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Introduction

Introduction

In the realm of physics, particularly within the intricate framework of quantum field theory, the dis-
cretization of operators stands as a foundational method of paramount importance. Because of the
complications of many physical problems, it is often necessary to use numerical methods to find an-
swers to many questions. To be able to apply those methods, one first needs to find discrete versions
of normally continuous mathematical objects. Of special interest in quantum field theory is the dis-

cretization of the Dirac operator.

In statistical quantum field theory, this operator can be used to determine the thermodynamical
state of equilibrium of a fermionic particle constellation. An especially interesting phenomenon is
the one of inhomogeneous ground states of equilibrium. If the considered theory is invariant under
translations, one might expect for a state of equilibrium that physical properties become the same
everywhere, similar to differences in temperature dissolving over time. But this is not always the case.
Former study shows, that for interacting fermions in 1+1 dimensions inhomogeneous phases do exist.
Also, in 241 dimensions an inhomogeneous state of equilibrium might be possible, but the effect did
not prove to be strong enough to be distinguishable from numerical noise. Theoretically, a magnetic

field could increase these effects and hopefully make them visible. [1] [2]

To achieve this, the discretization of the Dirac operator of fermions within an magnetic field is a
logical first step. In lattice field theory there are already many different approaches in to this in the
literature, for example Wilson- [3], KS- [3], overlap- [4] or domain-wall-fermions [5]. All attempt to
avoid the so called doubling problem [6] of a naive discretization of just using a completely equidistant
grid. This thesis will provide an attempt to find a new discretization. For this, we will attempt to
discretize the continuous solutions of the eigenvalue equation of the Dirac operator by application of
a fitting discretization method. Depending on the type of the solution, spectral or pseudo-spectral
methods are useful tools for this operation. Those methods basically apply an expansion in a certain
basis, similar to a Fourier series. The Fourier series is in fact one of the spectral methods, which works
well as long as the functions of interest are periodic. If that is not the case, it is better to apply a

pseudo-spectral method, like the Gaussian quadrature. [7] [8]

This thesis presents an attempt to find a discretization of the Dirac operator for fermions in 241
dimensions within a square (in the space dimensions) and a constant magnetic field. After presenting
a few theoretical foundations, the second chapter is dedicated to solving the eigenvalue equation of
the Dirac operator. For this, the identification of ladder operators proves to be quite useful. On a side
note, the determination of the zeroes of the zero modes will also be presented. Finally, chapter three
is dedicated to the study of the discretization. The time and one space dimension will be discretized,
while the second space dimension proves to be more challenging. The discretization of this third
dimension could not be achieved as part of this thesis. Still, chapter three includes the study of the

application of the Gaussian quadrature, which could lead to a discretization in the future.




Theoretical foundations

1. Theoretical foundations

1.1. Quantum Field Theories

The sources of the present chapter are [1] and [9].

A Quantum Field Theory is the best way modern physics can model elementary particles. The main
idea is to introduce fields 1 (t, Z), where particles are given by excitations of those fields. Analogously
to Lagrangian mechanics the action S is given by the time-integral over the Lagrange-function L. But
since we are now dealing with fields, the Lagrange-function itself is given by a space-integral over a

Lagrange-density L(1),0,) (Lagrangian). So, overall the action is given by a spacetime-integral

S = [ £00.0,0) d'a.

Also completely analogous to classical mechanics, the time and space evolution of these fields is given

by calculus of variations, which leads to the Euler-Lagrange-equations

oL oL
= = Oy -
oY 0(0,9)
The physical predictions are given by expectation values of observables O, similar to quantum me-

chanics. In the language of the path integral formulation they are given by a weighted sum over all

possible field configurations

©) = [ 0wes® Dy,

where Z is a normalization factor. When applying the so-called Wick-rotation, consisting of a trans-
formation of the time variable t — i7 and the corresponding analytic continuation to imaginary times,

Z can be expressed in terms of the Fuclidean action Sg

Z = /e—SEW) Dy .

Writing Z this way allows to draw a powerful connection. When considering the special case of
a closed path over an imaginary time interval A7 = (3, this Euclidean action takes the form of a

classical Hamiltonian
Z = tr (e_B H ) .

Now the normalization factor is just the canonical partition function. This way, results from com-
putations on the Lagrangian lead to thermodynamical predictions. Especially of interest is the so
called Dirac operator D, which governs fermionic quantum field theories. In particular, most relevant

fermionic theories are of the form
L =YDy

or can be brought into that form via a suitable Hubbard-Stratonovich-transformation. Here, ¢ de-
notes an Ny-tuple of fermion fields, Ny being the number of fermionic flavors, which we assume to
be mass-degenerate. Within the so called t’Hooft-limit of infinitely many flavors, stationary phase

approximation allows to determine the state of equilibrium via a minimization problem containing the




1.2 Quantization of the magnetic field

Dirac operator. That is the reason, why this work will study the Dirac operator of such a Lagrangian

in order to allow the determination of the state of equilibrium for a given physical situation.

More specifically, we are interested in fermions within an external magnetic field, which is why the

Lagrangian of interest is given by
L =iy Dy + imabap .
——
=D
Here, i is the imaginary unit, v* are the Dirac matrices, D, := 0, — 1A, is the covariant derivative
with the gauge field A, and m is the fermionic mass.
1.2. Quantization of the magnetic field

The sources of the present chapter are [2] and [10].

During this work we will be considering fermions within a square plane with length L, while a con-
stant magnetic field B passes orthogonally through the area. We normally wish to impose periodic
boundary conditions in both z- and y-directions. But when considering the magnetic flux through the

plane L? we find

BL? = // B dzdy
14

_ // (0,4, — 8,A,) dzdy
14

L L
[ =t - A =0t [ ey =1 - Ay =0]d (1)
0 0

where it becomes obvious that periodic boundary conditions for the gauge field A, would imply a
trivial magnetic field B = 0 (since (1) would vanish). But what we can do is make use of the gauge

invariance of the theory
A, — A, + 0N

where A can be chosen as any arbitrary smooth function. The gauge transformation for the operator

equation is

D — M, —iA, —id,N) = ey (8, —iA,)e”
1 1 1 1" 1

— oM et
From this we directly find the gauge transformation of the eigenfunctions

iy = My — eNifpe Ny = A

w/ — eiAw .
Now we can consider the gauge transformation of

Au(br + Lay) - Au(l‘a y) — Au(x + L»Z/) + 5MA(30 + L, y) - A,U«(‘Tay) - (%A(x,y)
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and choose a gauge such that

A+ L,y)+ 0 Mz + L, y) — Au(z,y) — OuA(z,y) =0
= Au(z+L,y) - Au(z,y) = 0u [Alz,y) — Az + L,y)] . (2)

=AM (z,y)

Analogously we get for the y-direction
Aul@,y+ L) = Au(e,y) = 3,0 (z,y) . (3)

These two conditions imply, that the gauge field is periodic up to a gauge transformation in both z-

and y-directions. This means, that the same is true for the spinor field
Wla+ Ly) = ez, y)  and ey + L) = TP, y) (4)

If we now use (2) and (3) in (1) we find
L L
0 0

L L
—/ d,AL(0,7) dy—/ 9, A?) (2,0) dx
0 0
= AW(0,L) — AMW(0,0) — A@(L,0) + A@(0,0) . (5)

For consistency reasons we have to make sure, that two independent gauge transformations for the x-

and y-directions commute with each other

Y@+ Lyy+L)=v¢@@+Ly+L)
— eiA(l)($’y+L)w(:€, y+L)= eiA@)(”L’y)?,/J(x +L,y)

— o [A<1>(x,y+L)+A(2)(x,y)]w(x ) = ei[A(2)(I+L,y)+A<1>(x,y)]1/}(

Y z,y) .

Since the phases are periodic, we find
A(l)(xa Yy + L) + A(Q)('Ia y) - A(Q)(:L' + L, y) - A(l)(‘rv y) =v2m
where v € Z. If we now choose explicitly z = y = 0 we can make use of (5)

A0, L) + A@(0,0) — A@(L,0) — AN (0,0) = v2r

<= BL?=12r7

V2T

@B:F (6)

to find that the magnetic field through a finite surface L? must be quantized. v is called the instanton

number and is thus a quantum number describing the amount of magnetic flux quanta passing the

2

surface. The smallest possible flux quantum is Buyin = 75-

Finally, there are two more mathematical tools, which need proper introduction. Those are Her-
mite polynomials and the Gaussian quadrature. Many different introductions to those topics can be

found, as for example in [8], [7] and [11].
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Hermite polynomials are a set of orthogonal polynomials, which appear as the eigenfunctions of the
quantum harmonical oscillator. They fulfill useful recursion relations and they define the Hermite-
Gauss weights. These weights allow to substitute integrals of polynomials by finite sums via the
Gaussian quadrature. A more detailed account on both those topics can be found in the appendices
A.l and A.2.




Eigenmodes and Dirac operator

2. Eigenmodes and Dirac operator

The first aim of this work is finding the eigenmodes and -values of the Dirac operator in question. For
this, we first construct the diagonalized squared operator. We then determine the eigenmodes and
-values of this squared operator, where we are able to identify ladder operators. Those operators allow
to compute any mode from the zero mode, which can be found in chapter 2.2. This is why we must
determine the zero mode beforehand, which happens in chapter 2.1. When we know everything about
the squared operator, we can construct the eigenmodes and -values of the original Dirac operator, as
found in chapter 2.4. Furthermore, chapter 2.3 contains the determination of the zeroes of the zero

modes.

