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Abstract
This thesis discusses the thermodynamics of Gross-Neveumodels in 1C1 spacetime dimensions for one irreducible
flavor on a lattice. It is shown that a dual formulation of the partition function can be evaluated analytically to
describe strongly and weakly coupled fermions in accordance with the expectations and simulation data. For
this reason some evidences of duality between the investigated expansions that describe the extreme physics are
observed. A local effective potential and especially its ability of describing symmetry breaking are discussed.
Moreover a descriptive loop formulation is introduced to evaluate the sign of contributions to the partition function
which is important in context of the sign problem.
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1 INTRODUCTION

1 Introduction
In 1958, Thirring published in [1] the first theory which was capable of describing interacting fermions in the
framework of quantum field theory. That was the beginning of the development of four-fermion theories based on
a direct point interaction and no exchange of bosons. They have surprising similarities to many fields of modern
research and their importance becomes clear by the award of the Nobel Prize in 2004 to Gross for the development
of a four-fermion theory, essential for this work.

Over the last 20 years the number of applications of four-fermion theories is growing continuously, especially
in condensed matter physics [16]. They can e.g. be used to explain the exotic electronic properties of graphene at
the so called Dirac point, for which a linear dispersion relation was found in [9] revealing the relativistic behavior
of electrons in this material. These theories could one day make a major contribution to the understanding of
high-temperature superconductors like introduced in [14]. However, this work uses the simplest four-fermion
theory, the Gross-Neveu model in a one spatial and one temporal dimensional lattice. This model was introduced
in [6], has a discrete chiral symmetry and offers similarities to quantum-chromodynamics. The simplicity, besides
the highly interesting physics described by this model, makes this theory still today, even in 1 C 1 dimensions
an exciting field of work in theoretical physics. Consult e.g. [23, 22] for an insight into current research. The
discrete chiral symmetry can be broken explicitly by an external mass or spontaneously by formation of a non-zero
chiral condensate, which motivates the investigation of the critical behavior of Gross-Neveu models by a detailed
analysis of the order parameter . 1

Unlike many elaborations in lattice field theory, this work uses the Slac-derivative as a fermionic formulation
on the lattice. The latter is based on a discrete momentum multiplication operator in momentum space and
implements completely the important chiral symmetry in the continuum limit without cumbersome fine tuning,
but suffers from non-local interactions. Under the given conditions Monte Carlo simulations are often the method
of choice, since even the simplest theories are almost always analytically unconquerable. A very useful tool not
only for such simulations is a dual formulation of the thermodynamics of four-fermion theories, which was first
introduced in [10] to describe staggered fermions in the Thirring model and applied to Slac fermions in [18].
With this formulation using a binary field variable, the physics of such models can be approached analytically,
especially for the case of very strong or very weak coupling of fermions. Since to the best of our knowledge no
work is known about an exact extreme coupling investigation of Gross-Neveu models using a conventional dual
formulation - even if the Thirring model has been examined of the kind as described in [18] - this topic shall be the
focus of this thesis. Despite of the direct advantages, this approach can be potentially used for further calculations
and simulations as a basis and should reveal the field of application of the extreme coupling cases to describe
realistic physics.

This thesis is structured as follows. In sec. 2 the partition function and lattice field techniques are introduced.
In sec. 3 the foundations of the investigated 1 C 1 dimensional, irreducible Gross-Neveu model for one flavor
are discussed. Starting from sec. 4 there are different formulations for the partition function in the framework of
the present model, which are derived and described in detail. In sec. 5 and 6 an approach for a better analytical
understanding of the extreme coupling regime using the discussed formulations is presented and the resulting
consequences are outlined. Several cumbersome calculations are performed in app. A.

1This is the expected behavior in arbitrary dimensions. However, in 1C 1 dimensions there are major restrictions, which will be discussed
later.
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2 FOUNDATIONS

2 Foundations
After introducing the partition function as the central object of this thesis and its path integral representation, the
case of free fermions on the lattice is discussed and further lattice field theory techniques are presented. This work
is formulated in natural units with c D „ D kB � 1 and the sum-convention of Einstein is used.

