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Introduction

Introduction

In the realm of physics, particularly within the intricate framework of quantum eld theory, the dis-

cretization of operators stands as a foundational method of paramount importance. Because of the

complications of many physical problems, it is often necessary to use numerical methods to nd an-

swers to many questions. To be able to apply those methods, one rst needs to nd discrete versions

of normally continuous mathematical objects. Of special interest in quantum eld theory is the dis-

cretization of the Dirac operator.

In statistical quantum eld theory, this operator can be used to determine the thermodynamical

state of equilibrium of a fermionic particle constellation. An especially interesting phenomenon is

the one of inhomogeneous ground states of equilibrium. If the considered theory is invariant under

translations, one might expect for a state of equilibrium that physical properties become the same

everywhere, similar to dierences in temperature dissolving over time. But this is not always the case.

Former study shows, that for interacting fermions in 1+1 dimensions inhomogeneous phases do exist.

Also, in 2+1 dimensions an inhomogeneous state of equilibrium might be possible, but the eect did

not prove to be strong enough to be distinguishable from numerical noise. Theoretically, a magnetic

eld could increase these eects and hopefully make them visible. [1] [2]

To achieve this, the discretization of the Dirac operator of fermions within an magnetic eld is a

logical rst step. In lattice eld theory there are already many dierent approaches in to this in the

literature, for example Wilson- [3], K- [3], overlap- [4] or domain-wall-fermions [5]. All attempt to

avoid the so called doubling problem [6] of a naive discretization of just using a completely equidistant

grid. This thesis will provide an attempt to nd a new discretization. For this, we will attempt to

discretize the continuous solutions of the eigenvalue equation of the Dirac operator by application of

a tting discretization method. Depending on the type of the solution, spectral or pseudo-spectral

methods are useful tools for this operation. Those methods basically apply an expansion in a certain

basis, similar to a Fourier series. The Fourier series is in fact one of the spectral methods, which works

well as long as the functions of interest are periodic. If that is not the case, it is better to apply a

pseudo-spectral method, like the Gaussian quadrature. [7] [8]

This thesis presents an attempt to nd a discretization of the Dirac operator for fermions in 2+1

dimensions within a square (in the space dimensions) and a constant magnetic eld. After presenting

a few theoretical foundations, the second chapter is dedicated to solving the eigenvalue equation of

the Dirac operator. For this, the identication of ladder operators proves to be quite useful. On a side

note, the determination of the zeroes of the zero modes will also be presented. Finally, chapter three

is dedicated to the study of the discretization. The time and one space dimension will be discretized,

while the second space dimension proves to be more challenging. The discretization of this third

dimension could not be achieved as part of this thesis. till, chapter three includes the study of the

application of the Gaussian quadrature, which could lead to a discretization in the future.
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Theoretical foundations

1. Theoretical foundations

1.1. Quantum Field Theories

The sources of the present chapter are [1] and [9].

A Quantum Field Theory is the best way modern physics can model elementary particles. The main

idea is to introduce elds ψ(t, x⃗), where particles are given by excitations of those elds. Analogously

to Lagrangian mechanics the action S is given by the time-integral over the Lagrange-function L. But

since we are now dealing with elds, the Lagrange-function itself is given by a space-integral over a

Lagrange-density L(ψ, ∂µψ) (Lagrangian). o, overall the action is given by a spacetime-integral

S(ψ) =

ˆ

L(ψ, ∂µψ) d
dx ▷

Also completely analogous to classical mechanics, the time and space evolution of these elds is given

by calculus of variations, which leads to the Euler-Lagrange-equations

∂L

∂ψ
= ∂µ

∂L

∂(∂µψ)
▷

The physical predictions are given by expectation values of observables O, similar to quantum me-

chanics. In the language of the path integral formulation they are given by a weighted sum over all

possible eld congurations

⟨O⟩ = 1

Z

ˆ

O(ψ)eiS(ψ) Dψ ,

where Z is a normalization factor. When applying the so-called Wick-rotation, consisting of a trans-

formation of the time variable t → iτ and the corresponding analytic continuation to imaginary times,

Z can be expressed in terms of the Euclidean action SE

Z =

ˆ

e−SE(ψ) Dψ ▷

Writing Z this way allows to draw a powerful connection. When considering the special case of

a closed path over an imaginary time interval ∆τ ≡ β, this Euclidean action takes the form of a

classical Hamiltonian

Z = tr


e−βĤ


▷

Now the normalization factor is just the canonical partition function. This way, results from com-

putations on the Lagrangian lead to thermodynamical predictions. Especially of interest is the so

called Dirac operator D, which governs fermionic quantum eld theories. In particular, most relevant

fermionic theories are of the form

L = ψ̄Dψ

or can be brought into that form via a suitable Hubbard-Stratonovich-transformation. Here, ψ de-

notes an Nf -tuple of fermion elds, Nf being the number of fermionic avors, which we assume to

be mass-degenerate. Within the so called t’Hooft-limit of innitely many avors, stationary phase

approximation allows to determine the state of equilibrium via a minimization problem containing the
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1.2 Quantization of the magnetic eld

Dirac operator. That is the reason, why this work will study the Dirac operator of such a Lagrangian

in order to allow the determination of the state of equilibrium for a given physical situation.

More specically, we are interested in fermions within an external magnetic eld, which is why the

Lagrangian of interest is given by

L = ψ̄i γµDµ
  

= ◁D

ψ + imψ̄ψ ▷

Here, i is the imaginary unit, γµ are the Dirac matrices, Dµ := ∂µ − iAµ is the covariant derivative

with the gauge eld Aµ and m is the fermionic mass.

1.2. Quantization of the magnetic eld

The sources of the present chapter are [2] and [10].

During this work we will be considering fermions within a square plane with length L, while a con-

stant magnetic eld B passes orthogonally through the area. We normally wish to impose periodic

boundary conditions in both x- and y-directions. But when considering the magnetic ux through the

plane L2 we nd

BL2 =

¨

V

B dxdy

=

¨

V

(∂xAy − ∂yAx) dxdy

=

ˆ L

0


Ay(x = L, y)−Ay(x = 0, y)


dy −

ˆ L

0


Ax(x, y = L)−Ax(x, y = 0)


dx (1)

where it becomes obvious that periodic boundary conditions for the gauge eld Aµ would imply a

trivial magnetic eld B = 0 (since (1) would vanish). But what we can do is make use of the gauge

invariance of the theory

Aµ −→ Aµ + ∂µΛ

where Λ can be chosen as any arbitrary smooth function. The gauge transformation for the operator

equation is

◁D −→ γµ(∂µ − iAµ − i∂µΛ) = eiΛγµ(∂µ − iAµ)e
−iΛ

= eiΛ ◁De−iΛ ▷

From this we directly nd the gauge transformation of the eigenfunctions

i ◁Dψ = λψ −→ eiΛi ◁De−iΛψ′ = λψ′

⇐⇒ ψ′ = eiΛψ ▷

Now we can consider the gauge transformation of

Aµ(x+ L, y)−Aµ(x, y) −→ Aµ(x+ L, y) + ∂µΛ(x+ L, y)−Aµ(x, y)− ∂µΛ(x, y)
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1.2 Quantization of the magnetic eld

and choose a gauge such that

Aµ(x+ L, y) + ∂µΛ(x+ L, y)−Aµ(x, y)− ∂µΛ(x, y)
!
= 0

⇐⇒ Aµ(x+ L, y)−Aµ(x, y) = ∂µ

Λ(x, y)− Λ(x+ L, y)



  

≡Λ(1)(x,y)

▷ (2)

Analogously we get for the y-direction

Aµ(x, y + L)−Aµ(x, y) = ∂µΛ
(2)(x, y) ▷ (3)

These two conditions imply, that the gauge eld is periodic up to a gauge transformation in both x-

and y-directions. This means, that the same is true for the spinor eld

ψ(x+ L, y) = eiΛ
(1)(x,y)ψ(x, y) and ψ(x, y + L) = eiΛ

(2)(x,y)ψ(x, y) ▷ (4)

If we now use (2) and (3) in (1) we nd

BL2 =

ˆ L

0


Ay(x = L, y)−Ay(x = 0, y)


dy −

ˆ L

0


Ax(x, y = L)−Ax(x, y = 0)


dx

=

ˆ L

0
∂yΛ

(1)(0, y) dy −
ˆ L

0
∂xΛ

(2)(x, 0) dx

= Λ
(1)(0, L)− Λ

(1)(0, 0)− Λ
(2)(L, 0) + Λ

(2)(0, 0) ▷ (5)

For consistency reasons we have to make sure, that two independent gauge transformations for the x-

and y-directions commute with each other

ψ(x+ L, y + L) = ψ(x+ L, y + L)

⇐⇒ eiΛ
(1)(x,y+L)ψ(x, y + L) = eiΛ

(2)(x+L,y)ψ(x+ L, y)

⇐⇒ ei

Λ(1)(x,y+L)+Λ(2)(x,y)



ψ(x, y) = ei

Λ(2)(x+L,y)+Λ(1)(x,y)



ψ(x, y) ▷

ince the phases are periodic, we nd

Λ
(1)(x, y + L) + Λ

(2)(x, y)− Λ
(2)(x+ L, y)− Λ

(1)(x, y) = ν2π

where ν ∈ Z. If we now choose explicitly x = y = 0 we can make use of (5)

Λ
(1)(0, L) + Λ

(2)(0, 0)− Λ
(2)(L, 0)− Λ

(1)(0, 0) = ν2π

⇐⇒ BL2 = ν2π

⇐⇒ B =
ν2π

L2
(6)

to nd that the magnetic eld through a nite surface L2 must be quantized. ν is called the instanton

number and is thus a quantum number describing the amount of magnetic ux quanta passing the

surface. The smallest possible ux quantum is Bmin = 2π
L2 .

Finally, there are two more mathematical tools, which need proper introduction. Those are Her-

mite polynomials and the Gaussian quadrature. Many dierent introductions to those topics can be

found, as for example in [8], [7] and [11].
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1.2 Quantization of the magnetic eld

Hermite polynomials are a set of orthogonal polynomials, which appear as the eigenfunctions of the

quantum harmonical oscillator. They fulll useful recursion relations and they dene the Hermite-

Gauss weights. These weights allow to substitute integrals of polynomials by nite sums via the

Gaussian quadrature. A more detailed account on both those topics can be found in the appendices

A.1 and A.2.
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Eigenmodes and Dirac operator

2. Eigenmodes and Dirac operator

The rst aim of this work is nding the eigenmodes and -values of the Dirac operator in question. For

this, we rst construct the diagonalized squared operator. We then determine the eigenmodes and

-values of this squared operator, where we are able to identify ladder operators. Those operators allow

to compute any mode from the zero mode, which can be found in chapter 2.2. This is why we must

determine the zero mode beforehand, which happens in chapter 2.1. When we know everything about

the squared operator, we can construct the eigenmodes and -values of the original Dirac operator, as

found in chapter 2.4. Furthermore, chapter 2.3 contains the determination of the zeroes of the zero

modes.