As already mentioned in chapter 1.1, the Lagrangian we wish to study is
L =i YD, + imy .
——
=D
The specific constellation of interest is the same as in chapter 1.2. We want to study constant magnetic

fields passing orthogonally through a square surface in the z-y-plane. There should not be any electric

field, from which follows Ag = 0. Thus, we wish to solve the eigenvalue equation of the Dirac operator
i =\ with i) =i7°0y + iy’ D;

in 241 dimensions. Since this operator is the product of the imaginary unit ¢ and a first order
differential operator, it is hermitian and thus has real eigenvalues A € R. In these dimensions we can

choose a convenient representation for the Dirac matrices v* by using the Pauli matrices o,

1 2 0
v =01, v =02, 7 =03

where one can check that this representation fulfills the defining property of the Dirac matrices
{27} =26"0a0 .

In the chosen representation we find explicitly

o [i0p AT
zﬁ_(A —z'(%) ()

with A := i(D;y +iDy) and (since D, is a first order differential operator) AT = i(D; —iD3). From

this operator we can construct a diagonal operator by studying its square

(8)

. —R +ATA 0
(Zw)Q — 0 )
0 —03 + AAT

where we used, that the magnetic field should be constant in time dyA4; = 0. We did this, because
it is much simpler to find the eigenfunctions and -values of a diagonal operator. From those, the

eigenfunctions and values of the original operator can be easily constructed. Now we can separate this
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matrix and identify the field strength tensor F),,

(iP)* = —931 — D21 — 4%  [Dy, D]
N—_——
=—i(81 Ap—2 A1)
= 021 — D1 — VOEE
=B

B 0
:(—83—D§)1—<0 _B> .

Since both ATA and AA' are time independent, they commute with 92. Explicitly they are
AA'=-D?+B and A'A=-D?-B. (9)

We want to solve their corresponding eigenvalue equations, where we have non-negative eigenvalues

(since they are both hermitian and we obtained them by squaring an operator)
Al Ap, = X2, and AATY, = N2y (10)
If we assume B > 0 we find from (9) that
AAT = ATA4+2B > ATA . (11)
From this condition we find that there are only zero modes for ATA. So now we have constructed the
squared Dirac operator (8) and go on to determine the eigenmodes of its diagonal elements.
2.1. Zero modes of the eigenfunctions

We have constructed the diagonalized squared Dirac operator (8) and now want to find its eigenmodes
so that we can construct the eigenmodes of the original Dirac operator (7). Since 93 commutes with

both AAT and ATA, which were given by (9), the eigenfunctions of the squared operator are

P = et <S0> and 1y = ™! <O> . (12)
0 X

So the zero modes of the squared operator are determined by the zero modes of the operators AAf
and ATA, because of (10). We already know from (11) that we only have zero modes for ATA. So we

search for eigenmodes ¢ such that

ATAp =0
— (p, ATAp) =0
— (Ap, Ap) =0

which is fulfilled by
Ap=0.
But since we obviously also have Ap = 0= ATAyp = 0 we find

ATAdp =0 < Ap=0.
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So it is enough to only study the following differential equation

Ap =0
< (iDl — D2)4p =0
= [As — 0y +i(0: — Ay)]p=0.

Now we can choose a gauge such that
Ay(yy=—By and A, =0

where one can check that this choice fulfills the necessary condition Fijo = B. This leads to the simpler

differential equation
[— By —0,+i0;]o=0.

A product ansatz ¢(z,y) = X(z)Y (y) leads to the solutions
2

oz, y) = Ceiove=5 (1+5) (13)

with C' € C and a € C. These are infinitely many solutions. But we must also fulfill the boundary

conditions (4) in both z- and y-direction. So we must determine the gauge functions A and A(?)

<— A,(y+L)=-B(y+1L)
= A,(y) + 0,AY = A,(y) — BL
— AY=_BLrx+C,

and analogously A = Cy. We choose C; = 0 = Cy. With this we obtain the explicit boundary

conditions
(z+L)=1(x) and P(y+ L) =e"PHy(y). (14)

Because of (12), the boundary conditions only apply to ¢ and x. Let us apply the first one of the
conditions (14) to the zero modes (13)

ple+ L) =p(x)

g eiozeriozL _ eiaaz
2T

with p € Z. So the zero modes take on the new form

B
2

o 2
ppla,y) = Ceiore 3 WHE)pez, (16)
Let us now apply the second condition of (14) with k € Z

Pp(y + kL) = e BFLT, (4

2

o giopr o= B (y+hL+F)
——
phase value phase value

2
_ oilop=BEL)z e—%(y#%) _

10



2.1 Zero modes of the eigenfunctions

Since the values must be equal, we find in the exponent that for all £ we have to identify % + kL
as the same solution. This is just a modulo oy, + BLZ, which leaves only 0 < oy, < BL as different

solutions. So when we use the explicit forms of «, (15) and the magnetic field B (6) we find that

0<a,<BL

27 V2
— 0< —p< —1L
= TP

— 0<p<v

which leaves exactly v zero modes. Their amount is thus given by the instanton number. So we have

to consider a superposition of all identified solutions as one single eigenmode
wop(z,y) =C Z ei(ap—i-kBL)xe—%(y-i-%p—i—kL)Q’ 0< p<v. (17)
kezZ

The next task is to normalize them. For that we study

L L
—q _B &p 2 4 / _ B 1 T\2
<900’p‘(p07p,>:/ / CP S crilemthBLI B (kL) gilay tK BL o S lutay /BARD? gy

0 0 kk'€Z

Let us first consider the x-dependent part of the integral

o—i(apthBL)z iy, +k BL)z _ i [, —ap+BL(K —k)]z

(15) i[2Ep' —Zp+BL(K k)|«

(:6) ez’%" [p/—p-i—zz(k’—k)]a: .

Since 0 < p,p’ < v, the exponent consists of the sum a multiple of v and a p’ — p, which is smaller
then v. When also considering, that the integral goes from 0 to L, integral of the phase above thus
vanishes for any p # p’ or k # k’. At the same time the phase is 1 for p = p’ and k = k’. So we find

for the scalar product
2 t ~ By ykL)? By 2 k)2
Gusloon) = (OPLsy [ 37 e Br 3o By g
0 kiez

L o,

_B op 2 _B _p’ 2

— ‘C’2L5p,p’ § / e 2(y+ B +kL) e 2(y+ b +kL) dy )
kez /0

We want to normalize the case p = p’ and solve the ensuing Gaussian integral. We find that

L
— &p 2
{(poplpop) = |CI2L Z 0 e~ Bu+F+kL) gy

kez
= |c|2L/e—B<y+%’)2 dy (18)
R
— |CPLy = 21
CPLy %
which gives for the normalization constant
, B
C =%\ —
T\ L2

where we can choose ¢ = 0. So the normalized zero modes look like this

11



Raising and lowering operators

Zero modes of the operator ATA (9)

B ] B o 2
QDO,P(xay) ={, ) Z eZ(ap—’—kBL)ze_E(y—’—?p_FkL) ’ 0< p<v. (19)
L
keZ
Plots of a few selected zero modes can be found in figure 1.
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Fig. 1: Separate plots of the real and imaginary parts of three selected zero modes (19).

2.2. Raising and lowering operators

Now that the zero modes are determined, the higher modes are the next topic of interest. We found
that there are v zero modes for ATA given by (19). Since we also know that the operators AA" and
AT A are related via a difference of 2B (11), every zero mode of ATA implies one mode of AAT with
the eigenvalue 2B, of which are thus v in total. But since AAT and ATA have the same non-zero
eigenvalues, this also implies ¥ modes for ATA with the eigenvalue 2B. So there are 2v modes with
eigenvalue 2B in total. This argument can be repeated indefinitely to eigenvalues k2B with k € N to
each of which there correspond 2v modes. The situation is depicted in figure 2.