2.1 The Partition Function in Quantum Field Theory
In quantum statistics a central object of interests is the canonical partition function Z . It indicates the number
of available microstates of a system with allowed energy transportation, but forbidden particle exchange with its
environment. For the inverse temperature ˇ and the Hamiltonian OH of the system, Z is given by

Z D tr
h
e�ˇ OH

i
: (2.1)

The partition function offers access to all thermodynamical observables of the system, since a probability amplitude
can be easily defined with the help of Z . This well-known object can be displayed as a path integral. A starting
point for this step can be the path integral representation of the probability amplitudeK .t; q; q0/ for the propagation
of a system from a point q to q0 in time t , which can be found in [15, p. 15] as:

K
�
t; q; q0

� D ˝
q0
ˇ̌
e�it OH

ˇ̌
q
˛ D C

q.t/Dq0Z

q.0/Dq
DqeiSŒq�: (2.2)

The measure Dq is given in the continuum by the formal product of Lebesque-measures of all path coordinates,
which are included in the discrete path according to the time. After applying a Wick-rotation the time becomes
imaginary t 7! � � �i t , which goes hand in hand with the transformation from the Minkowski-spacetime to an
Euclidean spacetime:

��� 7! ı�� : (2.3)

The partition function can be expressed via the Euclidean action SE as it will follow by just looking at ˇ periodic
temporal paths. The partition function has indeed a path integral representation

Z D
Z

dqK .ˇ; q; q/ D C
I

q.0/Dq.ˇ/
Dqe�SEŒq�: (2.4)

Heuristically the result for the partition function in quantum field theory shall be obtained if the � -dependent paths
are replaced by spacetime dependent fields ˆ, where it holds modulo a constant:

Z D
I

Dˆe�SEŒˆ�: (2.5)

The expectation value of an observable P can be evaluated directly as:

hPi D 1

Z

I
DˆP .ˆ/ e�SEŒˆ�: (2.6)
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2 FOUNDATIONS

2.2 Free Fermion Fields on the Lattice
Further expressions are formulated in d space dimensions and therefore in aD � d C1 Euclidean spacetime. Free
fermions of mass m can be described with the Lagrangian density

Lk.x/ D  .x/ OD .x/ �  .x/
�
=@Cm� .x/ with =@ D 
� ˝ @�; (2.7)

whereas the spinors  .x/ and  .x/ can be regarded as spacetime dependent, Grassmann valued vectors that
transform naturally under representations of the symmetry group, which is the D spin-group (the double cover
of the Lorentz group). The Dirac equation states that these spinors form the elements of the kernel of the
Dirac operator OD, which arises from the 
 -matrices and the differential operator @� in dimension �. The entries
of these vectors have to satisfy the Fermi-Dirac statistics and for this reason they have to anti-commutate with
each other. These objects form a Grassmann algebra, which is more extensively discussed in [8, 15]. It is
possible to define differentiation and integration of Grassmann valued functions. Differentiation and integration
are the same mappings, because only linear terms in the generators of such an algebra are non-vanishing and
thanks to translation-invariance. According to [15]  should be seen as  � in the Euclidean regime in order to
ensure the Lorentz-invariance of the term

R
dxD .x/ .x/. The 
 -matrices 
� for � 2 f0; 1; : : : ; dg obey the

anti-commutation relation:

f
�; 
�g D 2ı��1; (2.8)

that forms the structure of a Clifford-algebra (consult [8, A 5.1] for further information). In even spacetime
dimensions there exists another 
 -matrix 
�, which anti-commutes with all other 
� and can be defined as:


� � iD=2
dY
�D0


�: (2.9)

The partition function in the fermionic case now reads

Z D
Z

D D exp
�
�
Z

dxDLk.x/

�
with D D �

Y
x;˛

d ˛.x/d ˛.x/; (2.10)

where the measures include all spacetime and flavor components of the involved spinors. On a finite, cubic D
dimensional spacetime latticeƒwith lattice spacing a the action is just a sum over the spinors evaluated at different
lattice sites and flavor numbers, which is denoted in the notation

