, and in the
B(A) vacuum for z — +o0. This is exactly what we called the kink (antikink), cf. Figure
2.8. The circle denotes an unpaired single electron.

©)

A—B: AN NSNS

B—A: /O\ AN

Figure 2.8.: Polyacetylene: kink, antikink.

Finally consider a polyacetylene sample in the B vacuum, but with two solitons along
the chain, and compare this with the usual B vacuum by counting the number of links,
cf. Figure 2.9.

@)

B—>A—>B:/O\\ ya
B NSNS NSNS

Figure 2.9.: Polyacetylene: BAB vs. B.

Result: the two soliton state exhibits a deficit of one link. If we now imagine separating
the two solitons a large distance, so that they are independent of one another, then each
soliton carries a deficit of half a link and the quantum numbers are split between the two
states. But we must remember that a link corresponds to two states: two electrons with
paired spin. Therefore the effect of fractional charge is hidden here by this degeneracy.
So in polyacetylene a soliton carries a charge deficit of one unit of electric charge. The
soliton state has net charge, but no net spin, since all the electron spins are paired. If
an additional electron is inserted into to sample, the charge deficit is extinguished, and
one obtains a neutral state, but now there is a net spin. These spin-charge-assignments
(charged-without spin, neutral-with spin) have been observed, the same holds for the
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emergence of a localized electronic mode at mid-gap, i.e. at zero energy [32].

Materials with a slightly different chain structure, with two single bounds and one
double bound as fundamental period, have been analyzed in [33]. Now there are three
degenerate ground states A, B and C, two types of kinks interpolating between A and
B or B and C respectively, as well as the corresponding antikinks. A carbon copy of
our analysis now predicts charges j:% and :l:%. This spectrum (including gap states) is
confirmed by numerical calculations and should be obtainable by experiment, too. One
candidate possessing an appropriate chain structure is TTF-TCNQ (tetrathiafulvalene-
tetracyanoquinodimethane) [33].

2.4. Index Theorem

The occurence of a zero mode in the spectrum of the Dirac Hamiltonian H(¢) in the
kink (or antikink) background of our theory is a consequence of the powerful Callias-
Bott-Seeley index theorem [34, 35]. This is a mathematical theorem that counts the
number of zero modes of differential operators of a certain class and can be applied to
open spacetime manifolds with an odd number of space dimensions. The proof of the
theorem is sketched in appendix A'. Let us apply this theorem to our model. From the
Hamiltonian (2.23) we read off the operator

L=~ 4 gg(a), (2.48)

where ¢ is either QS(I) /o OF gzﬁf /2 The index formula reduces to (A.34)

i I T
index L = 5 [|¢+| |¢|] = Qtop- (2.49)

In the vacuum sector the index vanishes identically, in accordance with our explicit result
that there are no zero modes. In the nontrivial sectors we get

index L = +1. (2.50)

For the kink background index L = 41 means that the number of left-handed zero
modes minus the number of right-handed zero modes is equal to one, just as we found
it in the explicit calculations: 1 — 0 = 1. Furthermore in the antikink field the same
difference is equal to minus one: 0 — 1 = —1.

2.5. Results

There are field theories in 1 + 1 dimensional Minkowski space, that allow for topologi-
cally nontrivial solitonic solutions. For detailed calculations we used the ¢* theory. It
contains two vacuum sectors as well as two soliton sectors: the kink and the antikink

!For basic definitions, please consult this appendix.
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sector. Within the vacuum sectors we can solve the Dirac equation and find that the
eigenfunctions of the Hamiltonian are plane waves, starting at energies E2 > @. For
smaller values of F we find a gap. In the soliton sectors there are scattering states for
sufficiently large energies, again there is a gap around zero energy, but now there is one
normalisable eigenstate of H exactly at £ = 0. The zero energy mode signals quantum
mechanical degeneracy, and as a consequence the solitons states are doublets ‘qﬁf /29 :|:>.

The additional label £ describes a twofold degeneracy (in addition to the kink/antikink
doubling) which is required by the zero energy fermion solution. These explicit results
are in agreement with mathematical theorems which state that in nontrivial background
fields the Dirac Hamiltonian always exhibits zero energy modes within its spectrum.
The effects of fermion fractionization can be observed within the framework of solid
state physics.



3. Derrick’s Theorem

Now that we have investigated the 141 dimensional case in detail, we are ready to
generalize our results to higher dimensions. Consider the standard Lagrangian for a
set of time independent scalar fields (arranged as a vector) ¢ = {¢®} living in a D + 1
dimensional Minkowski space

L= [ a2 Gou0-ou0-u(a). (3.1)

The potential I shall be non-negative, and we are looking for static, finite energy solu-
tions. The energy is

Bl = | de(éaiqs-aiqs) + [ v (). (32)

(. s -
" Vv

Ui[¢] Uz[4]

Both, U; and Uy are non-negative. Now we introduce a one-parameter family of field
configurations defined by

P(x,A) = ¢p(Ax). (3.3)
For this family, the energy is given by
EA[¢(X7 A)] = U1[¢(X7 >‘)] +Us [¢(X7 A)]a
= AP [g] + AU [g). (3.4)

By Hamilton’s principle this must be stationary at A = 1. Thus,

OF), 0
E2N ’
(D —2)Uy[¢] + DU2[¢] = O. (3.5)

For D > 2 this implies that both U; and Uy must vanish. For D = 2 we are left with
Uz[¢] = 0. (3.6)

That means, that our field ¢ must be a minimum of the potential everywhere. Therefore
the set of minima of the given potential &/ must be continuous, otherwise only the trivial
solution ¢ = ¢y = const is possible.

26
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Result: in three or more dimensions there are no static, finite-energy solutions at
all, in two dimensions there are solutions but only under very special circumstances (see
for instance the nonlinear o-model [23]). In order to find solitons also within higher
dimensional theories, we have to modify the Lagrangian. This can be achieved by the
introduction of higher spin fields: gauge fields. For the time being we will focus on
a 3+1 dimensional model. The simplest gauge theory, electrodynamics or U(1) gauge
theory, in general does not contain solitonic solutions [23]. Thus we will deal with a
generalization of electrodynamics: SU(2) non-Abelian gauge theory, that can be inter-
preted as a simplified model of quantum chromodynamics. This theory, its solitons and
corresponding zero modes will be analysed in the next chapter.



4. The 't Hooft-Polyakov Monopole

4.1. The Model

Consider scalar fields ¢ = {¢%(x,%)} and vector fields Aj(x,?) with internal space index
a = 1,2,3, living in 341 dimensional Minkowski space. That means for any given a
¢" transforms as a scalar and A, as a vector under Lorentz transformations. From the
basic principles of gauge theory we know the Lagrangian [14]

L(x,1) = —GL,G™ + L (Dud)" (DH4)" — JA(S°9" ~ FP, (11)
with field tensor
G4, = 0, A% — 0, A% + g™ Ab AL, (4.2)
and covariant derivative
(D) = 9ug® + ge* A7, 9" (4-3)

The real constants g, F, A are parameters of the model. Observe that the potential for
the scalar fields ¢° is of the ¢* type again. Ay, are the S U(2) gauge fields, ¢* form the
Higgs field. By construction £ is invariant under local SU(2) gauge transformations,
which are defined as follows

P (x,t) — (U(x,1)*¢"(x, 1), ' (4.4a)
(AZ(x,t)L“)bc — (U(x,t))bd(AZ(x,t)L“-l-é]laﬂ)de(U_l(x,t))ec, (4.4b)

where

(U(x, ) = (exp(—iL®0%(x,1)))", (4.5)
(Lo)be = jenbe, (4.6)

L® are the three generators of SU(2) in 3 x 3 matrix representation, 6 are group pa-
rameters, varying in group space. To solve the corresponding field equations is a highly
nontrivial problem since 15 coupled nonlinear fields are involved. From the Lagrangian
we get the equations of motion

bi = AW = F) 4 g AL D)
oL
— (Dt
@

28
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therefore
(DuD"$)" = =A(¢"¢" — F?)¢". (4.7a)
Furthermore
oL 1, 1
= —¢ acAlch uu__geecaAlcheuu +gefac¢C(Du¢)f
DA 2 2
— gebac¢0(Du¢)b o gedcaAlchduu’
oL
— Gauu’
9(0,Af)
yielding
D, G = gelac(DHg)dge. (4.7b)

Due to the possibility of making a gauge transformation via (4.4a) and (4.4b), we can
always achieve Af(x,t) = 0. This special choice of the fields A is called Weyl or
temporal gauge. If we restrict ourselves to time-independent, finite energy solutions the
equations reduce to

(DiGyj)* = ge"™(D7¢) 4", (4.8a)
(DiD'§)" = —A(@"9")¢" + AF2g", (4.8b)
with 7,7 = 1,2,3. The energy of such a field configuration is
]' a a ]' a a ]' a Ja
B = [ @x (J656Y + 5D (D) + ] - 7)) (49)

It reaches its minimum value E = 0 if A%(x) = 0, ¢%(x)¢*(x) = F? and (D;¢)* = 0, i.e.
0;¢" = 0: the gauge fields vanish and the Higgs field takes on its constant vacuum value.
Several other solutions related to A? = 0 by gauge transformations, but since (4.9) is
gauge invariant, all these solutions have F = 0, too. There is a degenerate family of
E = 0 solutions related by a global SU(2) symmetry, for any solution ¢ = {¢®} must
have fixed magnitude |¢| = F but can point in different (x-dependent) directions in
internal space.

Solutions with finite energy must approach vacuum configurations at spatial infinity
sufficiently fast:

D¢ — 0,
¢¢ - F27

but ¢ needs not to go to the same direction in internal space when r — co. Why? We
require the vanishing of the covariant derivative D;¢ and not the ordinary derivative 9;¢.
If we express the covariant derivative in spherical polar coordinates, the #-component
reads

o

1 [
(Do) = "0 + g™ A g". (4.10)



CHAPTER 4. THE 'T HOOFT-POLYAKOV MONOPOLE 30

This combination must fall off fast enough, %%a needs not vanish as r — oo itself. A2 ~ 1
for large r is consistent with £ < oo, since

dr

1
E~ /d3x GG ~ /dr df dy T—4r2 sin N/— < 0. (4.11)

r2

4.2. Topology

Result: different internal directions are allowed for ¢ at spatial infinity whereas the
modulus of ¢ is fixed. We can identify the values of ¢ at spatial infinity with the
two dimensional sphere SZ, in internal space, since ¢ - ¢ = F2?. Sometimes this is
called vacuum-manifold and we can identify S2, ~ SU(2)/U(1). On the other hand the
boundary of the three dimensional physical space is a sphere Sghys with radius co. This
is in one-to-one correspondence with the topology of the solutions of the ¢* theory, if we
replace SO by S?! As before we can draw the conclusion: the requirement £ < oo permits
only those field configurations ¢ that are related to nonsingular mappings Sghys — S5

Again we would like to classify all possible solutions. In order to do so we have to
borrow some facts from topology. Let m,(S™) be the n-th homotopy group associated
with mappings S™ — S™ [23, 36]. Each element of this group corresponds to a whole
class of functions S™ — S™, all functions within this class can be continuously deformed
into one another. For small integers n and m the homotopy groups are known and
tabulated [37]. Tt turns out that 75(S?), the group that is relevant for our considerations,

is isomorphic to the group of integers,
m9(S?) ~ 7Z. (4.12)

Le. each finite energy solution belongs to a certain class of functions (referred to as
a sector). These classes are numbered serially by integers Qiop. As in chapter 2 these
integers are called topological charges. Qtop counts how often S2, is covered, when Sghys
is traversed once. According to the famous paper of ARAFUNE, FREUND and GOEBEL
[38] we can define a conserved current

1

k, = o €uvpo€aped” 1P PO §°, (4.13)
™
where
) $°
o= 4.14
| (4.14)

Because of the antisymmetry of €,,,, we have 0"k, = 0, this conservation therefore
follows by construction, not from the dynamics, &, is not a Noether current. Associated
with £, is a conserved charge

1 ~ A A
Qtop = /d3X ko = 8_7T o dZUi(Eijkeabc¢aaj¢b8k¢a)7 (4'15)
phys
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which turns out to be exactly our previously defined topological charge. For a detailed
analysis and a proof see RAJARAMAN’s book [23].