We can use the relation (11) together with the eigenvalue equations of ¢ and x (10) to find a relation

12



2.2 Raising and lowering operators

AtA AAT degeneracy

4B+ 114B 2w+
12B+ 112B 2w+
108+ +10B 2vt
8B+ {t8B 2w+t
68+ 16B 2w+t
4B+ 4B 2w+t
2B{ 2B 2wt
01 vt

Fig. 2: Depiction of the eigenvalues of AT A and AA" as well the amount of corresponding eigenmodes.

between ¢ and y. We find that for n > 1
AATXn,p = )‘721Xn,p
— (ATA+2B)xnp = Nxnp
— AT Axn, = (A2 = 2B)xn,
= AT Axnp = N2 xnp -

But this is just the eigenvalue equation of ¢,,_1,. This means

¥n—1,p = Xn,p - (20)
Using this relation we can further study the eigenvalue equations
AATXn,p = )‘121Xn,p

— AN(AATY,,) = AT(A2xnp)
— ATA(ATXn,p) = )‘EL(ATXn,p)

Af Af
e () ().
Cl (n) X P n Cl (n) X P
which is just the eigenvalue equation of ATA, as in (10). From this we find

AT
an,p = ©np

At
= ———n1p =
Cl (n) (pn 1>p SO”ﬂP

and analogously we obtain

A JE—
CQ(?’L) Pnp = Pn—1p -

So we can interpret A and A as ladder operators. We introduced C; and Cs so we have some freedom

to ensure that the ladder operators can keep the normalization. So we have

Alp, 1, =Ci(n)en, and  Apn, = Ca(n)pn_1p - (21)

Any other eigenmode can be obtained by using the ladder operators from equation (21). For conve-

nience from now on we only write «, instead of oy, + kBL. From this notation the complete solution

13



2.2 Raising and lowering operators

can always be obtained by o, — a, + kBL and summing over k. So, the first higher mode can be
computed explicitly
1
P1p = WATSDM
1

1(1

1 . .
_ N (10y + Ay + 0y — iAy)o,p

Q

(D1 + Da)wop

Q

Q

1
— B .
1(1) (7’8 y+a )‘pOp

Q

With ¢g, explicitly inserted as in (19), we find

1 B ap
P10 = G {7300z — By + 9, )¢ e —3 )’
1 B Oép zaa: (y+ap)2
~ G\ e e By Bu ) e
2B < +ap>
Cl(l) y B Pop -

Now again, we can use C;(1) to normalize ¢;,. Explicit computation and normalization of further

eigenmodes leads to
Ci(1)=V2B, Ci(2)=ViB, Ci(3)=V6B. Ci(4) = VBB,

which leads to the idea of the ansatz Cy(n) = vV2nB = \,. With this we can write down an ansatz

for any nth eigenmode by application of n raising operators

1

wp = o (A1)
Pn,p HZ:I Cl(k)( ) ¥0,p

1 [/ AT \"
~ Val <\/QB> oo
Here we can study the effect of n raising operators on the zero mode
(AN 00, = (0 — By + 8,)" 00,
= (—ap — By + 9y)"po,p

— (VB (S 4 VB - j—g)@ ,

where we obtain via substitution 1’ = \/_ + /By

(AT)nson ( 1) B ( )n 4/%eiapze—%(y+a_g)2

14



2.2 Raising and lowering operators

Here we can identify the Hermite polynomials H,,(y’) as they are given in (47) and also the zero modes

- [B .\, a2
1)n B Hn(y/) 4 melap{ref%

=$0,p

~1)"VB"H, (\/Ey + %)wo,p

which finally leads to the higher modes when remembering that f(oy,) — > ez f(ap + kBL). For
clear notation we introduce @y such that ¢o, = > pc7 @0k, Which can directly be seen in (19).

©o,p as they are given in (19)

Thus, we get

Eigenmodes of the operator ATA (9)

1 a, + kBL
Pnp = —F7—=\— n Z H ( p—>900,p,k . (22)

\/E kez \/E

To check the orthonormality of our ansatz we compute the scalar product of any two eigenmodes. For

this we use the orthogonality of the Hermite polynomials with respect to a weight function (50)

(Ho(y) 0.0 H (4 )0) = ﬁ /R Ho(y ) Hun (3 )e™ 05" dy (23)
= @Aﬂn(y’)Hm(y’)e_ylz %

1
_ L A,
%

which leads to

11

—(Hp (v )00 Hm (Y )p0,p)

(@nplomp) = Tl on

This verifies the normalization.

These eigenmodes can also be represented in terms of Hermite functions, which is just an alternative
notation. For this we use their form (22), the zero modes (19), o), = %Tp, B =Y and ® = BL? to
obtain

Eigenmodes of the operator ATA (9) represented by Hermite functions

( p + kv 2mi(pt+kv) £
<~ $np = \/W 7TL2 ZH < ( v ))e S (24)

An explicit verification of the normalization of this alternative form can be found in appendix A.3.
Before we go on to construct the eigenmodes of the Dirac operator, we want to study the zero modes a
bit further. For later discretization attempts a study of the zeroes of the eigenmodes might be useful.

Thus, the next chapter will be dedicated to the determination of the zeroes of the zero modes.

15



2.3  Zeroes of the zero modes

2.3. Zeroes of the zero modes

An explicit calculation of the zeroes is possible. This can be achieved by the identification of the
so called Jacobi theta function, for which the zeroes are well known. A more detailed account on
this function can be found in appendix A.4. To achieve an identification, consider the following

rearrangement of the zero modes (19)

B : B, 2 12? 2 BL2 .

4 _Bj2__p_ _k2BL” _

7 (x’y) 2ezap:r S Y —55—Yap 2 :e k? Z5—+k(iBLz—BLy+apL) )
kezZ

With this notation we can identify the Jacobi theta function as given in [12]

19(2,7 7_) — Z eﬂ'ik27'+27rikz
kezZ

for z € C and Jm7 > 0. This leads to an representation of the zero modes with the theta function

s/ B iop B2 b BLy—a,L BLx BL?
vop(T,y) = memﬂ 2V I 19<Z o t i )

This means, that the zeroes of the zero modes are given by the zeroes of the Jacobi theta function.

As mentioned in (57), the zeroes of (2, T) are given by

1 1
zmn:<m+§>+<n+§)7, m,nel .

This means for the above theta function the zeroes are given by the solutions of

_BLy—apL+BLx_( +1>+( +1>,BL2
o or \""T2) ") o

By comparison of the real and imaginary parts we find separate constraints for x and y when remem-

bering that B = ”L2—27r and o, = %Tfp

1
yn:(n+g+—>L
v 2

and

()
Im=|{m+=-|—.
2)v

But since we are constrained to a square we obtain a finite amount of zeroes depending on p and v.

For z,, we find exactly v zeroes at

For y,, we find
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2.4 Eigenfunctions of the Dirac operator

The maximum value for % is 1. We have three cases. For those we get the zeroes

1

{_1} 7§>§

nel{-L0} 2=}

1

which means for 1, we have the zeroes
p 1 p_1
—(Z£_2)\r L
Yo (V 2) ’ v 2
p 1 p_1
=(=+=|L =< =

4 <V+2) ’ v 2

This means that in total we have v zeroes for % =+ %, which are located on the inside. Also, we have

2v zeroes for % = %, which are all located on the boundary in y-direction.

Zeroes of the zero modes (19)

1\ L
mm:(m+§)—, m € [0,v — 1]

1%
p 1 p 1
= (£ _-2\L >
e (1/ 2>7 v 2
p 1 p 1
=(=+=)L <z
Y1 (+2>, 553

A check of this result by application of the residue theorem can be found in appendix A.5. This
now concludes the study of the eigenmodes ¢, ,. Out of those the eigenmodes of the original Dirac

operator can be constructed.

2.4. Eigenfunctions of the Dirac operator

Now we want to finally determine the eigenmodes of the original Dirac operator (7) out of the deter-
mined eigenmodes (22) of the squared Dirac operator (8). As we have already seen before in equation
(12), the eigenfunctions of —132 factorize into t- and xz-dependent parts. The corresponding eigenval-
ues are thus p2 = w? + A\2. The orthonormal eigenfunctions of the Dirac operator i) can be derived

directly from the ones of the squared operator (iIp)? to be

Eigenmodes of the Dirac operator (7)

© — 1 eiwxo 1 (Mn - w)ﬁpn,p
P Vv 26 V Mn(ﬂn - w) )\Xn,p

1 jwa? 1 )\gomp
Xw,n,p = e
V20 Vi (i + w) (n + W)Xn,p

L J

where the eigenvalues come in pairs p, = +1/w? + A2. These two modes are proportional to each

17



2.4 Eigenfunctions of the Dirac operator

other
T 1 eiwaco 1 (Mn - w)‘Pmp . Hn +w
G unmn =\ ey ) e

iwxo < )\29071’7’ > 1
= T T ol s ) o
— )\n
—me,n,p

and thus denote the same solution. This means, it is enough to consider only ¢y, p, since they are

just the same eigenfunction. It can be checked that ¢, , p is indeed an eigenfunction
iDponp = % f,ﬂ = el ! (i =)o
A —i0y) V 20 V Mn(ﬂn - w )\an,p

iwxO 1 1 ( (Mn— )Qpnp"i_)‘Aan)
V2 \/ Mn n w ,U'n —w ASOnp + )\ann,p

where we have to use the relation between ¢, , and xy as given in (20)

=€

ilp@w np — eiw ¥ 1 ( (,un - )907171) + )‘%(PW,P>
” V28 \/ pin (i, (Hn=@) AnXn,p + AnteXnp
_ eiw;co 1 1 ((Mn - w) [76"" Hn +J4 Wn,p)
V2p V Hn (Mn - w) HnAXn,p
= UnPwnyp -

A verification of the normalization of these eigenmodes can be found in appendix A.3. In the next
chapter we will need the spectral decomposition of the Dirac operator. Here, the sum over p means

the sum over the sign pairs of the eigenvalues u,
Z¢|y Z HnPw n,p SOIJ n p(y) . (25)
WP,

This is why we also note the following result

eiw(To—yo) 1

@)y ) = S (U DD (4 et ) )

_ et (@o—1o) i ((Un - W)Spn,p(f)SDIz,p(g) An@n,p(f)XIz,p(g) >
28 AnXonp (8) 0 (7) (tn + W) Xnp (F) X0, (7)

(26)

At this point the eigenmodes and -values of the Dirac operator have been determined, checked and
studied quite extensively. The final section of this thesis will now present an attempt to achieve a

discretization of this operator.
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Discretization of the Dirac operator

3. Discretization of the Dirac operator

This chapter will present an attempt of finding a discretization of the Dirac operator (7). Currently,
all determined objects depend on the continuous variables of space and time. To be able to apply
numerical methods we need to only depend on discrete coordinates, which is why want to move on a
lattice. For this we will use its spectral decomposition (25). The Dirac operator in question is of 2+ 1
dimensions and section 2 has revealed, that the operator is periodic in time and one space direction.
The second space direction is more complicated. We will first study the discretization of the time
direction in chapter 3.1, for which we use the concept of the SLAC-derivative. After that, we simplify
the ensuing term for the operator in chapter 3.2, while also noting a few alternative representations
in chapter 3.3. We hope to find a discretization of the non-periodic space direction by studying how
the Gaussian quadrature can be applied to it. Chapter 3.4 presents a verification, that the eigenvalue
equation of the Dirac operator still holds on a fitting quadrature grid. Finally, the last chapter 3.5
presents an attempt of explicitly writing down a fitting grid, while trying to analyze the ensuing

problems.

