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Summary

As supersymmetry is a theory with very interesting properties, we want to approach it using

an FRG formulation. Therefore, we deal with supersymmetric flow equations in the scope of

this work. This thesis is organized in two main parts.

In the first few chapters we apply techniques well know from bosonic models in the framework

of our supersymmetric formulation of the FRG. By doing so we establish the means to discuss

physically more relevant models. We start with supersymmetric quantum mechanics and use

those as a testing ground for the derivative expansion. In passing we also investigate the flow

equations in the spontaneously broken phase and highlight the difference to the unbroken ones.

In a next step we use the shooting method to calculate the fixed-point solution in LPA’ of the

N = 1 Wess-Zumino model in two and three spacetime dimensions. We discuss the polynomial

expansion around zero and how the Ising fixed point can be found using this technique. The

spectra of the fixed points is given and the different implementations of a variation of the

anomalous dimension along those fluctuations is discussed.

In the second part of this work we turn toward phenomenologically more relevant topics.

The first is emergent supersymmetry. We study a Yukawa theory and show how employing

the supersymmetric techniques and flows the emergence of supersymmetry shows up. We find

that the spectrum of a fixed point of such a theory should decompose into a supersymmetric

part and a explicitly supersymmetry breaking part. This is true as long as the fixed-point

couplings are supersymmetric. The last part of this work is dedicated to the investigation

of the supersymmetric O(N) model in three spacetime dimensions. A lack of a global fixed-

point solution emerges. In order to see this we employ a polynomial expansion as well as the

shooting method. We present the results up to order LPA’. We shed some light on the results

by discussing the critical dimension of the model.
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Zusammenfassung

Supersymmetrie ist eine Theorie die fortwährendes Interesse auf sich zieht. Aus diesem Grund

wird im Rahmen dieser Arbeit die funktionale Renormierungsgruppe (FRG) verwendet um aus

diesem Blickwinkel Einblicke zu gewinnen. Die Arbeit ist zweigeteilt:

Im ersten Abschnitt diskutieren wir technische Aspekte und untersuchen die Anwendbarkeit

von Techniken bekannt aus bosonischen Theorien. Wir befassen uns mit supersymmetrischer

Quantenmechanik und diskutieren in diesem Rahmen die Ableitungsentwicklung. Des Weiteren

wird der Unterschied zwischen supersymmetrischen Flussgleichungen in der symmetrischen und

spontan gebrochenen Phasen herausgearbeitet. Danach wenden wir uns den Wess-Zumino

Modellen in zwei und drei Raumzeit Dimensionen zu. Wir verwenden ein Schießverfahren

um die Fixpunktlösungen zu bestimmen. Zusätzlich beschreiben wir, wie eine polynomielle

Entwicklung um den Ursprung es erlaubt, den Ising Fixpunkt zu finden. Wir geben die Spektren

der Fixpunkte und untersuchen den Einfluss verschiedener Implementierungen der Variation der

anomalen Dimension.

Im zweiten Abschnitt wenden wir uns experimentell physikalisch relevanteren Themen zu.

Wir starten mit emergenter Supersymmetrie. Eine Yukawa Theorie wird umformuliert und,

mittels der Techniken bekannt von den supersymmetrischen Theorien, das Auftauchen der

Supersymmetrie gezeigt. Es zeigt sich, dass das Spektrum der Theorie aus einem supersym-

metrischen und einem explizit Supersymmetrie brechenden Teil besteht. Wir sehen dies, so

lange der Fixpunkt Kopplungen aufweist, die Supersymmetrie erlauben. Abschließend betra-

chten wir das supersymmetrische O(N) Model in drei Raumzeit Dimensionen. Wir zeigen mit-

tels polynomieller und Schieß-Verfahren, dass kein globaler Fixpunkt existiert. Die Ergebnisse

werden bis zur LPA’ (lokale Potenzial Approximation) Trunkierung gegeben. Wir beleuchten

diese Ergebnisse mit Hinblick auf die kritische Dimension des Models.
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1. Introduction

With the emergence of todays picture of elemantary particle physics and the fundamental forces

of nature it remained unclear how or if gravity can be non-trivially combined with these forces

[1]. In [2] and most strongly [3] no-go theorems were formulated that a bosonic symmetry will

not be able to provide us with such a generalization.

In order to circumvent this problem fermionic symmetry operators were necessary [4]. This

was the birth of supersymmetry [5, 6]. A symmetry that connects bosonic and fermionic degrees

of freedom. Over the years a lot of useful applications of supersymmetry in works to enhance

our understanding of fundamental processes of nature were found. String theory [7, 8], as

an approach to formulate a fundamental UV complete theory, needs supersymmetry in most

formulations to avoid, e.g., tachyonic states [9]. These arise for example if one formulates a

purely bosonic string theory . One reason for the need of supersymmetry is the property that

fermionic loops contribute with an opposite sign as bosonic ones and therefore a cancellation

can occur [10, 11]. The latter work inspired the construction of the Wess-Zumino model [5].

These cancellations do also occur for the ground state energy calculation in supersymmetric

models. This helps reducing the result for the cosmological constant from an QFT point of

view and less fine tuning is necessary to match the observed one.

As complete as the standard model looks like from high energy collision experiments [12–17]

we have indications of physics beyond the standard model. Planck data as well as astrophysical

observations show that our current understanding of cosmology needs additional candidates for

dark matter [18–25] as well as an explanation for dark energy [26]. Minimal supersymmetric

theories provide a natural candidate for dark matter [27–29] if R parity is implemented. R

parity [30–32] does not allow a decay of a superpartner into purely SM matter and therefore

provides us with a stable particle that may fulfill the role of dark matter. Also for models of

gauge unification, that is the standard model SU(3)cxSU(2)LxU(1)Y can be unified into one
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gauge group, e.g. an SU(5) [31, 33, 34] or SO(10)[35–38] 1, supersymmetry is of relevance. A

minimal extended standard model shows a running of the gauge couplings of the mentioned

sectors in such a way that they meet at approximately one point. There the breaking of the

higher symmetry could have taken place.

There are a lot of exclusion plots as given before but the unknown mechanism of a possible

supersymmetry breaking provides a lot of free parameters which make it hard to make any

falsifying statement [42–44]. The models of supersymmetry breaking are typically perturbative

ones and it could be insightful to gather means in order to deal with strongly coupled super-

symmetric systems. One problem is that supersymmetry on the lattice is in principle broken as

no infinitesimal distance is present anymore due to the lattice spacing. It was shown that one

can try to stick with a subset of supercharges and this seems to allow for keeping supersymme-

try present in the thermodynamical limit [45–48]. Nonetheless, this is limited to systems with

sufficient supercharges.

The case of supersymmetry has not to be limited to d ≥ 4. It is possible to construct optical

systems so that the wave equation is supersymmetric[49]. Therefore a supersymmetric theory

is realized.

Also in lower dimensions supersymmetry is a valid symmetry that could show up in solid-state

physics. In d = 2 there is a family of superconformal models. Especially the tricritical-Ising

model, the second unitary minimal model, is isomorph to the first unitary minimal supercon-

formal model [50, 51]. There supersymmetry is present in a physically relevant system.

Furthermore such a realization of supersymmetry at criticality has not to be limited to d = 2.

In this work we look at d = 3 and confront ourselves with the possibility of a general Yukawa

theory showing signs of supersymmetry2[52–56]. The inclusion of such a additional symmetry

in calculations can prove helpful and provide a better understanding of the occurring phase

transitions.

In order to do so we resort to a by now well established method, the functional renormalization

group (FRG) in the form we are using firstly formulated by Wetterich [57] and shortly thereafter

by Morris [58]. Over the last two decades a lot of time and work was spent on this method to

treat strongly coupled non perturbative systems. There are other functional methods available

for the treatment of such systems, e.g. Schwinger-Dyson equation ([59, 60, 60] or more recent

1Although both SU(5) (very strongly) and SO(10) are constrained by proton decay results and measurements

of its lifetime [39–41].
2As long as the field content allows in principal for supersymmetry.
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[61]) or Polchinski equation [62, 63]. These methods do not have to compete with each other

but may profit from the virtues each has in different situations. So it is possible to use results

of one method as an input for another one [64].

The particular approach using the FRG equation in its one loop formulation we use has

proven itself very successful. Problems in QCD [65–70], the Higgs-mass, and solid-state physics,

were dealt with. Furthermore, it provided us with a efficient tool to study a new approach to

quantum gravity, i.e. asymptotic safety [71–79]. The last even provided us with an approach

how to understand the seemingly necessary dark energy from a different point of view [80, 81].

Higgs studies within the FRG approach provided us with a new explanation for the mass limits

and elucidate the vacuum stability problem [82, 83].

In solid-state physics the common believe about the phase diagram in a honeycomb lattice

was improved on and the phase structure clarified [84].

As we can see the method is flexible enough to treat a broad range of models. In general

one can also treat problems that are within the range of perturbation theory but the numerical

results are typically not comparable. The flexibility given by the method is often bought with

the price that other methods can provide more significant digits in concrete calculations. But

these methods are typically more specialized.

One can also treat supersymmetric theories with the FRG [85]. This is even possible for

supersymmetric gauge theories as was shown in [86]. The trade-off in this case was between the

number of degrees of freedom and the linear realization of the symmetries3. This work concen-

trates on the more easy case of mostly O(1) and at the end also O(N) theories in dimensions

two and three. We always work at zero temperature and use an uniform field approximation.

In [88] non-zero temperatures were taken into account.

Why should we be interested in these kind of systems? As mentioned before there is still

a search for supersymmetry going on. An approach that can also deal with strongly coupled

systems may come in handy when one is describing the breaking of supersymmetry. Especially

it would allow us to reexamine some statements that were made from a perturbative point of

view. In order to do so we feel that it is necessary to gain a better understanding of supersym-

metric FRG formulations. Especially some work that has been done for bosonic models should

be reinvestigated in the supersymmetric case.

3Note that the common Wess-Zumino gauge is not supersymmetry invariant. A gauge transformation is

necessary to reestablish it [87].
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How to formulate a converging derivative expansion [89–92]? How well are polynomial expan-

sions and shooting methods doing [93, 94]? How do they compare with each other? Are these

methods sufficient to compute the interesting part of the spectrum?

We do not only validate these tools but also obtain some new insights. Let us look at the

scope of the work. We start with the introduction of some technical aspects that is used

throughout this work. This consists of some words regarding the FRG. Here we point out some

of the aspects we have to take care of and what we can expect from the used method.

As a next step aspects of supersymmetry are presented. This cannot be complete in any way

but there is a lot of literature available to cover this subject. As we are only using a small subset

of the general theory of supersymmetry we hope the small part given may prove sufficient.

As a last part we provide a technical explanation on the calculation of the later on introduced

fixed points and the spectrum of their perturbations θi. We provide it as part of this work and

not the appendix as it explains some differences noted in a previous work on Yukawa theories

[56].

In the second chapter we think about a formulation of the derivative expansion in the case

of a supersymmetric theory. We use a quantum mechanical toy model for the implementation

in order to be able to compare our results with exact ones. We provide a way how to improve

on a truncation in a systematic way and show that our ansatz does converge. As a second

part we investigate some aspects of supersymmetry breaking. Especially a pitfall in possible

calculations is pointed out.

After these initial steps we finally turn toward d = 2, 3 and study the Wess-Zumino model.

We compute the fixed points in those models using the formerly described method. Some

additional discussions on the spectrum of perturbations as well as other means to find fixed

points are also presented. Also some insight into the critical dimensions for some couplings is

provided.

Continuing from the knowledge we gained from examining the d = 3 Wess-Zumino model we

deal with a more general Yukawa theory. We show that if the field content of the Yukawa theory

is the same as the one of the Wess-Zumino model we can use the supersymmetric formulation

of the flow equations to deal with it. We see the influence of supersymmetry on such a model.

To do so we use a technique that was previously used in the context of four Fermi theories

[64, 95] and is known there as dynamic bosonization.

After dealing for some prolonged time with O(1) models we finally turn to the case of the

12



O(N) models in d = 3. While extensive studies of the large N case can be found in the literature

[96–98] little seems to be known for the finite N case. We try to close this gap. To understand

our results we rely on the work on critical dimensions done before.

At the end of this work and each chapter we provide a summary of the results. Therefore,

the summary at the end is quite short and does not pick up every detail that was already given

at the end of the chapters. Instead we try to give a summary of the emergent picture and what

can be learnt from the overall study. Also an outlook is presented at this point.

The compilation of this thesis is solely due to the author. However, a large part of the

work presented here has been published in a number of articles and in collaboration with sev-

eral authors. Chapter 2,4 and 5 rely on work done in collaboration with Andreas Wipf and

Omar Zanusso. Chapter 3 is based on joined work with Marianne Heilmann, Benjamin Knorr,

Andreas Wipf and Marcus Ansorg. Chapter 6 is founded on a collaboration with Marianne Heil-

mann and Andreas Wipf. The implemented Slac derivative formulation is using input provided

by Andreas Wipf and Georg Bergner.
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2. Technical Introduction

2.1. Notes on the FRG

As already mentioned we make use of an exact renormalization group method which is often

called the Wetterich equation. Introduced in the early ’90s, it has proven a quite powerful

method to tackle different physical problems. The main idea goes back to Wilson [99] who

introduced the Wilsonian renormalization group flow in 1971. The idea is to calculate quantum

corrections step by step according to their energy or in other words the momentum they are

carrying. This can be done in discrete or continuous steps, in the following we use the latter.

Let us make ourself familiar with the used equation. In Euclidean spacetimes it reads [57]

k∂kΓk[Φ] =
1

2
STr

(

k∂kRk(Γ
(2)
k +Rk)

−1
)

. (2.1.1)

On the left hand side we have the aforementioned parameter k that determines the energy scale

which ranges typically from 0 to some UV cut-off scale Λ. Γk is the effective average action that

is a functional of the averaged fields Φ and is changing with k according to above mentioned

equation. At k = 0 we get the effective average action Γ0, which describes effectively interactions

we may be interested in, after having integrated out every quantum fluctuation present in the

system. On the right hand side we find the supertrace of a function of the second functional

derivative of Γk with respect to the fields. The also found Rk is a regulator function that

appears in the cut-off action ∆Sk = 1
2

∫

ΦRkΦ so that the denominator of (2.1.1) is the full

2-point function at the scale k modified by an Regulator,
→

δΦ (Γk +∆Sk)
←

δΦ. The choice of Rk

is not unique as long as some requirements are matched. The reason that ∆Sk is quadratic in

the fields goes back to the fact that one wants to obtain a one-loop exact equation as stated

before.

In actual calculations one uses an effective action that only spans a subspace of the allowed

theory space. The latter being determined by the field content and the symmetries. This is

in order as in a generic scenario solving above equation is not possible from a practical point
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of view. The procedure of limiting Γk is called choosing a truncation. There are different

systematic truncation schemes one can use [100, 101]. Throughout this work we only deal

with the so-called derivative expansion [89, 90]. The name stems from the fact that one is

expanding in terms of derivatives. The leading order approximation is given by a potential

plus a standard kinetic term. This could be expanded to the next level by allowing for a

wavefunction renormalization and further more including also terms with more derivatives (e.g.

∂4 in a bosonic theory [92]). Since we are lacking, in general, a systematic way of calculating

the errors made by a truncation we can only try to estimate it. One way is to start with a low

order truncation and go to higher truncation orders. Then monitor the changes. In an ideal

case these quickly fall off and we may trust our results. This is similar to calculating a Taylor

expansion of a function and trust the result when adding higher order terms does not change

the result instead of calculating the preferred error estimate. In both cases there may also be

a finite radius of convergence, limiting the range in which we may trust our results. A study

of the convergence of the derivative expansion can be found in the chapter on supersymmetric

quantum mechanics 3 .

As already pointed out the choice of Rk is not unique. A broad range of functions are

allowed as long as they do respect some fundamental properties 1 . This means without any

truncation Γ0 is only a function of ΓΛ and independent of the choice of Rk. When we introduce

a truncation this statement is not true as one can suspect. This implies that a reasonable

choice of Rk probably improves the rate of convergence of the truncation scheme. One thing

that comes to mind is to look at the internal symmetries of the given model. While it should

be straightforward to implement the symmetry also in the effective average action at scales

different from Λ this could be not the case for the cut-off action. Given a nonlinear symmetry

the construction of an invariant quadratic term is generically impossible. But adding a term

that does not respect the symmetry breaks the symmetry on the right hand side and therefore

Γk for all 0 < k < Λ. Thus, also very likely in an truncated scheme for k = 0 where we want to

extract the informations about infrared physics. For this reason it is advisable to look out for

a scheme in which the symmetry is realized in a linear way. This is how we proceed. If this is

not possible one has to rely on more involved methods. For instance using a background field

method [102–106] and using modified Ward-Takahashi identities [107–111] .

There are also other ways to optimize the regulator in some sense. [64, 112–115] But let us

1These are in fact: lim
k→0

Rk(q) → 0, lim
k→Λ→∞

Rk(q) → ∞, lim
q→0

Rk(q) > 0
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turn a bit more to special points in theory space and their influence on flows as the change of

Γk along k is named. Here going along the flow means going to smaller k. Due to the form of

the flow equation (2.1.1) there are a lot of similarities with the theory of dynamical systems.

There, attractive and repulsive orbits are of special interest. In the later part of this work we are

interested in theories in two and three dimensions. Here, the interesting orbits can be turned

into fixed points by a rescaling of the couplings in Γk and the field with some power of k. These

fixed points play an important role for the observed infrared physics. One trivial fixed point is

the Gaussian one where all couplings vanish (neglecting the vacuum energy). Obviously, there

is no flow at all in this case. A second fixed point could be identified at infinite couplings, in a,

in some sense, compactified theory space, since then the denominator of the right hand side of

the flow equation vanishes. However, we are looking for a another type of fixed points. Those

have non-trivial couplings and describe phase transitions [116]. They have a finite number of

relevant or repulsive directions and are attractive in the other directions. Associated with each

direction is a critical exponent θi that describes the behavior near the fixed point. At least the

relevant ones can be related to the thermodynamical critical exponents of phase transitions.

Therefore the most relevant information extracted is the existence of a fixed point and the

relevant critical exponent and not the actual scheme dependent couplings at a fixed point.

2.2. Notes on Supersymmetry

Before we start to investigate certain supersymmetric models let us remind ourself of some

general properties of supersymmetry. More technical aspects can be found in [117] . Super-

symmetry relates fermions to bosons and vice versa by a fermionic symmetry. Fields combined

in such a way are called multiplets. The couplings betweens the fields of such a multiplet are

not independent anymore and in this sense the degrees of freedom of a theory are reduced. A

prominent example is the fact that the masses of all particles within a supermultiplet have to

be the same [118] . Also those fields have to transform under some internal symmetry in the

same way. This, for instance, limits the possibilities to identify fermions and gauge bosons of

the standard model of particle physics as part of one supermultiplet as they do transform under

different representations.

Since this work focuses on lower dimensional models without gauge symmetries let us come

back to the pieces of information we need in the further scope of this work. In supersymmetric
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theories it is common to formulate the theory in two ways. One is called on-shell while the

second one is called off-shell. The naming is related to the fact that the first one has to use the

equation of motions to close the algebra while in the second formulation this is not necessary.