In the Qtop = 0 sector ¢ will tend to the same value as r — oo in any direction or to
some (0, ¢)-dependent value that can be deformed so as to be (6, p)-independent. The
trivial vacuum solution ¢% = §3¢F belongs to Qtop = 0.

?((A//V )
A

Figure 4.1.: The hedgehog solution.

An example for the Qiop = 1 sector is the so called hedgehog solution, cf. Figure 4.1:
here ¢ is pointing radially outward, the internal direction of the field is parallel to the
coordinate vector.

4.3. Monopoles

Why should we call these solitons magnetic monopoles? To see this, let us first go to
electrodynamics. In Maxwell’s theory we have the equation of motion

O F" = 4mj¥ (4.16)
and the Bianchi identity
- 1
8MFMV - §€Mup03MFPU = 0. (4-17)

That means, there is an electric current j¥ but no magnetic current jy,,. Therefore
there are no magnetic monopoles in this theory and the symmetry between electric and
magnetic fields somehow is broken. But there is the possibility to introduce magnetic
monopoles and a magnetic current by hand into these equations in order to improve the
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symmetry:

o F*" = 4nj¥,
O™ = Arjh... (4.18)

The consequences have been studied by DIRAC [39, 40] and SCHWINGER [41]. Quan-
tum theory only permits electric and magnetic charges ¢ and m that fulfill the Dirac
quantization condition

mxq=n, n€Z. (4.19)

Furthermore a so called Dirac string arises. But these issues will not be discussed here.
In non-Abelian SU (2) gauge theory a magnetic current is present without having to alter
the Lagrangian or the field equations at all. The Maxwell theory is a theory with a local
Abelian U (1) symmetry. This U(1) is a subgroup of our SU(2). Is it possible to imbed
an electromagnetic system as part of a richer system? What is the electromagnetic field
in this case? Picking Az as the Maxwell potential is not gauge invariant. T HOOFT [42]
presented a definition for the electromagnetic field

F,, = §°GY, — éeabcéa(pﬂ@b(puas)a (4.20)

which is gauge invariant and in regions where &“ = §%3 it reduces to F,, = 9,43 — avAi-
Now we determine the dual of F' and its divergence

1

Fuu = §€uupanaa (4'21)
VT _ 1 vV mpo 1 v iaqp bao e _ 4m _ -mag
0"F,, = 56,“,,308 Fr? = %ewmeabca @0 P’ 0% ¢ = ?ku = 47y, 8. (4.22)

Therefore 2 is our magnetic current with k, being the topological current defined in
(4.13). The magnetic field

1 .
B; = §eiij]k (4.23)
has the property
1 - 4
0;B; = §€ijk8iF]k = ?ﬁko, (4.24)

hence the total magnetic charge is equal to

m = /d3x ko _ %, (4.25)
g g

where Qyop is the topological charge (4.15).
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4.4. The Qwp=1 Example of 't Hooft and Polyakov

The previous topological considerations can be done without really solving the equations
of motions. This will be the next step. We would like to use symmetry arguments in
order to simplify the equations (4.8a) and (4.8b). Our solution shall be invariant under
rotations up to gauge transformations, i.e. after a rotation R the fields ¢ and A{ are
recovered if one makes use of an appropriate global gauge transformation U at the same
time. We demand:

p(x) = U(R)p(R x)U L(R), (4.26a)
A(x) = U(R)RA(R x)U '(R). (4.26b)

The most general ansatz obeying this requirement is [43]

i

$(x) = G Flr), (4.272)
Alx) = Eaijx?]W(T)‘l‘(ngl(T)‘I‘IiIaWQ(T), (4.27b)

but in our case this can be reduced to [23]

i

#x) = G F(r), (4.284)
Af(x) = Gaijx?]W(T), (4.28b)

where F(r) and W (r) have to be chosen in such a way, that the field equations are
satisfied. With the asymptotics F'(r — oo) — F and W(r — oo0) — gir it matches all
earlier requirements including boundary conditions. In the next step we will check that
this particular ¢ field belongs to the Q,p = 1 sector by calculating the magnetic field
at large distances r — oo. Plugging in our ansatz and the corrensponding asymptotic
behaviour of F' and W into the equations

1 )

Bi = §€iijJk7 (429)
R R R 1 R R

Fyj = ¢aaiA;—¢aajAg+geabc¢aA;’A§—geabc(Dm)b(DVQS)c, (4.30)

yields after a lengthy but straightforward calculation:

1 .
Fi‘ — W@;jil’a, (431)
1 1 . 1
B’i — Eeijkﬁeaija = W{II’L, (4:32)

in the limit r — oco. This corresponds to a magnetic monopole of strenght + in accordance
with Qop = 1. Because Af = 0 and all fields are time independent we have Fy; = 0,
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therefore no electric field is present. Our solution carries magnetic but no electric charge.
We still have to solve the field equations to determine the shape of the functions F(r)
and W (r). The particular ansatz reduces them to ordinary differential equations

PR (r) = K(r)(K*(r) = 1) + H(r)K(r), (4.33a)
r*H"(r) = 2H(r)K2(r)+AH(r>(gi2H2(r)—r2F2), (4.33b)

where
K(r) = 1-grW(r), (4.34a)
H(r) = grF(r), (4.34b)

and prime denotes differentiation with respect to the argument . This is a set of coupled
non-autonomous differential equations. Although much simpler than the parent field
equations, these are still not easy to solve. Only in the Bogomolny-Prasad-Sommerfield-
limit (BPS-limit) A — 0 the exact solutions are known [44, 45]. In this limit we have

rgF

K _— 4.
() sinh(rgF)’ (4.35a)
rgF
H = — 1. 4.35b
) tanh(rgF') ( )
This corresponds to
1 F
Wy = L _ 4.
(r) gr  sinh(rgF)’ (4.36a)
F 1
F(r) = ———— — —. (4.36b)

tanh(rgF) gr

The shapes of these functions are shown in Figure 4.2, with the special choice of pa-
rameters g = 1 and F~! = 1 unit of length. As it must be, F(r) approaches its vacuum
value F for large r, and W (r) goes to zero like 1 in the same limit.

In the BPS-limit, where the potential energy of the Higgs field vanishes with A, we can
deduce a lower bound on the energy [23, 46]. Let us calculate

1 1
E = / d*x (;G%G% + 5(Dk¢)“(Dk¢)“>
1 1
= 1 / d*x (G — eijk(Dm)“)2 + ? / d3x eijkG;?j(Dm)‘i (4.37)

I

Now we integrate the second integral by parts:

1 1
I = §/d3X Eijkak(G?j(ﬁa) — §/d3X Eijk(ﬁa(DkGi]‘)a

1 ~
= §/d3x €ijuOk (G754") —/d3x ¢ (DrGor)*

1
3 don (G 0), (4.35)
g2
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Figure 4.2.: The functions W(r) and F(r).
where we used the Bianchi identity
~ ~ 1
D,G*" =0, G = §€WWG20' (4.39)
The total energy is
1 2 1
E=3 / d*x (G — €ijrDid®)” + 3 7{ oy (erijG3i9"), (4.40)
s
and the surface integral can be rewritten again. Consider
) 1 ) ) )
Fu = ¢G4, — Eeabcqsa(pm)b(p,,qs)? (4.41)
In the limit » — oo we have:
D,¢"* — 0,
N P
a — r
Y
1 1 o i
Be = geniiFij = gpeniiGié"
Therefore
4 F
I=Fx }[ dog By = drmF — TQuopf” (4.42)
S2 9
thus
4 F 1 4 F
B = et L [ (6l - (D)) 2 T (4.43)



CHAPTER 4. THE 'T HOOFT-POLYAKOV MONOPOLE 36

In any given Qi sector the energy E' is minimized if and only if the Bogomolny condition
Gy = €ijk(Drd)” (4.44)

is satisfied. If the fields satisfy these equations, then they minimize the static energy in
the corresponding Qi sector, therefore they form a classical solution in that sector. We
can check that the BPS-solution ((4.36a), (4.36b)) minimizes the energy in the Qop =1
sector: according to (4.9) the mass of the monopole is

A F v A F

M=E= x 1= X Qtop- (4.45)
g g

For Qiop > 1 or A # 0 no explicit solutions are available so far [47]. Numerical work
and arguments given by ’t Hooft [42] and Polyakov [48] in their original papers indicate
that nonsingular, finite energy solutions exist also for Qiop = 1 and X # 0. For explicit
calculations we have to restrict ourselves to the monopole field with magnetic charge

Qtop = 1.

4.5. Fermionic Quantization

Now that we identified the 't Hooft-Polyakov monopoles as particular topologically in-
teresting solutions of the Yang-Mills-Higgs equations of motion ((4.8a), (4.8b)), we will
analyse fermions moving in the background of such monopoles, as we did in the ¢* theory.
Due to lack of analytical solutions for higher charges Qo we will restrict ourselves to this
explicit example, closely following the calculations of JACKIW and REBBI [26]. Again we
use a Yukawa like coupling and can interpret the soliton field as space-dependent mass.
We start with the Lagrangian

L = Lywvn+ Ly, (4.46)
where
1 a apy 1 a W \a 1 a_a 2\2
Lyvua = _ZG#VG + §(Du¢) (DFg)" — ZA(Qs " = F7)7, (4.47)
‘Cd) = 'L'@Zn’YM(D/ﬂwb)n - QGT/;nTr?m'l/)m(ﬁa- (4-48)
The covariant derivative acts on spinors 3 as follows:
(Dlﬂ/’)n = #¢n - igAZTﬁm¢m- (4-49)

Here g is the dimensionless Yang-Mills coupling constant, G characterizes the strength
of the Yukawa coupling and is dimensionless, too. F' is the vacuum expectation value
of the Higgs field ¢ = {¢*} as before. The matrices T, a = 1,2, 3, characterize the
transformation properties of the fermions with respect to SU(2) isospin rotations. We
have

5all¢bn ZTgm,([)m?
[T T = deeTe, (4.50)
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Currently we are interested in the fundamental and adjoint representation, with 7)? =

%ng and T}? . = i€nqam respectively. The Dirac equation in the external potential of the

't Hooft-Polyakov monopole is
o - Popm + gW(r)Ty, (o x ) + gGF(r)T;fmf“B] Vm = Ey,. (4.51)

Rewrite the spinor in components

Yn = ( ;f ) ; (4.52)

then equation (4.51) becomes
Hpmxit = [a - POnm + gW (1T, (o x £)* + z‘gGF(r)Tgmfa] xi =Exf, (4.53)

since we have chosen the following representation of the Dirac matrices:

a:[o a],,@z—i[_oﬂ g] (4.54)

o 0,

This is a quite unusual representation, but suitable for the application of the CALLIAS-
BOTT-SEELEY index theorem [34, 35], as we will see afterwards!.