3.1. Spectral resolution

We wish to discretize the time direction, which is periodic. For this we use the concept of the SLAC-
derivative, as introduced in [13] and [14]. For this we consider the operator i) in position space. Thus,
the relation of interest is (26), from which the important factor is ¢(*0=%)  where we define the time

. 1
difference as & = xg — yo. We study the sum of ew(x0=v0) gver the Matsubara frequencies wy, = 2w m;2

with m € Z symmetric to w = 0. The interval of interest for an even number of frequencies V; is then

Ne Ny
Y

given by m € [—5 —1]. To obtain a SLAC-derivative we cut off the sum symmetric to the origin

2
Ny Ny .
Z elwmf — 22 127 ;55
m=—2t m=—2t
Ne—1
_ ewr%(ez%rgf)—ﬁt i (el2ﬂ'%)m 7
m=0
where the ensuing geometric series leads to
&_1 '27r£
22: eiwm£ — eiﬂ%efiﬂ'%g 1-— (eZ ﬁ)Nt
i 1_ eiQW%
- 2
B sin(w%ﬁ)
T a8 (27)
sin(7 )
Differentiating this equation with respect to & yields
N,
. gl iwme TN cos(tNy &) sin(th%) cos(w%)
(3 Wy €7MSsS — .
— " B Siﬂ(ﬁ%) B sinQ(w%)
2
B (N COS(TI'Nt%) sin(th%) cos(w%)) (28)
B sin(w%) sinQ(W%) .
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3.1 Spectral resolution

Now we go on to discretize the interval [0, 5] by N sites, which leads to

. B / _ T .
foSS/—Nt(S—S) and tSS/:Efss/—Nt(s s').

with s, " € {0, ..., N¢y}. This way we find for the spectral sum (27)

Here the numerator becomes zero for any s and s’, but the denominator does so only for s — s’ = N, Z.

To find the limit when both become zero we can use L’Hopital’s rule

lim S0y gy STy
20 sin[ g7 20 cos[§-7]
which leads to
D e = Nybyy (29)
e Ni

2

where ¢ is the Kronecker symbol on Zy;,. If we now analyze the derivative of the spectral sum (28)

we can define a matrix, which is the so called SLAC-derivative

i Nth:1 b ﬂ( : cos[m(s —¢')]  sin[r(s — )] cos[F-(s — s’)])

g

sin[£-(s — /)] sin?[ - (s — /)]

m=-—-

_Nem 1 { (=1)*~%" —§,y cos [%(s — s')} }

ﬁ sintsy | ~—=— t
=1 for s=s’
=1 for s=s’
Ny (—1 s=s'
= 7%(1 - 555’) = Ntaslac,ss’ . (30)
ss’

Now we can apply this to the spectral decomposition (25) of the Dirac operator with (26)

eiwm (Zo—yo) —w Dol (7 vl (7
lidly) =3 5 ((un m)Pnp(E)2h () Anonp(E)Xh () ))

m 2ﬂ n,p,u )\an,p(ff)SDjz,p(g) (/’LTL + wm)Xn@(‘f)XIL,p(g

to effectively discretize the time direction. Since the eigenvalues p, come in pairs with opposite sign

and n runs through the natural numbers N we can simplify the sum to

Spectral decomposition of the Dirac operator (7) with discretized time direction

ol | cm@omw) ~WmPnp(Z)eh (@) )\ngonyp(f)x:r%p(g)>
(HiPl) = 2 Z( Do) ool

).

m /6 n,p
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3.1 Spectral resolution

We can check this result by acting with 7I) on it, where the index = denotes, that the derivatives are

in respect to x

0y Al eiwm (zo—y0) WinPn (f) @) Angn (*)XT 7)
me<$‘2m’y> — ( 0 . x > s ( > b J’ﬁ P n,p "
Ay —i0y, ; B % AnXn,p(T) e ;[L (%) ( JT[L

- ewn@=v0) (e AL\ [ —wmnp (@) @), (7)  Anenp(@)xh,(7)
N Z ( Ay wm) ( AnXnp(T )‘Pnp( ) (

=M

m7n7p IB

The first and second matrix elements here are

My, = wfnwn,p(f)wi,p(ﬁ) + An [ATxn p(7)] ‘Pjup(g) (@i + A2)@np(@ )d‘p(g)
—
:Ansonyp(f)
My = —wm [Apn (7)) ‘PIL,p(g) + Wm)‘an,p(f)‘PIL,p(g) =0.
———

=AnXn,p (f)

The other two matrix elements can be calculated analogously to give

iy (zliBly) = > M(w; +A2) <‘Pn,p(f)0s02,p(y*) 0 )

m,n,p ’8 Xn,p(f)XL,p(g)

= (z|(iD)’ly) -

which indeed gives the spectral decomposition of the squared operator. With the SLAC-derivative we
have found above (30) we can get rid of one sum in the spectral decomposition (31) when going on
a lattice. The operator is now discretized in the time direction. The time integral when evaluating
scalar products turns into a sum over the grid points which are separated by ;- We also multiply by

the factor £ 47 so they are separated by 1

iwm& g — Dol (7 v (7
<f,S\ilﬁ|ﬂ, S/> — ﬁ Z € Z ( WmPn, )(Pn,p(y) An(pn,p(l‘)Xn,p(y)>

Nt m ﬂ n,p

-y L iwmEay > (—son,p(f)cpﬁ,p(ﬁ) 0 T #>
m Nt n,p 0 Xn,p( )an(y)
0 On,p(T) X p(Y)
+ elwmgss’ >\7’L ( . . P n,p
; N, nz;; Xnp(E)0h (1) 0

which leads to

7 (—1)5* —Pnp (X)), (¥
(&, i DI, ) = L(l—assoz( enol 20, (1) 0 @> (32)

18 sintgg oD 0 Xn,p(f)X:rm,p

0 Pnp(@)X} p(7)
+6ss’ An 7 P o
nz,p ( oo () 0

Xn,p(T) Pnp\Y
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3.2 Simplifying the spectral sum

3.2. Simplifying the spectral sum

We wish to further simplify the spectral sum (32), since the triple sum over n and two times k inside of
©n,p and xnp can lead to numerical problems. We ignore the sum over p for now, since its size depends
on the strength of the magnetic field. For the simplification we can use the Christoffel-Darboux formula

for the Hermite polynomials

i Ho(x)Ha(y) _ 1 Hy(y)Hyi(x) = Hy(@)Hy 1 (y)
= 2nn) 2N+ NI T —y ’

(33)

as can be found in [11]. Using the recursion relation for Hermite polynomials (49), we can use

L’Hopital’s rule to find a symmetric form of the Christoffel-Darboux formula

2nn) - 2NN z}l—rgc T —y

- ﬁ [Hn(2)Hy 4 (2) — Hy (2) Hy 11 (2)]

1
~ 2NN

i\f: Hy(x)Hy,(z) 1 Hy(y)Hy+1 (%) — Hy(z)Hn41(y)

n=0

[(N+1)H} — NHy_1Hy 1]

which can also be written as

" Hy () Hy(2) 1

D T 2N (N — 1)![Hf2V ~ Hy-1Hyn] -

We begin by analyzing the first matrix element of the spectral sum (32). For this we use the explicit
form of the modes ¢y, (22), the shifted summation index b = k' — k and z, ;, = \/E(xz + p+ku)

7) +kBL)z1 ,— L2 (z0+ 32 +kL)?
Z an,p S%,p 9) 7rL2 ZZ ony, | n(Tp.k) Hp (Yp ktb)e e Jriem 3 (@2t )
n=0p=1
: efz(ap+(k+b)BL)ylefg(y2+f"+(k+b)L>2
2 sk Y k+b
L2 ZZ 5oy (T ) Ho (Y )€’ T k) (@) o= by o~ 5 o= By
7.[. 7 7

We can get rid of the summation over p by using the identity

S fo+kr) =Y fla)

keZ p=1 ac”Z

which gives

S S B0 = | 2y T3 g [VE (24 ),

n=0p=1 a,b n=0

\/E(yz + % —i—bL)]

2 2
. . B L B L
. eZQT”a(M—yl)e—le”bele—E (z2+“7) e 2 (y2+a7+bL)
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3.2 Simplifying the spectral sum

where we can now apply Christoffel-Darboux (33)

ZZ@W )ph (7 =\ ﬂ.L222N+1Nl Lo — Q—bL

n=0p=1
'{HN+1

iy {\@(@ + %)]HNJA {\/E(yz + 2 bL)} }

VB (25 + %)]HN {\/E(yg + % + bL)]