This is achieved by an introduction of auxiliary fields. In this work we always denote them

by F . A second advantage of the off-shell formulation is that the supersymmetry is linearly

realized. This is of great importance for the FRG formulation as we want a regulator that

respects the symmetry of the theory and is quadratic in the fields [57] .

In the following we are concentrating on the off-shell formulation. In fact we use the superfield

formalism [119]. As mentioned one has to introduce an auxiliary field which is purely algebraic

and quadratic in the action ∆SΛ describing the theory at the cut-off scale. This allows to easily

integrate out the auxiliary field within a path integral formulation of quantum field theory.

On the other hand one can solve the equation of motion (EOM) of F and end up with the

same result. Taking quantum corrections into account while staying off-shell the auxiliary field

obtains a kinetic part and becomes dynamical. So at intermediate scales 0 < k < Λ it is not

straightforward to compare the on-shell with the off-shell formulation.

We are going to integrate out all quantum fluctuations in order to arrive at the effective

average action. At an IR scale k ≈ 0 we eliminate the auxiliary field in order to obtain the

physical quantities of interest. If we are only interested in the ground state energy and the

mass of the supermultiplet we may forget about the kinetic terms we obtained for F and solve

again a algebraic EOM. When dealing with a supersymmetric quantum mechanical model we

see how this procedure works.

It is noteworthy to point out that due to the above prescription to obtain the effective

potential the auxiliary field still indicates whether supersymmetry is spontaneously broken or

not. When F obtains a non zero vacuum expectation value the symmetry is broken. So the

best way to look for supersymmetry breaking along the RG flows is to check whether F obtains

an expectation value. This also has an influence on our construction of the flows which we

discuss in the following chapter 3.

2.3. Introduction to the shooting method

As the shooting method combined with a spike plot [56, 120–123] is the main tool to find the

fixed points within this work there are some comments in order. The fixed point equations, we
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have to deal with, have the form

0 = S + u′′(φ)F ′(u′(φ)) = S + ∂φF(u′(φ)), S = −αu+ γu′φ, α > γ. (2.3.1)

Here S is the scaling part of u and F is the dimensionless formulation of the right hand side of

the dimensionful flow equation for the potential term u. Starting at φ = 0 we integrate toward

φ = ∞. The fixed-point solutions are quantized and so we expect to stop at some φmax. At

this point a singularity occurs in the numerical evaluation of the ODE. We keep track of the

values φmax with respect to our initial conditions. Near the initial conditions that belong to a

global solution we expect to see large values of φmax. In fact a rapid change in φmax is a better

indication of a fixed-point solution. The shape of φmax as a function of the initial conditions

is obviously model dependent. We investigate the quantization condition for a model similar

to the Wess-Zumino model. Furthermore we give some technical details that are insightful but

not essential to understand the following chapters. Therefore skipping to the next section is

possible for the hasty reader.

As we see later on we end up with a F that fulfills

lim
u′2→∞

F ′ → +0, F ′(0) < 0, F ′(u′) = F ′(−u′). (2.3.2)

F ′′(u′) < 0, F ′′′(u′) > 0, for u′ > u′0 (2.3.3)

for some positive u′0. See Fig. 2.1 for an example and the appendix for the actual computation.

We expect a convex effective potential u2/2 for large φ. This means |u| → ∞ for large |φ|. In

order to fulfill the above equation 2.3.1 we need |u′| → ∞. Therefore F ′ has a zero crossing at

φ0 ∈ (0,∞). At this point the differential equation has a potential singularity. The only viable

solution is S(φ0) = 0. This is one quantisation condition.

It was pointed out that in the scalar model the behavior at infinity provides a second quan-

tization condition [90]. Since the general form of the fixed point equation is not to different in

our case from the scalar one we would expect to encounter also this second one. Given η and

fixed parity only one free parameter remains. Having two quantization conditions could easily

overconstrain the system. We are looking at both constraints and investigate them in more

detail to understand what is going on.

Let us assume that there exists a solution that is crossing the first possible singular point φ0

in a regular way. Note that in this region we have F ′ > 0,

u′′ = (αu− γu′φ)/F ′ > 0 ⇔ (αu− γu′φ) > 0. (2.3.4)
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For reasons of symmetry u′′ > 0 can be chosen without loss of generality. We can imagine two

possible ways for a singularity to arise. We leave the regime u′′ > 0 and afterward the regime

u′ ≫ 1 or u′′ → ∞ for finite φ. Let us examine these two cases closer. Assume u′′(φ1) = 0+

then

αu(φ1)− γu′(φ1)φ1 = 0 ⇒ αu(φ1 +∆φ)− γu′(φ1 +∆φ)(φ1 +∆φ) (2.3.5)

= (α− γ)u′(φ1)∆φ+O(∆φ2) > 0. (2.3.6)

Therefore we never leave the considered regime. Now let us turn toward an explosion scenario

for u′′. Keep in mind that F ′(φ) > 0 and ∂φF ′(φ) < 0 is also true for positive u′′ in the region

of interest. Assume u′′(φ2) >
u′(φ2)(α−γ)
∂φF ′(φ2)+γφ2

> 0. Then

u′′(φ2 +∆φ) = (u(φ2 +∆φ)− γu′(φ2 +∆φ)(φ2 +∆φ))/|F ′(φ2 +∆φ)| (2.3.7)

= u′′(φ2) +
∆φ

|F ′(φ2)|
((α− γ)u′(φ2) + u′′(φ2)(|∂φF ′(φ2)| − γφ2)) +O(∆φ2) < u′′(φ2)

So an explosion scenario does also not take place, at least as long as the denominator ∂φF ′(φ2)+

γφ2 in the assumption is positive for some φ > φ0. Note that the denominator is monotonously

increasing in φ. In this way we are saved from any additional singularity. The behavior was

induced by the fact that the scaling term changes its sign compared to the scalar case. Indeed,

there an explosion scenario stops the further integration if some constraints are not met.

After being convinced that there are as many quantization criteria for global solutions as free

parameters let us assume that there are indeed global solutions. As described in the beginning,

we start to integrate a solution U at φ = 0 for arbitrary parameters and ends at a singularity.

This singularity is typically the zero of F ′. Assume we have chosen parameters close to a

nontrivial global solution u∗. Close to φ0 we can end up with overestimating or underestimating

u′′ compared to the values of the global solution.

Considering the first case we roughly find that u′ increases too quickly. This increases S and

decreases |F ′|. This gives a further boost in u′′. This pushes F ′ toward zero and u′′ → ∞. Our

solution terminates before reaching φ0.

Now let us turn to the other scenario. As u′′ is too small S gets too small too quickly and F ′

tends to stay finite. This provides a zero crossing of S without a zero crossing for F ′. While

this does not terminate the integration the solution ends nonetheless at a finite φ: Now, we are

stuck with a negative u′′. With a decreasing u′, F ′ encounters its zero for negative u′ at some

point. This terminates again the integration as u′′ blows up. Note that this process takes some
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integration time. We therefore expect that the termination point is larger than φ0.

A remark is in order at this point. A negative u′′ in the second scenario could obviously lead

to another change of sign of the scalar part. This allows for a zero crossing of F ′. Such a case

would then belong to a new fixed point solution. Exactly this mechanism allows for multicritical

fixed points as sign changes in u′′ are necessary for multiple minima of u and therefore u2. We

expect only a discrete set of fixed points. If this is the case then one is able to choose initial

conditions close enough to the first fixed point so that the second fixed point is not influencing

the local analysis in parameter space.

We find that choosing parameters close to the ones belonging to global solutions gives us a
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Figure 2.1.: We see the generic shape of F ′(u′) in a Wess-Zumino model on the left hand side.

On the right hand side is a plot of F ′(u′(φ)) and S(φ). We are giving two cases

close to a global fixed point solution. φ0 denotes the simultaneous zero crossing of

S and F ′ of the global solution. The plot is the case in which we underestimate

u′′ and only S has a zero crossing. The solution terminates at φmax > φ0. The

inlay shows a solution where we overestimate u′′ and only F ′ reaches zero giving a

divergence of u′′ with φ < φ0. The plots are produced using the d = 2 Ising-class

parameters.

quick change in the field value φmax at which the integration stops. In fact it should be a jump.

In Fig. 2.1 we see a plot of both cases on the right hand side. Note that according to our

analysis also the sign of S and F ′ gives away the critical parameters. This may prove helpful

when the spike plot provides no clear picture. A simple example is a non-moving singularity.

A spike plot for such a case is provided in Fig. 2.2 Nonetheless one needs more information

about the actual model as with the more generic shooting method keeping track of φmax.
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In an L2 norm we may be arbitrary close to the fixed point solution up to φ ≈ φ0 with our

numerical method. Nonetheless we are not able to cross φ0 and stay close to the correct fixed

point solution. As the F ′ = 0 property is important for the spectrum we pick up such a solution

and take it as an approximation of the correct solution up to φ ≈ φ0. In other words we are

taking the solutions on the side of the spike with φmax < φ0 and disregard those on the side

with φmax > φ0. Afterwards we take the limit in parameter space to the position of the spike.

In the present work we always consider the right hand side of the spike2.

Finally, let us sum up what we have found. We have one constraint for one free parameter. This

should lead to a quantization of global solutions. Monitoring the endpoint of an integration

determines the critical parameters, i.e. the ones of global solutions, by a quick change in the

value of φmax. We can use this knowledge as an input for a global solver or use it as an

approximation to the solution up to φ ≈ φ0. We continue with the latter.

max

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

0

2

4

6

8

max

Sign (u(1))

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2.: On the left is the spike plot for u′′ = 2
6u−φu′

− 1 and u′(0) = 0. This resembles the

fixed point equation for d = 3 in a scalar O(1) theory. We have a clear spike by

plotting φmax over σ = u′′(0). On the right we take u′′ = u
1−φ2

− 1 and u′(0) = 0.

The spike plot is governed by the non-moving singularity φ− 1. Therefore φmax is

giving away no spike while the sign change in u provides us with a good guess for

the critical parameter. Here Sign(u(1)) = (sgn(u) + 1)/3.

2The one exception is the O(N) model at d < 3. But more on this later on.
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2.4. The spectrum of perturbations

Having found a fixed point solution one can expand in all couplings as fixed point solution plus

a infinitesimal k dependent perturbation, e.g. for the potential W ∗ + ǫδW up to the leading

linear order in ǫ. The obtained PDE has the form of a generalized heat equation

∂kδu = Hδu. (2.4.1)

Here the Hamiltonian H is given by the right hand side of the dimensionless flow equation and

the time derivative origins in the left hand side. It is useful to calculate the spectrum of the

Hamilton operator in order to distinguish between relevant and irrelevant perturbations. As

is well known the negative part of the spectrum of H leads to infrared relevant fluctuations.

The eigenvalues of those are the relevant ones in which we have a special interest. Therefore

asking for the critical exponents is equivalent to solve the static Schrödinger equation with

the Hamiltonian H on the fixed-point background. There are several techniques to do so. In

the frame of this work we use a pseudospectral method on the basis of sin and cos functions

(the Slac derivative [124–126]) to calculate the discretized Hamiltonian. Then a simple matrix

diagonalization of this discretized formulation gives us numerical results for the eigenvalues.

This procedure requires some smoothness properties of H.

One can transform the eigenvalue equation

Hu = f(φ)∂2φu(φ) + g(φ)∂φu(φ) + h(φ)u(φ) = θu (2.4.2)

into a more standard form

H̃ = f(φ)∂2φv(φ) + h̃(φ)v(φ) = θv(φ), v = e
−

φ∫

0

g(ϕ)
2f(ϕ)

dϕ
u. (2.4.3)

This transformation becomes singular at φ0 > 0 if f(φ0) = 0. So the spectrum of the operator

H only depends on the shape in the inner region (−φ0, φ0) if lim
φ→φ0−

g/f = +∞. As we see

later on, this is the case in the Wess-Zumino model. This is especially helpful when using the

shooting method. As we only obtain a fixed-point solution in a finite range, eq. 2.4.3 tells us

that the fluctuations also only depend on the solution within a region given by f . If we can

find the fixed point solution up to φ0 we have all the information we need for the spectrum.

Comparing eq. (2.3.1) with eq. (2.4.3) we observe that f coincides with F ′. So indeed, within

a good approximation, we obtain the fixed point solution up to φ0 and it is reasonable to use

an approximate solution with the property F ′ ≈ 0.
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Altogether we prefer to use the Slac derivative to compute the spectrum of linearized fluc-

tuations when we take continuous contributions into account. Our finite range solutions are

sufficient due to a special form of the operator H whose spectrum we are interested in.

2.4.1. Another shooting method

We want to give a second method [100, 127, 128] when we have to deal with a different set of

problems. Given the eigenvalue problem

θu(φ) = u′′(φ) + u(φ)− u(φ0), (2.4.4)

we have the corresponding integral operator

H(φ, φ̃) = (δ′′(φ̃− φ) + δ(φ̃− φ)− δ(φ̃− φ0)), with (Hu)(φ) =

∫

dφ̃H(φ, φ̃)u(φ̃). (2.4.5)

As we cannot give a simple representation as in 2.4.2 we call this a non-continuous operator.

In the upcoming scenarios φ0 may or may not depend on the function u. As we do not have

the means to solve this problem directly we do so in two steps.

The first step is to set u(φ0) to be a constant c. Then for any given constants c and θ we can

solve the differential equation

θu(φ) = u′′(φ) + u(φ)− c. (2.4.6)

This is not an eigenvalue problem any more and therefore we cannot use the Slac method. As

the eigenfunctions of the eigenvalue problem (2.4.4) and its generalizations shall belong to a

Hilbert space with an at most polynomial weight function we know that u itself may at most

behave polynomial. We also know that the solution for θ, that are no eigenvalues, tends to

grow in an exponential way to ±∞ [100].

For most values of c we should find θ+ for which the solution u(θ+, c) grows quickly to ∞
and θ− whose solution goes to −∞. We can now make a bisection procedure to look for the

limiting θ which approximately separates both cases. This is the eigenvalue θ for a given c.

The found solution does not guarantee that u(φ0) = c. Therefore we have to vary c until this

is the case. This procedure may take a while and is necessary for every θ we are interested in.

We notice that if there is more than one eigenvalue in between the two initially chosen θ+

and θ− one has to choose those two closer together. A good starting point may be c = 0 and

use the Slac derivative to calculate θ. Compute u(φ0) and afterwards choose for c according to
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the computed value of u(φ0). Take θ+ and θ− close to the θ(c = 0). One gets a new value of

u(φ0)− c. Go on up to a needed precision. We give an example in the appendix.

The described method obviously also works for more generalized forms of eq. (2.4.4), e.g.

one can include functions in front of u and u′′ or have a more involved function at u(φ0). We

are calculating a linear response of a system later on. Therefore, one should make sure to stay

in this regime. In order to do so one has to work with small u compared to the background

solution. In this way changes in φ0 are also only taken on a linear level into account.

At last a word of caution. Eigenvalues present for c = 0 may disappear for inappropriately

chosen c. For instance the function θ(c) could become complex. We provide an example of the

method in the appendix A.1.
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3. Supersymmetric Quantum

Mechanics

3.1. Introduction

As a starting point we examine a well understood theory, i.e., N = 1 quantum mechanics in

one spatial dimension. This model can be solved to arbitrary precision by diagonalizing the

Hamiltonian. [85] We may refer to these results as exact.

One can treat this model equivalently as a 0+ 1 dimensional QFT with one scalar field and its

supersymmetric fermionic partner. In this way all the methods available for treating a QFT

can be applied to this model. In the further study we pick the exact functional renormalization

group method (FRG) and compare the results obtained with this method with the ones we

already know from the quantum mechanical point of view. As some work was done before

[85, 129] we are mainly interested in the convergence of the derivative expansion for the super-

symmetric model [130]. This chapter is mainly based on the paper mentioned last. Although a

lot of work was also done in this direction before, e.g., for scalar field theories, we reexamine this

due to the fact that we are using an off-shell formulation and thus our derivative expansion is

not in powers of momentum but rather in momentum times auxiliary field. While investigating

this expansion we also have a look at the mechanism of spontaneous symmetry breaking and

the technical implications related to it.

Since this is a model originating in quantum mechanics, we expect that tunneling effects

play a role when we examine a double well potential or one with even more minima [131].

This should give rise to some instanton effects in our effective field theory. Including non-local

interactions into the effective action would be one way to treat these effects. On the other

hand one can hope that a series of derivative operators converges to a non-local term like it

was hinted in a previous work [132]. Therefore, we hope that our results improve by adding
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additional derivative terms to our truncation in the coupling region in which the tunneling

effect starts to show up significantly. Again, the analogy is the increasing convergence of a

partial sum of a Taylor series within the radius of convergence.

In the following, we start with formulating the model and our truncations for the FRG

treatment. Here we also set some conventions we are using throughout this work. Afterwards

we compute some numerical results and get some insight into the mechanisms determining the

quality of our results. As a last part we are summarizing our findings about the convergence

of the derivative expansion before going on to other models.

3.2. The Model

Reformulating the quantum mechanical model as a QFT gives us the on shell action

Son =

∫

dτ

[

1

2
∂τφ(τ)∂τφ(τ)−

i

2
ψ̄∂τψ +

1

2
W ′(φ)2 − ψ̄ψW ′′(φ)

]

. (3.2.1)

with the Grassmann valued fermion field ψ and the real scalar field φ. Reformulating it using

the purely imaginary auxiliary field F to linearize the supersymmetry, we obtain the off shell

action

Soff =

∫

dτ

[

1

2
∂τφ∂τφ+

1

2
F 2 − i

2
ψ̄∂τψ + iFW ′(φ)− ψ̄ψW ′′(φ)

]

(3.2.2)

=

∫

dτdθdθ̄
1

2
ΦKΦ + iW (Φ) =

∫

dz
1

2
ΦKΦ + iW (Φ) (3.2.3)

where in the second line we introduced the superfield and the superspace coordinate,

Φ = φ+ θ̄ψ + ψ̄θ + θ̄θF, z = (τ, θ, θ̄). (3.2.4)

and the superderivative

K = D̄D −DD̄, D̄ = i∂θ − θ̄∂τ , D = i∂θ̄ − θ∂τ (3.2.5)

using the auxiliary Grassmann variable θ. Our bare superpotential W is of polynomial form in

the UV. Following the standard derivative expansion we count the number of superderivatives

to determine the order of our truncation. So an operator of the type K2 = ∂2τ is an NNLO

operator although it is only a second derivative in time. We examine the theory up to NNLO

order which gives rise to the effective Lagrangian

L = Lpot + LNLO + LNNLO. (3.2.6)
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We have used the abbreviations

Lpot = iW (Φ), (3.2.7)

LNLO = −1

2
Z(Φ)ΦKΦ, (3.2.8)

LNNLO =
i

4
Y1(Φ)K

2Φ +
i

4
Y2(Φ)(KΦ)(KΦ). (3.2.9)

Neglecting LNNLO and putting Z to one yields the LPA truncation while allowing for a function

Z(φ) gives NLO and also including Yi(φ) is called NNLO. Since we are in 1 dimension we do not

expect to see any non trivial fixed points and therefore not introduce dimensionless quantities.