The operator J = j+ I =1+ s+ I, the sum of orbital momentum, spin and isospin
commutes with the Hamiltonian H in (4.53). The operators are explicitly given by

1
li = ;Eijk@jak, (4.55&)
1
si= 5o (4.55b)
1 7 . . .
i _ 5(0")nm for isospinor fermion fields and
()nm = { T€imn for isovector fermion fields (4.55¢)

The conservation of the total angular momentum follows from the spherical symmetry
of the background field, cf. [49] and can be checked by a lengthy calculation.

4.5.1. Isospinor Fermion Fields
With isospinor fermion fields the Dirac equation may be written
1 . 1. .
Exi, = (o), + 59W (1)(0 X D)0 £ 5i9GF (1)o5,7 X,
1 . I, .
= (o P)ijXjn + FIW(r)(o x )4 (0°) )mn £ §%QGF(T)X§,Z((U“)T)mn7’“-
Upon defining 2 x 2 matrices M* by

Xin = MiynOmmn (4.56)

lef. appendix A
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and using 0?0’ = —o0?, one obtains for M* the matrix equation

1
o-pM* — %QW(T)(G X #) P MEo T iigGF(r)Miaafa =EMT. (4.57)

Now we expand M™* in terms of two scalar and two vector functions (writing them as a
sum over the identity and Pauli matrices):

M, (x) = g% (0)6im + g2 (r) 0l (4.58)

The equation (4.57) is then equivalent to the following two equations

1 1
(90 = gW (r)i® £ S9GF(r)i")g* +icae(dh F 59GF()i")g = iBgf

1
(0 + gW (r)7® + §gGF(r)f’0‘)ggLt = iEgT. (4.59)

Now we show how the existence of zero-energy solutions can be investigated directly
from (4.59). Let us multiply the first equation with (9, ¥ 3gGF(r)?®) and set E = 0:

1 1
(0n F 59GF (r)i") (00 — gW ()" + 5gGF(r)fa)gi =0. (4.60)
In order to simplify this, define
1 r "
7w =exp o [ @ w6 o) (461

then (4.60) takes the form

0 = KYK$g*, (4.62)
1
K{ = pa+gigW (r)i FigGF(r)i. (4.63)

But the operators KfKi (no sum) are non-negative; it follows that any solution to

(4.62) must satisfy

K&g*t =0, (4.64)
which implies
1 r
G (r) = N*exp [59 / dr’ (W(r') F GF(r’))] . (4.65)
0
Since g~ (r) increases exponentially for r — oo, we must have N~ = 0. Substituting the

solution into (4.61) we find

gt(r) =NTexp [g /01" dr' (W(r') - %GF(r'))] ~ Yoo. (4.66)
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In the full partial wave analysis of the problem [26] this corresponds to the J = 0 partial
wave sector, as it should by symmetry arguments. Therefore our solution to the zero
energy equation is

T 1
M;';m(r) = g+(r)6im = N"Texp [g/ dr’ (W(r') - §GF(T‘I)):| Oim.- (4.67)

0
Our zero mode wave function is of the form

G = Mioh=Ntens [[ar w6 - Lare],
0

— Ntexp [—g /0 " [%GF(r') —W(r')]] X {sFsT —syst), (4.68)

where

(4.69)

0.15 1

0.05 1

20

Figure 4.3.: The zero mode profile (dashed line) and its density distribution.

The label ¢ refers to Dirac indices and n to the isospin components. Spin and isospin
form an antisymmetric singlet. The degrees of freedom of the spontaneously broken
isospin symmetry survive as spin degrees of freedom, and couple to Dirac spin (’spin
from isospin’, cf. [50]). The radial profile of the zero mode and its density distribution
are shown in Figure 4.3, here the specific choice of parametersis g =G =1and F~! =1
unit of length. Fermion number conjugation is realized by

=% o |t (4.70)

—g2
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Our zero mode is fermion number self conjugate, since conjugation simply reverses the
sign of the energy in (4.53).

4.5.2. Isovector Fermion Fields

In the isovector example we have T)? = i€pqm and n, m take on values 1,2,3. The
Dirac equation is of the form

((0' “P)0nm — gW (r)i" o™ + gW (r)o" ™ F igGF(r)enamf“> Xi =iEx,};. (4.71)

Now we are looking for zero modes E = 0 and basically have to repeat the former
analysis. Now the equations are more complicated, so the results can not be given in
closed analytic form. JACKIW and REBBI [26] again applied a partial wave decomposition
and showed that there are no zero modes for total angular momentum J > % However,
for J = %, two linear independent zero modes occur. They have the following form: the
lower components vanish as in the isospinor case, and the upper component reads

X =N\ fa(r)o™ + (fi(r) — fa(r))P"o - | x, (4.72)

where either y = st or x = s, cf. (4.69). fi(r) and fo(r) are determined as follows.
Let us consider the exponentially decreasing, nonasymptotic part of W (r):

1

p(r) =~ gW(r), (173
and define
o A 1
H(r)= 5 gGF(r) o) Tl (4.74)

H(r) vanishes at » = 0 and tends to a positive constant for large r. Now solve the
differential equation

—u"(r) + (H?(r) + H'(r) 4+ 20*(r))u(r) = 0, (4.75)

for u(r) and take the solution that is regular at the origin. The functions f;(r) and fa(r)
are given in terms of u(r) [26]:

filr) = T%u(r) exp [_/Or dr’ H(r/)]’ (4.76)
folr) = m%(ﬂﬁm)_ (4.77)

fo increases exponentially, whereas fi goes to zero like r=2. JACKIW and REBBI [26]
showed that by construction these spinors are zero energy solutions of the Dirac equation.
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1

The twofold degeneracy of the isovector solution indicates that the solution has spin 3.

With our choice of Dirac matrices (4.54), fermion number conjugation is realized by
a2 0
Y = [ 0 _o? ] - (4.78)

As before the only effect of this conjugation, applied to our Dirac equation (4.53), is
a change of sign in the energy. Therefore our zero modes are fermion number self-
conjugate.

4.6. Index Theorem

We can apply the CALLIAS-BOTT-SEELEY index theorem [34, 35] to our monopole back-
ground field, too?. For massless fermions, isospinor T = % and isovector T'= 1 case, we
get for monopoles within the Qp, sector the following results. The index of the operator
L, which is constructed out of the Hamiltonian H, the difference in number of left- and

right-handed zero modes, is given by (A.50):
index L = (T(T + 1) — {m}({m} + 1)) Qtop-

In the isospinor case
1 1 : 13 11
T= 9 {m} = Ty Qtop = 1, index L = 29 + 53 =1,

and indeed we found one left-handed normalizable zero mode (and no right-handed one).
In the isovector case

T=1{m}=0, Qup=1, index L=1-2-0=2,

again in agreement with our explicit results.

Remark: The same calculations can be carried out with mass term ma, 1, in the
Lagrangian. Now the existence of zero modes depends on the relation of the coupling
constants. Zero modes are present, if the mass is sufficiently small, m < gGF. This can
be checked explicitly [51] and on the other hand is contained in the general form of the
index theorem [34].

Furthermore the index theorem can be used to determine the number of parameters
needed to completely describe a monopole: according to WEINBERG [52] the dimension
of the moduli space of a given monopole configuration with charge Qyop is equal to twice
the number of zero energy modes of fermions in the adjoint representation. Therefore
this configuration belongs to a 4Qop — 1 parameter family of solutions (after subtraction
of an overall charge rotation, which is of no physical significance).

2For definitions and detailed calculations see Appendix A.
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4.7. Some Remarks on the Julia-Zee Dyon

JULIA and ZEE [53] recognized, that there are also dyons, i.e. electrically and magneti-
cally charged soliton solutions within this model. Instead of Af = 0 one takes

Af(x) = x—aJ(r), (4.79)

gr?

with J(r) — 0 as 7 — 0. Now the field equations read

PR (r) = K(r)(K(r) = J(r) + H(r) ~ 1), (4.802)
21" (r) = 2H(r>K2(r)+AH(T)(gi2H2(r)—r2F2>, (4.80b)
7“2J"(r) — 2J(r)K2(r). (4.80(:)

Again these equations can be solved in the BPS-limit A — 0 only. The solutions are [45]

rgF
K _— 4.81
() sinh(rgF')’ (4.81a)
rgF
H = hyl| ———— -1 4.81b
(r) = cos 7<tanh(rgp> ) (481b)
) rgF
J = hyl ———— -1 4.81
(r) - 7<tanh(rgF) >’ (481c)
with an arbitrary real constant y. The electric charge is
~ & K? 4
q= /d3X OB = 8 dr J(r)K7(r) - sinh~y. (4.82)
g Jo r g
Nevertheless the asymptotic magnetic field is the same and
1
m=—. (4.83)
g

This configuration reduces to the 't Hooft-Polyakov monopole in the limit v — 0. Now
we can analyze the properties of fermions within the dyon background as well. This was
also done by JACKIW and REBBI [26]. The main results are the following: the Dirac
equation (4.53) now acquires on the right-hand side an additional term Tﬁmf“@¢m.
The complexity of the equations prevents us from solving them explicitly. However, the
zero-energy solutions continue to exist, for both isospinor and isovector fermions. The
lower components no longer vanish but the upper one keep their shape. Fermion number
conjugation remains unaffected by this and the zero energy solutions are self-conjugate.
The explicit construction of the zero modes is given in the paper by GONZALEZ-ARROYO
and SIMONOV [54].
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4.8. Quantum Interpretation

A full quantum field theoretical treatment of the fermion-monopole system is quite
difficult [55, 23]. But in analogy to the kink case we can deduce the following properties:
the Hilbert space consists of trivial parts, constructed around the vaccum solutions
of the Yang-Mills-Higgs equations of motion, and nontrivial parts, constructed around
monopoles of charge Qip = £1,%2,.... The 't Hooft-Polyakov monopole of charge
Qiop = 1 as well as the corresponding dyon change their properties if fermions are
present. The monopole becomes a degenerate doublet with fermion number j:%. The
solitons are spinless, since no spin degree of freedom is found in the classical solution.
In the isovector case we find a fourfold degeneracy, because now an additional spin—%
degree of freedom is present. Therefore we expect to find two operators ag; with s = i%.

The basic feature, that the anticommutation relation {as, a;[} = 1 for each s requires two
states |t) carrying fermion number n = j:% remains true also in this case. But since we
have now two independent pairs of operators, the soliton states will be product vectors
of the form [¢) i) with fermion numbers +1 for |+) |[+), —1 for |—) |—) and 0 for |+) |—)

and |—) |+). Thus there are four degenerate soliton states.

4.9. Results

We analysed the SU(2) Yang-Mills-Higgs equations of motion and were able to clas-
sify all solutions of the corresponding field equations according to their topological
charges Qiop- Spherical symmetry allows for an analytical description of the Qop = 1-'t
Hooft-Polyakov monopole in the so called BPS-limit. In the background field of such
a monopole the Dirac equation for fermions in the fundamental and adjoint represen-
tation exhibits one or two zero energy modes, respectively. This leads in close analogy
to the ¢* theory to fermion number fractionization, as well as to a degeneracy of the
fermion-monopole states. All these explicit results are again in agreement with the
CALLIAS-BOTT-SEELEY index theorem. Furthermore the analysis can be extended to
dyons with Qop = 1 and arbitrary electric charge.



5. Instanton Fields

5.1. Euclidean Yang-Mills Theory in R*

In this chapter we are going to analyse the Euclidean Dirac equation

Dy = 'Yu(au + Au)¢ =0, (5.1)

in the background of instantons. What are instantons? Instantons are localized finite-
action solutions of the classical euclidean field equations of a given theory. In the fol-
lowing sections we will discuss the properties of instantons of pure SU(2) gauge theory
in Euclidean four-space. First we are going to describe in detail the model under con-
sideration, then we will classify all possible solutions and finally derive the explicit form
of the instanton background fields. Afterwards we analyse how fermions behave in such
fields, discuss the zero modes and relate our results again to an important mathematical
theorem, the ATIYAH-SINGER index theorem'.