2 2
. ei%a(xlfyl)efizfﬁybyleig(IQ+%) eig(y2+%+bl/) . (34)

Now we got rid of the sums over p and n. To check this result, the explicit calculations from appendix
A.6 lead to

/ Z Z Pnp(D)ph (@) AT = v(N +1) (35)

n=0p=1

which is just the number of summands and thus the expected result. We can simplify the spectral
sum (34) marginally by defining the magnetic length ¢, = \/E as a unit length. Thus, all lengths are

given in multiples of this value

First matrix element of the spectral decomposition (31) after application of Christoffel-Darboux

Hyr 22+ D) H (3 + 22 + 1)

/1 B 1
Zzwn,p Sonp 7TL222N+1N'x2—y2—bL

n=0p=1
— HN(Z‘Q + 7L>HN+1 <y2 S TL ar bL)} (36)

2 2
2 . 1 L 1 L
. et 217; a(wl_yl)e_zﬁ;r bele_i(xz-i_a?) e_E(y2+aT+bL)

Now we go on to compute the other matrix elements of (32), where the sum over n now starts from 1

Z)\nxmp Z)\nSOn 1,p @n,p( )

27 27
= L2 Z Z o 1 Hn 1($p k;)Hn(prg_Fb)ezT(p+ky)(r1_y1)e_zfl/by1
g n,p kb
ok Vpdtd

- e 2 e 2

Let us focus on the sum over the Hermite polynomials, so we find a way to use the Christoffel-Darboux
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3.2 Simplifying the spectral sum

formula. We first use the recursion relation (49) again

N N
Hy—1(@p 1) Hn (Yp ktb) 1 /
2 21 (n —1)! - nZ: 2”n!H”($p’k)H”(yp’k+b)

N

n=1

n(@p k) Hn (Yp,tb) (37)

ﬁ\

n=1

N
[ n(Tp k) Hn (Yp kb)) — Ho(xp,k)HO(yp,ker)]

and are now able to apply Christoffel-Darboux (33)

iV:anl(l'p,k)Hn(yp,k:-i-b)_ 1 P l 1 HN(yp,k+b)HN+1(xp7k)—HN(fL‘p,k)HN+1(yp7k+b)]

2T 1) VB |PVN Bk — Ui
- H(/)(i"’p,kr) HO(yp7k+b)
=0
B 1 Hy (yp7k+b)HN+1(l‘p7k) — Hy (xp,k)HN+1(yp7k+b)
_ On, :
oN+INI\/B Tp,k = Yp,k-+b

So with that and again introducing a = k + pv we find for the second matrix element

. B 1 2 aL)? _B al 2
Z)‘anp T)ph () = 72 2N+1NIZ:QZ oo i v § (et E) o= (e 2or)

L9 [HN[\/E(yz + 9L 4 L) Hy o [VB(22 + 9L))]
N VB(xs — ys — bL)
Hy [VB(ws + )| Hn 1 [VB(y> + 4 + bL)]
\/§($2 — y9 — bL)

and finally by also rescaling to units of ¢,,, we arrive at the form

Second matrix element of the spectral decomposition (31) after application of Christoffel-

Darboux

1 B2 a 2
Z/\nme B)h () = V72 2N+12Nv Zel_a(m R e (e e (e

8 Hy(y2 + %L + bL)Hn oy (22 + %2) (38)
2 ro — Yz — bL
_H (w + 4 )HN+1(y2+——|—bL)
T2 — Y2 — bL

In a similar fashion we compute the last matrix element

Z An@np( D Xn p Z An@np( D ‘Pn 1,p(37)

Hn(xp,k)Hn—l(yp,k—&—b)el 7 (p+kv)(z1—y1) o =i F vbys

=\l \/2”71!_2"_1(77, —1)!
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3.3 Alternative representations of the first matrix element

which has the same form as the the calculation before, only with the arguments in the Hermite
polynomials swapped. Thus, the solution is the same, with only the derivative changing to be in

respect to the other space coordinate. The relevant step for this is at (37). So, the solution is

Third matrix element of the spectral decomposition (31) after application of Christoffel-Darboux

1 B2 om 1 e\ 1 oL 2
an%’p Xn() = VrL? 2N+1N|Ze Falor—yn) =iy o~ 3 (22+4) o= (va+2+0L)

P [HN(yg + % ol bL)HN_H(l'Q + %)
" Yy2

T2 —y2 — bL (39)

Hy (xg-i- )HN+1(y2+ e —l—bL)
$2*y2*bL

J

So, altogether the fully simplified spectral decomposition (31) is given by the explicit matrix elements
(36), (38) and (39). This expression is quite unwieldy. There do not seem to be any further obvious
simplifications, but there still can be some benefit in considering an alternative form. Thus, the next
chapter will shortly present a few different representations, which might have an advantage in further

study.

3.3. Alternative representations of the first matrix element

The first matrix element of the Dirac operator (36) has been calculated in chapter 3.2 to be

nz%)pzl%’p Jehp (7 sz HN+1($2+—L)HN(yz+—L+bL)
—HN($2+7L>HN+1(Z/2+7L+Z)L)} (40)

.eiQT”a(an—yl)e i=r be1 (mz—l— )Qe—%<y2+%+bL)2

where C summarizes the constants. For a sum as an argument inside of Hermite polynomials the
following identity holds [15]

Hy(x +y) = an <n> 2" Hy 1(y) - (41)

k=0 k

With this we could rewrite the factor with the Hermite polynomials from (40)
alL alL alL alL
Hy 1 (972 + 7>HN<y2 + - + bL) - HN(azg + T)HN“ (yg + ~ + bL)

R ) ) [

k=0 [=0
_ (%) HN_Z(ZL'Q)(% + bL)kHN—‘rl—k(y?)]

which gives overall a form with only the coordinates as arguments of the Hermite polynomials
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3.3 Alternative representations of the first matrix element

First matrix element of the spectral decomposition (31) with the coordinates as arguments of

the Hermite polynomials

Z Z QOTIMP SOn p =C Z ]V§+:1 iv: (N I 1) <];[> ei%’a(xlfyl)e,i%rybyleié(m2+%)2

n=0p=1 a,b k=0 I=0
k l
)2 (%) HN+1—k($2)(% + bL) Hy_1(y2)
Tro — Yz — bL

(%)ZHN_Z(HZQ) (% + bL) kHN—H—k(y?)
- z2 — yo — bL '

o5 (2 + 2L

7

Alternatively, a form with the same argument inside of all Hermite polynomials could be of interest.

For this, one could isolate % inside the Hermite polynomials from (40) by again using (41) to obtain

ZZ%} D)eh,(#) =C ZNZH% <N+1> (JD ol ate ) iy (ot ) 3 (va o or)

n=0p=1 a,b k=0 (=0

whH1on(4) 2 + 00 Hy (%) — abHv (%) (2 + L) v (%)

To —y2 — bL
One can now use another identity, which combines two Hermite polynomials with the same argument.
Formula (18.18.23) from [16] is

min(m,n) m n\ .,
Hp(x)Hy(z) = ;) <p> (p) 2P\ H o —2p () -

We can use this to arrive at a form with only one Hermite polynomial and ys 4+ bL isolated. If we also
introduce c= N +1—k and d = N — [ we find

First matrix element of the spectral decomposition (31) with all Hermite polynomials containing

the same argument

max(
Z

L (i) L) G6

>3 ek =0T 2. 3

n=0p=1 c=0 d=0
) IL
et FEa(z1—y1) g =i Fvbyr o= 1 (zp+ak ) e—g(y 4k +bL)

xéV+1—c(y2 + bL)N_d _ .’L’év_d(yg + bL)N—H c
xy —y2 — bL

2Pp\Heyq 2p(aVL) 5

One could also produce integrals using the following identity from [17]

H(x) = 2n / " Haa(y) dy + Ha(0),

which might be of benefit when correctly combined with a sum to make use of quadrature formulae.

All these forms have fewer polynomial products or beneficial arguments inside of the Hermite poly-

nomials, but come at the expense of more sums. A possible simplification might reveal itself upon
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3.4 Quadrature tests

further study. The aim of the next chapter will be to examine and verify the application of quadrature

upon the spectral sum.