As already mentioned in chapter 1.1, the Lagrangian we wish to study is

L = ψ̄i γµDµ
  

= ◁D

ψ + imψ̄ψ ▷

The specic constellation of interest is the same as in chapter 1.2. We want to study constant magnetic

elds passing orthogonally through a square surface in the x-y-plane. There should not be any electric

eld, from which follows A0 = 0. Thus, we wish to solve the eigenvalue equation of the Dirac operator

i ◁Dψ = λψ with i ◁D = iγ0∂0 + iγiDi

in 2+1 dimensions. ince this operator is the product of the imaginary unit i and a rst order

dierential operator, it is hermitian and thus has real eigenvalues λ ∈ R. In these dimensions we can

choose a convenient representation for the Dirac matrices γµ by using the Pauli matrices σµ

γ1 = σ1, γ2 = σ2, γ0 = σ3

where one can check that this representation fullls the dening property of the Dirac matrices

{γµ, γν} = 2δµνσ0 ▷

In the chosen representation we nd explicitly

i ◁D =



i∂0 A†

A −i∂0

(

(7)

with A := i(D1 + iD2) and (since Dµ is a rst order dierential operator) A† = i(D1 − iD2). From

this operator we can construct a diagonal operator by studying its square

(i ◁D)2 =



−∂2
0 +A†A 0

0 −∂2
0 +AA†

(

(8)

where we used, that the magnetic eld should be constant in time ∂0Ai = 0. We did this, because

it is much simpler to nd the eigenfunctions and -values of a diagonal operator. From those, the

eigenfunctions and values of the original operator can be easily constructed. Now we can separate this
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2.1 Zero modes of the eigenfunctions

matrix and identify the eld strength tensor Fµν

(i ◁D)2 = −∂2
01−D2

i 1− γ0i [D1, D2]
  

=−i(∂1A2−∂2A1)

= −∂2
01−D2

i 1− γ0 F12


=B

= (−∂2
0 −D2

i )1−


B 0

0 −B

(

▷

ince both A†A and AA† are time independent, they commute with ∂2
0 . Explicitly they are

AA† = −D2
i +B and A†A = −D2

i −B ▷ (9)

We want to solve their corresponding eigenvalue equations, where we have non-negative eigenvalues

(since they are both hermitian and we obtained them by squaring an operator)

A†Aφn = λ2
nφn and AA†χn = λ2

nχn ▷ (10)

If we assume B > 0 we nd from (9) that

AA† = A†A+ 2B > A†A ▷ (11)

From this condition we nd that there are only zero modes for A†A. o now we have constructed the

squared Dirac operator (8) and go on to determine the eigenmodes of its diagonal elements.

2.1. Zero modes of the eigenfunctions

We have constructed the diagonalized squared Dirac operator (8) and now want to nd its eigenmodes

so that we can construct the eigenmodes of the original Dirac operator (7). ince ∂2
0 commutes with

both AA† and A†A, which were given by (9), the eigenfunctions of the squared operator are

ψ1 = eiωt


φ

0

(

and ψ2 = eiωt


0

χ

(

▷ (12)

o the zero modes of the squared operator are determined by the zero modes of the operators AA†

and A†A, because of (10). We already know from (11) that we only have zero modes for A†A. o we

search for eigenmodes φ such that

A†Aφ = 0

=⇒ (φ, A†Aφ) = 0

⇐⇒ (Aφ, Aφ) = 0

which is fullled by

Aφ = 0 ▷

But since we obviously also have Aφ = 0 =⇒ A†Aφ = 0 we nd

A†Aφ = 0 ⇐⇒ Aφ = 0 ▷
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2.1 Zero modes of the eigenfunctions

o it is enough to only study the following dierential equation

Aφ = 0

⇐⇒ (iD1 −D2)φ = 0

⇐⇒

Ax − ∂y + i(∂x −Ay)


φ = 0 ▷

Now we can choose a gauge such that

Ax(y) = −By and Ay = 0

where one can check that this choice fullls the necessary condition F12 = B. This leads to the simpler

dierential equation


−By − ∂y + i∂x


φ = 0 ▷

A product ansatz φ(x, y) = X(x)Y (y) leads to the solutions

φ(x, y) = Ceiαxe−
B
2


y+ α

B

2

(13)

with C ∈ C and α ∈ C. These are innitely many solutions. But we must also fulll the boundary

conditions (4) in both x- and y-direction. o we must determine the gauge functions Λ(1) and Λ
(2)

Ax(y) = −By

⇐⇒ Ax(y + L) = −B(y + L)

⇐⇒ Ax(y) + ∂xΛ
(1) = Ax(y)−BL

⇐⇒ Λ
(1) = −BLx+ C1

and analogously Λ
(2) = C2. We choose C1 = 0 = C2. With this we obtain the explicit boundary

conditions

ψ(x+ L) = ψ(x) and ψ(y + L) = e−iBLxψ(y) ▷ (14)

Because of (12), the boundary conditions only apply to φ and χ. Let us apply the rst one of the

conditions (14) to the zero modes (13)

φ(x+ L) = φ(x)

⇐⇒ eiαx+iαL = eiαx

⇐⇒ α =
2π

L
p ≡ αp (15)

with p ∈ Z. o the zero modes take on the new form

φp(x, y) = Ceiαpxe−
B
2


y+

αp

B

2

, p ∈ Z ▷ (16)

Let us now apply the second condition of (14) with k ∈ Z

φp(y + kL) = e−iBkLxφp(y)

⇐⇒ eiαpx
  

phase

e−
B
2


y+kL+

αp

B

2

  

value

= ei(αp−BkL)x
  

phase

e−
B
2


y+

αp

B

2

  

value

▷
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2.1 Zero modes of the eigenfunctions

ince the values must be equal, we nd in the exponent that for all k we have to identify
αp

B
+ kL

as the same solution. This is just a modulo αp + BLZ, which leaves only 0 ≤ αp < BL as dierent

solutions. o when we use the explicit forms of αp (15) and the magnetic eld B (6) we nd that

0 ≤ αp < BL

⇐⇒ 0 ≤ 2π

L
p <

ν2π

L2
L

⇐⇒ 0 ≤ p < ν

which leaves exactly ν zero modes. Their amount is thus given by the instanton number. o we have

to consider a superposition of all identied solutions as one single eigenmode

φ0,p(x, y) = C
∑

k∈Z
ei(αp+kBL)xe−

B
2
(y+

αp

B
+kL)2 , 0 ≤ p < ν ▷ (17)

The next task is to normalize them. For that we study

⟨φ0,p|φ0,p′⟩ =
ˆ L

0

ˆ L

0
|C|2

∑

k,k′∈Z
e−i(αp+kBL)xe−

B
2
(y+

αp

B
+kL)2ei(αp′+k′BL)xe−

B
2
(y+αp′◁B+k′L)2 dxdy ▷

Let us rst consider the x-dependent part of the integral

e−i(αp+kBL)xei(αp′+k′BL)x = ei

αp′−αp+BL(k′−k)


x

(15)
= ei


2π
L
p′− 2π

L
p+BL(k′−k)


x

(6)
= ei

2π
L


p′−p+ν(k′−k)


x ▷

ince 0 ≤ p, p′ < ν, the exponent consists of the sum a multiple of ν and a p′ − p, which is smaller

then ν. When also considering, that the integral goes from 0 to L, integral of the phase above thus

vanishes for any p ̸= p′ or k ̸= k′. At the same time the phase is 1 for p = p′ and k = k′. o we nd

for the scalar product

⟨φ0,p|φ0,p′⟩ = |C|2Lδp,p′

ˆ L

0

∑

k,k′∈Z
δk,k′e

−B
2
(y+

αp

B
+kL)2e−

B
2
(y+

α
p′

B
+k′L)2 dy

= |C|2Lδp,p′
∑

k∈Z

ˆ L

0
e−

B
2
(y+

αp

B
+kL)2e−

B
2
(y+

α
p′

B
+kL)2 dy ▷

We want to normalize the case p = p′ and solve the ensuing Gaussian integral. We nd that

⟨φ0,p|φ0,p⟩ = |C|2L
∑

k∈Z

ˆ L

0
e−B(y+

αp

B
+kL)2 dy

= |C|2L

ˆ

R

e−B(y+
αp

B
)2 dy (18)

= |C|2L

∏
π

B

!
= 1

which gives for the normalization constant

C = eiφ
4

√

B

πL2

where we can choose φ = 0. o the normalized zero modes look like this
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2.2 Raising and lowering operators

Zero modes of the operator A†A (9)

φ0,p(x, y) =
4

√

B

πL2

∑

k∈Z
ei(αp+kBL)xe−

B
2
(y+

αp

B
+kL)2 , 0 ≤ p < ν ▷ (19)

Plots of a few selected zero modes can be found in gure 1.

Fig. 1: Separate plots of the real and imaginary parts of three selected zero modes (19).

2.2. Raising and lowering operators

Now that the zero modes are determined, the higher modes are the next topic of interest. We found

that there are ν zero modes for A†A given by (19). ince we also know that the operators AA† and

A†A are related via a dierence of 2B (11), every zero mode of A†A implies one mode of AA† with

the eigenvalue 2B, of which are thus ν in total. But since AA† and A†A have the same non-zero

eigenvalues, this also implies ν modes for A†A with the eigenvalue 2B. o there are 2ν modes with

eigenvalue 2B in total. This argument can be repeated indenitely to eigenvalues k2B with k ∈ N to

each of which there correspond 2ν modes. The situation is depicted in gure 2.

We can use the relation (11) together with the eigenvalue equations of φ and χ (10) to nd a relation

12



2.2 Raising and lowering operators

0

2B

4B

6B

8B

10B

12B

14B

A†A

2B

4B

6B

8B

10B

12B

14B

AA†

ν
2ν

2ν

2ν

2ν

2ν

2ν

2ν

degeneracy

Fig. 2: Depiction of the eigenvalues of A†
A and AA

† as well the amount of corresponding eigenmodes.

between φ and χ. We nd that for n ≥ 1

AA†χn,p = λ2
nχn,p

⇐⇒ (A†A+ 2B)χn,p = λ2
nχn,p

⇐⇒ A†Aχn,p = (λ2
n − 2B)χn,p

⇐⇒ A†Aχn,p = λ2
n−1χn,p ▷

But this is just the eigenvalue equation of φn−1,p. This means

φn−1,p = χn,p ▷ (20)

Using this relation we can further study the eigenvalue equations

AA†χn,p = λ2
nχn,p

⇐⇒ A†(AA†χn,p) = A†(λ2
nχn,p)

⇐⇒ A†A(A†χn,p) = λ2
n(A

†χn,p)

⇐⇒ A†A


A†

C1(n)
χn,p



= λ2
n


A†

C1(n)
χn,p



,

which is just the eigenvalue equation of A†A, as in (10). From this we nd

A†

C1(n)
χn,p = φn,p

⇐⇒ A†

C1(n)
φn−1,p = φn,p

and analogously we obtain

A

C2(n)
φn,p = φn−1,p ▷

o we can interpret A and A† as ladder operators. We introduced C1 and C2 so we have some freedom

to ensure that the ladder operators can keep the normalization. o we have

A†φn−1,p = C1(n)φn,p and Aφn,p = C2(n)φn−1,p ▷ (21)

Any other eigenmode can be obtained by using the ladder operators from equation (21). For conve-

nience from now on we only write αp instead of αp + kBL. From this notation the complete solution

13



2.2 Raising and lowering operators

can always be obtained by αp → αp + kBL and summing over k. o, the rst higher mode can be

computed explicitly

φ1,p =
1

C1(1)
A†φ0,p

=
1

C1(1)
(iD1 +D2)φ0,p

=
1

C1(1)
(i∂x +Ax + ∂y − iAy)φ0,p

=
1

C1(1)
(i∂x −By + ∂y)φ0,p ▷

With φ0,p explicitly inserted as in (19), we nd

φ1,p =
1

C1(1)
4

√

B

πL2
(i∂x −By + ∂y)e

iαpxe−
B
2
(y+

αp

B
)2

=
1

C1(1)
4

√

B

πL2



− αp −By −B



y +
αp

B



eiαpxe−
B
2
(y+

αp

B
)2

= − 2B

C1(1)



y +
αp

B



φ0,p ▷

Now again, we can use C1(1) to normalize φ1,p. Explicit computation and normalization of further

eigenmodes leads to

C1(1) =
√
2B, C1(2) =

√
4B, C1(3) =

√
6B, C1(4) =

√
8B, ▷▷▷

which leads to the idea of the ansatz C1(n) =
√
2nB = λn. With this we can write down an ansatz

for any nth eigenmode by application of n raising operators

φn,p =
1

n
k=1C1(k)

(A†)nφ0,p

=
1√
n!