The Euclidean version of a theory involves replacing the Minkowskian metric g, by
the Euclidean metric d,,,. The spacetime vector (z*)wink is replaced by (z,)guc. Now
the theory is left invariant under O(4) rotations rather than Lorentz transformations.
Obviously there is no difference between upper and lower components and in what follows
we will use only the latter. The requirement of finite energy now is replaced by the
demand for finite Euclidean action. Pure SU(2) gauge theory means that - in contrast
with the Yang-Mills-Higgs theory - there are no Higgs fields present and the Lagrangian
reduces to

_ !

L=-2G%G",. (5.2)

~ 3G
For the succeeding it is very convenient to choose the gauge field matrices A, to be anti-
Hermitean and to absorb the coupling constant in the fields. Now g will only appear as a
prefactor in the action S. The value of ¢ is unimportant for our classical calculations. We
need to take care of it only in the context of quantum theory, where absolute values of S

(in units of i) play a fundamental role for the calculation, e.g. of transition amplitudes.
Let

o’ .
AIL = gEA;u (53)

ef. Appendix B.

44
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where the generators satisfy

C

o ot abe O
—_ | = —. 5.4
[22’ ’ 22'] Y (54)
The Euclidean action of a given field configuration A, is

1 4 1 4
S = @ /d T GZVGZ‘V = —@ d x tr (GMVGIJV), (55)
with this definition S is non-negative. Independent of the choosen gauge (remember the
gauge freedom described in chapter 4, the same holds here) we can define the zero action
configurations. They are given by

Guw(z) =0. (5.6)
This is realized by

but while (5.6) is a gauge invariant statement, (5.7) is not. With A, = 0 also the gauge
transformed field

Al () = U(2)(Au(z) + 0,)U (z) = U(2)3,U ()" (5.8)

describes a zero action configuration. Fields of the form (5.8) are called pure gauges.
Here U(z) is any element of SU(2) in its 2 X 2 matrix representation. One can show
that G, = 0 if and only if A, is of the form (5.8) [23].

Finite-action solutions must approach such a pure gauge configuration sufficiently
fast at spatial infinity. In fact G, must fall to zero faster than r%, where

2 2 2 2 2
T :I#I#:I1+$2+$3+I4

is the radius in four dimensions. This implies the boundary conditions

rhﬂrgo Au(z) ~U(z)0,U (z), (5.9)
and we can assign to every finite-action configuration A, an SU(2) valued function U at
spatial infinity. Spatial infinity corresponds to a three-dimensional sphere with radius
r = oo and is called Sghys'
Since U depends only on the Euler angles a;, as and a3 of Sghys we cannot define
a radial derivative of U, whereas A,(z) may have a nonvanishing radial component at
infinity. We can overcome this difficulty by making a gauge transformation, such that the
radial component vanishes identically everywhere. Suppose A, # 0 and let us construct

the gauge function

0(z) = 7><exp / ' dr’Ar(:c’)>, (5.10)

0
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where P denotes path ordering. Now calculate the radial component of the gauge trans-
formed field

A(z) = ?(I)Ar(:v)ﬁ’l(fv) + UN(I)BTU(:L")’I,
= U(z)(Ar(z) — Ap(z))U(z) "t = 0. (5.11)

Hence we can rewrite the boundary condition (5.9)

A;L(:zr) = U(al,ag,ag)aﬂU_l(al,OQ,ag). (5.12)

3
Sphys

This enables us to make a homotopy classification?. The gauge functions U provide

mappings from the boundary of Euclidean four-space Sghys into the group space of
SU(2) which is known to be isomorph to a three dimensional sphere in internal space,
since every matrix U in the defining representation of SU(2) can be parametrized by
U =i(ajo" + azo? + azo?) + a4ll, with Eu aya, = 1. That means

U : Shhys = Sins (5.13)
and again we refer to topology and borrow the following two facts: first, the third
homotopy group of the target sphere S? is isomorph to the group of integers Z,

73(S%) ~ Z, (5.14)

all functions U can be classified according to their topologial charge, which in this context
is called Pontryagin index, Qpons € Z. With this we can also classify all finite-action
solutions, according to their behaviour at infinity. Second, this topological charge for a
given field configuration A4, can be calculated via the formula

1 3
Qpont = /d4$ Qpont (x) = - T6m2 /d4$ tr (GMUGMV)a (515)

where the dual field strength is defined as in chapter 4,

1
Guu = EfuupaGpa- (516)

?Furthermore the boundary conditions allow for an effective compactification R! — S*. This will
turn out to be important, since the ATTYAH-SINGER index theorem, which we are going to discuss
afterwards, is applicable only in the case of compact manifolds.
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Qpont () can be rewritten in the following way
tr GuGu = tr <(8MAV — O A)G L + (ALA, — A,,AM)GW>
= ftr <(aﬂA,, — 0,A,) Gy + Au[Ay, éw]>
= ftr <(aﬂA,, — 0y Au) Gy — A#ayéﬂ,,>
= tr€pag ((GMA,,)(BQAB + AqAg) — 0,(A,0,A8 + AMAaA5)>
= tr €uas20, (A,,aaAg + ;AVAaA[;), (5.17)
where we used Dﬂéw =0 and

1
tr Eﬂya/g(auAy)AaA,g = gtr eﬂyagau(AyAaAg).
Finally

QPont (I) = aﬂk#’ (518)

1 2
k, = —Wewpgtr Ay <8pA(, + gApA(,>. (5.19)
In regular gauge (i.e. no singularities in the interior) we can use Stokes theorem to get

Qrons = [ 5 Qrons(0) = § | doky (5.20)

Sphys

On the surface at infinity we have G, = 0, therefore

0 = €upoeG oo = 2€40p0(0pAs + ApAs), (5.21)
leading to
1
Qpont = m 8 daue;wpatr (AI/ApAO')
phys
1

= W%dauewmtr (U(avU_l)U(apU_l)U(agU—1)>_ (5.22)

A conceptional proof that Qpon; really counts, how often the target space S3

ot 18 covered

when the basis space, i.e. the boundary Sghys, is traversed once, is given in [23].
Remark: we can distort the boundary S® into a large cylinder with spacelike hy-
persurfaces R3 corresponding to the coordinates z;, i = 1,2,3, cf. Figure 5.1. In Weyl

gauge, Ay = 0, there are only contributions from the abutting faces and the topological
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Figure 5.1.: Boundary of space.

charge can be calculated as the difference of two winding numbers (Chern-Simons num-

bers) of the gauge field configuration at x4 = —oco and x4 = +00, respectively.
Qpont = Qcs(+00) — Qcs(—00), (5.23)
where
2
Qcs = 6.2 /d3IEZ~jktI‘ (AiajAk + gAiAjAk>- (5.24)

In this language a more suggestive interpretation is possible: field configurations with
Pontryagin index Qpons start at a certain field configuration A;(—oo0) with Chern-Simons
number Qcs(—o0). As the Euclidean time x4 goes by, the gauge fields evolve and end
up at a different configuration A;(400), now with Chern-Simons number Qcs(+00) =
Qcs(—o0) + Qpont- In order for the whole gauge field to have finite action, both con-
figurations A;(+o0) have to be pure gauges. This field configurations, reinterpreted as
tunneling events in Minkowski space, are called instantons. Now we are going to derive
the explicit form of these instantons. Like in the case of the 't Hooft-Polyakov monopole
we use a trick to solve the highly nontrivial equations of motion.

5.2. Instanton Configurations
Consider the inequality

—/d% tr (G £ Gu)?) >0. (5.25)
With

tr (GuwGuw) = tr (GG ) (5.26)
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this is equivalent to
— / d*ztr (G Gu) > + / d*ztr (GG, (5.27)
that is
52 5% |Qpunl. (5.29

The field equations are derived from the action principle 05[A,] = 0. This variation can
be done separately in every homotopy sector. S reaches its absolute minimum

82
S = g—2|QP0nt| (529)

if and only if

G = +G. (5.30)

Field configurations, that satisfy (5.30) are called selfdual fields or anti-selfdual fields,
respectively. Every (anti-)selfdual field configuration is a solution of the equations of
motion, since they minimize the action S. It is much easier to find a solution of the
duality equations than to solve the equations of motion.

Remark: observe that in the (anti-)selfdual case action S and topological charge
Qpont coincide up to a factor. According to the review article by SCHAFER and SHURYAK
[56] all solutions of the equations of motion that are neither selfdual nor anti-selfdual
are just saddle-points and not extrema of the action.

Following the book by RAJARAMAN [23], we make the ansatz

Au(z) = i%,,0, log p(z) (5.31)
where
_ 1_ u
Z;w = 57711#1/0- )
and
Nopvr = €auv — 6au6u4 + 6a1/6u4

are the so-called 't Hooft symbols. Let us calculate the field strength and its dual

Gu = i8u5(0u0510g p — (8, log p)(dslog p))
— i%,5(0,05 log p — (8, log p) (05 log p)) — i%,, (05 log p)?, (5.32a)

Guu — iiua(aaau log p— (80 log p)(au log P))

Sao ( ( ) )

i35 (050, log p — (0, 1og p) (9, log p)) + i5,,,0, 05 log p, (5.32b)
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where we used

1 _ _
iewjalgﬂa[g = =Y. (5.33)
Requiring éw/ = G is equivalent to two equations, the first one gives an identity, the
second one reads

0,05 1og p + (0, log p)2 = 0. (5.34a)
This can be written as
Il
=L o, (5.35)
p

The only nonsingular solution for p is p = const and therefore A, = 0. But singular p
will yield in addition nontrivial, nonsingular gauge fields A,,.
Example: for

p:# (5.36)
we calculate
Op = —4n?6%(x),
o _ 0. (5.37)
P

The same result holds for the more general form

onnt )\2
plz) =1+ Y m (5.38)
i=1 ¢

with real constants a;, and A;. After a gauge transformation this will yield the Qpon¢-
instanton solution. In the simplest nontrivial case we get the one-instanton solution,

Qtop = 1. Using

Yu = Tp— Cpu, (5.39)
we have
)\2
plz) = 1+ e (5.40)
The gauge field reads
Yv \?

Au(z) = —2iN°S,,—

N LA—— N A— 5.41
P2+ A2) T e e (5:41)
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and is singular at y = 0. The singularity can be removed by a gauge transformation
mediated by

1 )
Ui(y) = m(yﬂl + iy;0;)- (5.42)
We calculate
U9,y = —2i8,, %% S (5.43)
therefore A, can be written
A, = 2 Y U, ~0,Ui, (5.44)

and after a gauge transformation we get

_ 22 _
4, = U4, +9,)U7" = <m - 1) (00U

y? -1 y? -1
= —y2 i )\2 (8ﬂU1)U1 - WUlaﬂUl . (545)
With the abbreviations
1
Euu = inauua )
Napw = €Equv T 5(1#51/4 - 5(11/5#47
we can express
U10,U7 = —2iS,, ‘z; , (5.46)
and finally have
Yv . (z —a)y . (z—a)y
Aule) = =By = R e = e e 47

This is the gauge transformed instanton solution which is non-singular everywhere, pro-
vided that X # 0. It has the following properties: the selfdual field strength is

)\2
= 2Ny O 4
G Mapv 0 (z — a)2 + A2)2’ (5.48)
for 2 — oo the field reduces to a pure gauge A;, — Uy(z)0,U ! and the action is
S = ! dtz tr (G' G' ) = 48\ /d4$; = % (5.49)
T2 s (y2 + A2 g2 '

therefore Qpont = 1.
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The same analysis can be done for the anti-instanton, the anti-selfdual solution of
the Yang-Mills equations of motion with Qpony = —1. In this case the gauge fields read

' S (z—a)y . (x —a)y
Al (r) = —222Wm = —znawgam_ (5.50)
Remark: the identification instanton and anti-instanton, as well as Qpony = *+1 is

merely a matter of definition.