3.4. Quadrature tests

We now wish to check how quadrature could be applied to the spectral sum (32) with the explicit
matrix elements (36), (38) and (39). The goal here is, that we want to move to a grid instead of

evaluating continuous objects. In the continuum we have

/ ( \le@wm d2_‘_/ Z)‘nwn )lﬁm@) d237

which does not necessarily hold on discrete lattice points

l
_ anwn Zz/ﬂ )

This is where we wish to use the quadrature by choosing fitting lattice points. We already established

the eigenvalue equation of the Dirac operator in chapter 2.4

Zw@w,n,p = HUnPw,n,p

/// (T P15 P () 4°5 = /// > Pt ana( @)L g D ewnn(d) &

m,q,w’

and thus

= ,Un@w,n,p(x) )

where V' denotes the cuboid of the square L? and 3. The key point here is the normalization of the
eigenfunctions, which has already been calculated in (56). What we want to put on a grid is the

expression

1 1 1 (:u - w)SDIL (:u/ - W)Spn’ »’ 2
<¢w7n7 ’¢w/7n/7 ,> = 5&1(«1’ / “ o < P . > d X
’ ’ 12 28 /u(p —w) Vil —w) \ Axd, N X

or rather in the normalization of the ¢, , which are given in (22), since only this expression contains
the coordinates. Their normalization has been checked in (23). Now we wish to apply the Gaussian

quadrature (55) to this integral

Pmp) = F;:+m/ / b p0p d H, (\/_erﬁ) m(@y—i—%) dy . (42)

The integral over  can be calculated by using (19)

L
i —i(ap+kBL)x . — B (y+32+kL)? i(ap+k'BL)x .— 2 (y+L2+k'L)?
0.p dx = E E e "\ e 2 B e\r e 2 B dx
/0 %0 pQO P 7TL2

0 kezkez

(np

_ /B S o Bt F kLR

T kez
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3.4 Quadrature tests

Thus, the former integral (42) becomes (while remembering that we have to let o, — a,, + kBL in

the Hermite polynomials)

Hu(y') dy'

(@n,p

Pm,p) = \/_:;:;m\/* / o™V Hy(

where we substituted v/ = v By + %. Now we can apply the Gaussian quadrature, which is the

quadrature with respect to the Hermite polynomials. A detailed account on quadrature can be found
in the appendix A.2. The order of f(z) = H,(x)H,(x) is n + m. Thus we have

(nalma) = A2 3 ) )
@n,p Som,p \/—\/—n—i—m k yk

where the weights are the Hermite-Gauss weights as given in [11] as equation (25.4.46)

2=y — 1)/7
reHE (yk)

(43)

g =

and where we need to have r > [2H2+] (where [z] denotes z being rounded up to the nearest

integer). yi are the zeroes of H,. For the smallest possible r this leads to

Map mm gy
1 D k=1 (n+m+1)Hn+m () n(Yke) Him (Yr) , n+m even
<§0n,p 90m,p> = W n+r2n+1 ﬁ”+m+1!
e = Ekzl (n+m+1+1)Hn+m+1 (yk)Hn(yk)Hm(yk) ,n+m odd .

For n = m this obviously gives 1, as expected. The results of numerical calculation for the first few

Hermite polynomials are in table 1.

Tab. 1: Numerical solutions of (43) for different n and m.

o 0 1 P 3 4 5 6
n

0 1 22.986-17 | -2.23¢-15 | -2.46¢-17 | 5.82e-16 | -4.17e-18 | 7.83¢-16
1 || -2.28¢-17 1 23.29¢-18 | -2.11e-15 | -8.38¢-19 | 2.14e-15 | 3.64e-18
2 | -2.23¢-15 | -3.29¢-18 1 26.63¢-19 | -1.17¢-16 | -2.36¢-18 | 2.94e-15
3 || -2.46e-17 | -2.11e-15 | -6.63¢-19 1 “7.26e-17 | 2.18e-15 | -1.94e-17
4 5.82¢-16 | -8.38¢-19 | -1.17e-16 | -7.26e-17 1 20 4.77e-16
5 || 41718 | 2.14e-15 | -2.36e-18 | 2.18e-15 0 1 8.93¢-18
6 7.836-16 | 3.64e-18 | 2.94e-15 | -1.946-17 | 4.77-16 | 8.93¢-18 1

We wish to also apply the quadrature after the application of Christoffel-Darboux (33). There we

have, according to the calculations in appendix A.6

// Z Z Pnplnp) d

n=0p=1

\/72NN1/ (N + 1)H(2) - NHN+1(Z)HJ\r—l(Z)]e’z2 dz

= I/\/72N1N‘ Z )\k|: N + 1)HN(Zk) NHN+1(Z]€)HN_1(Z]€)} .
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3.5 Discretizing Space

Here, the function is of order 2N and thus r > (%1 = N + 1. So we can choose r = N + 1, which
implies that zj are the zeroes of Hy 1

//T ivj XV: (Pnp

n=0p=1

T N ,
Pnp) AF = v\ = sxr D A |(N + 1) HR (21) — N Hy1(2x) Hy—1(21)
T2 N' =1 |: j?)_/ ]

IN+1 N+1
= V\/;W Z )\kHJQV(Zk)
Y k=1

=Nly/m2N

=v(N+1),

which is the expected result as in (35). Here we used, that we already verified the quadrature on
Hermite polynomials. Thus, the result of chv;ll M\t H% (2;) must be the normalization weight of the

Hermite polynomials.

The results of this chapter are no surprise, since the quadrature is a generally proven formula. But
the interesting part is, that the quadrature leads to the possibility to compute certain integrals nu-
merically without the intrinsical error of any integration algorithms. Also, the functions only have to

be known on specific, however, in general non-equidistant, grid points.

3.5. Discretizing Space

Before, we have already found the the operator to be (32) with the explicit matrix elements (36), (38)
and (39). The first direction (which has been called = at the beginning) can be discretized equidis-
tantly, because it is given by Fourier-modes. This can be seen directly, since the operators (31) only
z-dependence is located in the zero modes (19), from which the other modes (22) are constructed
via ladder operators. We can choose N, points in z-direction located at the center of a site of width
L/N,. We also wish to somehow introduce discrete coordinates in y-direction, such that we achieve
simplifications via the quadrature. The appearing polynomials in the matrix elements push us to use

at least the quadrature of order N + 1.

Thus we introduce the discrete coordinates

ts
Tspl = | op
Y
with
1 L /1
t e {ﬁ(_ + s)} ’ T € {_(_ + k)} , y; related to roots of Hy 1 .
Ny \2 s€[0,N¢] N \2 k€[0.Nz]
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3.5 Discretizing Space

So the first matrix element (36) looks like this

B

1
S5 G (F)ehy (For) = VN o i

n=0p=1

Hon (i + ) Ee (o + 2 4 or)

- HN(?JI + —>HN+1 (yl’ +— + bL ]

. ei%a(zkka/)efi%ubzk/ (yl+ ) ef%(yl/Jr“LerL)

and the discrete eigenfunction (22) is

1

. B o
Pnp(Trr) = ( \/—" Z Hy (\/_yl’ + ﬁ * kBL) L2 = _eilop+kBLey o =3 (v +F+RL)?
kez

We need to check the following for the fully discretized version

Z <fs’k’l’ |ZD|fskl>1/}m (fskl)Askl - )‘mwm (fs’k’l’) (44)
s,k,l
where Ay is supposed to substitute the differentials. On an equidistant grid Ay is just the size of
a grid cuboid, but since the y; are not equidistant, Ay is different for every [. This means we want
to show that

Z w;rl(fslk)wm(fslk)Askl = dpm -

s,l,k

For the continuum this has already been calculated in (56).

Because of the calculations in chapter 3.4 we already know that leaving the y-coordinate continuous
and discretizing it implicitly by the quadrature does conserve the orthonormality and function values.
They discretize analytically by the quadrature. Under the assumption, that the discretized ¢, , are

orthonormal, we obviously find

1 4L
<SOW77’L7P’SOW/7"/7P/> = 2_ !/ / / NF
B il —w) i (0" — ') <5 Ni No
/L i =)t ((u w)@L,;;) _ ((M’ -~ w’)%zy) a
0 )‘Xn,p Alxn/vp/
= 5ww’6nn’5pp’ .
So we have to check the normalization of the discretized ¢, p. It is not clear, which grid points to use
explicitly. The following steps try to break down, how the implicit discretization via quadrature plays

out. We begin with the scalar product of of the modes ¢, ; as given by (22) where ¢ and t' are just

summation indices

Y

(Pnplen p) = NArr= %; 0

L
N Z¢$,p¢0,p' dy ,
z

’ H, (x/E(y +tL) + %)Hn <x/§(y +¢'L) + a—\/%>

30



3.5 Discretizing Space

where the explicit zero modes (19) lead to

(Prplen p) = \/;\/% / ( y+tL)+%>Hn/<\/§(y+tL)+%> (45)

e~ But+% 2P 4tL)? dy

n<\/§y + 2

(8% Xpy2
2 \H,. (VB +_P> -By+7%)* g
Vi) e (VB e

n+n
=4 U
P \/n‘n"2”+" VB

and a further substitution v/ = v/ By + % gives

1 (_1)n+n’
<‘Pn,p“10n’,p’> = 6pp/_—,
VT /nln/12n+n
1 (-pm

= b= > My (1) Hy
w 7 e 2 ) He ()
Vanin/inin o

= (- 1>n+n/ nn’

H,(y)Hy (y)e ™ dy

= G O -

The evaluation of the sum has been achieved via application of quadrature. The remaining problem
here is, that we do not have a fully discrete version of neither the operator nor the eigenfunctions. If

we consider the calculation step (45), the implicit disretization seems to take on the form

(Prpleon ) = Oy \/7\/%2% Hy(VB(y +tL) + S5 ) Hy (VB(y + L) + %)

o B+ +tL)? dy

Sy F(VBy+th) + %) ———— %, [
discretization
dy — Ay = _Lf,lz
€

1 n4+n )
(onpliom pr) = \/T \/(m >y Hn(yo) Hy (yr)e ™0 Ay,

which are just the application steps of combining the sum and the integral and applying the quadra-

ture afterwards.

The biggest complications of finding a discrete formulation are the periodic sums. The eigenfunctions
(22) include the sum over k and the matrix elements (36) etc. include the sums over a and b. Because
of those sums, it is not enough to just choose the zeroes of the Hermite polynomials as grid points,
since not only the roots, but also infinitely many other periodic points contribute and thus no simpli-

fication can be achieved this way.