A†

√
2B

n

φ0,p ▷

Here we can study the eect of n raising operators on the zero mode

(A†)nφ0,p = (i∂x −By + ∂y)
nφ0,p

= (−αp −By + ∂y)
nφ0,p

= (−1)n
√
B

n


αp√
B

+
√
By − ∂y√

B

n

φ0,p ,

where we obtain via substitution y′ ≡ αp√
B
+

√
By

(A†)nφ0,p = (−1)n
√
B

n
(y′ − ∂y′)

n 4

√

B

πL2
eiαpxe−

B
2
(y+

αp

B
)2

=
4

√

B

πL2
eiαpx(−1)n

√
B

n
(y′ − ∂y′)

ne−
y′2

2

=
4

√

B

πL2
eiαpx(−1)n

√
B

n
e−

y′2

2 e
y′2

2 (y′ − ∂y′)
ne−

y′2

2 ▷
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2.2 Raising and lowering operators

Here we can identify the Hermite polynomials Hn(y
′) as they are given in (47) and also the zero modes

φ0,p as they are given in (19)

= (−1)n
√
B

n
Hn(y

′)
4

√

B

πL2
eiαpxe−

y′2

2

  

=φ0,p

= (−1)n
√
B

n
Hn

√
By +

αp√
B



φ0,p

which nally leads to the higher modes when remembering that f(αp) → 

k∈Z f(αp + kBL). For

clear notation we introduce φ0,p,k such that φ0,p =


k∈Zφ0,p,k, which can directly be seen in (19).

Thus, we get

Eigenmodes of the operator A†A (9)

φn,p =
1√
n!
(−1)n

1√
2
n

∑

k∈Z
Hn

√
By +

αp + kBL√
B



φ0,p,k ▷ (22)

To check the orthonormality of our ansatz we compute the scalar product of any two eigenmodes. For

this we use the orthogonality of the Hermite polynomials with respect to a weight function (50)

⟨Hn(y
′)φ0,p|Hm(y′)φ0,p⟩ =

√

B

π

ˆ

R

Hn(y
′)Hm(y′)e−B(y+

αp

B
)2 dy (23)

=

√

B

π

ˆ

R

Hn(y
′)Hm(y′)e−y′2 dy′


√
B

=
1




√
π


√
π2nn!δnm

which leads to

⟨φn,p|φm,p⟩ =
1

n!

1

2n
⟨Hn(y

′)φ0,p|Hm(y′)φ0,p⟩

= δnm ▷

This veries the normalization.

These eigenmodes can also be represented in terms of Hermite functions, which is just an alternative

notation. For this we use their form (22), the zero modes (19), αp = 2πp
L
, B = ν2π

L2 and Φ = BL2 to

obtain

Eigenmodes of the operator A†A (9) represented by Hermite functions

⇐⇒ φn,p =
(−1)n√
2nn!

4

√

B

πL2

∑

k∈Z
Ĥn

√
Φ

 y

L
+

p+ kν

ν



e2πi(p+kν) x
L ▷ (24)

An explicit verication of the normalization of this alternative form can be found in appendix A.3.

Before we go on to construct the eigenmodes of the Dirac operator, we want to study the zero modes a

bit further. For later discretization attempts a study of the zeroes of the eigenmodes might be useful.

Thus, the next chapter will be dedicated to the determination of the zeroes of the zero modes.
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2.3 Zeroes of the zero modes

2.3. Zeroes of the zero modes

An explicit calculation of the zeroes is possible. This can be achieved by the identication of the

so called Jacobi theta function, for which the zeroes are well known. A more detailed account on

this function can be found in appendix A.4. To achieve an identication, consider the following

rearrangement of the zero modes (19)

φ0,p(x, y) =
4

√

B

πL2
eiαpx−B

2
y2−

α2
p

2B
−yαp

∑

k∈Z
e−k2 BL2

2
+k(iBLx−BLy+αpL) ▷

With this notation we can identify the Jacobi theta function as given in [12]

ϑ(z, τ) :=
∑

k∈Z
eπik

2τ+2πikz

for z ∈ C and Imτ > 0. This leads to an representation of the zero modes with the theta function

φ0,p(x, y) =
4

√

B

πL2
eiαpx−B

2
y2−

α2
p

2B
−yαp ϑ



i
BLy − αpL

2π
+

BLx

2π
, i
BL2

2π



▷

This means, that the zeroes of the zero modes are given by the zeroes of the Jacobi theta function.

As mentioned in (57), the zeroes of ϑ(z, τ) are given by

zmn =



m+
1

2



+



n+
1

2



τ, m, n ∈ Z ▷

This means for the above theta function the zeroes are given by the solutions of

i
BLy − αpL

2π
+

BLx

2π
=



m+
1

2



+



n+
1

2



i
BL2

2π
▷

By comparison of the real and imaginary parts we nd separate constraints for x and y when remem-

bering that B = ν2π
L2 and αp =

2π
L
p

yn =



n+
p

ν
+

1

2



L

and

xm =



m+
1

2


L

ν
▷

But since we are constrained to a square we obtain a nite amount of zeroes depending on p and ν.

For xm we nd exactly ν zeroes at

xm =



m+
1

2


L

ν
, m ∈ [0, ν − 1] ▷

For yn we nd

0 ≤


n+
p

ν
+

1

2



L ≤ L

⇐⇒ −1

2
− p

ν
≤ n ≤ 1

2
− p

ν
▷
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2.4 Eigenfunctions of the Dirac operator

The maximum value for p
ν is 1. We have three cases. For those we get the zeroes

n ∈







{−1} , pν > 1
2

{−1, 0} , pν = 1
2

{0} , pν < 1
2

which means for yn we have the zeroes

y0 =


p

ν
− 1

2



L ,
p

ν
≥ 1

2

y1 =


p

ν
+

1

2



L ,
p

ν
≤ 1

2
▷

This means that in total we have ν zeroes for p
ν ̸= 1

2 , which are located on the inside. Also, we have

2ν zeroes for p
ν = 1

2 , which are all located on the boundary in y-direction.

Zeroes of the zero modes (19)

xm =



m+
1

2


L

ν
, m ∈ [0, ν − 1]

y0 =


p

ν
− 1

2



L ,
p

ν
≥ 1

2

y1 =


p

ν
+

1

2



L ,
p

ν
≤ 1

2
▷

A check of this result by application of the residue theorem can be found in appendix A.5. This

now concludes the study of the eigenmodes φn,p. Out of those the eigenmodes of the original Dirac

operator can be constructed.

2.4. Eigenfunctions of the Dirac operator

Now we want to nally determine the eigenmodes of the original Dirac operator (7) out of the deter-

mined eigenmodes (22) of the squared Dirac operator (8). As we have already seen before in equation

(12), the eigenfunctions of − ◁D
2
factorize into t- and x-dependent parts. The corresponding eigenval-

ues are thus µ2
n = ω2 + λ2

n. The orthonormal eigenfunctions of the Dirac operator i ◁D can be derived

directly from the ones of the squared operator (i ◁D)2 to be

Eigenmodes of the Dirac operator (7)

φω,n,p =
1√
2β

eiωx
0 1


µn(µn − ω)



(µn − ω)φn,p

λχn,p

(

χω,n,p =
1√
2β

eiωx
0 1


µn(µn + ω)



λφn,p

(µn + ω)χn,p

(

where the eigenvalues come in pairs µn = ±


ω2 + λ2
n. These two modes are proportional to each

17



2.4 Eigenfunctions of the Dirac operator

other

φω,n,p =
1√
2β

eiωx
0 1


µn(µn − ω)



(µn − ω)φn,p

λχn,p

(

·
µn + ω

µn + ω

=
1√
2β

eiωx
0 1


µn(µn − ω)



λ2
nφn,p

λn(µn + ω)χn,p

(

·
1

µn + ω

=
λn

µn + ω
χω,n,p

and thus denote the same solution. This means, it is enough to consider only φω,n,p, since they are

just the same eigenfunction. It can be checked that φω,n,p is indeed an eigenfunction

i ◁Dφω,n,p =



i∂0 A†

A −i∂0

(

1√
2β

eiωx
0 1


µn(µn − ω)



(µn − ω)φn,p

λnχn,p

(

= eiωx
0 1√

2β

1


µn(µn − ω)



−ω(µn − ω)φn,p + λnA
†χn,p

(µn − ω)Aφn,p + λnωχn,p

(

where we have to use the relation between φn,p and χn,p as given in (20)

i ◁Dφω,n,p = eiωx
0 1√

2β

1


µn(µn − ω)



−ω(µn − ω)φn,p + λ2
nφn,p

(µn−ω)λnχn,p +λnωχn,p

(

= eiωx
0 1√

2β

1


µn(µn − ω)



(µn − ω)


−ω + µn +ω

φn,p

µnλχn,p

(

= µnφω,n,p ▷

A verication of the normalization of these eigenmodes can be found in appendix A.3. In the next

chapter we will need the spectral decomposition of the Dirac operator. Here, the sum over µ means

the sum over the sign pairs of the eigenvalues µn

⟨x|i ◁D|y⟩ :=
∑

ω,n,p,µ

µnφω,n,p(x)φ
†
ω,n,p(y) ▷ (25)

This is why we also note the following result

φω,n,p(x)φ
†
ω,n,p(y) =

eiω(x0−y0)

2β

1

µn(µn − ω)



(µn − ω)φn,p(x⃗)

λnχn,p(x⃗)

(



(µn − ω)φ†
n,p(y⃗) λnχ

†
n,p(y⃗)



=
eiω(x0−y0)

2β

1

µn



(µn − ω)φn,p(x⃗)φ
†
n,p(y⃗) λnφn,p(x⃗)χ

†
n,p(y⃗)

λnχn,p(x⃗)φ
†
n,p(y⃗) (µn + ω)χn,p(x⃗)χ

†
n,p(y⃗)

(

▷ (26)

At this point the eigenmodes and -values of the Dirac operator have been determined, checked and

studied quite extensively. The nal section of this thesis will now present an attempt to achieve a

discretization of this operator.
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Discretization of the Dirac operator

3. Discretization of the Dirac operator

This chapter will present an attempt of nding a discretization of the Dirac operator (7). Currently,

all determined objects depend on the continuous variables of space and time. To be able to apply

numerical methods we need to only depend on discrete coordinates, which is why want to move on a

lattice. For this we will use its spectral decomposition (25). The Dirac operator in question is of 2+1

dimensions and section 2 has revealed, that the operator is periodic in time and one space direction.

The second space direction is more complicated. We will rst study the discretization of the time

direction in chapter 3.1, for which we use the concept of the SLAC-derivative. After that, we simplify

the ensuing term for the operator in chapter 3.2, while also noting a few alternative representations

in chapter 3.3. We hope to nd a discretization of the non-periodic space direction by studying how

the Gaussian quadrature can be applied to it. Chapter 3.4 presents a verication, that the eigenvalue

equation of the Dirac operator still holds on a tting quadrature grid. Finally, the last chapter 3.5

presents an attempt of explicitly writing down a tting grid, while trying to analyze the ensuing

problems.

