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‘... the forces might become large enough to confine the quarks. That is the foremost
problem of QCD.’ [1]

‘The outstanding problem in QCD is to explain long distance phenomena, in particular
why we do not see quarks and gluons as physical objects - the so called problem of

”quark confinement”’. [2]

‘It is unlikely that one will ever prove from first principles that permanent

confinement takes place...” [3]

‘Quark confinement is not yet completely solved.” [4]

‘The most essential property of QCD is confinement.’ [5]

‘Die spektakularste Aussage der QCD ist zweifellos das Verbot freier, nicht in
Hadronen gebundener Quarks.” [6]

‘A long standing and yet unsolved problem is to explain color confinement in QCD.’
[7]

‘Over the last two decades various attempts have been aiming at a qualitative
understanding and modelling of two basic properties of QCD: quark confinement and

chiral symmetry breaking.” [8]

‘Therefore, understanding confinement, in my opinion, is one of the most exciting

challenges of modern physics.” [9]

‘Confinement is something of a mystery. It is certainly the most striking qualitative
phenomenon in QCD. Still we do not even have a satisfactory definition of what

exactly is meant by this word.” [10]



1. Introduction

1.1. The Gauge Theory of Strong Interactions

At present-day energies the Standard Model is the fundamental theory of elementary
particles and their interactions (for a recent review see [11]). Its matter content consists
of fermionic fields carrying a representation of the gauge group U(1) x SU(2) x SU(3).
The interactions are provided by gauge fields, i.e. vector fields in the Lie algebra of
this gauge symmetry!. The part containing the strong interactions is named Quantum
Chromodynamics (QCD); the Lagrangian density reads,

Ny .

L=> ¢*(iy"D, — mF)pk — St P, (1.1)

k=1
where {wk}kzl,m,Nf stands for the fields of quark flavours (N;=6: up, down, strange,
charm, bottom, top), m* for their masses, 4, = 22:1 AST, for the gluon fields, D, =
0, —iA, and F,, = 0,A, — 0,A, — i[A,, A)] for the covariant derivative and the field
strength, respectively. {7,}s=1..s are the Gell-Mann matrices, i.e. the generators of
(the fundamental representation of) the Lie algebra su(3) and {+*},—o,..s are the Dirac
matrices in Minkowski space. Furthermore, the coupling constant ¢ is set to unity, so
are h and c; we suppress spinor indices and use the Einstein summation convention.

This Lagrangian is invariant under local gauge transformations with g(z) € SU(3),
=g, b =g’ Ay gAugt+igdug’, (D — gDugt P = gFgh), (1.2)

which may be thought of as rotations in a colour space spanned by ‘red’, ‘green’ and
‘blue’. Due to the character of the matrix group SU(3), such a gauge theory is called
non-Abelian. Its quantum version exhibits very interesting features already at the per-
turbative level: the gauge fields interact among themselves via 3- and 4-vertices, they
carry colour themselves. As a consequence the perturbative S-function shows? that the
running coupling constant is small at high energies/short distances and large at low

energies/long distances, respectively.

L Although the gravitational interaction can be described as a gauge theory as well, a quantum version

of it is not well-defined yet; in our considerations gravitational effects are negligible.
2if there are not too many flavours as is realised in nature



The first fact, the so-called asymptotic freedom in the ultraviolet region, is the basis
for many confirmations of QCD in deep inelastic scattering: probing strongly interacting
particles at high energies one finds the quark constituents (‘partons’) to be essentially
free. The second fact signals the occurence of non-perturbative effects in the infrared
region of the theory. Indeed, the fundamental quarks in the Lagrangian do not appear
as asymptotically free states in nature. Instead they are bound together to mesons,
Yn)-states, and baryons, 1pi)-states. These hadrons® are all singlets under the colour
group SU(3). In other words, free coloured states have never been observed. This effect
is called colour confinement. It is generally believed to be a consequence of the non-
Abelian nature of the gauge group, i.e. it should occur for all SU(N), N > 2. However,
its derivation from the Lagrangian (1.1) remains an open problem of the Standard Model.