Another possible approach to find suitable grid points might be connected to the zeroes of the eigen-
functions. In chapter 2.3 the zeroes of the zero modes have already been studied. Further study of

the zeroes of the elevated modes might reveal some insight on suitable grid points.
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Conclusion

Conclusion

We conclude this thesis with a short summary of the results. In chapter 2, we were able to analytically
solve the eigenvalue equation of the Dirac operator for fermions within a magnetic field located in a
square. To achieve this, we first computed the normalized ground state of the squared Dirac operator.
This squared operator allowed us to separate time and space dimensions. Then, we identified ladder
operators, which allowed to write down all of the normalized modes. From there, the determination of
the eigenfunctions of the Dirac operator, which are given by spinors, was possible. An extra effort has
been taken to determine the zeroes of the zero modes by identification of the Jacobi theta function.
We found, that the zeroes are determined by the instanton number v and the introduced quantum
number p < v. They are all located at the same point in the non-periodic direction and evenly spread
along the periodic direction with a distance of % This result has also been checked by application of

the residue theorem.

Chapter 3 presented the discretization of the time and one periodic space dimension by application of
spectral methods. For this, an expansion via Fourier series and identification of the SLAC-derivative
have been used to write down a spectral sum. This expression is quite unwieldy, since every ma-
trix element consists of four sums. By application of the Christoffel-Darboux formula this number
was reduced to two. On a side note, some other expressions of the first matrix element have been
computed. Then, the integrals coming up at the normalization computations have been transformed
to sums via the Gaussian quadrature and the resulting expressions numerically computed to verify
the applicabilty of a quadrature grid. Unfortunately, these considerations did not lead directly to
a suitable set of grid points, because the appearing Hermite polynomials do not just include the co-

ordinate as an argument but the coordinate shifted by a different amount for every element of the sums.

All in all, this thesis presented a few mathematical considerations which could be of interest for
future attempts to find a suitable grid for the given Dirac operator. It has been tested, that the ap-
plication of the Gaussian quadrature implicitly preserves the normalization of the eigenmodes. Still,
this procedure did not lead directly to a suitable discretization of the non-periodic space direction.
Anyway, future considerations might still benefit from some of these calculations. It might be pos-
sible to apply a Gaussian quadrature grid to a different expression of the Dirac operator, for which
the considerations of chapter 3.3 might be of use. Especially a notation with Hermite polynomials
with only the coordinate as an argument might prove useful. Alternatively, a different way to find a
suitable grid could be connected to the zeroes of the eigenmodes. Thus, the considerations of chapter
2.3, which presents a study of the zeroes of the zero modes, might be of interest. The logical next
step would be a study of the zeroes of the elevated modes. If successful, this new discretization might

prove to be a useful tool in lattice field theory.
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Appendix

A. Appendix

A.1. Hermite polynomials

A very useful notion in mathematics is the one of orthogonality. When defining any sort of scalar
product, any set of mathematical objects can be constructed to be orthogonal to each other. An
example of a set of orthogonal polynomials is the one of the Hermite polynomials, which is well
known in physics. They appear in the eigenfunctions of the quantum harmonical oscillator. Hermite

polynomials are defined as those polynomials of degree n, which solve the Sturm-Liouville problem

H)) —2zH'+ 2nH, =0
= 0,(e " 0,Hy(2)) + 2ne ™ Hy(z) = 0. (46)

Their explicit forms are

(2 —0p)"e™ T = (20— 0,)" - 1, (47)

Hpii(z) =22H,(x) — 2nHp—1(x) (48)
() = 2nH,_1(x) (49)

and they are orthogonal in a weighted Hilbert space with the following scalar product

/H e @ dg = 2"/ Grm.- (50)
——

=cp,

With this orthonormality relation (50) and the recursion relation (49) one can show for the scalar

product of their derivatives

2

/aan(:c)Bme(az)e_IQ dz = 4nm/Hn1(x)Hm1(x)e_x dzx
R R

= 4dnmcp—10nm
= 4n? ;—:Lénm

= 2n¢,0nm.-

One can get rid of the weighting in the scalar product by defining a new set of functions containing

the weight. Thus, the Hermite functions are defined by the Hermite polynomials as
H,(x):=e¢ 2 Hy(x) (51)

such that they define an orthogonal basis of La(R)

A

H x)Hp,(x) dx = ¢ dpm-

So, since they define an orthogonal basis, we conclude that we can expand every f(z) € L?(R) as

Z |Hy) —(Holf) =Y Hofo- (52)
%f_/ n
=fn
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A.2 Quadrature

With the definition of the Hermite functions (51) the Sturm-Liouville problem (46) translates to

l\')

2

8x[e_ O %ﬁ()}+2ne_’” ITI?() 0
)

The recursion relations (48) and (49) translate to

eT Hyy1(x) = 2267 Hy(x) — 2ne’T Hy,_ ()
— H,1(z) =2zH,(z) — 2nH, _1(z) (53)

and

= ﬁ’?gax]?[n(a:) + o7 xH, (z) = Qn%An_l(x)
5 ~

Here are three more useful identities of the Hermite polynomials and Hermite functions

r 1
H, dy=——|H, — H,.1(0
|50 4y = g (Ha @) = o (0)
/ ¢V Hy(y) dy = Hy—1(0) — ™ Hypy ()
0
n?cp_1 + %Cn+1 y n=m
[ @@ ar = e,y m=n_2.
R

—icnﬂ , m=mn-+2
Also, because of (52), one can introduce N + 1-dimensional subspaces
Hy = span{Ho(x), H1 (), ..., Hy(2)} C L*(R)

on which orthogonal projections Py : L?(R) + Hy are given by
N A A
(PN f)(z Z JnHn(

A.2. Quadrature

The biggest issue in numerical mathematics is the one of error. Any computation done by a machine
carries an error with it, which can become quite problematic when using algorithms containing a large
number of computations, especially multiplications. For orthogonal polynomials, such as the Hermite
polynomials presented in the former chapter, there is a powerful application called quadrature. The
technique allows for (weighted) integrals of polynomials to be exchanged by (weighted) finite sums,
which only have to be evaluated at the zeroes of certain orthogonal polynomials. This is useful, be-
cause the numerical evaluation of integrals requires a discretization anyway, which normally leads to

a discretization error depending on the chosen step width. But quadrature substitutes integrals by
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A.2 Quadrature

sums analytically, which avoids this error entirely. To understand the nature of this statement, we

now go on to derive and prove it.

Let 21 < 9 < ... < x, be the ordered zeroes of the polynomial p,(z)[[;_;(z — zx). The Lagrange
interpolation polynomial

Hj,j;ék(x — ;)

Hj,j;ék(‘rk — ;)

is the unique polynomial of degree < n such that l(x;) = di; for j = 1,2,...,n. This way we can

lk(z) =

expand any polynomial r of degree < n as
r(x) = Z r(xg)lk(z). (54)

Now we are ready to prove the following statements:

Gaussian quadrature

Let p, be an orthogonal polynomial of order n with respect to to weighting function u and let

i be the Lagrange interpolation polynomials associated with the zeros x4, ..., z,, of p,. Define

A 1= /[le(a:) dp(x).

Then for all polynomials f(z) of degree < 2n — 1 we have

/ f@) du(@) =D Aef(zp) and N = / 12(x) du(z) >0 . (55)
R =1 R

To prove the first statement we assume f to be a polynomial of degree < 2n — 1. By theory of
polynomial division we can find polynomials ¢ and r of degree < n—1 such that f(z) = q(z)pn(z)+r(x).
At the roots of p, we obviously have f(x) = r(xx). Thus we have

[ 5@ aut@) = [ a@ipata) duta) + [ (@) duta).

R
The first integral just gives zero, since g is just a linear combination of py with £k < n — 1 and those

are orthonormal with respect to p. So with the use of (54) we find

/[R f(2) dp(z) = /[R r(@) du(z)
= > (o) [ 1) duta)

=S e

We can use this to prove the second relation

/ B(x) dule) = 3 122
R j=1
= Z 5kj/\y
j=1
— . O
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A.3 Normalization checks

Having a tool at hand to substitute integrals over the whole real axis by finite sums at specific points

can prove very useful whenever the functions of interest happen to be polynomials.

A.3. Normalization checks

The following is an explicit verification of the normalization of the alternative representation of the

eigenmodes (24) of the squared Dirac operator (8). We compute the scalar product (pp pl@m.q), to

check the normalization

<‘Pn,p’90m,q> =

1) ()™ [ B [E - ) N LS R P
Vol A/om \| w2 0 ZHn(p7 k)Hm(q’k) 0 € L dxdy
’ ) Kk

=Lbpq0

1)mtn P+ A y  pthv
—annlm \/7%2/ 42 ))Hm<x/5(z + ))dy
m+n . D )
kL Ao (VB(y+kL+2))d
m[%/ VB(y+ KL+ )> (f(“ )

/H\/_y m(VBy)dy

m—|—n
Py 2m+"n'm

m+n R d
Py 2m+”n‘m / H 2V i

m+n
Pq W(snm
312’/”‘—:*’*% mlr

= SpgOnm (—1)%" .
——

=1

Now comes a check of the eigenmodes (22) of the original Dirac operator (7)

(Pw,n,plOwr mr pr) =

1 1 1 i(w —w)a (fn — w)(pIL,p (s — W/)Qpn’,p’
- e : av
28 \/,un Hn — W \/Nn’ Hnr — W/ /\nXL P An’Xn’,p’

1 fin — W)P), (' — W)Pn gy
Wﬂ// ( p)( ) dady
2ﬂ \/,Un Hn \/ﬂn Hn! — OJ anp )\n’Xn’,p’

= 1;50.14«1/57177/6 - -
2 Hn (,un - w) )\n )\n

1un72,unw+w + A2

6 s OOt 56
T2 (e —w) P (56)
2
fin — W
_ Hn T s B
fin (i —w) P
= 5ww’ 5nn’ 6pp’ .