3.1. Spectral resolution

We wish to discretize the time direction, which is periodic. For this we use the concept of the SLAC-

derivative, as introduced in [13] and [14]. For this we consider the operator i ◁D in position space. Thus,

the relation of interest is (26), from which the important factor is eiω(x0−y0), where we dene the time

dierence as ξ ≡ x0−y0. We study the sum of eiω(x0−y0) over the Matsubara frequencies ωm = 2π
m+ 1

2
β

with m ∈ Z symmetric to ω = 0. The interval of interest for an even number of frequencies Nt is then

given by m ∈ [−Nt

2 , Nt

2 − 1]. To obtain a LAC-derivative we cut o the sum symmetric to the origin

Nt
2
−1
∑

m=−Nt
2

eiωmξ =

Nt
2
−1
∑

m=−Nt
2

e
i2π

m+1
2

β
ξ

= e
iπ ξ

β (e
i2π 1

β
ξ
)−

Nt
2

Nt−1∑

m=0

(e
i2π ξ

β )m ,

where the ensuing geometric series leads to

Nt
2
−1
∑

m=−Nt
2

eiωmξ = e
iπ ξ

β e
−iπ

Nt
β

ξ 1− (e
i2π ξ

β )Nt

1− e
i2π ξ

β

=
sin(πNt

β ξ)

sin(π ξ
β )

▷ (27)

Dierentiating this equation with respect to ξ yields

i

Nt
2
−1
∑

m=−Nt
2

ωmeiωmξ =
πNt

β

cos(πNt
ξ
β )

sin(π ξ
β )

− π

β

sin(πNt
ξ
β ) cos(π

ξ
β )

sin2(π ξ
β )

=
π

β



Nt

cos(πNt
ξ
β )

sin(π ξ
β )

−
sin(πNt

ξ
β ) cos(π

ξ
β )

sin2(π ξ
β )



▷ (28)
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3.1 pectral resolution

Now we go on to discretize the interval [0,β] by Nt sites, which leads to

ξ → ξss′ =
β

Nt
(s− s′) and tss′ ≡

π

β
ξss′ =

π

Nt
(s− s′)▷

with s, s′ ∈ {0, ▷▷▷, Nt}. This way we nd for the spectral sum (27)

Nt
2
−1
∑

m=−Nt
2

eiωmξss′ =
sin(πNt

ξss′
β )

sin(π
ξss′
β )

=
sin[π(s− s′)]

sin[ π
Nt

(s− s′)]
▷

Here the numerator becomes zero for any s and s′, but the denominator does so only for s− s′ = NtZ.

To nd the limit when both become zero we can use L’Hôpital’s rule

lim
x→0

sin[πx]

sin[ π
Nt

x]
= Nt lim

x→0

cos[πx]

cos[ π
Nt

x]
= Nt

which leads to

Nt
2
−1
∑

m=−Nt
2

eiωmξss′ = Ntδss′ (29)

where δss′ is the Kronecker symbol on ZNt . If we now analyze the derivative of the spectral sum (28)

we can dene a matrix, which is the so called LAC-derivative

i

Nt
2
−1
∑

m=−Nt
2

ωmeiωmξss′ =
π

β



Nt
cos[π(s− s′)]

sin[ π
Nt

(s− s′)]
−

sin[π(s− s′)] cos[ π
Nt

(s− s′)]

sin2[ π
Nt

(s− s′)]



=
Ntπ

β

1

sin tss′



(−1)s−s′

  

=1 for s=s′

−δss′ cos
[ π

Nt
(s− s′)

]

  

=1 for s=s′



=
Ntπ

β

(−1)s−s′

sin tss′
(1− δss′) := Nt∂slac,ss′ ▷ (30)

Now we can apply this to the spectral decomposition (25) of the Dirac operator with (26)

⟨x|i ◁D|y⟩ =
∑

m

eiωm(x0−y0)

2β

∑

n,p,µ



(µn − ωm)φn,p(x⃗)φ
†
n,p(y⃗) λnφn,p(x⃗)χ

†
n,p(y⃗)

λnχn,p(x⃗)φ
†
n,p(y⃗) (µn + ωm)χn,p(x⃗)χ

†
n,p(y⃗)

(

to eectively discretize the time direction. ince the eigenvalues µn come in pairs with opposite sign

and n runs through the natural numbers N we can simplify the sum to

pectral decomposition of the Dirac operator (7) with discretized time direction

⟨x|i ◁D|y⟩ =
∑

m

eiωm(x0−y0)

β

∑

n,p



−ωmφn,p(x⃗)φ
†
n,p(y⃗) λnφn,p(x⃗)χ

†
n,p(y⃗)

λnχn,p(x⃗)φ
†
n,p(y⃗) ωmχn,p(x⃗)χ

†
n,p(y⃗)

(

▷ (31)
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3.1 pectral resolution

We can check this result by acting with i ◁D on it, where the index x denotes, that the derivatives are

in respect to x

i ◁Dx⟨x|i ◁D|y⟩ =


i∂x0 A†
x

Ax −i∂x0

(

∑

m

eiωm(x0−y0)

β

∑

n,p



−ωmφn,p(x⃗)φ
†
n,p(y⃗) λnφn,p(x⃗)χ

†
n,p(y⃗)

λnχn,p(x⃗)φ
†
n,p(y⃗) ωmχn,p(x⃗)χ

†
n,p(y⃗)

(

=
∑

m,n,p

eiωm(x0−y0)

β



−ωm A†
x

Ax ωm

(

−ωmφn,p(x⃗)φ
†
n,p(y⃗) λnφn,p(x⃗)χ

†
n,p(y⃗)

λnχn,p(x⃗)φ
†
n,p(y⃗) ωmχn,p(x⃗)χ

†
n,p(y⃗)

(

  

≡M

▷

The rst and second matrix elements here are

M11 = ω2
mφn,p(x⃗)φ

†
n,p(y⃗) + λn


A†χn,p(x⃗)



  

=λnφn,p(x⃗)

φ†
n,p(y⃗) = (ω2

m + λ2
n)φn,p(x⃗)φ

†
n,p(y⃗)

M21 = −ωm


Aφn,p(x⃗)



  

=λnχn,p(x⃗)

φ†
n,p(y⃗) + ωmλnχn,p(x⃗)φ

†
n,p(y⃗) = 0 ▷

The other two matrix elements can be calculated analogously to give

i ◁Dx⟨x|i ◁D|y⟩ =
∑

m,n,p

eiωm(x0−y0)

β
(ω2

m + λ2
n)



φn,p(x⃗)φ
†
n,p(y⃗) 0

0 χn,p(x⃗)χ
†
n,p(y⃗)

(

= ⟨x|(i ◁D)2|y⟩ ▷

which indeed gives the spectral decomposition of the squared operator. With the LAC-derivative we

have found above (30) we can get rid of one sum in the spectral decomposition (31) when going on

a lattice. The operator is now discretized in the time direction. The time integral when evaluating

scalar products turns into a sum over the grid points which are separated by β
Nt

. We also multiply by

the factor β
Nt

so they are separated by 1

⟨x⃗, s|i ◁D|y⃗, s′⟩ = β

Nt

∑

m

eiωmξss′

β

∑

n,p



−ωmφn,p(x⃗)φ
†
n,p(y⃗) λnφn,p(x⃗)χ

†
n,p(y⃗)

λnχn,p(x⃗)φ
†
n,p(y⃗) ωmχn,p(x⃗)χ

†
n,p(y⃗)

(

=
∑

m

1

Nt
ωmeiωmξss′

∑

n,p



−φn,p(x⃗)φ
†
n,p(y⃗) 0

0 χn,p(x⃗)χ
†
n,p(y⃗)

(

+
∑

m

1

Nt
eiωmξss′

∑

n,p

λn



0 φn,p(x⃗)χ
†
n,p(y⃗)

χn,p(x⃗)φ
†
n,p(y⃗) 0

(

which leads to

pectral decomposition of the Dirac operator (7) after application of the LAC-derivative

⟨x⃗, s|i ◁D|y⃗, s′⟩ = π

iβ

(−1)s−s′

sin tss′
(1− δss′)

∑

n,p



−φn,p(x⃗)φ
†
n,p(y⃗) 0

0 χn,p(x⃗)χ
†
n,p(y⃗)

(

(32)

+ δss′
∑

n,p

λn



0 φn,p(x⃗)χ
†
n,p(y⃗)

χn,p(x⃗)φ
†
n,p(y⃗) 0

(

▷
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3.2 implifying the spectral sum

3.2. Simplifying the spectral sum

We wish to further simplify the spectral sum (32), since the triple sum over n and two times k inside of

φn,p and χn,p can lead to numerical problems. We ignore the sum over p for now, since its size depends

on the strength of the magnetic eld. For the simplication we can use the Christoel-Darboux formula

for the Hermite polynomials

N∑

n=0

Hn(x)Hn(y)

2nn!
=

1

2N+1N !

HN (y)HN+1(x)−HN (x)HN+1(y)

x− y
, (33)

as can be found in [11]. Using the recursion relation for Hermite polynomials (49), we can use

L’Hôpital’s rule to nd a symmetric form of the Christoel-Darboux formula

N∑

n=0

Hn(x)Hn(x)

2nn!
=

1

2N+1N !
lim
y→x

HN (y)HN+1(x)−HN (x)HN+1(y)

x− y

=
1

2N+1N !


HN (x)H ′

N+1(x)−H ′
N (x)HN+1(x)



=
1

2NN !


(N + 1)H2

N −NHN−1HN+1



which can also be written as

N−1∑

n=0

Hn(x)Hn(x)

2nn!
=

1

2N (N − 1)!


H2

N −HN−1HN+1


▷

We begin by analyzing the rst matrix element of the spectral sum (32). For this we use the explicit

form of the modes φn,p (22), the shifted summation index b = k′ − k and xp,k =
√
Φ


x2
L

+ p+kν
ν



N∑

n=0

ν∑

p=1

φn,p(x⃗)φ
†
n,p(y⃗) =

√

B

πL2

∑

n,p

∑

k,b

1

2nn!
Hn(xp,k)Hn(yp,k+b)e

i(αp+kBL)x1e−
B
2
(x2+

αp

B
+kL)2

· e−i(αp+(k+b)BL)y1e−
B
2
(y2+

αp

B
+(k+b)L)2

=

√

B

πL2

∑

n,p

∑

k,b

1

2nn!
Hn(xp,k)Hn(yp,k+b)e

i 2π
L
(p+kν)(x1−y1)e−i 2π

L
νby1e−

x2
p,k

2 e−
y2
p,k+b

2 ▷

We can get rid of the summation over p by using the identity

∑

k∈Z

ν∑

p=1

f(p+ kν) =
∑

a∈Z
f(a)

which gives

N∑

n=0

ν∑

p=1

φn,p(x⃗)φ
†
n,p(y⃗) =

√

B

πL2

∑

a,b

N∑

n=0

1

2nn!
Hn

√
B


x2 +
aL

ν



Hn

√
B


y2 +
aL

ν
+ bL



· ei
2π
L
a(x1−y1)e−i 2π

L
νby1e−

B
2


x2+

aL
ν

2

e−
B
2


y2+

aL
ν
+bL
2
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3.2 implifying the spectral sum

where we can now apply Christoel-Darboux (33)

N∑

n=0

ν∑

p=1

φn,p(x⃗)φ
†
n,p(y⃗) =

∏

1

πL2

∑

a,b

1

2N+1N !

1

x2 − y2 − bL

·

{

HN+1

√
B


x2 +
aL

ν



HN

√
B


y2 +
aL

ν
+ bL



−HN

√
B


x2 +
aL

ν



HN+1

√
B


y2 +
aL

ν
+ bL


}

· ei
2π
L
a(x1−y1)e−i 2π

L
νby1e−

B
2


x2+

aL
ν

2

e−
B
2


y2+

aL
ν
+bL
2

▷ (34)

Now we got rid of the sums over p and n. To check this result, the explicit calculations from appendix

A.6 lead to

ˆ

L2

N∑

n=0

ν∑

p=1

φn,p(x⃗)φ
†
n,p(x⃗) dx⃗ = ν(N + 1) , (35)

which is just the number of summands and thus the expected result. We can simplify the spectral

sum (34) marginally by dening the magnetic length ℓm = 1√
B

as a unit length. Thus, all lengths are

given in multiples of this value

First matrix element of the spectral decomposition (31) after application of Christoel-Darboux

N∑

n=0

ν∑

p=1

φn,p(x⃗)φ
†
n,p(y⃗) =

∏

1

πL2

∑

a,b

B

2N+1N !