Instead we study the flow of the couplings. In order to extract physical meaningful quantities,

we have to calculate the effective potential. This can be done by solving the EOM of the

auxiliary field F

F = − 2i

3Y

(

√

Z2 +
3

4
(4W ′ − 2Xφ̈− (X ′ − Y )φ̇2)Y − Z

)

, Y = Y ′2 , X = Y ′1 + Y2. (3.2.10)

One had to choose the solution of the quadratic EOM with the correct sign. Otherwise the

solution would diverge in the NLO case, therefore especially in the UV with LNNLO = 0. The

solution (3.2.10) is dynamical with time derivatives in contrast to the UV-case. Inserting the

non dynamical part back into the Lagrangian L yields the bosonic effective potential VBos

VBos =
2

27Y 2

(√
3W ′Y + Z2 − Z

)(

6W ′Y + Z2 − Z
√
3W ′Y + Z2

)

,

VBos,NLO =
W ′2

2Z
. (3.2.11)

A word of caution is in order at this point. Given the above formula, one could obtain an

effective potential that is complex. This is not a breakdown of the theory but rather one of the

truncation.

3.2.1. The flow equations

In order to obtain the flow equations we have to calculate the right hand side of the aforemen-

tioned eq.

∂tΓk =
1

2
STr

∂tRk

Γ
(2)
k +Rk

, t = log(k/Λ). (3.2.12)

For our effective average action we make the already introduced ansatz (3.2.6),

Γk =

∫

dzL(k, z) (3.2.13)
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with L as a function of the energy scale k according to equation (3.2.12). The actual compu-

tation can be found in appendix A.2. We just want to note that we expand around F = 0, the

supersymmetric phase, and use a regulator

Rk = (ir1)− Z(Φ0)r2K (3.2.14)

giving the cut-off function

∆Sk =
1

2

∫

dzΦRkΦ. (3.2.15)

r1 is playing the role of a mass regulator which we use in the first part of this chapter. r2 is a

momentum regulator that is especially necessary in higher dimensions. Note that we spectrally

adjust our regulator by including Z(Φ0). Φ0 = φ0 is chosen as the minimum of the potential.

We end up with the following flow of the effective potential at NNLO level

∂kWk =
1

2

∫

∞

−∞

dq

2π

(

∂kr1
(Z ′(A2 − B2q2)− 2BAA′)

(B2q2 + A2)2
+ ∂k(r2Z0)

A′(A2 − B2q2) + 2Bq2AZ ′

(B2q2 + A2)2

)

,

(3.2.16)

A = W ′′ + r1 + q2/2X, B = Z + r2Z0, Z0 = Z(Φ0). (3.2.17)

Here we suppressed the dependencies of the functions for reasons of convenience.

3.3. Unbroken Supersymmetry

At the UV scale we choose the initial conditions Wk = φ4/4 + gφ3/3 + φ2 + φ, Zk = 1, Y1,k = 0

and Y2,k = 0. Choosing g = 0 gives a convex starting potential for which already a simple LPA

truncation should give satisfying results. With increasing g the potential starts to develop a

second minima see also Fig. 3.1 which following our argumentation at the beginning should

lead to worse results. In this region we can test our derivative expansion and look for the

convergence near the probable convergence radius in g. This should give us an impression

how good our derivative expansion is doing. We want to point out that we have chosen a

superpotential with the first derivative W ′ ranging from plus to minus infinity. Choosing such

a potential leads to the case that at the infrared scale W ′ still ranges from plus to minus infinity

and therefore still has a zero. Therefore the expectation value of F is also still zero and we can

not break supersymmetry. Due to this fact it is sufficient to choose a mass regulator r1 = k

and r2 = 0. As supersymmetry is unbroken the ground state energy stays zero and is therefore
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inadequate for a check of the convergence. For a comparison with the numerical results from

diagonalizing the Hamiltonian we consider the effective mass of the particle given by the pole

of the propagator at the minimum W ′(φ0) = 0 at k = 0,

Gk|θ̄θθ̄′θ′ =
Zq2

Z2q2 + (W ′′ + 1
2
Xq2)2

δ(q − q′) ⇒ (3.3.1)

m2 = lim
k→0

2

X2

(

Z2 +XW ′′ − Z
√
Z2 + 2XW ′′

)

. (3.3.2)

Note that also the pole of the propagator has two solution and the one describing the correct

UV behavior (NNLO = 0) is chosen. In the simple LPA truncation this is just the curvature

of the effective potential VBos = W ′2/2 at φ = φ0. There are different ways to calculate the
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Figure 3.1.: On the left is the shape of different effective UV potentials VBos|k = Λ parametrized

by the coupling g. Note the development of a non-convexity at gc ≈ 0.897 and

thereafter a second minimum at ge =
√
3. On the right are the squares of the real

first-excited-state wavefunctions ψ1 against their quantum mechanical potentials

VQM = (W ′2 −W ′′)/2 depicted in a slightly lighter color for a standard stationary

Schrödinger equation H = p2/2 + VQM. Added is also a shifted baseline plotted as

dots. Note the increasing shift of the squared wave function away from the first

minimum into the second non-global one.

numerical flow; for instance finite differences in a finite region and fixed boundaries or global

pseudospectral methods . Since the flow is negligible for large φ we end up in both cases with

numerically coinciding results. Fig. 3.2 shows the results calculated with a finite difference

method for the calculated masses for different truncations and couplings g. We have a good

convergence as long as g < gc and a reasonable convergence for g < ge where gc and ge are the

values at which a non-convexity and a second minimum of the effective potential respectively

appear. It is noteworthy that ge is also the value at which the superpotential W starts to show
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Figure 3.2.: Given are the results for the effective mass given by different truncations and

compared to the numerical exact results using the Hamiltonian formulation of the

quantum mechanical system. On the left are the numbers calculated while on the

right the relative error e1 = E1,truncation/E1,exact − 1. One sees a good convergence

of the result for non convex starting potentials g < gc ≈ 0.9. The LPA truncation

deviates as soon as a non-convexity builds up. With the establishing of the second

minima also the NNLO truncation starts to give worse results and soon thereafter

breaks down g & 2.

a additional non-convexity in the intermediate region. This naturally coincides with the fact

that a second minimum of W ′2 appears. A minimum that is merely separated from the global

one at g ≈ ge does not seem to put to much stress on the NNLO truncation. Beginning with

g = 2 the second minimum together with its very broad shape do significantly contribute to the

first excited state and the influence of the first minimum diminishes, see Fig. 3.1. This gives our

ansatz a hard time to deal with it. As mentioned before we have a built-in check whether our

NNLO truncation is still working fine. When the effective potential becomes complex valued

for any field value we know that our truncation is insufficient. Indeed for large g this is the

case.

A possible reason for this is the fact that our derivation of the flow equations has used an

expansion around F = 0 instead of a more general F = W ′. The former would obviously not

be true for the second minimum. We examine the impact of considering an expansion around

F 6= 0 in the following section dealing with spontaneous symmetry breaking. At this point

we look at a class of non-convex superpotentials that do not start with a non supersymmetric

minimum W ′ = φ5 − gφ3 + φ. Within our truncations and a large range of g they do also not

develop such a minimum e.g. for g = 3 all minima are supersymmetric. In Fig. 3.3 we give the
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numerical results and compare them to the exact ones. Also we see the shape of the effective

potential for g = 2.3 for different k in Fig.3.4.

We first note that our convergence in the truncations is not as good as it was before. More

importantly the pattern we observe is quite similar to the one we had before. The LPA is

the first one to fail for increasing g. With a further increment in g also the NLO case gives

way. Shortly afterwards the NNLO breaks down. Note that in this scenario the build up of

the tunneling barrier of the UV effective potential is quicker in g than it was before. This is

probably the reason why NNLO is breaking down so shortly after NLO.
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Figure 3.3.: We compare for an odd superpotential W ′ = φ5 − gφ3 + φ the results in different

truncations for different g ∈ [0, 3]. We see again a failure of the different truncations

for large g. Note that for g = 3 the effective potential never develops a non-

supersymmetric minimum nonetheless all truncation break down. We observe that

LPA starts to break down with the rise of the non-convexity at g ≈ 1. NLO starts

to deviate with the first additional minima (g ≈ 1.5) and starts to break down as

the last two additional minima appear (g = 2). NNLO is in this scenario not as

good as NLO in absolute values but is again more stable against increasing g than

NLO.

The absence of the non-supersymmetric minima as well as the large error indicate that indeed

the non-convexities are the main reason for the error we observe. Since tunneling effects are

strongly suppressed in higher dimensions we expect to be able to capture the qualitative physical

aspects in our later on analysis.
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Figure 3.4.: On the left we see different effective potentials VBos,UV = W ′2/2 in the UV for

different g withW ′ = φ5−gφ3+φ. The potentialW ′2/2 is non-convex for g > 1.012.

Two additional minima exist for 2 > g > 2
√
5/3. For larger g we start with 5

minima in the effective potential. Note the build up of the barrier isolating the

outer two minima from the three inner ones for large g. On the right hand side the

flow of the effective potential in NNLO truncation for g = 2.3 is depicted. For our

later analysis it is important that the outermost minima are defining the curvature

in the IR minimum. For this reason we identify them as the physical minima when

we discuss the Wess-Zumino model. The plot of the effective potential for g ≈ 0 is

stopping for finite φ as it turns complex at this point. This indicates the breakdown

of our truncation level.
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3.4. Broken supersymmetry

As mentioned we are also interested in the spontaneous breaking of supersymmetry. To observe

such a behavior we have to modify our starting potential. We choose a superpotential in such

a way that W ′

k is an even function and therefore a finite flow time might be sufficient to lift its

minima above zero which is needed for the breaking of supersymmetry. When W ′
0 is a positive

function a minimum of W ′
0 is also minimum of W ′

0
2 and therefore in good approximation also the

ones of the effective potential. So the propagator given in (3.2.12) has an infrared divergence

at the physical minimum. This is due to the fact that we have so far expanded around F = 0.

But in the broken phase this is no longer justified. Instead we should expand F around W ′

k(φ)

or W ′

k(φ0) where we prefer to use the first one. Note that the field F is still k independent only

the expansion point is different at every scale.

An issue is the fact that the projection scheme using the Taylor series in F around F0 6= 0 is not

unique. For instance, in the NLO case we have beside the old terms (F − F0)
1 and (F − F0)

2

also a term (F − F0)
0 giving us three possible projections for the two functions Z and W ′. We

give results for different projections and the flow equations in full generality in the appendix .

The flow equation in an NLO truncation for a field independent Z can be read of from

lhs =iF∂kW
′ +

1

2
∂kZF

2 +O(F 3) (3.4.1)

=

(

W ′∂kW
′

Z
− W ′2∂kZ

Z2

)

(F − F0)
0 + i

(

∂kW
′ − W ′∂kZ

Z

)

(F − F0)
1 +

1

2
∂kZ(F − F0)

2 + . . . ,

rhs =
1

2

k
∫

−k

dq

2π
(∂k(Zr2)(W

′′ − B2q2))

[

W ′W ′′′

N (NZ +BW ′W ′′)
(F − F0)

0+ (3.4.2)

iW ′′′Z2

(NZ +BW ′W ′′′)2
(F − F0)

1 +
BW ′′′2Z3

(NZ +BW ′W ′′′)3
(F − F0)

2 + . . .

]

N = B2q2 +W ′′2, B = Z(1 + r2), F0 = −iW ′/Z.

We see that in the propagator the new term W ′W ′′′ appears lifting the singularity at W ′′ = 0.

This term is exactly the additional contribution to the mass of the bosons when supersymmetry

is broken. Due to the complicated structure of the flow equations we have to limit ourselves

to very basic truncations for our numerical approach. We follow the RG flow according to

the old flow equation as long as we are in the unbroken phase and switch to eq. (3.4.2) as

soon as we enter the broken phase (W ′2 > 0). This point coincides with the restoration of the

Z2 symmetric phase. Further on we use a polynomial truncation of the potential and restrict

ourselves in NLO to a field independent Z which is normally called an LPA’ truncation. We
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Figure 3.5.: On the left we see the results for the ground state energy of the system compared

to exact results. The results are given for different truncations where we denoted

in brackets the projection scheme on the powers of the taylor expansion in F −F0.

On the right we depict the relative errors with respect to the exact values. There

we also provide data points to compare results using the projection scheme with

F0 = W ′(φ) along the whole flow and the case in which we start to use it as soon

as breaking takes place as described in the main text.

are also using a momentum regulator r2 = (k2/p2 − 1)θ(k2 − p2) instead of the mass regulator

r1. As we see in Fig. 3.5 the results are quite good for the ground state energies although our

starting potentials have two minimas. We can also see that the projection on F = W ′ in the

unbroken phase is not necessary as the results do not change significantly.

At this point we should elaborate a bit on this point. We mentioned in the introduction as well

as in the discussion of the unbroken phase the possible difficulty to account for tunneling effects

yet we are able to calculate a good estimate of the ground state energy. The reason is that the

tunneling effect with two clearly separated minima provides an exponentially suppressed split

of the energy levels of one minimum alone. Thus we can expect that as long as the influence of

the tunneling effect is very small on the ground-state energy our estimates with only local terms

should still be good. Indeed if we try to calculate the split with a simple truncation including

W and Z(0) we do not see it. This is immanently present in the fact that our obtained effective

potential W ′2(φ)/(2Z(φ0)) is always flat at φ = 0 instead of having a small remaining curvature.

This indicates that one needs at least a function Z(φ) to see this split. The parameter choice

with the smallest barrier is the one with g ≈ 0. Here we can also spot the largest relative error.

This is another indication that large tunneling effects are indeed troublesome as we expected.

Interestingly the two given NLO truncations obtained by different projection schemes do not
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give a coherent picture on which one is better. The one using (F − F0)
0 and (F − F0)

1 (1,0)

leads to more accurate results for large g while the one using (F − F0)
0 and (F − F0)

2 (0,2) is

better performing for small g. The latter scheme picks up more contribution in the flow that

would produce higher derivative terms, e.g. Y1 and Y2 in an extended truncation. This seems

to be helpful in the strong tunneling regime with small g while in the weak tunneling regime it

is misleading.

As we encounter the necessity to project onto F0 6= 0 in the broken phase we may ask

ourselves what happens if we also use this projection scheme (F0 = W ′(φ)/Z) while being in

the symmetric phase. Doing so and comparing with the former results shows that this only

leads to minor changes, see also Fig. (3.5). This very good agreement partially goes back to

the fact that we are quickly entering the broken phase.

3.5. Summary

Let us summarize our findings before we go on. We have seen that our derivative expansion

works fine and that as long as the first derivative of the superpotential shows no non-convexities

a simple LPA scheme captures the qualitative behavior of the theory. For non-convex cases we

could extend our truncation and obtain some good results.

We proceed in the following chapters using the more simple LPA and LPA’ truncation to

deal with our models. We can be assured that in the admittable regions for LPA the derivative

expansion converges nicely and therefore a numerical improvement of our numbers is in principal

always at hand. As we also await much less tunneling effects we think LPA’ to be sufficient.

An important feature that we have uncovered is that the easy projection scheme around F = 0

cannot be used in the phase with broken supersymmetry. This may be worrisome from a

numerical point of view but as we see later on is not so relevant for the physics near the fixed

points we are discussing.

The reader more aware of the flow equation may have noticed that we used only one regulator.

In [130] one finds some discussions about this topic. Our results are in reasonable agreement

with the exact results. Therefore, we can expect that our regulator choice was not too bad for

the used truncations.
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4. The Wess-Zumino model

In the following section we are discussing the Wess-Zumino model in 2 ≤ d ≤ 3 with a Z2

symmetry. Some previous FRG treatment of this model can be found in [88, 133, 134]. The

first two sections of this chapter are based on [128]. The field content of the model is a real

scalar field and a Majorana fermion. We expect to see a different number of non-trivial fixed

points depending on the dimension. In d = 2 there should be an infinite number of fixed

points which can be easily seen from a conformal field theory point of view. On the other

hand we expect in d = 3 only the Wilson-Fisher fixed point belonging to the Ising universality

class. Therefore we await to observe a branching of new fixed points at intermediate critical

dimensions. In order to see these we employ the shooting method introduced earlier on 2.3. A

different approach to the d = 3 case is the one of conformal bootstrap [135]. The d = 2 case is

in principle solved via conformal field theories, e.g. [136]. Especially in the latter case we want

to emphasize that we use this model to test our method and refer to those sources for exact

numbers for the critical exponents.

We are giving results for the critical exponents of the models in an LPA’ truncation using

the Slac derivative and the ones obtained by a modified shooting method. A difference in the

numbers is pointed out and an explanation given why this happens. We are also providing an

alternative method to obtain the Ising class fixed points using a polynomial expansion of the

potenial around the origin. This was already described in [137] for a bosonic theory.

4.1. The model in d = 2, 3

The model has to be formulated in Minkowski spacetime since the Majorana property can

only be fulfilled with this signature for d = 3. Therefore the flow equation for a Minkowski

signature has to be used and after doing the algebra on the right hand side it is possible to do a

Wick rotation giving us an Euclidean flow. Before doing so let us recapitulate the UV off-shell
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formulation

L = −1

2
(∂µφ)

2 +
i

2
ψ̄ /∂ψ − 1

2
F 2 + FW ′ − 1

4
W ′′ψ̄ψ

We have the scalar field φ, the Majorana Fermion ψ, and the auxiliary field F . For our effective

average action we make an LPA’ Ansatz

Γk =

∫

ddx

[

−Z(φ0)

2

(

(∂µφ)
2 + iψ̄ /∂ψ + F 2

)

+ FW ′ − 1

4
W ′′ψ̄ψ

]

.

We have defined Z(φ0) as the value of Z from an NLO truncation in the physical minimum

φ0. As we have seen in the flow of the quantum mechanical model this is the outermost

supersymmetric minimum of the effective potential

Vbos =
W ′2

2Z(φ0)
. (4.1.1)

Note that therefore even and odd superpotentials lead to a Z2 symmetric effective potential.

We already see that the model is quite similar to the quantum mechanical one with the same

degrees of freedom: 2 real scalar ones from φ and F and 2 real Grassmanian ones from the

Majorana Spinor ψ. We have the symmetry property χ̄ψ = ψ̄χ for Majorana Fermions. We

take this into account and change some prefactors in Γk compared to the QM model. The flow

equations for W and Z are then formally the same as in the previous model. In d = 3 we can

use a momentum regulator

r2,1 = Z(φ0)(k/|p| − 1)θ(k2 − p2) (4.1.2)

which is an analogue to the standard θ regulator, also called Litim regulator, of the bosonic

model. It also eliminates the momentum dependence of the denominator on the right hand

side of the flow equation and in this sense maximizes the gap. Note that this regulator is not

valid for higher order truncation as divergences show up. Also in d = 2 already in LPA’ the

regulator does not give a convergent flow for the wavefunction renormalization. For this reason

we also use a second regulator

r2,2 = Z(φ0)(k
2/p2 − 1)θ(k2 − p2), (4.1.3)

obtaining a different set of momentum integrals in our flow equations. These resemble those

used in the quantum mechanical setup when investigating supersymmetry breaking.