The field equations are invariant under translations, this is reflected by the four free
parameters a,, scale invariance leads to the emergence of one parameter A, global gauge
rotations correspond to three free parameters. In total there are eight free parameters.
BrOWN, CARLITZ and LEE [57] proved, that a solution in the Qpent sector has exactly
8Qpont degrees of freedom®. Usually the overall gauge orientation is fixed, so effectively
the Qpont instanton solution exhibits 8Qpony — 3 degrees of freedom. For the Qpong-
instanton solution

B QPont )\2
A, (z) = i5,,0, [log (1 + > —2>] (5.51)

i=1 ¢
we find

872
S=— X QPont- (552)

g2

The action of an @Qpont-instanton solution is equal to Qpont times the action of the
single instanton solution. This is a remarkable property for solutions of non-linear field
equations.

5.3. Fermions in Instanton Fields

Now we are ready to study the behaviour of fermions within the background of such
instanton configurations. In particular we are interested in zero modes of the Euclidean
Dirac operator. We use the chiral representation for the vy matrices. In Euclidean space
we can choose all of them to be anti-Hermitean

0 ot /0 1 -1 0
%‘E(_Ui 0>,’Y4EZ(]1 0>,75E—71727374=< 0 11)- (5.53)

They obey the following relations

’)’L = Y {’)’ua’)’u} = _25uu- (5-54)

3They point out a remarkable connection between the dimension of the moduli space of an instanton
configuration, i.e. the number of free parameters, and the number of zero modes of fermions in the
adjoint representation of SU(2): the number of free parameters is exactly twice the number of those
zero modes. In Appendix B we show, how to count the number of zero modes and we find that there
are 2-1-(1+1)-(241) - Qpont = 4Qpont zero modes, therefore the dimension of the moduli space
is Sonnt.
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The Hermitean Dirac operator is
D =Dy = (04 + Ayp). (5.55)
Let
Op = (O-iai]l)a 6# = (oja _7:]1)7
with the properties
20, = 0u0,+ 0,0y, (5.56a)
218, = ifguo® = 5(Ouoy = 0u04), (5.56b)
218, = inguwo® = 5(6uay — Gu0oy). (5.56¢)
The Dirac operator can be written as
. 0 1Dy + 0;D; . 0 o,D,
lD - < 1Dy — o;D; 0 - —5'#D# (557)
With the projectors
1 0 0 0
Py = (£, P+—(0 ﬂ),P_—( 0 (5.58)
the corresponding Weyl operators read
D, = pp, = (9 WP, (5.59a)
0 0
D = PP =D} = ( 0 ) : (5.59b)
—0uDy
and according to this we define the Laplacians
0 0
A+ = D,D+ = < 0 _&MO_UDMDU > s (560&)
A_ = D,D_— < _"”"%DVDM ) . (5.60D)
Since [IP,vs] = 0 on the space S of all zero modes, we can choose all of them to be
eigenfunctions of 5 as well. Let
St ={¢: Py =0, 51 = =4} (5.61)

be the set of all zero modes with positive or negative chirality, respectively. In our

representation zero modes of positive chirality have components ( 0 x )

€ S+ and
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are called right-handed, whereas ( x 0 )T € S_ have negative chirality and are called
left-handed.
In order to analyse A _, we calculate
1

-0,6,D,D, = 5(—0,,(% — 0,6, — 0,0, +0,6,)D,D,

1 <
5 (=204 + 4i%,,) D, D,
= -D,D, +2i%,,[D,,D,]
= D?-2i%,,Gu (5.62)

For selfdual fields fJWGW vanishes since flm, is anti-selfdual. D? = —(iD)? < 0 is a
negative operator?, as a consequence A_ and D_ do not have any zero modes. The
index of Dy equals the total number of zero modes in an instanton field (the index of
D_ equals the number of zero modes in an anti-instanton field). In an instanton field all
zero modes have positive chirality and are right-handed, in an anti-instanton field they
have negative chirality and are left-handed. Now we want to derive the explicit form of
those zero modes.

5.4. Explicit Form of Zero Modes

To find the zero modes in an instanton field we still have to solve the equation

ouDux = 0. (5.63)
x is a 2 X 2 matrix because it carries spin and isospin indices. In this derivation we
follow closely the work of GROSSMAN [61]. Using the fact that o, = —0?5,02 we can
bring the o-matrices to the right an get
(Op+ Ap)pa, =0, (5.64)
where
© = xo’. (5.65)
Now we take the QQpont-instanton solution of the form
A, =1iSby, b, = 8, logp, %Dp =0, (5.66)

and expand ¢ in terms of the o# (because the o* form a basis of all 2 x 2-matrices)

o= —iM,0,. (5.67)

*First of all D? is a non-positive operator, D> < 0. But by the very definition there are no zero modes
of D, in the Qpont # 0 sector, since the instanton number of any reducible connection vanishes
[58, 59, 60], therefore D* < 0.
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Then equation (5.63) reads
- 1 3
2ZEMU(8UMM - §bUMu) + (8ﬂMM + Eb”MM) = 0 (568)

Since ¥, is a traceless tensor, we can take the trace of (5.68) and get the following:

S (20, M, —b,M,) = 0, (5.69a)
Myt ShuM, = 0. (5.69b)

Define
N, =p~'2M,, (5.70)

so the corresponding equations are

OuNy, — OyNy — €pe0pNy; = 0, (5.71a)
O (p*°N,) = 0. (5.71b)

If we make the ansatz
N, = 0,h + g,, (5.72)

with 9,9, = 0, we can derive g, from an antisymmetric (and because of the additional
three free parameters also anti-selfdual) tensor g, = 0, X,,. From (5.71a) it follows

0 X,, =0, (5.73)

admitting only singular contributions or contributions that are non-vanishing at infinity.
Therefore we have g, = 0. If we furthermore set

h=—, (5.74)

then equation (5.71b) implies 0 w = 0. Now we specify our p and list the possible
harmonic solutions w. Taking the form that exhibits 5Qpont + 4 degrees of freedom for
the Qpont instanton configuration
onnt+1 2
%
L (5.75)

p = T\
=1 (l. - ai)2

one obtains Qpont + 1 solutions (yielding non-singular wave-functions) of the form

)\2
W(k) - m’ k= 1727'--7QP0nt+]—' (576)

Although each w®) as well as p are singular, the singularities match, so that the resulting

(k)
M®E) = pl12g, (%) (5.77)
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are non-singular and normalizable. Finally
x® = —iMPoto?, k=1,2,... Qpont. (5.78)

Remark: these are only Qpons independent solutions, since Zg:{“tﬂ M I(Lk) =0.

Now let us concentrate on the Qpont = 1 instanton sector again. With Ay — oo,

|ag| — oo such that %zlandalza, A1 =X and y =z — a, we have
. Ny
Al" = —7,7’]04“/0' W, (579)
= —2U;! X 2 5.80
X = —<Up (y)ma . (5.80)

This is the gauge field and the corresponding zero mode in the singular gauge, cf. (5.41).
After a gauge transformation back to regular gauge via U; we end up with the regular
form

. Yv
A, = —znauuaay2+>\2, (5.81)

This agrees with the result by 'T HOOFT [62]. The full right-handed spinor ¢(z) with
its four Dirac and two isospin components is given by

P(z) ~ X ( g >> : (5.83)

5.5. Index Theorem

The number of fermionic zero modes in the background of a given Euclidean Yang-Mills
field configuration with topological charge QQpont can be determined with the help of
the ATIYAH-SINGER index theorem [63, 64]. The number of zero modes with positive
chirality (ny) minus the number of zero modes with negative chirality (n_), i.e. the
index of the Weyl operator D, can be expressed as’:

1 i \D/2
i D, = hG) = —— — D/2 84
index D /Dc (@) ( /2)!(27r> /DtrG , (5.84)

5For definitions and a proof see appendix B.
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which in our case (D = 4) reduces to

_ 1/ i)? ) 1 )
1ndexD+ = E(%) /;4trG ——8? S4tI'G

1 4 ~
= 150 /d ztr GG

= Qpont =Ny —7n_. (5.85)

With the help of our vanishing theorem (see section 5.4) we can conclude, that in an
Qpont instanton field there are exactly QQpont zero modes and all of them are of positive
chirality, whereas in a |Qpont| anti-instanton field there are |Qpont| zero modes but all of
them are of negative chirality. The calculations & la GROSSMAN are in agreement with
the predictions of the ATIYAH-SINGER index theorem.

5.6. Quantum Interpretation

The existence of zero modes of the Dirac operator in the instanton fields implies some
astonishing physical effects. Massless fermions will lead to a suppression of the tunnel-
ing amplitude between gauge field configurations with different Chern-Simons numbers.
Furthermore zero modes give rise to the so-called level crossing, the eigenvalues of the
Dirac Hamiltonian vary with time, some of them cross zero and change their sign. These
effects will be discussed in the next subsections.

5.6.1. Suppresion of Tunneling

Interpret the instantons in R* as tunneling events in 3 4+ 1 dimensional Minkowski space
and let us consider the transition from a gauge field configuration with Chern-Simons
number Qcs(—00) at ¢ = —o0 to Qcs(+00) at ¢ = 400 in the presence of massless
fermions. Quantization via the path integral formalism [65, 66, 67] results in the tran-
sition amplitude

(Qes(—o0) | Qes (+00)) = / DA, DYDi exp S. (5.86)

Gauge fixing terms are understood to be included. The prime denotes integration only
over fields A, with appropriate topological charge Qiop = Qcs(+00) — Qcs(—o0). The
combined action of Yang-Mills and Fermi fields is given by

S = Sa+ Sy, (5.87)
1
Sa = 5 d*z tr GG,

Sy

/ d'z Gy = / d'z hy (8, + A,
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The fermions can be integrated out exactly, since the action depends on those fields in
a bilinear fashion. So we get

(Qs (—00) | Qes (+00)) = N det P / DA, exp S, (5.88)

This transition amplitude vanishes identically since the Dirac operator ) has zero modes.
Massless fermions suppress the tunneling between topologically distict vacua of the Yang-
Mills fields. If the fermions carry mass m, all eigenvalues are shift, the determinant no
longer vanishes and tunneling is possible again.