1

x2 − y2 − bL



HN+1



x2 +
aL

ν



HN



y2 +
aL

ν
+ bL



−HN



x2 +
aL

ν



HN+1



y2 +
aL

ν
+ bL



(36)

· ei
2π
L
a(x1−y1)e−i 2π

L
νby1e−

1
2


x2+

aL
ν

2

e−
1
2


y2+

aL
ν
+bL
2

▷

Now we go on to compute the other matrix elements of (32), where the sum over n now starts from 1

∑

n,p

λnχn,p(x⃗)φ
†
n,p(y⃗) =

∑

n,p

λnφn−1,p(x⃗)φ
†
n,p(y⃗)

= −
√

B2

πL2

∑

n,p

∑

k,b

1

2n−1(n− 1)!
Hn−1(xp,k)Hn(yp,k+b)e

i 2π
L
(p+kν)(x1−y1)e−i 2π

L
νby1

· e−
x2
p,k

2 e−
y2
p,k+b

2 ▷

Let us focus on the sum over the Hermite polynomials, so we nd a way to use the Christoel-Darboux
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3.2 implifying the spectral sum

formula. We rst use the recursion relation (49) again

N∑

n=1

Hn−1(xp,k)Hn(yp,k+b)

2n−1(n− 1)!
=

N∑

n=1

1

2nn!
H ′

n(xp,k)Hn(yp,k+b)

=
1√
B
∂x2

N∑

n=1

1

2nn!
Hn(xp,k)Hn(yp,k+b) (37)

=
1√
B
∂x2

)

N∑

n=0

1

2nn!
Hn(xp,k)Hn(yp,k+b)−H0(xp,k)H0(yp,k+b)



and are now able to apply Christoel-Darboux (33)

N∑

n=1

Hn−1(xp,k)Hn(yp,k+b)

2n−1(n− 1)!
=

1√
B
∂x2

)

1

2N+1N !

HN (yp,k+b)HN+1(xp,k)−HN (xp,k)HN+1(yp,k+b)

xp,k − yp,k+b



−H ′
0(xp,k)

  

=0

H0(yp,k+b)

=
1

2N+1N !
√
B
∂x2

)

HN (yp,k+b)HN+1(xp,k)−HN (xp,k)HN+1(yp,k+b)

xp,k − yp,k+b



▷

o with that and again introducing a = k + pν we nd for the second matrix element

∑

n,p

λnχn,p(x⃗)φ
†
n,p(y⃗) = −

√

B

πL2

1

2N+1N !

∑

a,b

ei
2π
L
a(x1−y1)e−i 2π

L
νby1e−

B
2


x2+

aL
ν

2

e−
B
2


y2+

aL
ν
+bL
2

· ∂x2

)

HN

√
B(y2 +

aL
ν + bL)


HN+1

√
B(x2 +

aL
ν )


√
B(x2 − y2 − bL)

− HN

√
B(x2 +

aL
ν )

HN+1

√
B(y2 +

aL
ν + bL)



√
B(x2 − y2 − bL)



and nally by also rescaling to units of ℓm, we arrive at the form

econd matrix element of the spectral decomposition (31) after application of Christoel-

Darboux

∑

n,p

λnχn,p(x⃗)φ
†
n,p(y⃗) = −

∏

1

πL2

B
3
2

2N+1N !

∑

a,b

ei
2π
L
a(x1−y1)e−i 2π

L
νby1e−

1
2


x2+

aL
ν

2

e−
1
2


y2+

aL
ν
+bL
2

· ∂x2

)

HN


y2 +

aL
ν + bL


HN+1


x2 +

aL
ν



x2 − y2 − bL
(38)

− HN


x2 +

aL
ν


HN+1


y2 +

aL
ν + bL



x2 − y2 − bL



▷

In a similar fashion we compute the last matrix element

∑

n,p

λnφn,p(x⃗)χ
†
n,p(y⃗) =

∑

n,p

λnφn,p(x⃗)φ
†
n−1,p(y⃗)

=

√

B

πL2

∑

n,p

∑

k,b

−
√
2nB



2nn!2n−1(n− 1)!
Hn(xp,k)Hn−1(yp,k+b)e

i 2π
L
(p+kν)(x1−y1)e−i 2π

L
νby1

· e−
x2
p,k

2 e−
y2
p,k+b

2 ▷
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which has the same form as the the calculation before, only with the arguments in the Hermite

polynomials swapped. Thus, the solution is the same, with only the derivative changing to be in

respect to the other space coordinate. The relevant step for this is at (37). o, the solution is

Third matrix element of the spectral decomposition (31) after application of Christoel-Darboux

∑

n,p

λnφn,p(x⃗)χ
†
n,p(y⃗) = −

∏

1

πL2

B
3
2

2N+1N !

∑

a,b

ei
2π
L
a(x1−y1)e−i 2π

L
νby1e−

1
2


x2+

aL
ν

2

e−
1
2


y2+

aL
ν
+bL
2

· ∂y2

)

HN


y2 +

aL
ν + bL


HN+1


x2 +

aL
ν



x2 − y2 − bL
(39)

− HN


x2 +

aL
ν


HN+1


y2 +

aL
ν + bL



x2 − y2 − bL



▷

o, altogether the fully simplied spectral decomposition (31) is given by the explicit matrix elements

(36), (38) and (39). This expression is quite unwieldy. There do not seem to be any further obvious

simplications, but there still can be some benet in considering an alternative form. Thus, the next

chapter will shortly present a few dierent representations, which might have an advantage in further

study.

3.3. Alternative representations of the rst matrix element

The rst matrix element of the Dirac operator (36) has been calculated in chapter 3.2 to be

N∑

n=0

ν∑

p=1

φn,p(x⃗)φ
†
n,p(y⃗) = C

∑

a,b

1

x2 − y2 − bL



HN+1



x2 +
aL

ν



HN



y2 +
aL

ν
+ bL



−HN



x2 +
aL

ν



HN+1



y2 +
aL

ν
+ bL



(40)

· ei
2π
L
a(x1−y1)e−i 2π

L
νby1e−

1
2


x2+

aL
ν

2

e−
1
2


y2+

aL
ν
+bL
2

▷

where C summarizes the constants. For a sum as an argument inside of Hermite polynomials the

following identity holds [15]

Hn(x+ y) =
n∑

k=0



n

k

(

xkHn−k(y) ▷ (41)

With this we could rewrite the factor with the Hermite polynomials from (40)

HN+1



x2 +
aL

ν



HN



y2 +
aL

ν
+ bL



−HN



x2 +
aL

ν



HN+1



y2 +
aL

ν
+ bL



=
N+1∑

k=0

N∑

l=0



N + 1

k

(

N

l

( aL

ν

k

HN+1−k(x2)
aL

ν
+ bL

l

HN−l(y2)

−
aL

ν

l

HN−l(x2)
aL

ν
+ bL

k

HN+1−k(y2)



which gives overall a form with only the coordinates as arguments of the Hermite polynomials
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First matrix element of the spectral decomposition (31) with the coordinates as arguments of

the Hermite polynomials

N∑

n=0

ν∑

p=1

φn,p(x⃗)φ
†
n,p(y⃗) = C

∑

a,b

N+1∑

k=0

N∑

l=0



N + 1

k

(

N

l

(

ei
2π
L
a(x1−y1)e−i 2π

L
νby1e−

1
2


x2+

aL
ν

2

e−
1
2


y2+

aL
ν
+bL
2


aL
ν

k

HN+1−k(x2)

aL
ν + bL

l

HN−l(y2)

x2 − y2 − bL

−


aL
ν

l

HN−l(x2)

aL
ν + bL

k

HN+1−k(y2)

x2 − y2 − bL
▷

Alternatively, a form with the same argument inside of all Hermite polynomials could be of interest.

For this, one could isolate aL
ν inside the Hermite polynomials from (40) by again using (41) to obtain

N∑

n=0

ν∑

p=1

φn,p(x⃗)φ
†
n,p(y⃗) = C

∑

a,b

N+1∑

k=0

N∑

l=0



N + 1

k

(

N

l

(

ei
2π
L
a(x1−y1)e−i 2π

L
νby1e−

1
2


x2+

aL
ν

2

e−
1
2


y2+

aL
ν
+bL
2

xk2HN+1−k


aL
ν



(y2 + bL)lHN−l


aL
ν



− xl2HN−l


aL
ν



(y2 + bL)kHN+1−k


aL
ν



x2 − y2 − bL
▷

One can now use another identity, which combines two Hermite polynomials with the same argument.

Formula (18.18.23) from [16] is

Hm(x)Hn(x) =

min(m,n)
∑

p=0



m

p

(

n

p

(

2pp!Hm+n−2p(x) ▷

We can use this to arrive at a form with only one Hermite polynomial and y2+ bL isolated. If we also

introduce c = N + 1− k and d = N − l we nd

First matrix element of the spectral decomposition (31) with all Hermite polynomials containing

the same argument

N∑

n=0

ν∑

p=1

φn,p(x⃗)φ
†
n,p(y⃗) = C

∑

a,b

N+1∑

c=0

N∑

d=0

max(c,d)
∑

p=0



N + 1

N + 1− c

(

N

N − d

(

c

p

(

d

p

(

ei
2π
L
a(x1−y1)e−i 2π

L
νby1e−

1
2


x2+

aL
ν

2

e−
1
2


y2+

aL
ν
+bL
2

xN+1−c
2 (y2 + bL)N−d − xN−d

2 (y2 + bL)N+1−c

x2 − y2 − bL
2pp!Hc+d−2p

aL

ν



▷

One could also produce integrals using the following identity from [17]

Hn(x) = 2n

ˆ x

0
Hn−1(y) dy +Hn(0),

which might be of benet when correctly combined with a sum to make use of quadrature formulae.

All these forms have fewer polynomial products or benecial arguments inside of the Hermite poly-

nomials, but come at the expense of more sums. A possible simplication might reveal itself upon
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3.4 Quadrature tests

further study. The aim of the next chapter will be to examine and verify the application of quadrature

upon the spectral sum.

3.4. Quadrature tests

We now wish to check how quadrature could be applied to the spectral sum (32) with the explicit

matrix elements (36), (38) and (39). The goal here is, that we want to move to a grid instead of

evaluating continuous objects. In the continuum we have
ˆ

L2

⟨x⃗|i ◁D|y⃗⟩ψm(y⃗) d2y⃗ =

ˆ

L2

∑

n

λnψn(x⃗)ψ
†
n(y⃗)ψm(y⃗) d2y⃗

= λmψm(x⃗)

which does not necessarily hold on discrete lattice points

∑

l

⟨x⃗k|i ◁D|x⃗l⟩ψm(x⃗l) =
∑

l

∑

n

λnψn(x⃗k)ψ
†
n(x⃗l)ψm(x⃗l)

=
∑

n

λnψn(x⃗k)
∑

l

ψ†
n(x⃗l)ψm(x⃗l) ▷

This is where we wish to use the quadrature by choosing tting lattice points. We already established

the eigenvalue equation of the Dirac operator in chapter 2.4

i ◁Dφω,n,p = µnφω,n,p

and thus
˚

V

⟨x⃗|i ◁D|y⃗⟩φω,n,p(y⃗) d
3y⃗ =

˚

V

∑

m,q,ω′

µmφω′,m,q(x⃗)φ
†
ω′,m,q(y⃗)φω,n,p(y⃗) d

3y⃗

= µnφω,n,p(x⃗) ,

where V denotes the cuboid of the square L2 and β. The key point here is the normalization of the

eigenfunctions, which has already been calculated in (56). What we want to put on a grid is the

expression

⟨φω,n,p|φω′,n′,p′⟩ = δωω′

ˆ

L2

1

2β

1


µ(µ− ω)

1


µ′(µ′ − ω)



(µ− ω)φ†
n,p

λχ†
n,p

(

·



(µ′ − ω)φn′,p′

λ′χn′,p′

(

d2x⃗

or rather in the normalization of the φn,p which are given in (22), since only this expression contains

the coordinates. Their normalization has been checked in (23). Now we wish to apply the Gaussian

quadrature (55) to this integral

⟨φn,p|φm,p⟩ =
(−1)n+m

√
n!m!