For the following analysis we use the second set of flow equations (r2,2), but also provide results
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for r2,1 in d = 3. As mentioned in the introduction we can do a rescaling of fields and couplings

in order to look for fixed points. In this model the rescaling is

φ̃ = k
2−d
2 Z−

1
2φ, (4.1.4)

ψ̃ = k
1−d
2 Z−

1
2ψ, (4.1.5)

u = k−d/2Z−
1
2W ′, (4.1.6)

η = −∂t log(Z(φ0)). (4.1.7)

Here we have introduced the anomalous dimension η that determines the anomalous scaling of

the fields. As we have a supersymmetric theory the anomalous scaling of fields in one multiplet

is the same. This gives us only one anomalous dimension in contrast to a general Yukawa

model. In terms of the new fields and couplings we have the flow equations (r2,2)

∂tu = Sη,d(u, u
′, φ) + ∂u′Fη,d(u

′)u′′, (4.1.8)

where Sη,d is the scaling part and Fη,d stems from the fluctuations,

Sη,d(u, u
′, φ) = −d− η

2
u+

d− 2 + η

2
φu′, Fη,d(u

′) = −cd
2
((2− η)H1,0(u

′) +
dη

d+ 2
H1,1(u

′))u′,

η = cd

[

(2− η)H3,0(u
′) +

dη

2 + d
H3,1(u

′)− d(2− η)

d+ 2
H3,1(u

′)u′2u′′ − dη

d+ 4
H3,2(u

′)u′2
]

u′′2|φ=φ0 ,

Hl,m(u
′) = (m+ d/2)

1
∫

0

dt
tm+d/2−1

(1 + tu′)l
, c−1d = (4π)d/2Γ(1 + d/2). (4.1.9)

We have dropped the˜ for the sake of an easier notation. In LPA’ we are essentially left with

one ODE and one constraint when we look for the fixed points of the model, i.e. ∂tu = 0. Let

us neglect the constraint, i.e. the η equation, for the moment.

We are interested in the global solutions to this ODE. As argumented before there is a quan-

tization of these solutions due to constraints present in the ODE. The solving method of our

choice is the spike plot. We use as a parameter for it the first σ′ = u′(0) or second derivative

σ = u′′(0) of the odd or even dimensionless potential u, respectively.

Now, we also want to include the η equation. We can only compute η once we have found a

local solution that is close to the global one. Thus it is reasonable to compute the spike plot for

a number of different input parameters ηin. From this result calculate each time ηout according

to the formula given. Plot the difference ηin − ηout over ηin and search for a zero. Refine the

input set and do so until a desired precision is met. Following the described procedure we

obtain the fixed-point solutions with consistent values of η.

38



One can also calculate a non-trivial η at φ = 0 in the Wess-Zumino model for even u. Doing so

means that we calculate η in the minimum of the superpotential. We refer to this truncation

by η0. We note that for odd u η0 = 0 as it scales with u′′2. When we follow this approach we

can determine η from the input parameter σ and do not have to follow the above described

procedure to match the input η with the calculated one.

Having the fixed-point solution u∗ we are able to linearize around this fixed point u(t, φ) =

u∗(φ) + e−θtǫδu(φ) keeping η constant. This gives us a problem of the type

−θδu(φ) = H(u, ∂φ)δu(φ), H = ∂u′′(∂tu)∂
2
φ + ∂u′(∂tu)∂φ + ∂u(∂tu). (4.1.10)

∂tu is given by equation (4.1.9). We discussed this kind of problem in Sec. 2.4 and proposed the

Slac derivative as a tool for solving it. Doing so, we obtain the critical exponents θ. Positive θ

belong to relevant directions since t → −∞ in the convention introduced before. In the next

section we make some general statements on some fluctuations independent of d.

4.1.1. Special fluctuations

Before we present actual solutions we investigate the form of special fluctuations. To remind

ourselves the equation for the fluctuations is given by 4.1.10

−θδu(φ) =
[

∂u′′(∂tu)∂
2
φ + ∂u′(∂tu)∂φ + ∂u(∂tu)

]

δu. (4.1.11)

By making the special ansatz δu = 1 we get the equation −θ = ∂u(∂tu) = −d−η
2

. Therefore

one even fluctuation should always have the eigenvalue θ1 =
d−η
2

. For even potentials this is a

relevant fluctuation belonging to the symmetry class. We have no vacuum energy fluctuation

in the supersymmetric case. Thus, in the Ising class it must be related to the correlation length

critical exponent ν. As it turns out

νIsing =
1

θ1
=

2

d− η
. (4.1.12)

This close relation was named superscaling in [133].

We want to point out two things at this point. Firstly although the fluctuation is a trivial

constant in u it is not trivial in the on-shell formulation. As we have

VBos =
W ′2

2Z
, ⇒ ∆VBos =

W ′∆W ′

Z
, (4.1.13)

the discussed fluctuation in the on-shell formulation behaves as
√
V .

Secondly the critical exponents are also shifted between a formulation in W ′ ∼ u and VBos ∼ v
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by a constant value of η. This has to be taken into account when comparing results in both

formulations. The reason is the way how the dimensionless quantities are defined. The standard

dimensionless form of VBos would be vBos = k−dVBos instead of vBos = k−d(2Z)−1W ′2
Bos. We

emphasize on the lack of Z in the rescaling leading to the difference of one η.

Another special fluctuation is δu = u′. Then we get

−θu′ = ∂u′′(∂tu)u
′′′ + ∂u′(∂tu)u

′′ + ∂u(∂tu)u
′ = ∂φ(∂tu)− ∂φ(∂tu)|u,u′,u′′ (4.1.14)

= 0− d− 2 + η

2
u′, ⇒ θ =

d− 2 + η

2
. (4.1.15)

Here, we used that the first derivative w.r.t. the dimensionless field φ of the fixed-point equation

is also zero. This fluctuation does not share the symmetry of u. Therefore it never belongs to

the symmetry respecting fluctuations. But it is a relevant fluctuation that can be used as a

test for the stability of our numeric solutions.

After these quite general statements we turn toward the cases of d = 2 and d = 3.

4.1.2. d = 3

In this and the next section we want to show that the concepts introduced before can be realized

in practical computations. We therefore give critical exponents up to quite a high precision as

a proof of concept.

In d = 3 we expect to see only one nontrivial fixed point belonging to the Ising-class. This

was already investigated before in [88] . In Fig. 4.1 is the spike plot with η = 0 and η = 1/4

of the d = 3 model for a broad range of initial data. As expected we see only one nontrivial

spike with a pronounced peak at σcr ≈ 3.76 and σcr ≈ 1.65 respectively. We are also providing

the sign of the scalar part at the endpoint depending on the initial data. We clearly see the

change of the sign at the position of the spike. We identify σ = u′′(0) at the spike as the critical

parameter belonging to the Wilson-Fisher fixed-point solution.

As mentioned, we use a σ that is a bit to the right of the spike to compute our approximation

of the fixed-point solution. An example for η = 1/4 is given in Fig. 4.2. We see that the

solution a bit to the left has an additional tail that does bend down. This is a behavior we

do not expect and is unphysical. This can be understood, as the Ising solution should have an

effective potential that is convex. We therefore discard this part of the solution by taking the

one to the right of the spike.

We stated at the end of the last section that we compute η in the physical minimum. We also
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Figure 4.1.: We provide the spike plot for even superpotentials σ = u′′(0). On the left hand side

is the one for η = 0. We see φmax and (sgn(Sη,d)+ 1)/2. The near vertical lines are

in fact jumps and not continuous parts. These jumps give away the critical value

as we expect. On the right we have η = 1/4, where the spike is shifted to the left.

The reason is presented in the discussion of general dimensions Sec. 4.2. At the

moment it is important that we have only one spike for both values of η.

σcr ηin ηout ν

LPA0
n=1 2.0239 0.1880 0.1599 0.7112

LPA’n=1 2.1333 0.1736 0.1736 0.7076

σcr ηin ηout ν

LPA0
n=2 2.3558 0.1807 0.1531 0.7094

LPA’n=2 2.4794 0.1670 0.1670 0.7060

Table 4.1.: We see the critical parameters for different regulator n = 1, 2 and η schemes. LPA0

refers to η0.

introduced η0 before. We provide the values of σcr for these two scenarios and the two regulator

choices in Tab. 4.1. There, we also find the values for the critical exponent ν belonging to

the correlation length. As we employ a pseudospectral method formulated in φ to calculate

the critical exponents we are picking up even and odd fluctuations of the superpotential. We

translate these into fluctuations of the dimensionless effective potential

vbos +∆v ∼ (u+∆u)2/2|∆u0,1 ∼ vbos + u∆u.

It shows that only fluctuations belonging to the symmetry class of the potential are respecting

the symmetry of the effective potential. The eigenvalues θ+ of those can be found in Tab.

4.2. The ones not respecting the symmetry (θ−) are also listed there. They would belong

to magnetic fluctuations in an Ising model. As argued before we can provide very accurate

numbers for the critical exponents. This could be achieved by the fact that only a finite range
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Figure 4.2.: To the left we see the two kind of numerical solutions we obtain near the global

fixed-point solution. We used η = 1/4 and ǫ is of the order 10−15. The blue vertical

line indicates the singularity appearing for the blue curve. The yellow curve ends

at the right border of the plot. Both solutions nearly coincide in their shared

interval of existence. On the right we have a spike plot for an odd superpotential

u with σ′ = u′(φ0). We have no spike for finite σ′. This indicates the absence of a

fixed-point solution for odd superpotentials in d = 3.

of the solution is necessary to calculate the eigenvalues.

4.1.3. d = 2

We just discussed the Wess-Zumino model in d = 3 and now turn our attention toward the

model in d = 2. Here we can compare our results with the ones from the conformal field

theories. We expect to observe an infinite number of fixed points in our spike plots. At least

this would be true if we adopt our anomalous dimension dynamically. When we choose one

finite positive anomalous dimension we see only a finite number of spikes. In Fig. 4.3 we find

some indication that this is true. We note that lowering η provides more spikes in the plot. We

know from CFT that the higher critical models have a very small anomalous dimensions. In

order to see these one has to go to ever smaller anomalous dimension.

We limit ourselves and only look at the first two critical models. This means the Ising class

with two minima and the tri-Ising class with three minima. In order to find the tri-Ising class

a spike plot for an odd superpotential u is in order Fig. 4.4.

The critical parameters of the Ising class can be found in Tab. 4.3. In Tab. 4.4 the critical

exponents are given. We observe for the Ising class only one relevant direction respecting the
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θ+1 θ+2 θ+3 θ+4

LPA0
n=1 1.4060 -0.3510 -2.5715 -5.1730

LPA’n=1 1.4130 -0.3824 -2.6813 -5.4004

LPA0
n=2 1.4097 -0.3500 -2.5281 -5.0357

LPA’n=2 1.4165 -0.3773 -2.6200 -5.2216

θ−1 θ−2 θ−3 θ−4

LPA0
n=1 0.5940 -1.4102 -3.8274 -6.6048

LPA’n=1 0.5868 -1.4760 -3.9916 -6.9056

LPA0
n=2 0.5903 -1.3941 -3.7438 -6.3997

LPA’n=2 0.5835 -1.4500 -3.8791 -6.6435

Table 4.2.: In the left table are the values for the even critical exponents in d = 3. They respect

the symmetry of the model. The right table consist of the odd ones. The values

are obtained with the Slac derivative for different flow equations as described in the

text.
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Figure 4.3.: On the left hand side is the spike plot for η = 1/10 with σ = u′′(0). We see φmax

and (sgn(Sη,d) + 1)/2. Again both show us the same critical value. On the right

we chose η = 1/4. We see that the number of spikes is changing with η. We also

observe that the spikes are denser for smaller σ. The spike indicating the solution

for the Ising fixed points is the rightmost.

symmetry of the model. This coincides with our expectations.

Now let us turn to the tri-Ising class solution. In Tab. 4.5 we give the critical parameters

of this model. We find only one relevant direction that respects the symmetry as can be seen

in Tab. 4.6. Again odd fluctuations are denoted with a minus sign and the wording is chosen

w.r.t. the effective potential u2/2. The interesting fact that there is only one relevant direction

will be discussed in the following Sec. 4.2. This is in contrast to a bosonic model in which the

number of relevant direction is increasing by one when one goes to the next universality class,

e.g. Ising has one relevant direction and tri-Ising has two. We also still find two positive odd
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Figure 4.4.: On the left we are provided with a tri-Ising class numerical solutions for η = 1/10.

On the right is the spike plot for the odd superpotentials. Note that we have several

spikes. The critical parameter for the tri-Ising class is determined by the rightmost.

eigenvalues θ−. We cannot provide the LPA0 case with η0 as it is always zero for odd potentials.

The shape of the effective tri-Ising class fixed-point potential VBos has the interesting property

that although the Z2 symmetry may be restored the supersymmetry can never be spontanously

broken. This is immanent in the fact that the potential is odd. This was already discussed in

the quantum mechanics chapter 3.3.

Altogether, we have the quite general statement that even superpotentials u are supersymmetric

if and only if the Z2 symmetry is broken. So we cannot restore both symmetries. The class

of odd superpotentials u on the other hand can have a phase with restored Z2 symmetry and

supersymmetry.

σcr ηin ηout ν 2θ−1

LPA0
n=2 1.7594 0.4386 0.3386 1.2809 0.4386

LPA’n=2 1.9478 0.3971 0.3971 1.2478 0.3971

Table 4.3.: Critical parameters for the supersymmetric Ising class in d = 2.

4.2. Critical dimensions

In the following we want to work out a criteria how many nontrivial fixed points we expect for

a given dimension. In order to do so we have to study the mass dimension of the couplings.
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Slac: θ+1 θ+2 θ+3 θ+4

LPA0
n=2 0.7807 -0.4383 -2.2224 -4.5711

LPA’n=2 0.8014 -0.5125 -2.5416 -5.3095

Slac: θ−1 θ−2 θ−3 θ−4

LPA0
n=2 0.2193 -1.2602 -3.3268 -5.9549

LPA’n=2 0.1986 -1.4365 -3.8335 -6.9700

Table 4.4.: Even (left) and odd (right) critical exponents of the Ising class in d = 2.

σ′cr ηin ηout ν

LPA’n=2 0.3794 0.3201 0.3201 1.6653

Table 4.5.: Critical parameters for the supersymmetric tricritical Ising class in d = 2.

θ+1 θ+2 θ+3 θ+4

LPA’n=2 0.6005 -0.3129 -1.5245 -3.0465

θ−1 θ−2 θ−3 θ−4

LPA’n=2 0.8399 0.1601 -0.8780 -2.2473

Table 4.6.: Even (left) and odd (right) critical exponents of the tri-critical Ising class. The even

ones are those belonging to the symmetry class of the model.

From a perturbative point of view one can easily determine how many relevant couplings do

exist. Just read of the trivial scaling dimension from the Lagrangian. In the Wess-Zumino

model the dimensions of the fields are given by

[φ] =
d− 2 + η

2
, [ψ] =

d− 1 + η

2
, [F ] =

d+ η

2
. (4.2.1)

We have already included the anomalous scaling as an improvement for our calculations. Look-

ing at the terms that appear in the potential we gain the couplings and their mass dimension

gF,nFφ
n ⇒ [gF,n] = −d+ [F ] + n[φ] = (n− 1)

d

2
− n+

n+ 1

2
η,

gψ,nψ̄ψφ
n ⇒ [gψ,n] = −d+ 2[ψ] + n[φ] = n

d

2
− (n+ 1) +

n+ 2

2
η.

The couplings gF,n are the ones showing up in FW ′ and the gψ,n are the ones in ψ̄ψW ′′. As

both are related also the mass dimensions are related by a shift in n by one. We therefore

only discuss gF,n from here on. A coupling turns infrared relevant when its dimension becomes

positive. A coupling is marginal if its mass dimension vanishes,

0
!
= [gF,n] ⇒ d =

2n− η(n+ 1)

n− 1
.
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If we want a Z2-symmetric potential we have to restrict ourselves to either odd or even n.

Choosing odd ones we have

d =
(1− η) +m(2− η)

m

η=0
= 3,

5

2
,
7

3
, . . . n = 2m+ 1, m ∈ N.

The m = 0 coupling gF,1 is just the mass always being relevant.

The first nontrivial fixed point of this class should therefore appear for d = 3− ǫ. In the even

case we find

d =
4m− η(2m+ 1)

2m− 1

η=0
= 4,

8

3
,
12

5
, . . . n = 2m, m ∈ N (4.2.2)

For m = 0 we find the vacuum energy which is also always relevant in a Yukawa model but

here absent due to supersymmetry. In d = 4 − ǫ we should observe a non-trivial fixed point.

We conclude that we should find just one Wilson-Fisher fixed point in d = 3 with an even

superpotential W ′. Indeed that was the case. We can see that for vanishing η the number of

relevant couplings increases to ∞ as d goes to 2. This coincides with the CFT result.

Up to now we have only done an analysis that would be valid in perturbation theory. As we

saw in the discussion of the model in d = 2 we still have fixed points with one, two, and three

relevant directions. This can be understood as we are away from the Gaussian fixed point at

which perturbation theory is valid.

What have we learnt from this analysis? In the spike plot the Gaussian fixed point is located

at coupling σ(′) = 0. For a dimension d just below a critical dimension determined by (4.2.2)

we can hope that a near Gaussian fixed point is emerging which has as many relevant couplings

as our analysis suggest. In Fig. 4.5 we give the spike plot for even and odd superpotentials W ′

using the dimensionless formulation (4.1.9). We can see that the dimensions at which the new

critical models emerge are exactly the ones for η = 0. This can be understood as in the small

coupling regime also η is quite small. While we use a fixed η for the odd superpotential W ′ we

employ η0 introduced before for the even ones. One can see how the number of spikes is limited

for a fixed η in d = 2 while the dynamically chosen η0 gives us an increasing frequency of sign

changes as we approach σ = 0.

Now we can finally understand the shift of the position of the spike by varying η. Increasing

η decreases the critical dimension. Therefore the fixed-point solutions are pushed toward the

Gaussian solution in order to vanish for sufficient large η.
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Figure 4.6.: We see the spike plot for the first critical supersymmetric models in d = 2 with

η chosen as the LPA’ value. On the left we compare different truncations. On

the right is a comparison of the spike plot given by the shooting method with the

one from the polynomial expansion. φ0(σ) is determined by the estimate for the

radius of convergence or in case of the shooting method as described before. Note

the nice agreement on the right of the spike. This indicates that the singularity

spotted by the polynomial expansion is the same as the one stopping the numerical

integration.

order coefficients on the lower ones. We parametrize our spike plot in the same way as in the

previous Secs. 4.1.2 and 4.1.3 and get Fig. 4.6. We can see that for a truncation order of ≈ 200

the extrapolation already seemed to have converged. In fact one already gets a much better

estimate by only taking the coefficients a50 . . . a100 (not depicted). Comparing the convergence

radius values to the right of the spike with the one from the shooting method indicates that

the singularities spotted by both methods coincide. Note that the singularity does not vanish

as we go to the left of the spike. It is shifted into the complex plane as we see later on and

is only moving slowly (Fig. 4.8). At the moment it remains unclear whether we are tracking

the same singularity on both sides of the spike. It could be that we start to track a different

singularity. Therefore we cannot conclude on the fate of the original singularity for decreasing

σ by now. But there is still information we can exploit in order to learn more. We can try

to look at the sign pattern of the coefficients to determine the angle in the complex plane at

which the singularity is positioned.

Before doing so we look at an actual Domb-Sykes plot of the Ising model on the left of Fig.