A.4. Jacobi theta function

The Jacobi theta function comes up when searching for a non constant entire complex function which

is invariant on a lattice generated by 1 and 7. When following the thoughts in [12], this leads to the

definition of the Jacobi theta function

,19(27 7_) — Z e7rik27'+27rik:z
kez
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A.5 Verification of the zeroes of the zero modes via residue theorem

for z € C and 7 € {w € C|IJmw > 0}. Let us consider 7 to be a constant, such that we can study
the periodic behavior in z. This function obviously has the period 1. With respect to 7 it has the

quasi-periodic behaviour
Iz +71,7) =e TTIEY (2 7).

In the scope of this work, but also generally in mathematics, we are interested in the zeroes of this

function. Those are given by

1 1
zmn:<m+§>+<n+§)7, m,nez. (57)

This can be checked by using the periodic behavior of the function

1 1
Y zmn, 7) =0 <m + 5) + <n + 5)7’, 7'1
; ; 1 1

— efn7r17'72n7mz,lg 5 4 57_7 7:|
— o NmiT—2nTiz Z errik2‘r+7rik(1+7')

kez
— o nwiT—2nmiz Z(_l)keﬂi(k2+k)7'

kez

N 2
_ e—nwiT—Znﬂiz[ Z (_1)kem‘ k*+k)T + Z (_1)ke7ri k +k)T]
keNg k=-1

_ e—nwiT—aniz[ Z (_1)ke7ri(k2+k)7' + Z (_1)—(k+1)ewi [(k+1)2_k—1} T‘|
keNo k€No

— o nWiT—2nmiz Z [(_1)k + (_1)k+1] ewi(k2+k)7
keNg

=0
=0.
A.5. Verification of the zeroes of the zero modes via residue theorem

With the residue theorem one can find the number of zeroes and poles of a function f on a simply
connected area V on the complex plane by evaluating the line integral along its boundary . More

explicitly, for a function with no poles ans no zeroes on the contour we have for the amount of zeroes

BRSO
_ myg o d (58)

Since the modes have no poles, the amount of zeroes can be found via this integral. But we have to

n enclosed by ~y

exclude the case p = 3, since in that case the zeroes would be located along v.
When considering the zero modes as given by (19), we realize that the factor outside of the sum never

vanishes. Thus, we only have to look for the zeroes of the sum. When also introducing the complex

coordinate z = —y + ix = 2’ + iy’, we want to determine the zeroes of
BL?
flz) = e FEmHh(BLatay L),
kezZ
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A5 Verification of the zeroes of the zero modes via residue theorem

To compute the derivative, we use the approach of the Cauchy-Riemann equations. The statement is,

that the derivative of the complex function
f(2) = u(@',y) +iv(z'y)
with respect to z is given by the derivatives u, := 0, u
I'(2) = uy +ivy = vy — iuy.

The appearing identities u,s = v, and v, = —u, are known as the Cauchy-Riemann differential
equations. If they are fulfilled, the function is complex differentiable. So first we need to determine
u(z’,y’) and v(2',y)
f(z) = Z e—k2BTL2+k(BLz+apL)
kezZ
_ Z k2 BL2 {k(BLy +apL) oikBLY'

kez
s o k2 BE L K(BLa' +apL) sin(kBLy') +
kez
=v(z’,y’)
5 o—h? B 4 k(BLa' +ay L) cos(kBLy') .
kezZ
=u(z',y’)

The derivatives of u and v are then simply calculated to be

2 !
uy(',y) = BLY koK 25— h(BLa' oy L) cos(kBLy')

kezZ
2
vy (', y/) = BLY ke k? 3= +k(BLa' +apL) sin(kBLy')
keZ
2
uy(2',y') = —BL> feek* B3~ th(BLa'top L) iy (k BLy)
kez

vy (2, y') =BLY ke 2F Hh(BLa' tapL) cos(kBLy').
kez

Those obviously fulfill the Cauchy-Riemann differential equations. Thus, the derivative is given by
— Z kBLekaBTLQJrk(BLZwLapL)_
keZ
The integration contour around the area of interest can be seen in figures 3 and 4.

Since both f and f’ are periodic in 3’ — 3 + L, the integral reduces to
! /
PG g, [F1O) o, [*LLD)
7
To solve the integral we separate imaginary and real parts
1'(2) dy — Ref' + iJmf’
~J, Ref +idmf
B yg (Ref' +iTJmf")(Ref — szf)
s Re’ f + Tm* f

ERef’f)%ef—l—Jmf’ﬁmfd _i_z,ygﬁmf’f)‘ief—iﬁef’ﬁmf
Y Ref +Im?f Y Ref +Im?f
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A.5 Verification of the zeroes of the zero modes via residue theorem

y' ()
L

A

L 3

z'(~y)

—L

Fig. 3: Integral contour used to find the amount of zeroes in the newly defined complex coordinates.

L 4

X

L

Fig. 4: Integral contour used to find the amount of zeroes in the original coordinates.
For the real part we get

7 2 / /
S kBLe™ (W HE?) B3 (k4K (op L+ BLa) [cos(kBLy’) cos(k'BLy') + sin(kBLy') sin(k’BLy/)]

S~

! 2 / !
Zn,n, o~ (n?+n 2)BL= 4 (n+n/)(op L+BLa') [COS(nBLy') cos(n’ BLy') + sin(nBLy') sin(n’BLy’)}

dz

S kB Lo WK B (k) (ap LEBLA) (o [(k - k’)BLy/}
§é Zn y e—(n2+n’2)BTLQ-i-(n—i-n’)(apL-&-BLw’) COS [(n _ n’)BLy’}

Dk 2”—”k 7(k2+kl2)””+2”(k+k/)(p+” ) oS {27‘(7/(’43 - k/)yf/}
d

zZ.

s

(n?24+n"2)mv+27(n+n’) (p+1/ % )

€ cos [27w(n - n’)%}

Numerical calculation leads to the following result with an accuracy of 13 digits

dz = 27, p # v

% Ref'Ref + Imf'Imf
~ 2

Re? f + Jm? f

dz
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A.6 Verification of the first matrix element after application of Christoffel-Darboux

For the imaginary part we get

7 2 / /
S kBLe™ (K2 B3 (k) (o L BLa") {sin(kBLy') cos(k'BLy') — cos(kBLy') sin(k:’BLy/)}
7 dz

S~

Zn . e—(n2+n’2)BTL2+(n+n’)(apL+BLm’) cos [(n _ n’)BLy’}

S a 1B Lo~ (K2 +K2) B 4 (ktk) (ap L+ BLa') 1) [(k - k')BLy']
_ ’ dz
v Z . e—(n2+n’2)BTL2+(n+n’)(apL+BL:c’) cos [(n _ n/)BLy/]

2k o (K20 k 2wt 2m (4R (40 ) [277'7/(:143 k') /}
d

¢ Zk k! yf
v —(n2+n’2)7ru+27r(n+n/)(p+1/ ) }

nn

zZ.

!

)4
cos {27r1/(n —n/)%

Again, numerical calculation leads to the result that this integral vanishes up to an accuracy of 25

digits. Thus, the complete result for the integral is

A.6. Verification of the first matrix element after application of Christoffel-Darboux

Here we wish to check the result (34). For this we consider the special case & =

VB(a2+ )| i [VB (22 + 4 01)|

Z ngn,p (pn,p f \/ 7TL2 Z 2N+1N' bL{HN+1

n=0p=1

_HN|:\/§(332+%) Hyiq \/E(.Q?Q—i—%—i-b[/)]}

.e—i%’ubxle—g(m2+%)2e—§(mz+%+bL)2
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A.6 Verification of the first matrix element after application of Christoffel-Darboux

where only terms with b = 0 contribute to the integral over x

/ %;‘OW’ Jonn(T dwl_%ﬂ%/ \/WLQZQNHN' bL
: {HN |:\/E(5172 + %)
14

Hyiq

— Hn

. —z—yb:r:le l;(xg-i-—) e—%(:cz—i—%-i—bL)z

V Z 2N+1Nl

-{HN [\/E(azﬁ %)

dxl

VB + %)}

Hy iy

[V 22 B 2]}

2 prL

7B(x2+%) de.

- e

When also integrating over xo we can use the identity

za:/OLf(x+%> dm:V/Rf(:U)dm
to get

/ZZ‘QTMP )l (7 d:v—/ [22N+1N|

n=0p=1
: {HN [\/§<$2 + %)

HN+1

VB(as + %)}

— Hny

VB (s ) 1 [V 2+ 2 |

2
—B(:tz-i—%) de

ZV\/gﬁ/R [Hx(VBz3)Hly 1 (VBrs)
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