√
2
n+m

ˆ L

0

ˆ L

0
φ†
0,pφ0,p dx Hn

√
By +

αp√
B



Hm

√
By +

αp√
B



dy ▷ (42)

The integral over x can be calculated by using (19)

ˆ L

0
φ†
0,pφ0,p dx =

√

B

πL2

ˆ L

0

∑

k∈Z

∑

k′∈Z
e−i(αp+kBL)xe−

B
2
(y+

αp

B
+kL)2ei(αp+k′BL)xe−

B
2
(y+

αp

B
+k′L)2 dx

=

√

B

π

∑

k∈Z
e−B(y+

αp

B
+kL)2 ▷
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3.4 Quadrature tests

Thus, the former integral (42) becomes (while remembering that we have to let αp → αp + kBL in

the Hermite polynomials)

⟨φn,p|φm,p⟩ =
(−1)n+m

√
n!m!

√
2
n+m

∏

1

π

ˆ

R

e−y′2Hn(y
′)Hm(y′) dy′

where we substituted y′ ≡
√
By +

αp√
B
. Now we can apply the Gaussian quadrature, which is the

quadrature with respect to the Hermite polynomials. A detailed account on quadrature can be found

in the appendix A.2. The order of f(x) = Hn(x)Hm(x) is n+m. Thus we have

⟨φn,p|φm,p⟩ =
(−1)n+m

√
n!m!

√
2
n+m

∏

1

π

r∑

k=1

λkHn(yk)Hm(yk) (43)

where the weights are the Hermite-Gauss weights as given in [11] as equation (25.4.46)

λk =
2r−1(r − 1)!

√
π

r ·H2
r−1(yk)

▷

and where we need to have r ≥ ⌈n+m+1
2 ⌉ (where ⌈x⌉ denotes x being rounded up to the nearest

integer). yk are the zeroes of Hr. For the smallest possible r this leads to

⟨φn,p|φm,p⟩ =
1√
n!m!







n+m
2

+1

k=1

n+m
2

!

(n+m
2

+1)H2
n+m

2

(yk)
Hn(yk)Hm(yk) , n+m even

−
n+m+1

2
k=1

√
2n+m+1

2
!

(n+m+1
2

+1)H2
n+m+1

2

(yk)
Hn(yk)Hm(yk) , n+m odd ▷

For n = m this obviously gives 1, as expected. The results of numerical calculation for the rst few

Hermite polynomials are in table 1.

Tab. 1: Numerical solutions of (43) for dierent n and m.

n

m
0 1 2 3 4 5 6

0 1 -2.28e-17 -2.23e-15 -2.46e-17 5.82e-16 -4.17e-18 7.83e-16

1 -2.28e-17 1 -3.29e-18 -2.11e-15 -8.38e-19 2.14e-15 3.64e-18

2 -2.23e-15 -3.29e-18 1 -6.63e-19 -1.17e-16 -2.36e-18 2.94e-15

3 -2.46e-17 -2.11e-15 -6.63e-19 1 -7.26e-17 2.18e-15 -1.94e-17

4 5.82e-16 -8.38e-19 -1.17e-16 -7.26e-17 1 -0 4.77e-16

5 -4.17e-18 2.14e-15 -2.36e-18 2.18e-15 -0 1 8.93e-18

6 7.83e-16 3.64e-18 2.94e-15 -1.94e-17 4.77e-16 8.93e-18 1

We wish to also apply the quadrature after the application of Christoel-Darboux (33). There we

have, according to the calculations in appendix A.6

¨

T

N∑

n=0

ν∑

p=1

⟨φn,p|φn,p⟩ dx⃗ = ν

∏

1

π

1

2NN !

ˆ

R

[

(N + 1)H2
N (z)−NHN+1(z)HN−1(z)

]

e−z2 dz

= ν

∏

1

π

1

2NN !

r∑

k=1

λk

[

(N + 1)H2
N (zk)−NHN+1(zk)HN−1(zk)

]

▷
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3.5 Discretizing pace

Here, the function is of order 2N and thus r ≥ ⌈2N+1
2 ⌉ = N + 1. o we can choose r = N + 1, which

implies that zk are the zeroes of HN+1

¨

T

N∑

n=0

ν∑

p=1

⟨φn,p|φn,p⟩ dx⃗ = ν

∏

1

π

1

2NN !

N+1∑

k=1

λk

[

(N + 1)H2
N (zk)−N HN+1(zk)

  

=0

HN−1(zk)
]

= ν

∏

1

π

N + 1

2NN !

N+1∑

k=1

λkH
2
N (zk)

  

=N !
√
π2N

= ν(N + 1) ,

which is the expected result as in (35). Here we used, that we already veried the quadrature on

Hermite polynomials. Thus, the result of
N+1

k=1 λkH
2
N (zk) must be the normalization weight of the

Hermite polynomials.

The results of this chapter are no surprise, since the quadrature is a generally proven formula. But

the interesting part is, that the quadrature leads to the possibility to compute certain integrals nu-

merically without the intrinsical error of any integration algorithms. Also, the functions only have to

be known on specic, however, in general non-equidistant, grid points.

3.5. Discretizing Space

Before, we have already found the the operator to be (32) with the explicit matrix elements (36), (38)

and (39). The rst direction (which has been called x at the beginning) can be discretized equidis-

tantly, because it is given by Fourier-modes. This can be seen directly, since the operators (31) only

x-dependence is located in the zero modes (19), from which the other modes (22) are constructed

via ladder operators. We can choose Nx points in x-direction located at the center of a site of width

L◁Nx. We also wish to somehow introduce discrete coordinates in y-direction, such that we achieve

simplications via the quadrature. The appearing polynomials in the matrix elements push us to use

at least the quadrature of order N + 1.

Thus we introduce the discrete coordinates

x⃗skl =







ts

xk

yl







with

ts ∈


β

Nt


1

2
+ s



s∈[0,Nt]

, xk ∈


L

Nx


1

2
+ k



k∈[0,Nx]

, yl related to roots of HN+1 ▷
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3.5 Discretizing pace

o the rst matrix element (36) looks like this

N∑

n=0

ν∑

p=1

φn,p(x⃗kl)φ
†
n,p(x⃗k′l′) =

∏

1

πL2

B

2N+1N !

∑

a,b

1

yl − yl′ − bL



HN+1



yl +
aL

ν



HN



yl′ +
aL

ν
+ bL



−HN



yl +
aL

ν



HN+1



yl′ +
aL

ν
+ bL



· ei
2π
L
a(xk−xk′ )e−i 2π

L
νbxk′ e−

1
2


yl+

aL
ν

2

e−
1
2


yl′+

aL
ν
+bL
2

▷

and the discrete eigenfunction (22) is

φn,p(x⃗k′l′) =
1√
n!
(−1)n

1√
2
n

∑

k∈Z
Hn

√
Byl′ +

αp√
B

+ kBL



4

√

B

πL2
ei(αp+kBL)xk′ e−

B
2
(yl′+

αp

B
+kL)2 ▷

We need to check the following for the fully discretized version

∑

s,k,l

⟨x⃗s′k′l′ |i ◁D|x⃗skl⟩ψm(x⃗skl)∆skl = λmψm(x⃗s′k′l′) (44)

where ∆skl is supposed to substitute the dierentials. On an equidistant grid ∆skl is just the size of

a grid cuboid, but since the yl are not equidistant, ∆skl is dierent for every l. This means we want

to show that

∑

s,l,k

ψ†
n(x⃗slk)ψm(x⃗slk)∆skl = δnm ▷

For the continuum this has already been calculated in (56).

Because of the calculations in chapter 3.4 we already know that leaving the y-coordinate continuous

and discretizing it implicitly by the quadrature does conserve the orthonormality and function values.

They discretize analytically by the quadrature. Under the assumption, that the discretized φn,p are

orthonormal, we obviously nd

⟨φω,n,p|φω′,n′,p′⟩ =
1

2β

1


µ(µ− ω)

1


µ′(µ′ − ω′)

∑

s,k

β

Nt

L

Nx

ˆ L

0
ei(ω

′−ω)ts



(µ− ω)φ†
n,p

λχ†
n,p

(

·



(µ′ − ω′)φn′,p′

λ′χn′,p′

(

dy

= δωω′δnn′δpp′ ▷

o we have to check the normalization of the discretized φn,p. It is not clear, which grid points to use

explicitly. The following steps try to break down, how the implicit discretization via quadrature plays

out. We begin with the scalar product of of the modes φn,p as given by (22) where t and t′ are just

summation indices

⟨φn,p|φn′,p′⟩ =
(−1)n+n′

√
n!n′!2n+n′

∑

t,t′

ˆ L

0
Hn

√
B(y + tL) +

αp√
B



Hn′

√
B(y + t′L) +

αp′√
B



L

Nx

∑

k

φ†
0,pφ0,p′ dy ,
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3.5 Discretizing pace

where the explicit zero modes (19) lead to

⟨φn,p|φn′,p′⟩ = δpp′

√

B

π

(−1)n+n′

√
n!n′!2n+n′

∑

t

ˆ L

0
Hn

√
B(y + tL) +

αp√
B



Hn′

√
B(y + tL) +

αp√
B



(45)

e−B(y+
αp

B
+tL)2 dy

= δpp′

√

B

π

(−1)n+n′

√
n!n′!2n+n′

ˆ

R

Hn

√
By +

αp√
B



Hn′

√
By +

αp√
B



e−B(y+
αp

B
)2 dy

and a further substitution y′ ≡
√
By +

αp√
B

gives

⟨φn,p|φn′,p′⟩ = δpp′
1√
π

(−1)n+n′

√
n!n′!2n+n′

ˆ

R

Hn(y)Hn′(y)e−y2 dy

= δpp′
1√
π

(−1)n+n′

√
n!n′!2n+n′

N+1∑

l=1

λlHn(yl)Hn′(yl)

  

=

√
πn!n′!2n+n′

(−1)n+n′
δnn′

= δpp′δnn′ ▷

The evaluation of the sum has been achieved via application of quadrature. The remaining problem

here is, that we do not have a fully discrete version of neither the operator nor the eigenfunctions. If

we consider the calculation step (45), the implicit disretization seems to take on the form

⟨φn,p|φn′,p′⟩ = δpp′


B
π

(−1)n+n′

√
n!n′!2n+n′



t

´ L

0 Hn

√
B(y + tL) +

αp√
B



Hn′

√
B(y + tL) +

αp√
B



e−B(y+
αp

B
+tL)2 dy



t

´ L

0 f
√

B(y + tL) +
αp√
B



dy



yl

f(yl)√
B

∆yl =
λl

e
−y2

l

discretization

⟨φn,p|φn′,p′⟩ = δpp′


1
π

(−1)n+n′

√
n!n′!2n+n′



yl
Hn(yl)Hn′(yl)e

−y2
l ∆yl

which are just the application steps of combining the sum and the integral and applying the quadra-

ture afterwards.

The biggest complications of nding a discrete formulation are the periodic sums. The eigenfunctions

(22) include the sum over k and the matrix elements (36) etc. include the sums over a and b. Because

of those sums, it is not enough to just choose the zeroes of the Hermite polynomials as grid points,

since not only the roots, but also innitely many other periodic points contribute and thus no simpli-

cation can be achieved this way.

Another possible approach to nd suitable grid points might be connected to the zeroes of the eigen-

functions. In chapter 2.3 the zeroes of the zero modes have already been studied. Further study of

the zeroes of the elevated modes might reveal some insight on suitable grid points.
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Conclusion

Conclusion

We conclude this thesis with a short summary of the results. In chapter 2, we were able to analytically

solve the eigenvalue equation of the Dirac operator for fermions within a magnetic eld located in a

square. To achieve this, we rst computed the normalized ground state of the squared Dirac operator.