SE �  OD D
X
j;l

 j
ODjl l : (2.11)

In that case the measures D D become a finite product of the fermionic field Lebesque measures on the
lattice sites. Additionally, functional derivatives transform to conventional derivatives, as well as integrals over the
spacetime coordinates are simply finite sums. Lots of the path integrals in fermionic lattice field theory lead to
Gaussian integrals. Two important main results are mentioned at this point and a proof can be found in [8]. For the
partition function with Grassmann-valued sources � and � it holds

Z N�;� �
Z

D D exp
�
 OD C � � � 

�
D exp

�
�� OD�1�

�
det OD: (2.12)

It is important, that for Majorana-fermions and an anti symmetric matrix OA follows

Z2� D
2
4
Z

d�2n � � � � � d�1 exp
0
@1=2

2nX
j;lD1

�j OAjl�l

1
A
3
5
2

D pf 2
�
OA
�
D det

�
OA
�
: (2.13)
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2 FOUNDATIONS

The massless Dirac theory shows a large amount of symmetries, which can be recalled similarly to [17] and
[19]. The Lagrangian (2.7) for m D 0 fulfills, except for the symmetries discussed further below:

� Poincaré symmetry represented by symmetry group RD o SO" .D/

� Parity symmetry represented by symmetry group Z2

� Time reversal represented by symmetry group Z2

� Charge conjugation represented by symmetry group Z2

� Flavor symmetry represented by symmetry group U .Nf/.

Another important class of symmetries are formed by the concept of chirality. In even dimensions the free theory
is continuously chiral symmetric, which means invariance under the transformations

 7! �
ei˛
�

�
 and  7!  

�
ei˛
�

�
; (2.14)

for any real angle ˛. The associated symmetry group isU .Nf/. There exists also aZ2 subclass of these symmetries,
which is called discrete chiral symmetry:

 7! 
� and  7! � 
�; (2.15)

that is a special case of (2.14) for ˛ 2 �=2 C 2�Z after an application of Euler’s formula and a shift of all
imaginary units to  .

2.3 Slac-Fermions on the Lattice
It is necessary to define a discrete differential operator on the lattice ƒ. Applying a simple forward or backward
derivative suffers in spite of its simplicity from big symmetry problems, e.g. the 
5-Invariance of OD is broken. The
next suggestion for an appropriate lattice differentiation might be a discrete, central and anti-symmetric scheme,
connecting each next-to-nearest fermions. But this attempt suffers from a fermion doubling problem because the
associated Dirac-operator for these naive fermions describes 2D fermions in the continuum limit a ! 0. In
general, it is not possible to construct an "ideal" lattice fermion formulation, where "ideal" is determined by the
famous Nielsen-Ninomiya theorem. Its formulation from [15] states that for each Dirac-operator characterizing
fermions on the lattice either

� a local derivative operation or

� the presence of the correct continuum limit or

� the claim of no doubling problems or finally

� the chirality

is violated.
In [7] the so called Slac-derivative was proposed, as the consequence of the multiplication behavior of

derivatives in momentum space. The differential operator in position space results after performing an inverse,
discrete Fourier-transform

@� � F�1d
�
i Op�

�
: (2.16)

Since the smallest resolution in position space is the lattice spacing a, the momenta on the lattice have to show an
ultra violet cutoff at˙�=a. For the sake of simplicity set a � 1 from now on, such that the volume is given by the
product

V D
Y
�

N� (2.17)

over the number of lattice points in each direction. The spectrum of the discrete momentum multiplication operator
is chosen to be symmetric to momentum 0 in each spacetime direction, which is displayed in fig. 2.1.
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Figure 2.1: Dispersion relation of the SLAC-derivative and momentum spectrum for odd number of lattice points
in � spacetime direction N�. The lattice momenta form the set ƒp .