One expects a similar effect to happen in the pure glue sector of QCD: at low energies
glueballs, bound states of gluons, should appear. These objects have not been observed
in experiments yet. Nevertheless, QCD sum rules and lattice simulations predict their
masses to be around 1.5 GeV (see [12] for a review). Such a mass gap would force any
correlation function in this theory to decay exponentially thus explaining the absence of
long-ranged fields in QCD. Being one of the ‘Millenium Prize Problems’ [13] it is also
interesting from a purely mathematical point of view.

In the chiral limit where the quark masses are neglected, QCD shows another non-
perturbative property, the chiral symmetry breaking. Left handed and right handed
quarks decouple in the Lagrangian (1.1) when m = 0. This amounts to two commuting
flavour symmetry groups which can be rewritten as a product of a vector and an axial
symmetry*. The latter would predict all hadrons to come in pairs of opposite parity,
which is not the case. Chiral symmetry is broken by the chiral condensate (yn)) which
couples left handed to right handed quarks like a mass term. The would-be Goldstone
bosons for SU(N; = 2) are the pions.

Presumably, QCD undergoes a phase transition at sufficiently high temperatures
and/or densities: hadrons start to overlap and quarks and gluons are free to travel. Be-
yond this deconfinement phase transition a new state of matter occurs, the quark gluon
plasma. Tt is assumed to be realised in the early universe and in neutron stars. Lattice

simulations [14] predict the critical temperature® to be 170 MeV, but the observation of

3To be precise: hadrons have the same quantum numbers as if they consist of the given valence quarks;
in fact, they also contain sea quarks and gluons induced by quantum fluctuations.

4In fact, the vector symmetry is a subgroup of the flavour symmetry group, while the axial symmetry
is only a coset.

5for two flavours in the chiral limit



the quark gluon plasma in heavy ion collisions has not been achieved yet.

All these non-perturbative phenomena — as well as others we have not mentioned like
the U4 (1) problem — should follow from QCD as the fundamental theory or a proper
effective theory thereof. In many cases the effects are mainly due to the pure glue part
and it is easier to look at their remnants in pure Yang-Mills (YM) theories which are
defined by neglecting the quark term in the Lagrangian (1.1). This is tantamount to
treating the quarks as very heavy non-dynamical objects. Therefore, this approximation
is also called quenched (QCD. We will mainly adopt this point of view in due course.

To make progress in a better understanding of colour confinement is the main motiva-
tion of this work. Therefore, this phenomenon is described in detail in the next section,
followed by a discussion of lattice gauge theory and two effective theories modelling

confinement and glueball formation.

1.2. Confinement

The intuitive picture of confinement is the following (Figure 1.1): In order to separate
a quark ¢ and an anti-quark ¢ (or three quarks) one has to bring more and more energy
into the system. This energy is used to create a new quark anti-quark pair ¢’q’ from the
vacuum and one ends up with two hadrons instead of free quarks. In a field theoretic
description this means that the lines of the gluon field are concentrated in narrow tubes
between the quarks. The latter are the sources of the chromoelectric field. In contrast to
that, the lines of the electric field between two electric sources are spread, leading to the
well-known Coulomb potential which does not confine®. The pair production described
above is also called string breaking, because it breaks the flux tube into two pieces.
One can describe this phenomenon in pure YM theory by introducing a heavy quark

potential V,z(R) (Figure 1.1). For large separations R it rises linearly with R [16],
Vi(R) > oR  for large R. (1.3)

The quarks experience a constant force, as is very intuitive, since the densitiy of field
lines is independent of R. We will refer to such a potential as confinement; the quarks
are confined because an arbitrarily large amount of energy is needed to separate them.

The factor o is called string tension. It can be estimated from the spectrum of char-
monium J/¥ (see e.g. [17]) since the charm quarks forming these hadrons are rather

heavy. In the modern literature, the value of the string tension is 0 ~ 1 GeV /fm.

60One can show that in electrodynamics a tube-like configuration between electric sources is unstable

and evolves in time to the Coulombic configuration [15].