This squared operator allowed us to separate time and space dimensions. Then, we identied ladder

operators, which allowed to write down all of the normalized modes. From there, the determination of

the eigenfunctions of the Dirac operator, which are given by spinors, was possible. An extra eort has

been taken to determine the zeroes of the zero modes by identication of the Jacobi theta function.

We found, that the zeroes are determined by the instanton number ν and the introduced quantum

number p ≤ ν. They are all located at the same point in the non-periodic direction and evenly spread

along the periodic direction with a distance of L
ν . This result has also been checked by application of

the residue theorem.

Chapter 3 presented the discretization of the time and one periodic space dimension by application of

spectral methods. For this, an expansion via Fourier series and identication of the LAC-derivative

have been used to write down a spectral sum. This expression is quite unwieldy, since every ma-

trix element consists of four sums. By application of the Christoel-Darboux formula this number

was reduced to two. On a side note, some other expressions of the rst matrix element have been

computed. Then, the integrals coming up at the normalization computations have been transformed

to sums via the Gaussian quadrature and the resulting expressions numerically computed to verify

the applicabilty of a quadrature grid. Unfortunately, these considerations did not lead directly to

a suitable set of grid points, because the appearing Hermite polynomials do not just include the co-

ordinate as an argument but the coordinate shifted by a dierent amount for every element of the sums.

All in all, this thesis presented a few mathematical considerations which could be of interest for

future attempts to nd a suitable grid for the given Dirac operator. It has been tested, that the ap-

plication of the Gaussian quadrature implicitly preserves the normalization of the eigenmodes. till,

this procedure did not lead directly to a suitable discretization of the non-periodic space direction.

Anyway, future considerations might still benet from some of these calculations. It might be pos-

sible to apply a Gaussian quadrature grid to a dierent expression of the Dirac operator, for which

the considerations of chapter 3.3 might be of use. Especially a notation with Hermite polynomials

with only the coordinate as an argument might prove useful. Alternatively, a dierent way to nd a

suitable grid could be connected to the zeroes of the eigenmodes. Thus, the considerations of chapter

2.3, which presents a study of the zeroes of the zero modes, might be of interest. The logical next

step would be a study of the zeroes of the elevated modes. If successful, this new discretization might

prove to be a useful tool in lattice eld theory.
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Appendix

A. Appendix

A.1. Hermite polynomials

A very useful notion in mathematics is the one of orthogonality. When dening any sort of scalar

product, any set of mathematical objects can be constructed to be orthogonal to each other. An

example of a set of orthogonal polynomials is the one of the Hermite polynomials, which is well

known in physics. They appear in the eigenfunctions of the quantum harmonical oscillator. Hermite

polynomials are dened as those polynomials of degree n, which solve the turm-Liouville problem

H ′′
n − 2xH ′ + 2nHn = 0

⇐⇒ ∂x

e−x2

∂xHn(x)

+ 2ne−x2

Hn(x) = 0▷ (46)

Their explicit forms are

Hn(x) = (−1)nex
2
∂n
x e

−x2
= e

x2

2 (x− ∂x)
ne−

x2

2 = (2x− ∂x)
n · 1, (47)

they fulll recursion relations

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (48)

H ′
n(x) = 2nHn−1(x) (49)

and they are orthogonal in a weighted Hilbert space with the following scalar product
ˆ

R

Hn(x)Hm(x)e−x2
dx = 2nn!

√
π

  

≡cn

δnm▷ (50)

With this orthonormality relation (50) and the recursion relation (49) one can show for the scalar

product of their derivatives
ˆ

R

∂xHn(x)∂xHm(x)e−x2
dx = 4nm

ˆ

R

Hn−1(x)Hm−1(x)e
−x2

dx

= 4nmcn−1δnm

= 4n2 cn

2n
δnm

= 2ncnδnm▷

One can get rid of the weighting in the scalar product by dening a new set of functions containing

the weight. Thus, the Hermite functions are dened by the Hermite polynomials as

Ĥn(x) := e−
x2

2 Hn(x) (51)

such that they dene an orthogonal basis of L2(R)

ˆ

R

Ĥn(x)Ĥm(x) dx = cn δnm▷

o, since they dene an orthogonal basis, we conclude that we can expand every f(x) ∈ L2(R) as

f(x) =
∑

n

|Ĥn⟩
1

cn
⟨Ĥn|f⟩

  

≡f̂n

=
∑

n

Ĥnf̂n▷ (52)
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A.2 Quadrature

With the denition of the Hermite functions (51) the turm-Liouville problem (46) translates to

∂x
[

e−x2
∂xe

x2

2 Ĥn(x)
]

+ 2ne−x2
e

x2

2 Ĥn(x) = 0

⇐⇒ ∂x
[

xe−x2
e

x2

2 Ĥn(x) + e−x2
e

x2

2 ∂xĤn(x)
]

+ 2ne−
x2

2 Ĥn(x) = 0 | · e
x2

2

⇐⇒ e
x2

2 ∂x
[

xe−
x2

2 Ĥn(x) + e−
x2

2 ∂xĤn(x)
]

+ 2nĤn(x) = 0▷

The recursion relations (48) and (49) translate to

e
x2

2 Ĥn+1(x) = 2xe
x2

2 Ĥn(x)− 2ne
x2

2 Ĥn−1(x)

⇐⇒ Ĥn+1(x) = 2xĤn(x)− 2nĤn−1(x) (53)

and

∂xe
x2

2 Ĥn(x) = 2ne
x2

2 Ĥn−1(x)

⇐⇒ 


e
x2

2 ∂xĤn(x) +


e
x2

2 xĤn(x) = 2n


e
x2

2 Ĥn−1(x)

(53)⇐⇒ Ĥ ′
n(x) = nĤn−1(x)−

1

2
Ĥn+1(x)▷

Here are three more useful identities of the Hermite polynomials and Hermite functions

ˆ x

0
Hn(y) dy =

1

2(n+ 1)


Hn+1(x)−Hn+1(0)



ˆ x

0
e−y2Hn(y) dy = Hn−1(0)− e−x2

Hn+1(x)

ˆ

R

Ĥ ′
n(x)Ĥ

′
m(x) dx =







n2cn−1 +
1
4cn+1 , n = m

−n
2 cn−1 , m = n− 2

−n+2
2 cn+1 , m = n+ 2

▷

Also, because of (52), one can introduce N + 1-dimensional subspaces

HN = span{Ĥ0(x), Ĥ1(x), ▷▷▷, ĤN (x)} ⊂ L2(R)

on which orthogonal projections PN : L2(R) → HN are given by

(PNf)(x) =
N∑

n=0

f̂nĤn(x)▷

A.2. Quadrature

The biggest issue in numerical mathematics is the one of error. Any computation done by a machine

carries an error with it, which can become quite problematic when using algorithms containing a large

number of computations, especially multiplications. For orthogonal polynomials, such as the Hermite

polynomials presented in the former chapter, there is a powerful application called quadrature. The

technique allows for (weighted) integrals of polynomials to be exchanged by (weighted) nite sums,

which only have to be evaluated at the zeroes of certain orthogonal polynomials. This is useful, be-

cause the numerical evaluation of integrals requires a discretization anyway, which normally leads to

a discretization error depending on the chosen step width. But quadrature substitutes integrals by
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A.2 Quadrature

sums analytically, which avoids this error entirely. To understand the nature of this statement, we

now go on to derive and prove it.

Let x1 < x2 < ▷▷▷ < xn be the ordered zeroes of the polynomial pn(x)
n

k=1(x − xk). The Lagrange

interpolation polynomial

lk(x) =



j,j ̸=k(x− xj)


j,j ̸=k(xk − xj)

is the unique polynomial of degree < n such that lk(xj) = δkj for j = 1, 2, ▷▷▷, n. This way we can

expand any polynomial r of degree < n as

r(x) =
n∑

k=1

r(xk)lk(x)▷ (54)

Now we are ready to prove the following statements:

Gaussian quadrature

Let pn be an orthogonal polynomial of order n with respect to to weighting function µ and let

lk be the Lagrange interpolation polynomials associated with the zeros x1, ▷▷▷, xn of pn. Dene

λk :=

ˆ

R

lk(x) dµ(x)▷

Then for all polynomials f(x) of degree ≤ 2n− 1 we have

ˆ

R

f(x) dµ(x) =
n∑

k=1

λkf(xk) and λk =

ˆ

R

l2k(x) dµ(x) > 0 ▷ (55)

To prove the rst statement we assume f to be a polynomial of degree ≤ 2n − 1. By theory of

polynomial division we can nd polynomials q and r of degree≤ n−1 such that f(x) = q(x)pn(x)+r(x).

At the roots of pn we obviously have f(xk) = r(xk). Thus we have
ˆ

R

f(x) dµ(x) =

ˆ

R

q(x)pn(x) dµ(x) +

ˆ

R

r(x) dµ(x)▷

The rst integral just gives zero, since q is just a linear combination of pk with k ≤ n − 1 and those

are orthonormal with respect to µ. o with the use of (54) we nd
ˆ

R

f(x) dµ(x) =

ˆ

R

r(x) dµ(x)

=
n∑

k=1

r(xk)

ˆ

R

lk(x) dµ(x)

=
n∑

k=1

f(xk)λk▷

We can use this to prove the second relation
ˆ

R

l2k(x) dµ(x) =
n∑

j=1

l2k(xj)λj

=
n∑

j=1

δkjλj

= λk▷ □
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A.3 Normalization checks

Having a tool at hand to substitute integrals over the whole real axis by nite sums at specic points

can prove very useful whenever the functions of interest happen to be polynomials.

A.3. Normalization checks

The following is an explicit verication of the normalization of the alternative representation of the

eigenmodes (24) of the squared Dirac operator (8). We compute the scalar product ⟨φn,p|φm,q⟩, to
check the normalization

⟨φn,p|φm,q⟩ =
(−1)n√
2nn!

(−1)m√
2mm!

√

B

πL2

ˆ L

0

∑

k,k′

Ĥn(p, k)Ĥm(q, k′)

ˆ L

0
e2πi

q−p+(k′−k)ν


x
L dx

  

=Lδpqδkk′

dy

= δpq
(−1)m+n

√
2m+nn!m!

√

B

π

∑

k∈Z

ˆ L

0
Ĥn

√
Φ

 y

L
+

p+ kν

ν



Ĥm

√
Φ

 y

L
+

p+ kν

ν



dy

= δpq
(−1)m+n

√
2m+nn!m!

√

B

π

∑

k∈Z

ˆ L

0
Ĥn

√
B


y + kL+
p

ν



Ĥm

√
B


y + kL+
p

ν



dy

= δpq
(−1)m+n

√
2m+nn!m!

√

B

π

ˆ

R

Ĥn(
√
By)Ĥm(

√
By)dy

= δpq
(−1)m+n

√
2m+nn!m!

√

B

π

ˆ

R

Ĥn(z)Ĥm(z)
dz


√
B

= δpq
(−1)m+n

√
2m+nn!m!π


2nn!