5.6.2. The Spectral Flow

The equations of motion for a massless Dirac field formally conserve the axial-vector
current jZ(ﬂU) = P(2)y,75%(z) as well as the vector current j,(z) = 1/}(:5)7#1/1(95). This
would imply chiral U(1) ® U(1) symmetry. But the bilinear product 1 (x)(y) diverges
in quantum field theory as x approaches y. Therefore one has to define these currents
more carefully, and in doing that we choose a gauge invariant regularization. According
to SCHWINGER [68] this can be done by separating the two points slightly

ac—l—%e
e o O ) T S

2

similarly for j,. If one calculates the divergence of both redefined currents one gets [23]
Ouju(z) = 0, (5.90)

. i 5 . .
8Mj2($) = 8?tr GG = —2i0,k, = —2iQpont (), (5.91)

where Qpont(z) is the Pontryagin density. The divergence of the axial-vector current
no longer vanishes at the quantum level, the classical symmetry is violated and we
entcountered what is called an anomaly. The appropriate Noether charge, which is not
conserved anymore, is the so-called axial charge Q°, which is equal to the number of
particles with positive chirality minus the number of particles with negative chirality:

Q= /d%j@’. (5.92)

For the change in Q° we get from (5.91)
AQ° = Q°(t=400)— Q°(t = —00) = 2Qpont- (5.93)
This change is equal to two times the Pontryagin index of the background field: instan-

tons cause the axial charge to change. How can one understand this?
Consider the Dirac Hamiltonian H in Weyl gauge, which is given by

Hy = —84’1ﬁ = —’)/4’)/1'(31' + Az)1ﬁ = —ia; D;1p, (5.94)
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and depends on z4 via the gauge fields. For each fixed value of x4 we can solve the
eigenvalue equation

H(24) )z, (%) = Me4) Pz, (%) (5.95)

We know that the Hamiltonians at x4 = —oo and x4 = 400 in the instanton background
differ only by a unitary gauge transformation. Therefore they have the same spectrum.
But as the ’time’ x4 goes by these eigenvalues are subject to change and a particular
eigenmode needs not to come back to its starting value but may be shifted upwards or
downwards.

The spectral flow of H is defined as the number of modes changing their negative
energy eigenvalues to positive ones minus the number of modes changing their eigenvalues
the other way round. A generalization of the ATIYAH-SINGER index theorem by ATIYAH,
PATODI and SINGER immediately leads to the following
Theorem: Spectral Flow
The number of zero modes of the Dirac operator is equal to the spectral flow of the Dirac
Hamiltonian.

A rigorous mathematical proof can be found in the literature [69]. Here we are going
to use some physical arguments in order to substantiate this theorem. Let us assume that
the background fields are slowly-varying and allow for an adiabatic approximation®. We
rewrite the wave function, by separating the x4 coordinate, as the product of a function F'
which depends solely on z4 and a function v,, which depends on the spatial coordinates
x = {x1, %9, 23} and parametrically on zy4:

P(x,24) = F(24) e, (%), (5.96)

we have

—OuF (24) Yz, (%) = HF(24)h2, (%) = M24) F (24) 92, (%),

O M@, (5.97)
T4

and the solution is
T4
Fz1) = F(0) x exp ( _ / dm(r)>. (5.98)
0

Obvioulsy 9 (x, z4) is normalizable if and only if X is positive for 4 — +00 and negative
for z — —oo0.

The existence of Qpeny zero modes of the Dirac operator (with positive chirality) in
an Qpont-instanton field necessarily implies that QQpont fermionic levels flow from negative
to positive values. We have the spectrum indicated in Figure 5.2. Since the spectrum of

SFor a more general proof, which does not require the fields to change adiabatically, see the paper by
CHRIST [70].
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Figure 5.2.: Level crossing in the sector with positive chirality, Qpont = 2.

H is symmetric [71], there are also Qpont fermionic modes with negative chirality, that
interpolate between positive eigenvalues at 4 = —oo and negative values at x4 = 400,
cf. Figure 5.3.

Energy

Time

[

Figure 5.3.: Level crossing in the sector with negative chirality, Qpont = 2.

For a |Qpont| anti-instanton field it is the other way round. The explicit form of the wave
function 1,,(x) at the cross-over point in the one instanton field, where Hiy = E1 = 0,
has been calculated by KIskis [72].

Interpretation: Processes that change the winding number are accompanied by the
absorbtion and emission of fermions, depending on their chirality. In terms of the second
quantization the one particle state corresponds to a situation where all negative energy
states and the lowest positive energy state are filled and all other positive energy states
are empty. Now in the presence of an instanton one of the negative energy states is
shifted to positive values, one particle with positive chirality emerges. At the same time
one of the positive energy states with negative chirality turns into a negative energy
state. The particle vanishes in the Dirac Sea. As an illustrative example we could
imagine the spectrum which is indicated in Figure 5.4.

In total the instanton field can turn a negative chirality particle into a positive chirality
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Figure 5.4.: Level crossing and change of axial charge, Qpons = 1.

one (by winding from one vacuum configuration to another one). We find that the
total charge is conserved, since AQ = 1 — 1 = 0, but the axial charge changes AQ® =
1 — (—=1) = 2, in accordance with the anomaly equation (5.93). In fact no fermion ever
changes its chirality, all of them just move one level up or down. The axial charge is
said to come from the bottom of the Dirac Sea [56]. In this way one can understand how
instantons can change the total axial charge of the system.

Remark: these effects can explicitly be shown using a toy-model (the Schwinger
model on a circle), see the book by BERTLMANN [73] pp. 227-233. 'T HOOFT [74] gives
the following pictorial description of how an instanton affects fermions:

An instanton is like a little door, that suddenly appears, opens to let one or several
particles through, to or from this infinite reservoir called the ’Dirac sea’, and then closes
and disappears.|...] What an instanton does in quantum chromodynamics is the follow-
ing: it turns the energy of one right helicity particle state from positive to negative and
does the opposite to one left helicity state. So one right helicity particle will seem to dis-
appear and a left helicity particle pops up. It is as if a right helicity particle transmuted
into a left helicity one! This is why helicity is no longer conserved, and consequently the
algebra that was associated with it breaks down.



6. Summary and Outlook

In this diploma thesis we analysed a variety of field theoretical models: the ¢* model
in 1 4+ 1 dimensions, the SU(2) Yang-Mills-Higgs theory in 3 + 1 dimensions and pure
SU(2) Yang-Mills theory in Euclidean four-space.

All models exhibit nontrivial classical solutions, which are called kink, 't Hooft-
Polyakov monopole and instanton, respectively. The kink and the monopole are solitons,
i.e. solutions of the classical field equations with particle-like properties: they have finite
energy, are localized in space, can be boosted and display the correct relationship between
energy, momentum and mass. Furthermore they cannot be found in a perturbative
expansion since they depend in an nonanalytical fashion on the coupling constant. The
instanton turned out to be a tunneling event in Minkowski space and a pseudo-particle
in Euclidean space.

All those field configurations are stable for topological reason, they can be classified
according to the homotopy groups mo(S?), 72(5?) and m3(S?) respectively, and therefore
carry topological charge. In these configurations, the fields approach different degenerate
vacua as one approaches spatial infinity in different directions. The vacua are chosen
in such a fashion that they cannot be continuosly deformed to a single vacuum. This
guarantees the stability of the soliton, and gives rise to a new type of quantum number:
the topological charge. Due to conservation of this charge these objects are stable.

In a second step we used the soliton and instanton configurations as background
fields and analysed the behaviour of fermions in these fields. Since the corresponding
equations of motion are quite simple (in the case of the kink solution) or can be reduced
drastically (like in the case of the 't Hooft-Polyakov monopole and the instanton) due
to symmetry arguments, an explicit solution is possible.

In the models with an odd number of space dimensions we investigated the Dirac
Hamiltonian and its zero modes

Hip = 0.

Now the total number of zero modes can simply be counted. On the other hand we used
the CALLIAS-BOTT-SEELEY index theorem to determine their number and afterwards
compared both results.

In the kink and the monopole case the existence of fermionic zero energy modes
leads to some important physical effects. First of all the soliton states become multiply
degenerate: soliton plus empty fermionic zero mode and soliton plus filled zero mode
carry the same energy. As a second effect the fermion number no longer takes on only
integer values but becomes fractional.
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The predictions from the kink model can be tested in solid state physics: the phonon
field of polyacetylen exhibits a ¢* potential, the electrons show a zero energy mode (at
mid-gap) and the fractionization is reflected in a wrong spin-charge assignment: neutral
chains of polyacetylen carry spin, whereas charged chains are spinless. Both effects have
been observed experimentally.

Since the relevant properties are the same, the 't Hooft-Polyakov monopole is assumed
to show these effects, too.

In the instanton field we did a similar analysis, but now we started with the Dirac
operator I and examined its zero modes

Py =0.

Zero modes of the corresponding Dirac Hamiltonian can be related to the zero modes
of the Dirac operator by spectral flow arguments. We have shown, how the ATIYAH-
SINGER index theorem can be used to count their number: the number of zero modes is
proportional to the topological charge of the background field.

Also in the instanton case those zero modes have important physical consequences:
massless fermions suppress the tunneling between topologically distinct vacua, in the
massive case, the process in Minkowski space that corresponds to the instanton field, is
accompagnied by a change of axial charge AQ®. Therefore the U(1) axial symmetry of
the theory breaks down, and this solves the famous U(1) problem.

Perhaps the procedures, theorems and results that have been given in this diplom
thesis can be aplied to some — up to now — unresolved problems.

Studying chiral symmetry breaking requires an understanding of quasi-zero modes,
the spectrum of the Dirac operator near the A = 0 eigenvalue, since the order parameter
for this phase transition, the quark condensate < 11/ >, is related to the spectral density
p(A) by the BANKS-CASHER relation [22]

<Pp >= —mp(A =0).

If there is only one instanton the spectrum consists of a single zero mode, plus a con-
tinuous spectrum of non-zero modes. But if there is a finite density of instantons, the
spectrum is complicated, even if the ensemble is very dilute. The zero modes are ex-
pected to mix, so that the eigenvalues spread over some range AX. A precise description
of the faith of zero modes within such an ensemble would contribute to a better under-
standing of the ground state of QCD as well as of the chiral symmetry breaking. The
fermions could be simulated on a lattice and furthermore one could try to calculate the
exact eigenmodes of I) in an instanton-antiinstanon background.

The question, whether or not the two main effects of low temperature QCD, chiral
symmetry breaking and confinement are related, is not answered yet. One of the phys-
ical scenarios of color confinement is based on the idea of monopole-antimonopole pair
condensation in the vacuum state of quantum Yang-Mills theory. The chiral symmetry
breaking is supposed to happen due to the influence of instanton configurations.

Recently a new decomposition of the Yang-Mills connection A, has been proposed
by CHO [75, 76, 77], FADEEV and NIEMI [78, 79, 80] and SHABANOV [81, 82]. This is a
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generalization of the Abelian projections introduced by 'T HOOFT and is supposed to
give a new effective description of the low energy phase of QCD. There we rewrite

Al = o + Cun® + W,

with coupling constant g and

a —1 _abc by, c
ay = g~ €(0un’)n",
Win® = 0.

This gives an effective theory for the unit vector field n®. The projected gauge field o,
depends on A} and n”.

Fermionic zero modes of this connection are still under investigation. Naively the
Pontryagin index of the a-field vanishes because this is an reducible connection, but
since the Higgs field n turns out to be singular, a careful analysis is needed.

For the time beeing we have to analyse the one instanton configuration. The unit
vector in 3-direction, n® = §*3, is related to the standard Hopf map

2z119 + 22374
ng = 2171174 — 2x2x3
I% + :1:% - :1:% - xi
by the same gauge transformation Uy (cf. chapter 5) that takes the singular form of the
instanton field to the regular form and back [60]. Hopf maps are maps

S3 - 52, (6.1)

and can be characterized by a topological invariant, the Hopf index.

The connection between this Hopf index, the topological charge of the instanton
configuration and the magnetic charge of monopoles that arise after projection, as well
as the connection between confinement and chiral symmetry breaking in this FADDEEV-
NIEMI decomposition are subject of current research [83, 84, 85, 86, 87, 88].



A. Callias-Bott-Seeley Index Theorem

A.1. Introduction - The Problem

In this appendix we give some basic ideas, how to derive index theorems for Dirac
operators on open spaces of odd dimension, closely following the work of CALLIAS [34].
The derivation is not straight forward but consists of many Lemmata and Propositions
that are needed in order to substantiate the main theorems. Some of those intermediate
steps are sketched, for the remaining details see [34].