4.7. We have suppressed the sign in this plot. To make up for this we give the sum of all signs

normalized by the number of coefficients for a broad range of coefficients in the right plot of
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Figure 4.7.: We give a Domb-Sykes plot of the supersymmetric Ising model in d = 2 for two

different values of σ. The critical value lies in between those two. Note the change

of behavior. For σ > σcr we obtain a straight line. This is a hint for a singularity

positioned on the real ρ axis. To the left of the spike we have some structure

indicating a periodicity and a sign change. This picture is supported by the plot

on the right hand side. Plotted is the averaged sign of the expansion coefficients.

We are taking the coefficients indicated by the interval for n into account. Down

to σcr we have a constant sign and afterward we have an approximate average of 0.

the same figure.

First we focus on the right side of the spike. The sign of almost all coefficients is positive.

This indicates that the singularity is positioned on the positive ρ axes and therefore also on the

real φ axes. As we have already concluded both discussed singularities coincide. Now we are

interested in the fate of the singularity when we go to the left of the spike. The sign is clearly

not constant any more indicating that the singularity has moved into the complex φ plane. If

it is moving continuously in σ the sign pattern changes slowly. We look at the length of a cycle

with constant sign as a discrete function in σ in Fig. 4.8. We see a monotonous function with

decreasing variation going further to the left of the spike. This is a good indication that we

track the same singularity all the time.

We want to note that our ODE is real. This gives a mirror symmetry of complex conjugating.

Thus, we expect to have non-real singularities that appear in complex conjugated pairs. In the

plot, we have suppressed the singularity in the lower half of the complex plane. It remains

unclear from the analysis done whether the singularity on the real axis is degenerate or merges

with a second singularity. In the latter case it could be absent at the critical value. We do not

explore any more into this direction. It does not seem to provide us with any further useful

49





information. It is noteworthy that the trajectory of the singularity may put a constraint on

the rate of convergence of pseudospectral methods1.

4.4. Critical exponents from different methods

The following discussion could also be made for a scalar Ising model. We do nonetheless work

with the Wess-Zumino model in d = 2, 3 as we use the results in the following chapter5 about

emergent supersymmetry.

Beside the search for a global solution or an expansion in polynomials around φ = 0 there is

also the possibility to expand around the physical minimum. In LPA’ the anomalous dimension

η is typically defined at this minimum. This allows for the inclusion of perturbations of η in

a straightforward manner. Given the potential in terms of the expansion coefficients one can

also express η in those and eliminate η from the flow equation. Solving the resulting system

for the fixed point and linear perturbations around it effectively means that fluctuations in η

where included in the linearized equation. So equation 4.1.10 turns effectively into

−θδu(φ) =H(u, η, ∂φ)δu(φ) + δη∂η(∂tu) (4.4.1)

δη =η(u+ δu, u′ + δu′, u′′ + δu′′)|φ0+δφ0 − η(u)|φ0
=∂u′′η(δu

′′ + u′′′δφ0) + ∂u′η(δu
′ + u′′δφ0) + ∂uη(δu+ u′δφ0) (4.4.2)

Solving in a polynomial truncation is a standard technique which we do not want to elaborate

on. In the last chapter on the O(N) model Sec. 6.3 more details are given. We just give the

ansatz for even u

u(ρ) =
trunc
∑

i=1

ai(ρ− ρ0)
i, δu(ρ) =

trunc
∑

i=1

(ai + δai)(ρ− (ρ0 + δρ0))− u(ρ)|δ1 , ρ = φ2/2.

trunc is just a natural number giving the truncation order of the polynomial expansion. We

give the critical exponents obtained using this method in Tab. 4.7 2. The flow equation used

was d = 3 with r2,1.

Comparing them to the Slac numbers without varying η shows a slight deviation. Especially

the first non relevant eigenvalue shows a significant shift. We have to take into account that

1As long as it is actually present for the global fixed-point solution.
2As we already know the fixed-point solution we used the value of the zero ρ0 = φ2

0/2 and the first derivative

at this zero u′(ρ0) = u′(φ0)/φ0 as input for the polynomial expansion. Starting with these we compute the

fixed-point values of the other ai.
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the Slac derivative does not satisfy (4.4.2) in the physical minimum. One problem is that the

shift in the minimum δφ does not allow to use the functional eigenvalue solver proposed.

We therefore use another shooting method described before in Sec. 2.4.1.

All the numbers for the d = 3 and r2,1 case are given in the mentioned Tab. 4.7. Note that the

here used implementation of the shooting method is providing a trend on how the eigenvalues

change by implementing ∆η. ∆η is scaled down in the fluctuation equation by a factor in order

to do so. The actual numbers implementing it to full extend are the same as the ones obtained

within the polynomial approximation.

We want to point out that η in the LPA’ truncation is typically far off from the one obtained

by other methods. This is immanently seen when we look into the literature dealing with the

scalar O(1) model in d = 2 [139]. Therefore the equation obtained for η seems not too good3

and so also variations of it may or may not improve the obtained critical exponents. As long

as all three methods give the same sign for all the eigenvalues and the critical ones are only

slightly shifted we should be able to trust our qualitative picture.

We may start to investigate how different fluctuations look like depending on the used

method. To do so we pick out the two most relevant fluctuations and give the plots of these in

Fig. 4.9 and 4.10. We also insert the polynomial solution into the fluctuation ODE within its

radius of convergence and look how good it fulfills it. This is shown in Fig. 4.11. As an error

estimate for the shooting method we depict a dependence of the eigenvalues θ+1 and θ+2 w.r.t.

the δη input in Fig. 4.12. Firstly, we see a linear behavior coinciding with the fact that we are

dealing with a linearized theory. Secondly, our error is in the range of percents.

For the sake of completeness we give in Tab. 4.8 the numbers for the Ising model in d = 3 and

d = 2 for both regulators when possible. We see that for the odd critical exponents a stronger

shift is possible as these eigenvalues are more strongly correlated to the anomalous dimension.

We also observe that including δη is shifting the eigenvalues at most to smaller values for the

examined fixed points. To show this was the main point of using the shooting method with a

scaled ∆η term. Therefore we seem to overestimate the number of relevant directions at most

using the Slac derivative method but not underestimate it. The latter being a catastrophic

scenario, while the former just makes the fine tuning toward a fixed point much easier.

We discussed this topic at this point since we encounter a similar one in the next chapter.

3at least in LPA’
4The fixed-point solution was found via a pseudospectral method. The critical exponents were found in a

polynomial ansatz as described in this section.
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θ+1 θ+2 θ+3

Slac 1.413 -0.382 -2.681

shoot ∆η = 0 1.413 -0.382 -2.681

shoot ∆η 6= 0 1.379 -0.393 -2.682

Polynom ∆η = 0 1.413 -0.382 -2.681

Polynom ∆η 6= 0 1.385 -0.765 -2.658

SUSY NNLO [130] 4 1.410 -0.715 -1.490

Table 4.7.: We see the different values of the even critical exponents computed with different

methods. The first line gives the already presented results from the Slac derivative.

The second line are the results from the shooting method without varying η. The

third line includes a variation of η using the shooting method. The fourth and fifth

line are in complete analogue the ones for the polynomial expansion. We expect the

first, second, and fourth line to coincide. This is indeed the case. We also compare

in the last line to the most recent values in the literature. The agreement is best

with the polynomial ansatz as this method was used to compute the spectrum in

the cited paper.

d = 3 n = 1 θ+1 θ+2 θ+3 θ−1 θ−2

Slac -1.413 0.382 2.681 -0.587 1.476

shoot ∆η 6= 0 -1.379 0.393 2.682 -0.528 1.461

d = 3 n = 2 θ+1 θ+2 θ+3 θ−1 θ−2

Slac -1.416 0.377 2.620 -0.584 1.450

shoot ∆η 6= 0 -1.390 0.387 2.622 -0.533 1.423

d = 2 n = 2 Ising θ+1 θ+2 θ+3 θ−1 θ−2

Slac -0.801 0.513 2.542 -0.199 1.437

Table 4.8.: We give the eigenvalues after including the correction provided by ∆η and compare

them with the previous ones. We see a trend that the relevant and near relevant

eigenvalues tend to be corrected to smaller, i.e. less relevant, values.
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Figure 4.9.: We give the approximate eigenfunction belonging to the first eigenvalue θ+1 ≈
−1.43. On the left we see the shape of an approximate solution to the eigenvalue

problem that diverges to minus ∞. On the right we give the difference between

a solution diverging to minus ∞ and one diverging to plus ∞. As we can see we

should have determined the correct solution up to φ ≈ 0.3. The ǫ is of order 10−9

and the solution are normalized to 1 at the origin. Here we fixed δη as described

in the discussion of the present shooting method.
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Figure 4.10.: We give the approximate eigenfunction belonging to the second eigenvalue θ+2 ≈
0.39. To the left is again an approximate solution. The right figure shows the

estimated error w.r.t. the correct solution to the eigenvalue problem for given δη.
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Figure 4.11.: We give the value of the fluctuation ODE when we insert the polynomial solution

into it. On the left we give it for the fluctuation belonging to θ1 and on the right

the one for θ2.
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Figure 4.12.: The relative error in percent of the obtained eigenvalues for fixed ∆ηin w.r.t. these

(Blue curve). We also give the dependence of the obtained ∆ηout computed in the

new minimum with respect to the input parameter ∆ηin (Yellow curve). We see the

normalized numbers times ∆η∆u(0). In the actual computations ∆u(0) = 10−6

was chosen. So we stay in the linearized regime. The results are given on the left

for θ+1 and on the right for θ+2 of the d = 3, n = 2 case.
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As a side mark note that in an NLO truncation one can choose η = −∂t logZk(0). Then in

the scaling part δη only shows up at φ = 0. Given such a definition for η δφ vanishes and an

inclusion of the perturbation in the Slac formalism is much easier.

4.5. Summary

In this chapter we introduced the Wess-Zumino model in d = 2 and d = 3 dimensions. We

employed the spike plots to reliably obtain the fixed-point solutions. Using the Slac derivative

we were able to compute the critical exponents to high precision within the given truncation.

To do so we used the fact that only a finite region is necessary to compute these. This should

be true for a large range of models which show a sign change in the function in front of the

highest derivative of the potential term. We are using the fixed-point solution obtained in the

d = 3 case for our further computations in the next chapter.

We showed that this Ising class solution can also be obtained using a polynomial expansion

at the origin. The obtained parameter σ from the spike plot coincides with the one from the

polynomial expansion. This gives us another indication that we obtained the correct fixed-point

solution. Within the polynomial expansion we tracked the nearest singularity that stopped us

from obtaining a global solution when we are to the right of a spike. This singularity moved

out of the real axis just at the critical parameter.

At last we studied the difference in the numbers for the critical exponents when we vary

η. We expanded in a polynomial truncation in the physical minimum and used a shooting

method to obtain the critical exponents when we include ∆η in the fluctuation equation. We

saw that we got the same numbers as from the Slac derivative when we artificially set ∆η =

0 with both methods. Looking for a self consistent solution in ∆η we obtained the same

numbers. We showed that the form of the fluctuations obtained with the polynomial expansion

are worse compared to the ones from the shooting method. The latter ones naturally fulfilling

the fluctuation ODE.
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5. Emergent supersymmetry

5.1. Introduction

After we have discussed the N = 1 Wess-Zumino model in some detail for d = 3 we want

to turn to a class of more generic Yukawa models. The supersymmetric model is a subclass

of these We want to know whether the supersymmetric class is infrared attractive. In other

words: Is the infrared physics of the Yukawa models dominated by the supersymmetric effective

theory? This was hinted at in recent studies [140]. With regard to this we calculate the critical

exponents and search for eigenfunctions with relevant critical exponents that are softly breaking

supersymmetry in the terminology of [55]. By doing so we compute the universality class of this

model. Some other work on this was done in the framework of conformal bootstrap [141, 142].

In the following we will describe our further proceedings within this chapter. We start with

a general Yukawa model with one Majorana fermion and one real scalar field. We transform

its Lagrangian into a part that is invariant under supersymmetry transformations and the soft

breaking term. The fixed point of the supersymmetric part was already computed in the last

chapter. Setting the additional part to zero our theory is protected from generating it again by

supersymmetry. In a technical realization using the FRG we will also have to make sure our

regulator respects supersymmetry. Then the flow is supersymmetric. Therefore we have already

found a fixed point of the Yukawa model, i.e. the Wess-Zumino one. This can be accomplished

by introducing an auxiliary field. As we are seeing in the actual computation later on, we can

now parametrize the additional non-supersymmetric part in different ways. In order to avoid

ambiguities in calculating our flow we have to fix these degrees of freedom. We can do so by

choosing a certain truncation scheme or use a technique that is known as dynamical bosonization

in the context of four-Fermi systems. The latter one is more consistent. Nonetheless we give

also results for the former approach to see which level of truncation is necessary to get correct

qualitative results. We note that in our case the bosonization is not absorbing fermionic degrees
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of freedom in a field but rather bosonic ones.

In the end we have a spectrum that is the union of the spectrum of the Wess-Zumino model

and additional contributions from the supersymmetry-breaking terms. We simply have to

compute how many relevant critical exponents are present in the additional contribution to see

how many explicit supersymmetry breaking fluctuations exist in the model. For instance, the

vacuum energy provides a non-supersymmetric direction.

5.2. Rewriting the Yukawa model

In the following we rewrite the Yukawa model Lagrangian as described before

LY = Lsusy + Lrest. (5.2.1)

The Lagrangian we start with is given by

LY = −1

2
∂µφ∂

µφ+
i

2
ψ̄ /∂ψ + V (φ)− 1

4
λ(φ)ψ̄ψ. (5.2.2)

To make it look more supersymmetric we rewrite it as

LY = −1

2
∂µφ∂

µφ+
i

2
ψ̄ /∂ψ +W ′(φ)2/2− 1

4
W ′′(φ)ψ̄ψ + Ṽ (φ) + V0 +

1

4
h(φ)ψ̄ψ,

Lrest = Ṽ (φ) + V0 +
1

4
h(φ)ψ̄ψ, Lsusy = −1

2
∂µφ∂

µφ+
i

2
ψ̄ /∂ψ +W ′(φ)2/2− 1

4
W ′′(φ)ψ̄ψ.

V0 is the vacuum energy. As we expect to have a bounded potential V we can subtract its

minimum V0 and end up with a potential whose minimum is zero, as we have seen in the Wess-

Zumino model. We can write this as the square of an function W ′ =
√
2V − 2V0. This function

defines the supersymmetric part of the Yukawa term. The additional part is cast h = W ′′ − λ.

We already see that we could have also gone the other way: i.e., Identify λ as W ′′ and then

have some bosonic potential term left. Or do something in between. This freedom has to be

dealt with later on.

As mentioned before we want a supersymmetric flow when we restrict ourself to Lsusy. There-

fore, it is helpful to introduce an auxiliary field in the same way as before. As it enters only in

a quadratic way

Lsusy,off = −1

2
∂µφ∂

µφ+
i

2
ψ̄ /∂ψ − 1

2
F 2 + FW ′(φ)− 1

4
W ′′(φ)ψ̄ψ, (5.2.3)

we can integrate it out in a path integral formulation. Doing so shows that the off- and on-shell

formulation provides us with the same physics. But now we can formulate a supersymmetric
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invariant regulator that is quadratic in the fields. We end up with the following ansatz for the

effective action

Γk =
1

2

(

−(Zk + Zk,φ)(∂µφ)
2 + (Zk + Zk,ψ)iψ̄ /∂ψ − ZkF

2
)

+ (5.2.4)

FW ′

k(φ)−
1

4
W ′′

k (φ)ψ̄ψ + V0,k(φ) +
1

4
hk(φ)ψ̄ψ. (5.2.5)

We have included different wavefunction renormalizations for the different kinetic terms. Also

we generate a flow in F 0 at zero momentum which generates V0,k. As we count the number of

introduced potential terms we end up with three (W,V0, h) while in the original formulation

there were only two (V, λ). We generated additional degrees of freedom along our reformulation

compared to the Yukawa model. Where did this happen?

Let us look at our auxiliary field. Eliminating it using its equations of motion gives us the

effective potential

Vbos =
W ′2

2Z
+ V0 =

W̃ ′2

2Z
+ Vbos(φmin). (5.2.6)

Here Vbos(φmin) is the minimum of Vbos. So we could introduce a new W̃ related to W and V0

to amount for the additional degree of freedom. Now we can reintroduce an auxiliary field F̃

and recast the effective potential in a form with a constant F̃ 0 term. Doing the calculations

shows that F and F̃ are related by

F̃ = F − W ′

2Z
+

√

W ′2

4Z
+ V0 − V (φmin). (5.2.7)

So a simple shift in the auxiliary field can absorb the generation of a field dependent V0. This

is very similar to what happens in the dynamic bosonization procedure when dealing with a

four-Fermi condensate [95]. There the flow of the coupling in front of the four-Fermi term is

set to zero by absorbing it into the flow of a scalar that is representing the condensate which is

a bosonic quantity. We follow the same path and go from F to Fk. We choose the flow of Fk in

such a way that the flow of V0,k(φ) is set to a constant. This constant does not enter the right

hand side of the flow equation. Therefore we do not actually have to compute it. A fluctuation

in this direction just gives us the fluctuation related to the vacuum energy.

In [95] the introduction of a k dependent field was done. Later on [64] it was worked out how to

maintain a one-loop structure in the flow equation. The general form of the new flow equation
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is given in terms of the old one for constant field plus some corrections

∂tΓk[Φk] =
1

2
STr

[

(Γ(2) +Rk)
−1∂tRk

]

+

∫

(GkδΦk
)Rk∂tΦk −

∫

δΓk[Φk]

δΦk

∂tΦk (5.2.8)

= ∂tΓk|old +
∫

(GkδΦk
)Rk∂tΦk −

∫

δΓk[Φk]

δΦk

∂tΦk. (5.2.9)

We continue our analysis in the following steps being increasingly less approximate. We consider

the model and just simply truncate V0 to be a constant. Then we do not need any k dependent

field. The same is true if we set h to zero and just stick with W ′′ for the Yukawa interaction.

Afterwards we improve our truncation and set the flow of V0 to a constant by introducing the k

dependent F field. We change our flow equation only using the leading order term and therefore

in principal lose the one-loop exact property. We neglect this and calculate as if it were still

one-loop exact. Then we have a look at the model when we also include the last ingredient

and have again a one-loop exact formulation. In all those cases we give the critical exponents.

We already saw that there is a difference in those regarding varying η or not. Using the Slac

derivative we do not need to calculate the anomalous dimension of the scalar field and the

fermions and just use the one of the auxiliary field. This is possible as we are not varying η.

When we vary η we have to also implement the different anomalous scaling of φ and ψ away

from the supersymmetric hypersurface.

5.3. Setting V0 to a constant

We start with the simple truncation setting V0 to a constant. Using a very naive ansatz for the

effective average action would lead us to such a truncation

Γk =
1

2

(

−(Zk + Zk,φ)(∂µφ)
2 + (Zk + Zk,ψ)iψ̄ /∂ψ − ZkF

2
)

+

FW ′

k(φ)−
1

4
W ′′

k (φ)ψ̄ψ +
1

4
hk(φ)ψ̄ψ.