√
πδnm

= δpqδnm (−1)2n
  

=1

▷

Now comes a check of the eigenmodes (22) of the original Dirac operator (7)

⟨φω,n,p|φω′,n′,p′⟩ =
1

2β

1


µn(µn − ω)

1


µn′(µn′ − ω′)

˚

V

ei(ω
′−ω)x0



(µn − ω)φ†
n,p

λnχ
†
n,p

(

·



(µn′ − ω′)φn′,p′

λn′χn′,p′

(

dV

=
1

2β

1


µn(µn − ω)

1


µn′(µn′ − ω)
δωω′β

ˆ L

0

ˆ L

0



(µn − ω)φ†
n,p

λnχ
†
n,p

(

·



(µn′ − ω)φn′,p′

λn′χn′,p′

(

dxdy

=
1

2

1

µn(µn − ω)
δωω′δnn′δpp′



µn − ω

λn

(

·



µ− ω

λn

(

=
1

2

µ2
n − 2µnω + ω2 + λ2

n

µn(µn − ω)
δωω′δnn′δpp′ (56)

=
µ2
n − µnω

µn(µn − ω)
δωω′δnn′δpp′

= δωω′δnn′δpp′ ▷

A.4. Jacobi theta function

The Jacobi theta function comes up when searching for a non constant entire complex function which

is invariant on a lattice generated by 1 and τ . When following the thoughts in [12], this leads to the

denition of the Jacobi theta function

ϑ(z, τ) :=
∑

k∈Z
eπik

2τ+2πikz
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A.5 Verication of the zeroes of the zero modes via residue theorem

for z ∈ C and τ ∈ {w ∈ C|Imw > 0}. Let us consider τ to be a constant, such that we can study

the periodic behavior in z. This function obviously has the period 1. With respect to τ it has the

quasi-periodic behaviour

ϑ(z + τ, τ) = e−πiτ−2πizϑ(z, τ) ▷

In the scope of this work, but also generally in mathematics, we are interested in the zeroes of this

function. Those are given by

zmn =



m+
1

2



+



n+
1

2



τ, m, n ∈ Z ▷ (57)

This can be checked by using the periodic behavior of the function

ϑ(zmn, τ) = ϑ

)

m+
1

2



+



n+
1

2



τ, τ



= e−nπiτ−2nπizϑ

)

1

2
+

1

2
τ, τ



= e−nπiτ−2nπiz
∑

k∈Z
eπik

2τ+πik(1+τ)

= e−nπiτ−2nπiz
∑

k∈Z
(−1)keπi(k

2+k)τ

= e−nπiτ−2nπiz

)

∑

k∈N0

(−1)keπi(k
2+k)τ +

−∞∑

k=−1

(−1)keπi(k
2+k)τ



= e−nπiτ−2nπiz

)

∑

k∈N0

(−1)keπi(k
2+k)τ +

∑

k∈N0

(−1)−(k+1)eπi

(k+1)2−k−1


τ



= e−nπiτ−2nπiz
∑

k∈N0



(−1)k + (−1)k+1


  

=0

eπi(k
2+k)τ

= 0 ▷

A.5. Verication of the zeroes of the zero modes via residue theorem

With the residue theorem one can nd the number of zeroes and poles of a function f on a simply

connected area V on the complex plane by evaluating the line integral along its boundary γ. More

explicitly, for a function with no poles ans no zeroes on the contour we have for the amount of zeroes

n enclosed by γ

n =
1

2πi

˛

γ

f ′(z)

f(z)
dz▷ (58)

ince the modes have no poles, the amount of zeroes can be found via this integral. But we have to

exclude the case p = ν
2 , since in that case the zeroes would be located along γ.

When considering the zero modes as given by (19), we realize that the factor outside of the sum never

vanishes. Thus, we only have to look for the zeroes of the sum. When also introducing the complex

coordinate z = −y + ix ≡ x′ + iy′, we want to determine the zeroes of

f(z) =
∑

k∈Z
e−k2 BL2

2
+k(BLz+αpL)▷
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A.5 Verication of the zeroes of the zero modes via residue theorem

To compute the derivative, we use the approach of the Cauchy-Riemann equations. The statement is,

that the derivative of the complex function

f(z) = u(x′, y′) + iv(x′, y′)

with respect to z is given by the derivatives ux := ∂xu

f ′(z) = ux′ + ivx′ = vy′ − iuy′ ▷

The appearing identities ux′ = vy′ and vx′ = −uy′ are known as the Cauchy-Riemann dierential

equations. If they are fullled, the function is complex dierentiable. o rst we need to determine

u(x′, y′) and v(x′, y′)

f(z) =
∑

k∈Z
e−k2 BL2

2
+k(BLz+αpL)

=
∑

k∈Z
e−k2 BL2

2
+k(BLx′+αpL)eikBLy′

= i
∑

k∈Z
e−k2 BL2

2
+k(BLx′+αpL) sin(kBLy′)

  

=v(x′,y′)

+

∑

k∈Z
e−k2 BL2

2
+k(BLx′+αpL) cos(kBLy′)

  

=u(x′,y′)

▷

The derivatives of u and v are then simply calculated to be

ux′(x′, y′) = BL
∑

k∈Z
ke−k2 BL2

2
+k(BLx′+αpL) cos(kBLy′)

vx′(x′, y′) = BL
∑

k∈Z
ke−k2 BL2

2
+k(BLx′+αpL) sin(kBLy′)

uy′(x
′, y′) = −BL

∑

k∈Z
ke−k2 BL2

2
+k(BLx′+αpL) sin(kBLy′)

vy′(x
′, y′) = BL

∑

k∈Z
ke−k2 BL2

2
+k(BLx′+αpL) cos(kBLy′)▷

Those obviously fulll the Cauchy-Riemann dierential equations. Thus, the derivative is given by

f ′(z) =
∑

k∈Z
kBLe−k2 BL2

2
+k(BLz+αpL)▷

The integration contour around the area of interest can be seen in gures 3 and 4.

ince both f and f ′ are periodic in y′ → y′ + L, the integral reduces to
˛

γ

f ′(z)

f(z)
dz =

ˆ L

0

f ′(0, y′)

f(0, y′)
idy′ +

ˆ 0

L

f ′(−L, y′)

f(−L, y′)
idy′▷

To solve the integral we separate imaginary and real parts
˛

γ

f ′(z)

f(z)
dz =

˛

γ

Ref ′ + iImf ′

Ref + iImf
dz

=

˛

γ

(Ref ′ + iImf ′)(Ref − iImf)

Re
2f + Im

2f
dz

=

˛

γ

Ref ′
Ref + Imf ′

Imf

Re
2f + Im

2f
dz + i

˛

γ

Imf ′
Ref −Ref ′

Imf

Re
2f + Im

2f
dz▷
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A.5 Verication of the zeroes of the zero modes via residue theorem

L

y′(x)

−L
x′(−y)

Fig. 3: Integral contour used to nd the amount of zeroes in the newly dened complex coordinates.

L

y

L
x

Fig. 4: Integral contour used to nd the amount of zeroes in the original coordinates.

For the real part we get

˛

γ



k,k′ kBLe−(k2+k′2)BL2

2
+(k+k′)(αpL+BLx′)

[

cos(kBLy′) cos(k′BLy′) + sin(kBLy′) sin(k′BLy′)
]



n,n′ e−(n2+n′2)BL2

2
+(n+n′)(αpL+BLx′)

[

cos(nBLy′) cos(n′BLy′) + sin(nBLy′) sin(n′BLy′)
]

dz

=

˛

γ



k,k′ kBLe−(k2+k′2)BL2

2
+(k+k′)(αpL+BLx′) cos

[

(k − k′)BLy′
]



n,n′ e−(n2+n′2)BL2

2
+(n+n′)(αpL+BLx′) cos

[

(n− n′)BLy′
]

dz

=

˛

γ



k,k′
2πνk
L

e−(k2+k′2)πν+2π(k+k′)

p+ν x′

L



cos
[

2πν(k − k′)y
′

L

]



n,n′ e
−(n2+n′2)πν+2π(n+n′)


p+ν x′

L



cos
[

2πν(n− n′)y
′

L

]

dz▷

Numerical calculation leads to the following result with an accuracy of 13 digits

˛

γ

Ref ′
Ref + Imf ′

Imf

Re
2f + Im

2f
dz = i2πν, p ̸= ν

2
▷
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A.6 Verication of the rst matrix element after application of Christoel-Darboux

For the imaginary part we get

˛

γ



k,k′ kBLe−(k2+k′2)BL2

2
+(k+k′)(αpL+BLx′)

[

sin(kBLy′) cos(k′BLy′)− cos(kBLy′) sin(k′BLy′)
]



n,n′ e−(n2+n′2)BL2

2
+(n+n′)(αpL+BLx′) cos

[

(n− n′)BLy′
]

dz

=

˛

γ



k,k′ kBLe−(k2+k′2)BL2

2
+(k+k′)(αpL+BLx′) sin

[

(k − k′)BLy′
]



n,n′ e−(n2+n′2)BL2

2
+(n+n′)(αpL+BLx′) cos

[

(n− n′)BLy′
]

dz

=

˛

γ



k,k′
2πνk
L

e−(k2+k′2)πν+2π(k+k′)

p+ν x′

L



sin
[

2πν(k − k′)y
′

L

]



n,n′ e
−(n2+n′2)πν+2π(n+n′)


p+ν x′

L



cos
[

2πν(n− n′)y
′

L

]

dz▷

Again, numerical calculation leads to the result that this integral vanishes up to an accuracy of 25

digits. Thus, the complete result for the integral is

˛

γ

f ′(z)

f(z)
dz = i2πν, p ̸= ν

2
▷

When comparing with the residue theorem (58) we nd the expected result

n =
1

2πi

˛

γ

f ′(z)

f(z)
dz = ν▷

A.6. Verication of the rst matrix element after application of Christoel-Darboux

Here we wish to check the result (34). For this we consider the special case x⃗ = y⃗

N∑

n=0

ν∑

p=1

φn,p(x⃗)φ
†
n,p(x⃗) =

∏

1

πL2

∑

a,b

1

2N+1N !

1

−bL

{

HN+1

√
B


x2 +
aL

ν



HN

√
B


x2 +
aL

ν
+ bL



−HN

√
B


x2 +
aL

ν



HN+1

√
B


x2 +
aL

ν
+ bL


}

· e−i 2π
L
νbx1e−

B
2


x2+

aL
ν

2

e−
B
2


x2+

aL
ν
+bL
2
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A.6 Verication of the rst matrix element after application of Christoel-Darboux

where only terms with b = 0 contribute to the integral over x1

ˆ L

0

N∑

n=0

ν∑

p=1

φn,p(x⃗)φ
†
n,p(x⃗) dx1 = lim

b→0

ˆ L

0

∏

1

πL2

∑

a

1

2N+1N !

1

bL

·

{

HN

√
B


x2 +
aL

ν



HN+1

√
B


x2 +
aL

ν
+ bL



−HN+1

√
B


x2 +
aL

ν



HN

√
B


x2 +
aL

ν
+ bL


}

· e−i 2π
L
νbx1e−

B
2


x2+

aL
ν

2

e−
B
2


x2+

aL
ν
+bL
2

dx1

=

√

B

πL2

∑

a

1

2N+1N !

·

{

HN

√
B


x2 +
aL

ν



H ′
N+1

√
B


x2 +
aL

ν



−HN+1

√
B


x2 +
aL

ν



H ′
N

√
B


x2 +
aL

ν


}

· e−B

x2+

aL
ν

2





ˆ L

0
dx1▷

When also integrating over x2 we can use the identity

∑

a

ˆ L

0
f



x+
aL

ν



dx = ν

ˆ

R

f(x) dx

to get

ˆ

L2

N∑

n=0

ν∑

p=1

φn,p(x⃗)φ
†
n,p(x⃗) dx⃗ =

ˆ L

0

√

B

π

∑

a

1

2N+1N !

·

{

HN

√
B


x2 +
aL

ν



H ′
N+1

√
B


x2 +
aL

ν



−HN+1

√
B


x2 +
aL

ν



H ′
N

√
B


x2 +
aL

ν


}

· e−B

x2+

aL
ν

2

dx2

= ν

√

B

π

1

2N+1N !

ˆ

R

[

HN (
√
Bx2)H

′
N+1(

√
Bx2)

−HN+1(
√
Bx2)H

′
N (

√
Bx2)

]

e−Bx2
2 dx2

= ν

√

B

π

1

2NN !

ˆ

R

[

(N + 1)H2
N (

√
Bx2)

−NHN+1(
√
Bx2)HN−1(

√
Bx2)

]

e−Bx2
2 dx2

= ν

∏

1

π

1

2NN !

ˆ

R

[

(N + 1)H2
N (z)−NHN+1(z)HN−1(z)

]

e−z2 dz

= ν(N + 1)
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