We are interested in Dirac equations in Minkowski space with non-degenerate static
(time-independent) modes. Such a Dirac equation can be written in the form

Hy = ( ot )w — iy, (A1)

where L is an elliptic operator on odd-dimensional Euclidean space. We will see that L
has a nonvanishing index. The general idea is to use traces of the type

Tr (e PETL — o tLLTy (A.2a)
B [(LTLZ-I—z)S_ (LLTZ+z)S]’ (A.2b)

where the trace is taken in the Hilbert space as well as over Dirac and internal indices.
On a compact manifold either of these traces gives the index for any value of ¢ or z,
because all eigenvalues are discrete and the spectrum of LLT and LTL is the same up to
a different number of zero modes.

Proof: let 1, be an eigenfunction of LT L:

LIy = Mpa,
then we find a corresponding eigenfunction of LL! with the same eigenvalue
LLI(Lypn) = L(LTL)gn = A(Lghy).

On an open space we get the index by taking the limit ¢ — oo for (A.2a) or z — 0 for
(A.2b), cf. [89]. We will use the second one with s = 1.
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We study Dirac operators that arise in Yang-Mills theories with both gauge and
Higgs fields. The most general Dirac equation in D + 1 dimensional Minkowski space is

(iaiai @1, + o' @ Ai(z) — B® ®(z))9(z,t) = i) (z, t). (A.3)

Here 1) (x,t) is a 2pm-component spinor. The 2p x 2p Dirac matrices are given by

(8 0) ()

where the D p x p matrices §° satisfy an Euclidean Dirac algebra
5107 4 076" = 269711, (A.5)

The coefficients are given by Hermitean m x m matrices A;(z) and ®(z). They are
assumed differentiable and bounded in x and

lim A;(z) =0, (A.6)

|z|—o00
and ®(z) approaches a constant as |z| — co. Now separate the time variable
p(z,t) = Pp(a)e’™, (A7)

and express (A.3) as an eigenvalue problem

m=(ao) (3 )=r(3): &

where L is a first order pm X pm matrix differential operator on R":
L=i00; ® Iy, + 6" @ Ai(z) +ill, @ D(z), (A.9)

L' is the Hilbert space adjoint of L. We are interested in static (t-independent) solutions,
i.e. the E = 0 eigenspace. For these solutions we have

Ly_ = 0, (A.10a)
Ly, = o. (A.10b)

The dimension of the E = 0 space is given by
k=ky+k_, (A.11)
where
ki = dimker LT, k_ = dim ker L. (A.12)
We cannot in general determine k, but we can find a formula for

index L = k_ — k. = dim ker L — dim ker L, (A.13)
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in terms of the behaviour of the operator L at infinity. Sometimes one can find either
k4 or k_ a priori, see [89] and chapter 5. Then our formula will determine k.
Definition : L is Fredholm if both k_ and k. are finite and L is closed [90, 91].

If L is Fredholm, so are LT, LLT and LYL. In what follows we will restrict ourselves
to this special class of operators.

A property of the index which will turn out to be extremly useful in the derivation of
the index formula is its homotopy invariance: If ¢ — L(t) is a norm continuous map of
the interval [0,1] into the space of Fredholm operators then index L(0) = index L(1). Tt
is also invariant under perturbations that are compact relative to the original operator,
cf. [91], p. 445.

Definiton: If A is a Hilbert space, B : H — # is compact relative to L : D(L) —
H,D(L) C H, if B is compact as an operator D(L) — H, where D(L) is equipped with
the norm ||| + || L.||.

We need precise conditions that tell us, when an operator of the form (A.9) is Fred-
holm. For more general cases one can use the
Theorem 1: (SEELEY) Let A=3,<, aa(x)(ia—i)a be a differential operator, where
the aq(z) are bounded and their derivatives are continuous and vanish at oo. Then A is
Fredholm if there are constants ¢ and C such that

| Z ao(z)E%| > cl¢|™  Vz eR",

la|=m

(i.e. A is uniformly elliptic) and

| > aa(@)€”]

laj<m

is bounded away from 0 for |z| > C. Conversely, if A is Fredholm then there exist such
constants ¢ and C'.

Proof: see [92].

Restricted to the form (A.9) of L, we get the

Corollary: The operator L defined by (A.9) is Fredholm if |®(z)| > B for |x| > C
where B and C are positive constants. The index of L is equal to the indez of L if L is
an elliptic operator such that

L=1i00; ® 1, +ill, ® U(x) (A.14)
for |z| > C, where U(z) is the Hermitean unitary matriz
U) = |8()|"8(),
@(z)] = (2(2)@ ()", (A.15)

Remark: That means that the index of L can be expressed solely in terms of the Higgs
field ®. The particular properties of the gauge fields, determined by the equations of
motion, are nonrelevant in this regard.

Proof: Let

Ly =i6"0; @ Ny, +ill, ® ®(x). (A.16)
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L is Fredholm if and only if L; is Fredholm since the fact that the A;(x) are bounded
and vanish as |z| — oo implies that the term §’ ® A;(z) is Li-compact, by the RELLICH
Lemma. Notice that

LIl = -1 -6 ®@® (z) + 1, ® |®(z)]?. (A.17)
Since ®(z) is C* and asymptotically homogeneous we have

LI, > —0%1— ﬁ]l-l-B]l, (A.18)
K
where B is such that |®(z)|?> > B. The operator on the righthand side has a discrete
spectrum of eigenvalues contained in (—oo, B), so that if B > 0 it is Fredholm. Then so
is L]{Ll and therefore L as well. The one parameter family of operators

L(t) = tLi(t) + (1 = t)L = i6'0; @ N, +ill, @ [t® () + (1 — 1)U ()], (A.19)

for 0 <t <1, is a homotopy of L to L within the class of Fredholm operators. Thus L
has the same index as Ly and L.

A.2. General First Order Operators

We now derive some general formulas for first order elliptic operators with arbitrary
coefficients. These formulas readily yield the index theorem. Consider an arbitrary
operator L, which is assumed to be closed on a dense domain D(L) in a Hilbert space
KC, which is the direct sum of M copies of another Hilbert space H, K = EBlAil H. L is
a matrix of operators on H, L = [L;;], 4,5 = 1,2...M.

Definition: Given an operator A = [4;;] on K we define the internal trace of A, tr A
to be the following operator on H

tr A=Ay, (A.20)
7

with domain ﬂf\il D(Aj;).

For L as in (A.9) the operators LL' and LYL are selfadjoint and positive. If z is a
non-negative real number, (LL' + 2)~! and (L'L + 2)~! are bounded operators on K
and

B, =z tr ((LTL +2)7 ' = (LLT + z)1> (A.21)

is a bounded operator on H. Let f(z) = Tr B,, where Tr denotes the trace in the
Hilbert space H: if {¢;}3° ; is an orthonormal basis for H, then Tr B = Y7, (¢, Béx,).
Now, under certain assumptions, the index of L can be expressed in terms of the trace
of B, on H.

Lemma 1: Suppose K, H, L, B, are as above and furthermore L : D(L) — K is
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Fredholm and B, is trace-class on ‘H, and Tr |B,| is bounded for z in a domain C in the
complez plane having z =0 as a limit point. Then

index L = lim f(z). (A.22)

z—0

Proof: Since L is Fredholm, so are LIL and LL! and the zero eigenvalues of LTL and
LL' are isolated. Obviously ker L'L = ker L and ker LL' = ker L. Let P, be the
projection on ker L1L and P_ the projection on ker LL!. Then the operator

~ z

BZ:trm—trP+—tr

z
m +trP_. =B, —trPy +tr P_ (A23)
is trace-class since B, is and Py are finite dimensional projections. Further lim,_,( Bz =
0 strongly. Let {¢:}72, be an orthonormal basis. Then the series

= (¢r, B:¢n) (A.24)

k=1
converges absolutely and uniformly for z € C' and the limit of each term as z — 0 is 0.
Thus
limTr B, = 0,

z—0
lim f(z) = limTr B, + Tr Py — Tr P_ = index L. (A.25)
z—0 z—0
Now we find the bridge between the region z — 0 where the index is computed (according
to Lemma 1), and z — oo where Tr B, is computed explicitly.
Lemma 2: With all the assumptions and definitions preceding Lemma 1, suppose B, is
trace-class for z in a domain C. Then f(z) = Tr B, is analytic for z € C.
Proof: Let fy(z) = chv:l(m,Bzm). Then each fx(z) is analytic and fx(2) is bounded
for all N and all z in a compact subset of C. Thus f(z) = limy_, fn(2) is analytic in
C.

Now the analytic function f(z) can be expressed as

2£(2) = lim A4S, (2, ) + / AP A, (3, ), (A.26)

R—o0 S}Iz)*l

with suitable defined functions J, and A,, see [34], Proposition 1. In the special case
of (A.9) that we are interested in, the bulk contribution of A, vanishes and we are left
with an integral over the boundary S2-1:

1
f(z) = WQ[UL (A.27)

QU] = ﬁ(;ﬁ)z lim tr (U(x)(dU(:z:))D_1>. (A.28)

5 R—00 S}Iz)*l

For a proof see [34].
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A.3. An Index Formula for Dirac Operators

Together with Lemma 1 this gives the final result:
Theorem 2: Let L be a first order differential operator on RP, D odd, which up to
C™ zero order terms vanishing at infinity is of the form

L=1i60 ® 1, +ill, ® ®(z), (A.29)
where the 8 are constant p X p matrices, p = 2P=Y/2 satisfying the algebra
5167 + 5750 = 26¥11,,. (A.30)

®(z) is a m x m Hermitean matriz of C* functions such that |®(x)] > B > 0 for
|z| > C, where B and C are constants, further ®(x) homogeneous of order 0 as x — oo.
Let U(z) = |®(z)|~'®(z). Then the index of L is given by

indea I = #( i )D—_ lim tr (U(m)(dU(x))D_1>, (A.31)

2(%)' g R—00 53—1

where (dU)P~! is the (D — 1)st power of the matriz dU with the differentials being
multiplied by exterior multiplication.

Remark: The formula (A.31) remains essentially the same if D is even, and it gives
trivially that index L = 0 in that case, for any L of the form (A.9).