As we mentioned before the constant to which V0 was reduced does not enter the flow and we

neglect it in the further study. We use the d = 3 Wess-Zumino fixed point computed before in

the LPA’ truncation.

As mentioned we neglect the perturbations in the anomalous dimensions and proceed with

the Slac derivative to compute the critical exponents. We expect that our qualitative picture

regarding the number of relevant supersymmetry breaking fluctuations is at most overcounted

60



η ≈ 0.167 θ1,W ′ θ2,W ′ θ3,W ′ θ4,W ′

susy 1.416 -0.377 -2.620 -5.222

θ1,h θ2,h θ3,h θ4,h

susy break -0.445 -2.704 -5.309 -8.230

Table 5.1.: We give the critical exponents in the truncation V0 = const. The first row contains

the ones that lead at most to a spontaneous breaking of supersymmetry. The second

row belongs to fluctuations that break it explicitly.

as discussed before. We only give the critical exponents that belong to the symmetry class

of the model; therefore even fluctuations in W ′ and odd ones in h. All these numbers are

summarized in Tab. 5.1. For completeness we also give the dimensionless quantities used to

obtain the critical exponents:

φ̃ = k−
1
2Z−

1
2φ, (5.3.1)

ψ̃ = k−1Z−
1
2ψ, (5.3.2)

u = k−3/2Z−
1
2W ′, (5.3.3)

h̃ = k−1Zh. (5.3.4)

For the numerical computation it is useful to exploit the split of the spectrum in the old and

the new one. As mentioned this is due to the fact that fluctuations in W ′ cannot generate ones

in h. This gives a block diagonal form of a discretized fluctuation operator.

We observe that there is no relevant operator that explicitly breaks supersymmetry within

this truncation. This gives us some motivation to go on with our study and turn to the next

case.

5.4. Neglecting h

Another formulation that one can use is to neglect h and just stick with the W ′′ as the fermionic

potential. Doing so leaves us with

Γk = Γk =
1

2

(

−(Zk + Zk,φ)(∂µφ)
2 + i(Zk + Zk,ψ)ψ̄ /∂ψ − ZkF

2
)

+

F (W ′

k(φ) + Vk(φ))−
1

4
W ′′

k (φ)ψ̄ψ + V0,k(φ).
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η ≈ 0.167 θ1,W ′ θ2,W ′ θ3,W ′ θ4,W ′

susy 1.416 -0.377 -2.620 -5.222

θ1,V θ2,V θ3,V θ4,V

susy break 1.416 -0.445 -2.704 -5.309

θ1,V0 θ2,V0 θ3,V0 θ4,V0

susy break 3 1.584 -0.450 -2.879

Table 5.2.: We give the critical exponents in the truncation h = 0. The first row contains the

ones that lead at most to a spontaneous breaking of supersymmetry. The second and

third row belongs to fluctuations that break it explicitly. In the second one we used

the formulation in V and constant V0. In the last row are the results formulating it

in V0(φ) setting V to zero.

We have added now two bosonic potential terms. We have the correction to the bosonic part of

the superpotential V and we have the standard potential term V0(φ). Going on-shell gives us a

simple relation between those two. So again one can set V0 to a constant and stay with V . We

then obtain a spectrum that should be almost the same as the one in the previous section. We

can see it in Tab. 5.2. Again for completeness we also provide the dimensionless formulation

of the two additional potentials.

V = k3/2
√
Zv (5.4.1)

v0 = k3v0 (5.4.2)

.

What do we observe in the actual numbers? Let us first look at the formulation in V . We

have one additional critical exponent. But this is exactly the one we already found for W ′. In

fact it is a constant fluctuation in V . This is obvious as V shares the same scaling part as W ′.

We discussed this fluctuation before when we discussed special fluctuations 4.1.1. As absorbing

this one in W ′ does not change W ′′ it is not breaking supersymmetry explicitly.

Now let us turn toward the third row. We see two relevant exponents that both do not agree

with the ones obtained before. Let us look at the first one θ1,V0 = 3. This one we already

mentioned in the introduction. It is just the one belonging to the vacuum energy. We had it all

the time when we treated V0 as a constant but neglected it as uninteresting. While it breaks

supersymmetry it provides us with no corrections to the correlators and propagators.
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c* v0-u

0.0 0.1 0.2 0.3 0.4
-1.×10-8

-5.×10-9

0

5.×10-9

1.×10-8

Figure 5.1.: We see the deviation of the computed fluctuation ∆v0 belonging to θ2,V0 from the

dimensionless fixed point potential u. We clearly see the coincidence suggesting

that this is indeed again absorbable in ∆u = const. Keep in mind that u was of

the order 10−1.

The second one is more interesting. We can simply verify that its value is θ2,V0 = θ1,V + η.

This difference in one η was also mentioned earlier. We have used a different scaling relation in

order to obtain the dimensionless quantities v and v0. This is now showing up. After realizing

this we can now test whether the fluctuation belonging to θ2,V0 looks like u (Fig. 5.1). Indeed

this is the case.

5.5. Adaptive flow Fk

In the following two sections we use a k dependent auxiliary field. This provide us with a

chance to turn the flow of V0 into a field independent one. We use two different truncation

methods in order to do so. Firstly, we use an easier but inexact formulation. Secondly, we turn

toward the more complex situation.
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Either way we have the following effective average action

Γk = Γk =
1

2

(

−(Zk + Zk,φ)(∂µφ)
2 + i(Zk + Zk,ψ)ψ̄ /∂ψ − ZkF

2
k

)

+

FkW
′

k(φ)−
1

4
W ′′

k (φ)ψ̄ψ +
1

4
hk(φ)ψ̄ψ.

5.5.1. Not one loop exact

We use the formula (5.2.9)

∂tΓk[Φk] = ∂tΓk|old −
∫

δΓk
δFk

∂tFk, (5.5.1)

where we neglect the φ derivative term of ∂tFk = −αk. This gives us the following correction

of the flow equations:

F 0 :∂tV0 = ∂tV0|old +W ′αk,

F 1 :∂tW
′ = ∂tW

′|old − Z(φ0)αk,

ψ̄ψ :∂t(W
′′ − h) = ∂t(W

′′ − h)|old. (5.5.2)

Here the old on the right hand side denotes the flow equations we obtained in the case of k

independent fields i.e. the ones used in the previous section. As we want to eliminate the flow

of V0 up to a constant we can easily solve for α. We get

α(φ) =
∂tV0|old(φ)− ∂tV0|old(φNST)

W ′(φ)
. (5.5.3)

Where φNST is defined as the zero of W ′. We can immediately see, that W ′ should have only

one zero or several zeros that have all the same value in the old flow of V0. Otherwise our

transformation is singular. In the case of the Ising like fixed point solution this is fulfilled. As

we can see the change in the flow of h is mediated by the change of the flow in W ′ but the

Yukawa term altogether does not change.

We go to dimensionless quantities as introduced before in order to compute the spectrum.

In the supersymmetric hypersurface ∂tV0|old = 0 is true and we are back in the old case of the

Wess-Zumino model. Therefore we expect again a split in the spectrum. The supersymmetric

fluctuations are well known by now and are not further discussed. The fluctuations explicitly

breaking supersymmetry give rise to a non-smooth fluctuation operator. We can easily see this

when we look at

∂tV0|old = h(φ)f(φ,W ′′(φ),W ′′′(φ)) + (O)(h(φ)2).
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Therefore the fluctuation of h depends on h(φNST). As mentioned before such a behavior is not

really suitable for the Slac formulation as we have a non smooth function. We thus give the

eigenvalues neglecting this additional term using the Slac derivative and as a backup also the

results using the shooting method employed already when dealing with δη. In a more involved

truncation scheme we could also include the fluctuation with respect to the different η. Note

that our introduced dimensionless quantities are then defined as

W ′ = k3/2
√
Zu as W ′ ∝ FkZ, (5.5.4)

h = k1(Zk,ψ + Zk)h̃, (5.5.5)

v0 = k3v0, (5.5.6)

ηφ = −∂t log(Z + Zφ), ηψ = −∂t log(Z + Zψ) η = −∂t logZ. (5.5.7)

Therefore W ′′ does not have to have the same dimensional scaling as h although both give rise

to the Yukawa interaction.

Before computing the eigenvalues we want to make a technical remark. The shape of the

function

∂th̃ = ∂th̃|old − ∂φα = ∂th̃|old − h̃′
f

u
− h̃

f ′

u
+ (h̃− h̃(φ0))

f

u2
, (5.5.8)

provides us with a singular term in the eigenvalue formulation at φ = φ0 in the ∆h̃′ and ∆h̃

terms. It is useful to transform the perturbation equation to new quantities in the perturbation

∆h̃ = u∆h + c, c = ∆h̃(φ0), as h̃∗ = 0 (5.5.9)

and then do a rescaling as prescribed in Sec. 2.4 in order to get rid of the first derivative of

the perturbation. One ends up with fluctuations whose spectrum are determined by the fixed-

point informations in the interval (−φ0, φ0) when restricting oneself to perturbations that are

connected to the origin. We provide the spectrum computed in the way mentioned for c = 0

using the Slac derivative. Further more we use the shooting method and include the constraint

c = ∆h̃(φ0) and therefore u∆h|φ→φ0− = 0 in the described (eq. (5.5.9)) formulation. All those

results can be found in Tab. 5.3.

In the case of the Slac derivative no additional relevant direction shows up. In Fig. 5.2 we

give two fluctuation solutions times u for the lowest eigenvalue for given c and r2,1. As we can

see c is rather small but influences the eigenvalue significantly. Also the found solutions do

diverge away from zero due to the choice of c. This happens before the divergence due to the
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θ1,h c(θ1) θ2,h c(θ2) θ3,h c(θ3)

Slac r2,1 -0.202 0 -0.506 0 -0.897 0

Slac r2,2 -0.295 0 -0.747 0 -0.1337 0

Shoot with u(φ0) r2,1 −0.1 −2.8 ∗ 10−5 −0.5 −6 ∗ 10−7 −0.8 −3 ∗ 10−5

Table 5.3.: We see the results for the spectrum of the Yukawa potential h. The results for the

two regulators in the case of the Slac derivative and in the case of the shooting

methods are given. For the shooting method we also provide the chosen c. As we

can see the given eigenvalues are also very regulator dependent. This is in stark

contrast to the supersymmetric fluctuations.

wrongly chosen θ can show up. It could therefore be that there is no fluctuation with roughly

the given eigenvalue that is consistent with the condition u∆h|φ→φ0− = 0. For this reason we

are reluctant to make a definite statement about the eigenvalues from these calculations and

do avoid giving too many figures. The same pattern emerges for the other regulator choice

r2,2. As we describe later on we have a good reason to think that no supersymmetry breaking

relevant directions appears.

5.5.2. One loop exact

We are implementing the full equation (5.2.9) giving us the corrections

F 0 :∂tV0 = ∂tV0|old +W ′αk − α′k

∫

dq
q2

2π2

r2ZW
′′

q2(1 + r2)2Z2 + (1 + r2)ZV ′′ +W ′′2

F 1 :∂tW
′ = ∂tW

′|old − Z(φ0)αk − α′k

∫

dq
q2

2π2

−r2(1 + r2)Z
2W ′′W ′′′

(q2(1 + r2)2Z2 + (1 + r2)ZV ′′ +W ′′2)2

ψ̄ψ :∂t(W
′′ − h) = ∂t(W

′′ − h)|old. (5.5.10)

As we can see we have to solve an ODE in the first F 0 term in order to avoid a flow of the

V term. We would have again the freedom of including a parameter W ′(φ0) to leave a field

independent flow for V . We saw in the last section that this proved troublesome and will

therefore avoid this kind of modification. We will fix the freedom in α by demanding that in

the supersymmetric hypersurface the flow of Fk is vanishing. In this way we will immediately

end up with a splitted spectrum of supersymmetric fluctuations and those breaking it.

At this point it seems that we have avoided the earlier constraint that only one zero of W ′ is
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c=-2.8*10-5

c=-2.7*10-5
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Figure 5.2.: In the upper row on the left we show two solutions for the fluctuation equation

depending on the chosen c. We were looking for solutions going to zero in the limit

φ→ 0.1292975. The divergence away from zero shown in the plot is caused by the

choice of c and not due to the fact that we are only using an approximate θ value

as given in Fig. 4.9. We could not find a good convergence to zero. This may

be related to our insufficient numerics or the absent of such a solution. The other

three plots depict the strong dependence of the different eigenvalues on the choice

of c. Especially the sign of c plays an important role.

allowed. When investigating the solution of the ODE for α we can see that this is in fact not

true for the given system. The coefficient of α′ is scaling with W ′′ and therefore this quantity

should have only one zero1. In the Ising class it is located at φ = 0. Thus we conclude that a

fixed point with one zero in W ′ for semipositive φ is valid. Therefore we restrict ourself to the

analysis of the Ising class as was done throughout this whole section. We are using the same

dimensionless quantities as before eq. (5.5.7) and neglect again the fluctuations in η. We give

the calculated spectrum using the Slac derivative in Tab. 5.4 for both regulators.

1This is no proof but the system seems overconstrained and there is no obvious reason why the fixed point

solution should be of a form that allows for a solution to this system
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θ1,h θ2,h

Slac r2,1 -2.72 -5.11

Slac r2,2 1.06 -4.92

Table 5.4.: We give the results for the first two critical exponents for the explicit supersymmetry

breaking term. While the second one shows a decent agreement for the two regulator

choices the first one is far off. Our numerical results are not too good but the

eigenfunction belonging to the result r2,2 has too many knots, i.e. 3, in order to be

the correct first odd excited state. For the regulator r2,1 it shows only one knot.

We therefore do trust the Result θ1 = −2.72 a lot more than the result that would

indicate it to be relevant.

We see a drastic change in the spectrum. The reason for the bad performance of our numerics

is not entirely clear. We relate it to the fact that the solution for α involves an exponential of

an integral and this term is non analytical at φ = 0. This gives our used numerics a hard time

to deal with it.

Due to this, one might be suspicious regarding the obtained critical exponents. Let us

compare our findings to recently obtained ones in the literature in Tab. 5.5. We also include

the critical exponents of the supersymmetric fluctuations and provide the ones obtained by

varying η. What we do see is that the supersymmetric fluctuations provide us already with

those fluctuations given in this paper [56]. We therefore conclude that the supersymmetry

breaking critical exponents are small. This is exactly what we see when putting the negative

one found in the r2,2 part aside2. The problem of finding a correct c in the previous section

5.5.1 may be related to this fact.

We want to elaborate a bit on the fact that we think that the comparison with the literature

already shows that the soft breaking terms should have small critical exponents. The two

most relevant critical exponents found in the general Yukawa model [56] are the same ones

found in the supersymmetric case when we employ a polynomial truncation scheme. Therefore

the fluctuations belonging to those two in the Yukawa theory are ones that are will not leave

2We want to emphasize that in principle the regulator r2,2 is better suited for increasing the truncation but is

not as optimal as r2,1 w.r.t. the gap criteria. We therefore do trust the r2,1 results more. Especially as they

are also more easily to handle numerically.
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θ1 θ2

FRG Yukawa [56] 1.443 -0.796

FRG Susy pol 1.385 -0.765

FRG Susy Slac 1.413 -0.382

FRG Susy shoot 1.379 -0.393

Table 5.5.: We compare a recent result from the literature with our findings of Tab. 4.7. A

comparison with other methods can be found there. As we can see the two most

relevant fluctuations found in the Yukawa system have eigenvalues that match the

ones of supersymmetric fluctuations. We conclude that the fluctuations breaking

supersymmetry explicitly have smaller critical exponents as the given ones.

the supersymmetric hypersurface if a supersymmetric invariant regulator is employed. This

means the supersymmetry breaking term will have a critical exponent that is less than the ones

given and therefore less than −0.8. We think that this is a justified upper limit for explicit

supersymmetry breaking critical exponents.

5.6. Summary

Let us summarize the findings of this chapter. We treated the mentioned Yukawa system in

a way that is closely related to the supersymmetric formulation of the N = 1 Wess-Zumino

model. We found that the spectrum is always splitted in fluctuations letting us stay in the su-

persymmetric hypersurface and those explicitly breaking supersymmetry. We gave a formalism

to compute the critical exponents belonging to the breaking of supersymmetry. The comparison

with the literature and the results indicate that the breaking fluctuations are strongly irrelevant.

Therefore a system near criticality should quickly approach the supersymmetric hypersurface.

This should show up in an experiment [55].

The obtained results show that the inclusion of a scale dependent auxiliary field may be

necessary to see the correct eigenvalues. On the negative side the method including the field

redefinition is numerically demanding. Using the one called not one loop exact provided us

with solutions for fluctuations we could not resolve whether they are artifacts of the method or

not. The complete inclusion of the scale dependence showed much stronger suppression of the
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supersymmetry breaking fluctuation but also an additional relevant one in case of the usage of

the regulator r2,2. At this point we are therefore not sure how reliable those numbers are. An

improvement in the numerics may be advised. A next step would be to include the fluctuations

in the different η in order to take this effect into account. As we have seen this can provide a

significant shift. We must leave this problem open for further research.
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6. The O(N) model

In this chapter we want to discuss the O(N) model in three dimensions. The model consists

of N copies of the d = 3 Wess-Zumino model with an additional O(N) symmetry connecting

the superfields Φi of each model. This model was studied before in the large N limit using

other methods than the flow equation, e.g. [96, 143–146]. In [147] a negative outlook for the

possibility of spontaneous supersymmetry breaking was given within a perturbative regime. We

summarize shortly the results that were found in [97] and [98] discussing the model in the large

N limit using the flow equation. As a next step we use a polynomial ansatz to find some finite

N solutions. We do so in different truncations starting with the LPA and working our way up

to NLO. The limits N going to one and infinity will be studied in detail. After this extensive

use of the polynomial method the next step will be the employment of the shooting method to

extent our polynomial solutions to a larger domain. Firstly we start at the origin; Secondly in

the minimum found with the polynomial methods. We are restricting ourselves for this to an

LPA’ truncation with an uniform wavefunction renormalization. As the obtained picture will

not be as self consistent as we would hope it to be we will return to the sketchbook and rethink

our chosen ansatz. We then give some arguments what is probably going on. To strengthen

this argument we also start from the already known N = 1 solution and using the O(N) flow

equations go to higher N.