A.4. Example: the Kink

Consider D = 1 space dimension, only one internal degree of freedom and L of the form

d
L=-—+ (), (A.32)

where ¢(z) is a real valued function on R. Observe that this exactly coincides with the
upper right part of the Hamiltonian of our ¢4 theory in chapter 2. Let

lim ¢(z) = ¢t < 00. (A.33)

r—+00

Then we can apply (A.31) and get

: Ll ¢4 ¢—]
dex [ = - | L+ — —|. A.34
aex 2[|¢+| 6| (A.34)

The vaccum sectors have vanishing index, whereas kink and antikink carry index +1
and —1, respectively.
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A.5. Example: SU(2) Monopole

We study the Dirac equation for an isospin 7' particle in the field of a static system of
SU(2) magnetic monopoles in 3 + 1 dimensional Minkowski space. We have the gauge
potentials and Higgs field

Ai(x) = Al (x)T*,

)

B(x) = ¢*(x)T" +m, (A.35)

with ¢ running from 1 to 3. ¢% is a vector in internal space and takes on its fixed vaccum
expectation value ¢?¢® = F? as |x| goes to infinity. m is the mass of the fermions. The
generators of isospin rotations are

[T, T% = ie"°T°, T°T® = T(T + 1)1.. (A.36)
The configuration
AS =0, Ag = Ag(x)a P = ¢a(x)’ (A37)

could arise as a static finite energy solution of the coupled Yang-Mills-Higgs equations
in the absence of fermions. If this is the case, A and ¢ = {¢*} meet the earlier require-
ments'. This configuration represents a system of total magnetic charge (Kronecker
index, Brouwer degree, Poincare-Hopf index, homotopy number) [38]

1
Qtop — _8_7r y Eabc¢ad¢bd¢c. (A38)
Qiop is essentially the degree of the mapping ¢ : Sghys — S?m, where Sghys corresponds

to the boundary of the physical space and ant to the possible values of the field ¢ with

fixed length. The index formula reduces to (D = 3)

index L = % tr UdUAU, (A.39)

167 Sgo

where U = |®| '® = (®'®) /26, What is left is to evaluate this (A-independent)
integral. Let therefore A\, (x), 1 (x) be the eigenvalues and eigenvectors of ®(x):

(I)(X)’(/)a(x) = ()‘a(x) + m)"/)a(x)- (A4O)

At |x| = oo those A, are just =T, —-T +1,...,T — 1,T (for the moment we can take
F =1, since the index depends only on the ratio 7, finally we can go back to arbitrary
F). Now we have to verify [93] the formula

U =Y [ms&gw (%) (), 05 @ (x)eh5(3)) | () (185 (x)) T, (A.4L)

!For a discussion of the asymptotic behaviour cf. chapter 4.
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where (. ,.) denotes the inner product in the finite-dimensional space of the matrix ®(x)
and the sum is over all & and 8 where the product (A, (x) 4+ m)(Ag(x) + m) is negative.
In the next step we perform matrix multiplication and trace operation in order
to calculate the index via (A.39). This can be done as follows: at each point x let
¢%(x), ¢f(x), ¢5(x) be an orthonormal set of three-vectors. The following calculations
are performed at spatial infinity. There ¢® is a vector with fixed length and we have

0j¢" = c197 + c245

89q)($) = 8j(¢aTa + m) = Clel + CQjTQ, (A42)

with
Ty = T = —m, (A.43a)
T, = Ta¢,?, 1=1,2. (A43b)

These T; can be arranged to form raising and lowering operators

T, =T, +iTy, (A.44)
with
Titpo = VT(T +1) = Aa(Aa + D) acti- (A.45)
Conversely
T = %(ﬁ T, Ty = %m _T). (A.46)

Then it is easy to calculate the following matrix elements

(o Ths) = 50rurg 1 VT F 1)~ Aalh £ 1)

+ %5AQ,AB+1\/T(T+1)—Aa(xa—l), (A.47a)
(o Tos) = 500yt VI H 1)~ aCha — 1)

- %(AQ,AB_H/T(T-I-l)—)\a()\a-l-l). (A.47b)

Let {m} be the largest eigenvalue of ¢*T'* smaller than m, or, if there is no such eigen-
value, the smallest eigenvalue of ¢*7"* minus one. Then only (Ay, Ag) = ({m},{m} +1)
and (Aq, Ag) = ({m} + 1,{m}) contribute, since A, and Az have to differ exactly by +1
(otherwise all matrix elements vanish due to the Kronecker § in (A.47a) and (A.47b))
and the values A\, +m and Ag 4+ m have different sign, therefore (A, +m)(Ag +m) <0,
so they appear within the sum (A.41). With this information, a short calculation gives

tr UAUAU = 2i(T(T + 1) — {m}({m} + 1)) c1;cojdz'da’. (A.48)
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Using
e dp’dgC = ciicajda’da’ (A.49)

and formula (A.38) for Qi,p we get

index L = —— [ trUdUdU
].67'(' Sgo

_ _8%(T(T+1)—{m}({m}+1)) /S ) € gad g

= (T(T +1) = {m}y({m} + 1)) Qrop- (A.50)

For arbitrary F' replace m by 7 in this formula. For Q,, = 1 and m = 0 two cases have
been studied by JACKIW and REBBI [26]:

e Isospinor case

withindex%-%—l—%-%:l.

e Isovector case

with index 1-2 — 0 = 2.

Remark: Here % and an eigenvalue of ® coincide, and therefore the continuum
spectrum extends down to zero. So zero is no longer isolated, L not Fredholm.
But WEINBERG [94] argues, that there are no contributions from the continuum

to the index and (A.31) is still applicable.

The general formula (A.31) is in agreement with the explicit calculations.



B. The Atiyah-Singer Index Theorem

B.1. Basic Definitions

Consider the eigenvalue equation of the Euclidean self-adjoint Dirac operator

Don(@) =7u(0u + Ap)eon (@) = Anpn(z). (B.1)
The ¢,, form an orthonormal basis. Since {,,75} = 0 we have
Dysen(x) = —Anyson(2), (B.2)

so 5 takes eigenfunctions with positive eigenvalues into eigenfunctions with negative
eigenvalues and vice versa. In the subspace S of zero modes

S = {¢h : Pg, =0}, (B3)
we have

[, 5] = (Pvs — v P)l = 0, (B.4)

and therefore can choose the zero modes to be eigenfunctions of 5 with positive or
negative chirality. Let

Py = %(]1 +75), (B.5)
and construct
ona (@) = Pagl (2), (B.6)
with
Y5¢nt(z) = £ps(2), Pops(a) = 0. (B.7)

The index of each self-adjoint operator vanishes by definition,
index Jp = dim ker P — dim ker Jp =0, (B.8)

and nothing can be said about the number of zero modes of . Instead of ) we analyse
the Weyl operators

Dy = PP.. (B.9)
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We have
Dl =D, (B.10)
furthermore define Laplace operators according to
A, = DD, =D_D,, (B.11a)
A_ = D'D_=D,D_. (B.11b)
On the spaces of zero modes S+ of positive and negative chirality,
S+ ={phs msphs = £onil, (B.12)
they act as shown in Figure B.1, for instance
Dipy = DP.Pro=DPryp
1 1
= PU+v)p=5U—-7)Pp=P_Dy
= AP_p=)p_. (B.13)
Figure B.1.: The zero mode space.
The index of the Weyl operator is given by
index D, = dimker Dy — dim ker Dj_
= dimker D — dim ker D_
= ny—n_, (B.14)

the index of D, is the number of zero modes with positive chirality (ny) minus the

number of zero modes with negative chirality (n_). Furthermore

index D_ = —index D,.

(B.15)

Now we want to find a connection between the index of a differential operator D (later
D = D) and the heat kernel of the corresponding Laplace operators A, = D'D, A =
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DD'. In the case of a compact manifold M, the spectrum of A is discrete and each
eigenvalue has finite degeneracy.

Lemma 1: The spectrum of nonzero eigenvalues of Ay and A_ is the same.

Proof: suppose the eigenvalue equation

Ai ¢y = DDy = Ay (B.16)
Then D¢y = 1)y is an eigenfunction of /A with the same eigenvalue
A_y = DD D¢y = AD¢y = M. (B.17)

Remark: this argumentation does not hold for zero modes, the number of zero modes
may be different for both operators.

Lemma 2: ker Ay = ker D, ker A_ = ker D1,

Proof: We have ker Ay = {f: A,f =0}andker D ={f: Df =0} f Df =0
then automatically A, f = DIDf =0 and if f € ker A, so we have 0 = (D'Df, f) =
(Df,Df) and consequently Df =0, i.e. f € ker D.

B.2. An Index Formula for Euclidean Dirac Operators

With the definitions F, = {¢)} (eigenfunctions of A) and E_ = {¢,} (eigenfunctions
of A_) we have the following
Theorem 1: index and heat kernel

index D = tr E+e*m+ —trp_e P, V> 0. (B.18)
Proof:
et = Sl o) - E ()
= > [Z CNENEDS (¢A|¢A>]
A N ¥
= Y e P[dim E4(\) — dim E_(\)]
)

and, since for A # 0 the dimensions of E,(\) and E_()\) are equal,

trpoe Mt —trp et = e "[dim E4(0) — dim E_(0)]
= dimker A} — dim ker A_
— dim ker D — dim ker Df
= index D. (B.19)

In the case of our Weyl operator we have the
Theorem 2:

index Dy = tr 5’)/567&)2, vt > 0. (B.20)
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Proof:

—tD_Dy —tDyD_

index D, = trg,e

= tr 5+e*tlp2]P’+ —trg_ et p_

—trg e

= ftr 5:5+@5_67tm2 (P+ — P,)

= tr 5’)’567”2)2 =tr ’)/567tA. (B.21)

Here we used a power series expansion of the exponential function as well as the cyclic
property of the trace operation.

What is left is to evaluated the right-hand side of equation (B.21). In order to do
this, we expand the function e ** into eigenfunctions x,(z) of A [73]. Applied to a
square integrable test function ¢ we get

o) = [dyett Y xnlo) wlely)

/ dy G (2,4, H)p(y). (B.22)

The operator e 2 has a kernel function, the heat kernel

Galw,y,t) = 3 (@) (y) = (a|e™|y), (B.23)
n
which satifies the so-called heat equation
0
AGA(Iayat) = _EGA(xayat)' (B24)

This allows for the calculation of the index via the Fujikawa procedure [95, 73]: expand
the heat kernel into Seeley coefficients a,,

I — )2
Gal(z,y,t) = 1D/2 exp [— %] Zan(:c,y)tn, (B.25)

(4rt)

pick up the t-independent part and perform ¢ — 0. In D dimensions only the coefficient
ap/e contributes. For the Dirac operator we find ag ~ 1, a; ~ G, az ~ G?,....

For general even dimensional compact manifolds M” follows the ATIYAH-SINGER
index theorem. ATIYAH and SINGER have shown [63, 64], that the analytic index defined
in (B.14) equals another index which is fully determined by topology and therefore called
topological index. This is a topological invariant. Moreover, it can be expressed as an
integral over certain characteristic classes, which can be found explicitly for a given
differential operator.
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In the case of the Dirac Operator ) containing the Yang-Mills gauge potential A =
A, dzHT* the characteristic classes are determined by the Chern character.
Definition: the Chern character ch(G) is given by

. . 1/ i\2
ch(G) = tr exp e T Y . tr G2+ ..., (B.26)
27 27 20\ 27

where r is the dimension of the group, and G is the curvature two-form

G =dA + A%, (B.27)
Theorem: ATIYAH-SINGER index theorem
index Dy = / ch(G). (B.28)
MD

The integral is taken over the compact manifold MP with dimension D, so the D/2-th
term is picked up

index D+ = W <%> /MD tr G . (B29)

B.3. Examples: 2 and 4 Dimensions

Example: in D = 2 dimensions we get

. 1 1

index Dy = i /dx € Fw = "o Jes F. (B.30)
This equation can be used to determine the number of zero modes localized near vortex-
like configurations in planar electrodynamics [96], but will not be discussed here.

Example: in D = 4 dimensions we get in the same way

, 1/i\? ) 1 )
index D+ = 5(%> /94 tr G° = _W i tr G y (B3].)

observe that the index is equal to the topological charge of the Yang-Mills background
field defined in chapter 5:

index Dy = Qpont- (B.32)

Interpretation: in a background field with Pontryagin index Qpont the number of zero
modes with positive chirality minus the number of zero modes with negative chirality is
equal to Qpont-

Due to the trace operation the index depends on the representation of the gauge
group. In the fundamental representation of SU(2), where tr T¢T® = —%6“ the index
of D, is equal to Qpont, in the adjoint representation we have tr T°T? = —2§% and
the index of D is equal to 4Qpony. In general, for fermions in the representation with
isospin T, we have [97, 98|

2
index Dy =ny —n_ = gT(T + 1)(2T + 1)Qpont - (B.33)
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