6.1. Formulation of the theory

Our most general ansatz for the effective average action is

Γk =

∫

dz

[

−Z
2

(

D̄ΦiDΦi

)

− Y

16

(

D̄(ΦiΦi)D(ΦiΦi)
)

+W (ΦiΦi/2)

]

. (6.1.1)

We use the already in eq. (3.2.4) introduced superfield Φ as well as the other superspace

ingredients in order to formulate an O(N) invariant theory. The index i distinguishes between
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the N copies of the Wess-Zumino model and is summed over ranging from 1 to N. By integrating

out the Grassmannian variables in Φ we get

Γk =

∫

ddx (Lk,Bos + Lk,Ferm) , (6.1.2)

Lk,Bos = −Z
2

[

(∂µφi)
2 + F 2

]

− Y

4

[

(∂µρ)
2 + (Fiφi)

2
]

+ FiφiW
′ (6.1.3)

Lk,Ferm = i
Z

2
ψ̄i/∂ψi + i

Y

4
φjψ̄j /∂(ψiφi)−

1

4

(

W ′ψ̄iψi +W ′′(φiψ̄iψjφj)
)

(6.1.4)

We have the already known superpotential W (ρ), a wave function renormalization Z(ρ) for the

transversal modes, and an additional contribution to the wave function renormalization of the

radial mode Y (ρ). We also use the O(N) invariant invariant ρ = φ2
i /2. It can be useful to

choose a preferred direction for the field, e.g. ρ = φ2
1/2. In order to obtain the flow equations

for W, Z, and Y we use the standard techniques already used for the bosonic O(N) model [57]

in a superspace formulation. In LPA’ the flow of W is given by

∂tW =

∞
∫

0

dq
ṙ2

(2π)3

(

N − 1

2

−W ′(ρ)

W ′(ρ)2 + q2h2
+

1

2

−W̃ ′(ρ)

W̃ ′(ρ)2 + q2h̃2

)

, (6.1.5)

h = Z(1 + r2), h̃ = Z(1 + r2 + ρ
Y

Z
), W̃ ′(ρ) = W ′(ρ) + 2ρW ′′(ρ). (6.1.6)

We have again the two regulator choices r2,1 and r2,2 at hand as we are not leaving the NLO

truncation. Also note the mirror symmetry W → −W .

We identify the effective bosonic potential VBos by eliminating the auxiliary fields Fi,

0 =Fi∂Fi
L = −ZF 2

i +W ′(ρ)φiFi −
1

2
Y (Fiφi)

2, (6.1.7)

0 =φi∂Fi
L = −ZFiφi +W ′(ρ)φ2

i −
1

2
Y Fiφiφ

2
j , (6.1.8)

⇒ VBos =
ρW ′(ρ)2

Z + ρY
. (6.1.9)

We would like to highlight the difference to the bosonic model. The flow of Y does not

necessarily go to zero for increasing N in contrast to the one of Z 1. This means that LPA

will not be exact when calculating the flow of the effective potential instead of the one of the

superpotential. Therefore, the limit N → ∞ and N = ∞ do not have to coincide. Note that in

N = ∞ the Y term is absent as a result of only taking transversal directions into account.

1This is due to the fact that N − 1 transversal modes can propagate in the loop and this cancels the 1/N

suppression of the loop. This is in contrast to the one longitudinal mode propagating in the loop for Z.
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6.2. The large N results

In [98] the above given equation was solved for N = ∞ and therefore Z = 1, Y = 0. This

means LPA gives already exact results. A continuum of solutions was found with a spectrum

consisting of one relevant and one marginal eigenvalue while the rest is irrelevant,

θi = 1− i, i = 0, 1, 2, . . . . (6.2.1)

The solutions were analytically determined using the method of characteristics. The results

for the phase structure are in good agreement with the ones found by employing a variation

ansatz [148] . The observed fixed-point solutions has the interesting property that the potential

has always a zero at the same dimensionless ρ value. Furthermore, there are solutions whose

domain was limited in ρ. Some were even double valued in a positive ρ region. Moreover, some

solutions were not defined for small positive ρ. This was called the strong coupling regime as

the first derivative of the effective potential diverged for a positive ρ value.

The interesting questions when dealing with the finite N solutions are the following: Will the

finite N correction turn the marginal eigenvalue into an irrelevant one? Does a single solution

emerge from the limit N → ∞? Will it be in the strong coupling regime? Is it possible to find

a continuous function in N to connect the N = 1 Wilson-Fisher case with one N = ∞ case?

In the following sections we will provide answers to these questions. We start our investiga-

tions with the polynomial expansion around the minimum.

6.3. Polynomial expansions around the minimum

We provide at this point some technical details. These are not essential for the following

sections but may nonetheless be helpful for a deeper understanding. So a reader may skip

ahead if interested mainly in the results.

In order to do a fixed point analysis we have to introduce dimensionless quantities,

ρ̃ =
8π2Z

Nk
ρ, (6.3.1)

u =
1

k
√
Z
W ′, (6.3.2)

η = −∂t log(Z), (6.3.3)

η̃ = −∂t log(Z + ρY ), (6.3.4)

y =
kN

8π2Z2
Y. (6.3.5)
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The numerical constant 1
8π2 given above is for the case r2,1. The constant is chosen such that for

both regulators the large N minimum is positioned at ρ̃ = 1. In the following notations we drop

the˜on the O(N) invariant ρ̃. Both the N= 1 case and the N= ∞ case suggest the existence of a

fixed point solution with one minimum, for positive ρ, of the effective potential. This minimum

is given as a zero of the superpotential. Therefore, we make the truncated ansatz

u(ρ, t) =
I
∑

i=1

ai(t)(ρ− ρ0(t))
i. (6.3.6)

The fixed-point equation will only be fulfilled up to a certain order. As the expanded equation

of order n depends on the couplings an+1 and an+2 we have to make an ansatz for these. One

way is to set them to zero for n = I2 or use some additional input, e.g. as done before in

Sec. 4.4. If not stated otherwise we use the former approach in this section. The spectrum is

calculated by rewriting the time dependent coefficients,

ai(t) = a∗i + ǫδai(t)e
−θt, i = 0, 1, 2, . . . , a0(t) = ρ0(t), (6.3.7)

and expanding the equation up to linear order in ǫ. Here a∗i are the fixed point values

Let us turn toward the different truncation levels.

6.3.1. The case of LPA

As LPA is exact for N = ∞ we start with this truncation and investigate the large N results.

In this truncation the flow equation for u using r2,1 reads

∂tu = −u+ ρu′ − N− 1

N

1− u2

(1 + u2)2
u′ − 1

N

1− (u+ 2ρu′)

(1 + (u+ 2ρu′)2)2
(3u′ + 2ρu′′). (6.3.8)

Inserting our polynomial ansatz we find a special set of solutions with

ρ∗0 =
N− 1

N
, a∗1 = − 1

2ρ∗0
, a∗2 =

3

2

1

4ρ∗20
. (6.3.9)

The higher order coefficients ai will now start to appear at order (ρ−ρ0)i. Therefore increasing

the truncation I → I + 1 will not change the fixed-point coefficients a∗0, . . . , a
∗
I . As thus the

flow of ai does not depend on the flow of ai+n also the stability matrix is block diagonal. In

fact, the actual computation shows that it has upper-diagonal form. Therefore the coefficients

can easily be read off. Computational details can be found in [149].

2This is essentially the stated ansatz for u.
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The eigenvalues are given as

θi = (1− i) + (i+ 1)i
N− 1∓

√

(N + 17)(N− 1)

6ρ∗0N
, i ∈ N ∪ {0}. (6.3.10)

We have two sets of eigenvalues. The one with only positive and therefore relevant eigenvalues

is given by the plus sign. The other one has only one relevant direction. The origin of this is

a freedom of choice in the parameter a∗3. Those giving only one relevant direction will appear

in the large N limit. The other one scales with N and therefore diverges. This means that

defining the expansion point and the first and second derivative is not sufficient to determine

the fixed-point solution. We conclude that we are expanding the ODE around a somewhat

singular point. This might also prove to be challenging when fine tuning to criticality. A

typical UV Lagrangian with a φ4 potential would not be able to distinguish between those two

fixed points. We give a short example at the end of the section. At this point let us concentrate

on the solution with only one relevant direction.

As promised we compare our fixed-point solution and its spectrum with the solutions for

N = 1 in Sec. 4.1.2 and N = ∞ in Sec. 6.2. We see that our critical exponents in eq. (6.3.10)

behave in leading order of an 1/N expansion in the same way as the large N ones, see eq.

(6.2.1). We furthermore observe that the finite N corrections shift the marginal fluctuation into

an irrelevant one. There is nonetheless no correction to the sole positive eigenvalue. The only

found solution with one relevant direction connecting the N = ∞ solution to the finite N is

given by eq. (6.3.9) at N = ∞. We do not expect to find a consistent solution with more than

one relevant direction. The reason is that the dimensional analysis done in Sec. 4.2 still holds

true for the potential3.

On the other hand we have a hard time going to N = 1. As ρ∗0 approaches zero and a∗1

diverges according to eq. (6.3.9). We reexamine the N = 1 + ǫ case in Sec. 6.5.

One may distrust the results obtained for the r2,1 regulator as we expand around a somewhat

singular point. Therefore, we list the results for the regulator r2,2 in comparison to the ones of

r2,1 in Tab. 6.1. The decoupling of the higher coefficients does not happen and therefore we

give the results for different N as examples. Still the same pattern emerges.

We also promised to show a plot of the flow near the fixed point and the problem related to

the fact that another repulsive fixed point is close to it. Limiting ourselves to a φ6 UV effective

potential our superpotential u has to be of order ρ 6.1.9. We restrict our potential to a constant

3We will have a closer look into this at a later stage.
4We have to compare the absolute error to one as this is the typical order of the critical exponents
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θ1 θ2 θ3 ρ∗0 a∗1 a∗2

N=100, r2,1 1 -0.029 -1.1 0.99 -0.505 0.383

N=100, r2,2 1.0 -0.051 -1.1 0.99 -0.741 0.709

N=10, r2,1 1 -0.24 -1.7 0.9 -0.56 0.46

N=10, r2,2 0.98 -0.32 -1.9 0.90 -0.82 0.81

N=3, r2,1 1 -0.72 -3.2 0.67 -0.75 0.84

N=3, r2,2 0.97 -0.77 -3.1 0.67 -1.12 1.4

Table 6.1.: We compare the results for the critical exponents and the first three couplings for

the two regulators r2,1 and r2,2. The Results are given for small N=3, medium

N=10, and large N=100. For the regulator r2,2 we used a truncation level I = 12 at

which the given critical exponents have converged to the given values (two significant

figures). As we can see the critical exponents show a reasonable agreement4. We

can see that the first critical exponent does get finite N corrections when choosing

the r2,2 regulator while these are absent for the r2,1 regulator. Due to our choice of

dimensionless quantities the ρ∗0 values are also in good agreement. The other two

couplings show no agreement as these are no universal quantities and thus regulator

dependent.

plus a linear term in ρ. Taking this ansatz and plotting the flow diagram in the (ρ0, a1) plane,

Fig. 6.1, we see that we have two relevant directions near the projection of the fixed point

instead of one. This is related to the fact that the repulsive fixed point is more influential in

this plane than the attractive one.

Although this seems a bit discouraging it is still true that one can find initial values in such

a way that the trajectory is close to the discussed fixed point. Especially one can still find a

separatrix between the broken and the unbroken phase within a polynomial flow at LPA level.

But not all initial points on this line will have a trajectory bringing them close to the fixed

point with one relevant direction. Therefore the phase transition is not necessarily governed by

it.
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Figure 6.1.: On the left is a simple flow diagram in the (ρ0, a1) plane for N=100 with all other

couplings set to zero. This is the flow of a φ6 action in the UV. Near the projection

of the fixed point (Red) (99/100, 99/200) we see no trace of an irrelevant direction.

Including a term quadratic in ρ in the potential and setting this coupling to its

fixed-point value a∗2 does not moderate the problem. This can be seen on the right.

6.3.2. The case of LPA’

In this section we will introduce a uniform wave function renormalization Z and neglect the

correction Y . The aim is to investigate the stability of our derivative expansion and look for

some finite N corrections when dealing with r2,1. The η equation in this truncation can be

found in the appendix and the flow of the potential is given below eq.(6.4.1).

Including the wavefunction renormalization presents two major changes. The first one is

that the decoupling of the flow of the coefficients from the higher order coefficients does not

take place any more. Therefore the truncation scheme employed will influence our results. The

second problem is that setting the highest coefficients to zero does not allow us to find a valid

fixed-point solution5. We avoid this problem by setting the two highest coefficients to the LPA

values times a constant (α) and vary this constant. In Fig. 6.2 we give the dependency of

our lower order coefficients on the choice of the constant. One can see that the results get less

sensitive for a large range of values of this constant with increasing truncation order I. The

same is true for the critical exponents as is also depicted in the same figure.

5At least we were not able to do so for a wide range of truncations and initial data.
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Figure 6.2.: We see the dependency of the calculated critical exponents (left hand side) and the

anomalous dimension (positive values on the right hand side) as well as the first

coupling (also on the right hand side). The plot shows different values for α with

which the couplings aI+1,LPA and aI+1,LPA were multiplied and used as an input for

the system of equations for the lower order coefficients. As we can see the results

are converging in I regardless of the chosen input α to the same result. The choice

of α with the fastest convergence seems to be in between α = 1 and α = 0.5.

In Fig. 6.3 we follow the trajectory of the first coupling as well as η w.r.t. N in the LPA’ case.

We note that we end up in the weak coupling, nearly Gaussian, regime in case of the LPA’ case

in contrast to the LPA. As this classification had some impact on the physical masses present

in the large N system we will have to go on and clarify this issue.

As for the case of small N, LPA’ is also not able to go to N=1. Also the results for small N

are not very stable. Furthermore the anomalous dimension is quite large for d = 3 as depicted

in Fig 6.3 on the left. We would expect η ≤ 2/10 as found for the N = 1 case, see Tab. 4.1.

6.3.3. NLO truncation

A study of this model up to NLO level (W (ρ), Z(ρ), Y (ρ)) within a polynomial expansion was

done. The results were always discouraging. Two typical problems are:

• The fixed-point solution as a function of N ceases to exist for small N. This behavior

seems quite generic for NLO truncations. Typically this happened around N ≈ 3. Using

the r2,2 regulator this already occurred in LPA for N = 2.

• The number of relevant directions changed for increasing N from one to two. No other

6We cannot exclude its existence but were not able to track it by decreasing N. Thus we think it absent.
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Figure 6.3.: We see on the left hand side the dependency of η (positive values) and a∗1 in an

polynomial truncation I=14. We set a∗13 and a∗14 to the LPA values times α. It

can be clearly seen how the solution tends to the Gaussian one for large N. We can

also see that for small N(= 4) the values are not as stable as one would expect.

Especially, also the first two critical exponents given on the right hand side have

not settled w.r.t. α. The solution with α = .5 was not found for I = 14 and

N = 46.

solution with one relevant direction showed up at such an N.

All these problems and the fact that no coherent picture emerges motivates us to look into

a global approach toward this problem.

6.4. The shooting method

6.4.1. Starting at ρ = 0

We proceed as in the former chapters and start at ρ = 0 and try to find a global solution. To

do so we use a spike plot and limit ourselves to LPA’. The input parameter chosen is u(0).

∂tu = −(1− η)u+ (1 + η)ρu′ −
(

1− η

3

) N− 1

N

1− u2

(1 + u2)2
u′ (6.4.1)

−
(

1− η

3

) 1

N

1− (u+ 2ρu′)2

(1 + (u+ 2ρu′)2)2
(3ρu′ + 2ρu′′)

= S − G(3ρu′ + 2ρu′′) (6.4.2)

We note that at ρ = 0 the choice of u(0) already determines a single solution.

If one is interested in a fixed-point solution with one minimum the range of u(0) is limited,

u(0) ∈ (0, 1). Negative values mirror the positive ones and larger values provide us with a

79



global solution that has no minimum as it is ever-growing. This can easily be seen by setting

u′ to zero and u = 1 + c. Then u′′ is strictly positive for every c.

From our discussion in Sec. 2.3 we expect that our spike is determined by the zero of the

right hand side of the first line (S) and the zero of G. In Fig. 6.4 we give for two different η

and two different N the values of S(ρmax), G(ρmax), and ρmax, the endpoint value. As we can

see there is no spike and therefore we do not expect any global solution. A similar spike plot

was given in the case of the Wess-Zumino model when starting with an odd superpotential uWZ

in Fig. 4.2.

Still, one could argue that a fixed-point solution that is non-existent for a finite range of ρ

will influence the IR physics as in dimensionful quantities this range shrinks to zero going to

smaller k. Also in the large N case some fixed-point solutions showed such a gap and were

related to the solution of flow equations with reasonable UV starting potentials. In order to

investigate this issue further we will shoot from a finite ρ value.

6.4.2. Starting at ρ > 0

As we have a lot of degrees of freedom when starting at ρ > 0 let us constraint ourselves a

bit. As we want to enforce the existence of one minimum we choose u(ρ0) = 0. We have

two remaining parameters u′(ρ0) and ρ0. The anomalous dimension will be determined in the

minimum and can be calculated from the chosen parameters. As we do not expect to find

global solutions we search for implicit solutions of the form ρ(u). This is inspired by the exact

solutions found in the large N limit. In Fig. 6.5 we give an example of such a fixed-point

solution. As we can see the function u(ρ) is double valued while ρ(u) is single valued. We only

allow for those solutions that do not end in a singularity for both positive and negative u.

In Fig. 6.5 we provide the parameter space for which solutions of the above given type exist.

For a well-posed fixed-point problem these should be quantized. Instead, we see a continuum

of solutions. The reason is that we have lost our quantization-condition G = 0 → S = 0. We

observe that the admitted region shrinks to a line for increasing N. This line is a part of the

continuum of solutions found in the large N case. We note that the weak coupling regime is

excluded. Therefore the LPA’ polynomial expansion gives us a solution that is not compatible

with the constraint for fixed-point solutions. Note that our polynomial expansion did not

provide us with such a plethoria of solutions. This is partly due to the fact that we looked for

solutions with one relevant direction. The number of relevant directions is not examined for
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Figure 6.4.: We see different spike plots (Blue curves) combined with a plot of G and S at the

endpoints of the numeric integration. On the left are the cases with N=10 and on

the right the ones with N=100. In the upper row η = 1/10 was chosen while in

the lower one η = 0. As we can see we never have any spike and we also have the

singularity due to the zero in G without any sign change in S.

the given numerical solutions.

6.5. N close to one

By now we have found a lot of indications that the model does not have a valid Wilson-Fisher

fixed point. Let us examine why this may be the case. We investigated in Sec. 4.2 the number

of critical models for a given type of potentials w.r.t. the dimension d. We saw that for d = 3

only a φ4 coupling was relevant. When examining the effective potential formulated in this

section we found (eq. (6.1.9))

Vbos ∝ ρW ′(ρ)2. (6.5.1)
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Figure 6.5.: In the upper left corner we see an example solution ρ(u) for N = 10 (Blue). Its

shape is similar to the fixed point solutions found in the N = ∞ case (Red). The

other three plots depict the approximate parameter region a1 = u′(ρ(u = 0)) and

ρ(u = 0) for which solutions of the plotted type exist. The region within the given

curve is allowed. We see a continuum of solution. The range of a1 is limited from

below.

This effective potential will have no ρ2 coupling for C(2)(R+) potentials W ′. Therefore we are

missing the essential ingredient for the discussion of a phase transition. Even allowing for a

diverging W ′′ in the last section did not lift this problem. We were not able to find a solution.

On the other hand, we know a valid solution for N = 1. So it may be a good idea to

reformulate the obtained flow equation in such a way that we end up with the old flow equation

of the Wess-Zumino model for N = 1.

Doing so involves a singular transformation in order to lift the zero at ρ = 0 of the effective

potential.

ũ(φ) = φu(φ2/2), φ =
√

2ρ. (6.5.2)

Here we have introduced a scalar φ that carries no O(N) vector indices . After this transfor-
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mation the fixed point equation of ũ looks like

0 = −3− η

2
ũ+

1 + η

2
ũ′(φ)φ+

1

N

3− η

3

ũ′(φ)2 − 1

(ũ′(φ)2 + 1)2
ũ′′(φ)

+
N− 1

N

3− η

3

φ2 − ũ(φ)2

(φ2 + ũ(φ)2)2
(ũ(φ)− ũ′(φ)φ).

We can now easily reproduce the spike plot of the N = 1 case. As N appears as a parameter

in our formulation we may increase it continuously to higher values and observe how the spike

plot changes. This is depicted in Fig. 6.6. We see that the spike disappears for N → 2. As

we do not have a sign change in S we again will not be able to continue our solution to larger

field values. For this reason it was not possible to connect the N = 1 solution with the N ≥ 2

solutions.
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Figure 6.6.: We provide the spike plot with the endpoints of the numerical integration plus an N

depend constant on the left hand side. On the right is the sign of S depicted which

is also shifted by an N dependent constant. The upper row is for η = 0 while the

lower one is for η = 1/10. For the reason of better readability we added a baseline in

the same color on the left hand side. The difference between baseline and spikeplot

is the maximum φ to which we could integrate. Note that for increasing N the

influence of η is diminishing.
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The reason why the spike seems to exactly vanish for N = 2 is not obvious. Although this

may be an interesting question we do not want to pursue it7. We note the shrinking domain of

the solutions to the right hand side of the spike indicating a decreasing domain of the solutions

we are interested in.

Let us instead turn toward the effective potential and Yukawa coupling we have realized by

employing the given reformulation of our flow equation. As we have formulated the dimension-

less effective potential in the form

vBos =
ũ2

2
, (6.5.3)

well known from the previous chapters, the Yukawa term from eq. 6.1.4

VYuk = −1

4

(

u(ρ)ψ̄iψi + u′(ρ)(φiψ̄iψjφj)
)

, (6.5.4)

now reads

VYuk = −1

4

(

ũ(φ)

φ
ψ̄iψi +

ũ′(φ)

φ2
− ũ(φ)

φ3
(φiψ̄iψjφj)

)

. (6.5.5)

A divergence at φ = 0 arises for every N > 1 as long as u′(0) 6= 0. Thus making field

configurations with φ ≈ 0 and ψ 6= 0 very costly in terms of the action. Note that this is also

true for those solutions with a turnaround. There u′ diverges and field configurations are again

costly.

6.6. d<3

As a last part we want to briefly explore the theory for d < 3. As we know that we cannot

expect any nontrivial solutions for d = 2 and N > 2 let us focus on dimensions close to 3. Those

theories may emerge as effective theories [153]. We are interested in these theories as d = 3

is the critical dimension for a φ6 coupling as argumented in Sec. 4.2. If the problem is really

as simple as that we are looking at the problem in the wrong dimension we should be able to

observe fixed points for d < 3.

7Looking into this no simple argument was found. We want to point out that in the scalar case at exactly

N = 2 the higher critical models vanished in d = 2 in the sense of the reference noting this, i.e. [150, 151].

So an equal number of transversal and longitudinal degrees of freedom seems to be very special. See also

Kosterlitz-Thouless transition [152].
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We use a different constant factor8 for the definition of the dimensionless renormalized O(N)

invariant ρ̃ and end up with the flow equation

u̇ =− (
d− 1

2
+ η)u+ (d− 2 + η)ρu′ −

(

2

d− 2
− η

2

d(d− 1)

)

×
(

N− 1

N

1− u2

(1 + u2)2
+

1

N

1− (u+ 2ρu′)2

(1 + (u+ 2ρu′)2)2
(3u′ + 2ρu′′)

)

.

The usage of r2,1 limits the number of dimensions: d > 2.

We provide the spike plot for two values of d and four different N in Fig. 6.7 and Fig. 6.8.

We chose η = 0 in these plots. As we can see there are now spikes indicating a valid fixed point.

This is as we suspected. On the other hand for large N a second spike arises. The origin of this

change of behavior can be traced back to the transversal modes contributing to the function S.

These modes seem to destroy the fixed point for large values of N. As the necessary number

N for which the spike vanishes is decreasing for diminishing d this reminds us somewhat of the

Mermin-Wagner theorem [154]. Note the contrast to the scalar O(N) model [151] in which the

higher critical models do not vanish in the above given sense9.

In Fig. 6.9 we plot solutions for both sides of the two spikes. As we can see the behavior is

quite similar. We note that the value ρmax is not nearly vanishing as it was in Fig. 6.6. Also

the found solutions have already a zero crossing and therefore the minimum of the effective

potential lies within the region in which we compute the spectrum, see Sec.2.4.

8formerly 8π2 for r2,1, now also d dependent
9There the critical exponent of the correlation length diverged at d = 2 starting at N = 2.
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Figure 6.7.: We provide four different spike plots along with the values of the function S at the

endpoints. The dimension is d = 2.9. As we can see there is a pronounced spike

for d < 3 as long as N is not to large. For large N a second spike appears. This

change of behavior is related to the increasing part of the transversal modes in the

function S.

6.7. summary

Let us summarize our findings in this chapter. We looked at the O(N) model and searched for

fixed-point solutions within different truncations. Although we were able to find solutions for

2 ≤ N ≤ ∞, these solutions did not fulfill our expectations. The polynomial ansatz provided

us with quantized solutions. These seem not to converge at the investigated truncation level of

the derivative expansion. Furthermore we found that these solutions could not be analytically

continued to arbitrary small positive ρ. To see this we used a shooting method. We even

found that the solutions were not quantized when shooting from zero. We realized that the

problem may be related to the way our theory is formulated as no smooth transition to the
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Figure 6.8.: As in Fig. 6.7, we show the spike plot along with S at the endpoint of the integra-

tion. This time d = 2.8. As we can see the appearance of the second spike occurs

for smaller N. We also depict the case in which the range between the two spikes

has vanished (N = 18). One can see a remnant of the two merged spikes in the

peak of the function S.

known N = 1 solution was possible. We reformulated the theory in order to mimic the N = 1

case and extended to N > 1. We observed that the fixed-point solutions vanish for N ≥ 2. For

1 < N < 2 the range of existence was shrinking with N. We conclude that the problem is ill

posed in d = 3. This confirms perturbative studies in [147]. The absence of a valid fixed points

solution goes also hand in hand with the findings in [145]. For d < 3 valid fixed-point solutions

could be found depending on N. This strengthens our point that the formulation of the model

is such that d = 3 is the critical dimension at which a fixed point arises.

What have we learnt from this study from a methodological point of view? It is at some

point necessary to go to higher truncations in the derivative expansion to confirm the existence

or absence of a fixed point. Also, the shooting method seems to be more reliable when looking

87



u(0)=ucr,1+

u(0)=ucr,1-

0.0 0.5 1.0 1.5 2.0

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

u

u(0)=ucr,2-

u(0)=ucr,2+

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

u

Figure 6.9.: We depict the different numerical solutions found for N = 34 and d = 2.9. On

the left hand side we chose values close to the first spike ucr,1 ≈ 0.2 and on the

right for the second spike ucr,2 ≈ 0.4. The Blue curves are the ones providing us

with solutions we would consider as the correct fixed-point solutions as they stay

concave. The vertical line indicates the endpoint of the numerical integration for

those. The red ones are solutions from the other side of their respective spike.

for global solutions. This is one reason why we used it mainly in the previous chapters.
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7. Conclusion

In the scope of this work we covered different topics. Let us remind ourselves of our main goals

and to what extent we reached those. Our first goal was to reexamine the derivative expansion

for a supersymmetric theory. We dedicated the first half, Sec. 3.3, of the chapter 3 toward this

goal. We used a toy model of quantum mechanics which can be solved exactly. Thus, we had

a reference frame for our results. We saw that our derivative expansion converged toward the

exact results as long as tunneling effects were not too strong. We suspected that this was due

to the effect that we did not include non-local terms.

In the second half of this chapter, Sec. 3.4, we investigated the formulation of flows in the

case of spontaneously broken supersymmetry. We pointed out that the projection scheme in

powers of F is not justified in the broken phase. Instead one has to use an expansion point

F0. This was necessary to keep a positive mass in the propagator. Using this formulation we

produced good estimates for the ground state energies.

Our next goal was to test methods which are well established in the framework of scalar field

theories to find fixed points and their spectrum in the supersymmetric case. Our testing ground

was the Wess-Zumino model with N = 1 supercharges in d = 2, 3. We tested for fixed points

using the shooting method and found those solutions that were already found in polynomial

expansions, Sec. 4.1. Beforehand we gave some reasoning why the shooting method should

provide us with the correct results, Sec. 2.3. We showed that the polynomial expansion around

zero does allow to find the fixed point of the Ising model, Sec. 4.3. Furthermore, we gave the

spectrum. We demonstrated how different implementations of the anomalous dimension in the

calculation of the spectrum influenced the critical exponents, Sec. 4.4. An important message

we took away was the tendency to decrease the first two critical exponents when varying η

compared to the case in which η is kept fixed as an input parameter.

After contemplating these methodological problems we turned toward the interesting question

of emergent supersymmetry, Sec. 5. We used a Yukawa model with a field content matching
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those of the on-shell Wess-Zumino model. We asked ourselves how relevant are explicitly

supersymmetry breaking fluctuations; or equivalently: How stable is supersymmetry in such

general systems? To this end we provided a reformulation of the Yukawa system by introducing

an auxiliary field which we ultimately chose scale dependent 5.2. While our numerics were not

as stable as we hoped for them to be we are still convinced that the supersymmetry breaking

terms are irrelevant and probably even strongly suppressed. We used results from the literature

to strengthen this argument, Tab. 5.5. We think further work is still fruitful in this direction.

An inclusion of the fluctuation of the anomalous dimension could provide a clearer picture

concerning the critical exponents of the explicitly supersymmetry breaking fluctuations.

We want to make a remark on the used technique of employing a scale dependent auxiliary

field. To the knowledge of the author the technique of absorbing the flow of a whole potential

in the one of a scale dependent field was not implemented before. This procedure could prove

helpful in other models.

With this positive findings we turned our attention toward the supersymmetric linear O(N)

model in d = 3, Chap. 6. We wanted to investigate the finite N case as the literature was very

sparse on this topic. We hoped to connect the results from the large N analysis with the ones

from N=1. In order to do so we employed both, the shooting method as well as the polynomial

expansion. No coherent fixed point picture emerged and we started to question whether the

problem is well-posed. We realized that the original formulation has the critical dimension

d = 3 coinciding with the chosen spacetime dimension. We therefore tried a reformulation in

Sec. 6.5. We could then reproduce the N = 1 results but failed to find a fixed point solution for

N ≥ 2. In order to examine the statement that the critical dimension of our original formulation

was d = 3 we went to dimensions smaller than three, Sec. 6.6. There we found a fixed point

solution for not too large N. We concluded that indeed the problem is ill-posed. It would be

interesting to do the finite N analysis in the path-integral formulation used in [96, 144] and see

what happens there.
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A. Appendix

A.1. Shooting Example

We give an example of the shooting method that is in order to obtain the critical exponents in

the case of a problem described in 2.4.1. Take the familiar harmonic oscillator u′′ − φ2u = θu.

The eigenvalues belonging to even solutions are −1,−5,−9, . . . . We modify the problem to

u′′ − φ2u+ u(1) = θu. (A.1.1)

We take u(1) as a constant c and end up with

u′′ − φ2u+ c = θ(c)u. (A.1.2)

We use the shooting method to look for polynomial solutions of u giving us the θ(c) as described

before. In Fig. A.1 we provide a series of steps that lead us iteratively to our θ guesses for a

given c.

We start with c1 = 0. As we know the first eigenvalue to be −1 we start with θ+ = 1

and θ− = −3. Undergoing our bisection method we end up with θ(0) = −1 as expected. The

solutions close to θ will give us a good estimate on u(1)|c=0. We take u(1)|c=0 as the estimate for

our next c and redo our analysis. We have now two data points and can do a linear interpolation

and look for a zero in (u(1)|c) − c. We use this value of c. In Tab. A.1 we give consecutives

values of c, (u(1)|c)− c and θ(c). We see a quick convergence in the numbers.

A.2. Superspace formulation

In order to obtain our flow equations we are using a superspace formulation with the superfield

Φ. We will sketch how to derive the flow equations for the NNLO truncation. At the end we

will also give the flow equations of the Wess-Zumino model and the emergent supersymmetry

case.
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Figure A.1.: On the left we give the numerical solutions for different input θs. The blue solutions

are the ones that go to ∞ and underestimate θ. The red ones on the other hand

go to −∞ and overestimate θ. We give the solutions for the iterations steps

i = 5, 10, 15, 20, 25, 30. As we can see both solutions agree to high precision on

an increasing interval. In the region in which they almost agree we have a good

approximation of the correct fluctuation. On the right we give the logarithm of

the input θ and the estimate for θ after 30 iterations for both the up and the

down case, i.e. Log(eθ) = log10(θ±(i)− θend). In this example we chose a bisection

method and therefore the increase in precision is exponential. In fact every step

provides us with an increase by the factor two. The computation shown is for the

best guess of c for the second even eigenvalue, see Tab. A.1.

As described it is useful to write down the effective average action in terms of superfields

so that a consistent derivative expansion can be formulated. In the simple case of a model

depending on only one superfield the flow equation can easily be formulated as

∂tΓk = STr
(

(Γ
(2)
k −Rk)

−1 ∗ ∂tRk

)

,Γ
(2)
k (p′.p′′.θ′, θ′′) =

δ

δΦ(p′′, θ′′)

δ

δΦ(p′, θ′)
Γk, (A.2.1)

with
δΦ(p, θ)

δΦ(p′, θ′)
= δ(θ − θ′)δ(p− p′), (A.2.2)

and (A ∗B)(p, p′θ, θ′) =

∫

dθ′′dθ̄′′dp′′A(p, p′′, θ, θ′′)B(p′′, p′, θ′′, θ′). (A.2.3)

STrA(p, p′, θ, θ′) =

∫

dθdθ̄dθ′dθ̄′δ(θ − θ′)dpdp′δ(p− p′)A(p, p′, θ, θ′) (A.2.4)

We have not taken the derivatives w.r.t. the component fields but are using the Grassmannian

variables θ. In the off-shell formulation we have as many bosonic field degrees of freedom as

fermionic ones. Also we have as many degrees of freedom in (θ̄, θ) as in the fermionic sector.

Therefore a particular combination (θ̄, θ, θ′, θ′′) encodes the same information as is present in a

matrix formulation of Γ(2) using the component fields. In fact we can translate both cases and
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θ1 θ2

c u(1)− c θ(c) c u(1)− c θ(c)

0 0.607 -1 0 -0.607 -5

0.607 0.070 -0.195 -0.607 0.32 -4.47

0.686 -0.002 -0.096 -0.397 -0.011 -4.68

0.683 0.0006 -0.099 -0.404 -0.0002 -4.68

Table A.1.: We provide the iteration steps toward the eigenvalues of the given problem. We do

so for the first and second even eigenvalue.

can use the formulation in the Grassmann variables also for non-supersymmetric theories.

By using this formulation the calculations look exactly like the ones in the bosonic case. In

order to project out the flow equations it is useful to use the component fields after doing the

algebra on the right hand side. For example after going to a constant field approximations we

have in the QM model at NNLO

Γk =

∫

dz

(

iW − 1

2
ZΦKΦ +

i

4
Y1K

2Φ +
i

4
Y2(KΦ)2

)

, (A.2.5)

∂tΓk|Φ=const,ψ=0 =
Z

2
F 2 + iFW ′ +

i

4
Y ′2F

3. (A.2.6)

We compute the polynomial expansion of the right hand side of the flow equation around

F = 0 and identify both sides up to third order in F . As a supersymmetric theory lacks a

term F 0(ψ̄ψ)0 this should be also absent on the right hand side. If the computation is done

correctly this is the part at which the fermionic contributions should cancel the bosonic ones.

As we can see it is possible to project out easily three of the four functions we are interested in

by setting the fields to constant ones. For the computation of the last one we can still use the

auxiliary field. As K2 = ∂2 we could try to project onto p2F to obtain the flow of Y1. As only

the quantity X = Y2 + Y ′1 enters the flows we project onto this one. The p2 projection is done

in analogue to the bosonic case by taking the second functional derivative of both sides of the

flow equation w.r.t. Φ(p, θ′′′) and Φ(−p, θ′′′′). One has to pick the correct term in (θ′′′, θ′′′′).
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Calculating the terms without any spacetime derivatives yields the following flow equations:

∂tΓk =

∫

ddqṙ2

[

1

2R2 + 3iFY ′2
2

(

1− 64q2(R2 + iFY ′2)(2R2 + 3iFY ′2)
)]

[

2ṙ2(4q
2(2R2 + 3iFY ′2)

2 − (4R1 + 2q2X − 4iFZ ′ + 3F 2Y ′′2 )+

4(4(R2
1 + q2R2

2) + 4q2R2X + q4X2) + 8iF (−4R1Z ′ + q2(4R2Y ′2 +R2X ′ − 2XZ ′) + 2R2W ′′′)

. . .
8ṙ1(4R1 + 2q2X − 4iFZ ′9 + 3F 2Y ′′2 )

+4F 2(−3q2Y ′2(Y
′
2 +X ′)− 4Z ′2 + 6R1Y ′′2 + 3q2XY ′′2 + 2R2Z ′′ − 6Y ′2W

′′′)

. . .
+4iF 3(−6Z ′Y ′′2 + 3Y ′2Z

′′ +R2Y ′′′2 ) + F 4(9Y ′′22 − 6Y ′2Y
′′′
2 )

]

− 16(4R1 + 2q2Y4 − 2iFZ ′ + F 2Y ′′2 )

(4R1 + 2q2Y4 − 2iFZ ′ + F 2Y ′′2 )
2 + 32q2(R2 + iFY ′2)

2
, (A.2.7)

R2 = (Z(φ0)r2 + Z(φ)), R1 = r1 +W ′′(φ), X = Y ′1 + Y2 (A.2.8)

We spare ourselves the flow of X. It is not insightful and the way to obtain it is given. As

mentioned the flow equations are the same ones as in the Wess-Zumino model due to a rescaling

in the effective average action.

In the case of the emergent supersymmetry calculations we obtain the flow of V as the F 0

term and the flow of H = W ′′ − h as the ψ̄ψ term. This gives us at nearly LPA’ level the

following flow equations:

∂tW
′ =

∞
∫

0

dq
q2ṙ2(q

2R2 −W ′′2)W ′′′

4π2(q2R2 +RV ′′ +W ′′2)2
(A.2.9)

∂tV =−
∞
∫

0

dq
q2ṙ2(−H2(2q2R + V ′′) + q2R(RV ′′ + 2W ′′2)

4π2(q2R2 +H2)(q2R2 +RV ′′ +W ′′2)
(A.2.10)

∂tH =−
∞
∫

0

dq

[

q2ṙ2((q
2R2 +H2)2H ′′(−q2R2 +W ′′2) + 2HH ′2(q2R2(H2 +R(3q2R + 2V ′′))

4π2(q2R2 +H2)2(R(q2R + V ′′) +W ′′2)2

×(q2R2 −H2)W ′′2))

1

]

(A.2.11)

R =Z(1 + r2), H = W ′′ − h. (A.2.12)

We have not considered different wave function renormalizations at this stage. As we know

that the fixed point is supersymmetric these will only shop up in the analysis of the spectrum

and not in the calculation of the fixed point.
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