However, despite of the representation in momentum space it is important to know how this differential operator
acts in position space. This can be obtained forD D 1 by the use of an appropriate generating function and (anti-)
periodic boundary conditions for an (even) odd number of lattice sites N , which reads like:

@.x; y/ D

8̂
<
:̂
0 ; x D y

.�1/x�y�
N sin

� �
N
.x � y/

� ; x ¤ y 8x; y 2 f1; 2; : : : ; N g: (2.18)

In [13] it was shown that the discussed derivative operator for one spacetime dimension can be generalized
to higher dimensions using ascending and descending operators. In two dimensions, the representation of the
SLAC-derivative in position space can be formulated abstractly as

@�.x; y/ D

8̂
<̂
ˆ̂:

0 ; x� D y� _ x� ¤ y�
�

N�
� .�1/x��y�

sin
�
�

N�

�
x� � y�

�� ; x� ¤ y� ^ x� D y� ; (2.19)

where the spacetime index � represents the other component of the spacetime after the choice of �. But it is
more clear to choose an explicit numeration of the lattice sites, e.g. presented in fig. 2.2. Thus, the temporal
Slac-derivative is still a copy of N1-times the one dimensional version on the diagonal of the already in (2.18)
defined matrix @.x; y/ for N D N0. The spatial Slac-derivative in position space is then an anti-symmetric, real
Toeplitz matrix of dimension N0 �N1, which is completely determined by its first row vector EvT defined like

�Ev�
x
D ıxmodN0;1@.xmodN0; 1/ for x D 1; 2; : : : ; N0 �N1; (2.20)

for the differential operator that was described in (2.18) with N D N1. This has indeed a simple physical meaning
because this derivative implements a cross interaction on the lattice like shown in fig. 2.2. Like in one dimension the
chosen number of lattice sites per spacetime direction has a direct influence on the boundary conditions. Usually
in two dimensions it is helpful to use anti-periodic (periodic) boundary conditions for the time (spatial) direction,
which corresponds to an even (odd) lattice side dimension.
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1 2 : : :
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2T: : :
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Figure 2.2: Chosen lattice numeration in D D 2 dimensions with T � N0; L � N1 . The green marked
sites form the set of nonvanishing interaction possibilities with lattice site y called ƒx and it holds
8x 2 ƒ nƒx W @.x; y/ D 0.

All in all the Slac-derivative violates locality, since the interaction has a long range but such fermions fulfill all
other requested properties in the context of the Nielsen-Ninomiya-theorem. Especially Slac-fermions are chiral
to investigate possible breaking of chiral symmetry.
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3 THE GROSS-NEVEU MODEL

3 The Gross-Neveu Model
In [6], Gross and Neveu investigated quartic terms concerning Lagrangians of interacting fermionic fields and
discovered dynamical symmetry breaking because of a dynamically generated fermionic mass. The simplest four-
fermion-theory, which was introduced in their paper, represents the framework of this work and shall be described
briefly in this section. The most relevant results for this thesis concerning phase transitions in the framework of
Gross-Neveu models in 1C 1 dimensions are described in sec. 3.4.

3.1 General Features
There exist several representations of the mentioned Clifford algebra in 1 C 1 dimensions but this thesis is
formulated in the irreducible representation that comes along with 2-component spinors for each flavor index that
runs from 1 to Nf. In a 1C 1 dimensional Euclidean spacetime the Lagrangian of the irreducible Gross-Neveu
model for fermions with Nf D 1 flavor reads

L
�Ex� D  �Ex� �=@ �mD

�
 
�Ex� � g2

2

�
 
�Ex� �Ex��2 for all Ex 2 ƒ; (3.1)

whereas the last term is to be understood as a scalar product of the spinors N and  evaluated at lattice site Ex.
Apart from the usual kinetic term appears an external massmD and the quartic interaction with a coupling constant
g. Strong interactions go hand in hand with high values of g, whereas the free, massive theory is recovered in the
case g D 0.

This Gross-Neveu model is asymptotically free, which means that the coupling strength decreases with rising
energies and this property is an important similarity to confinement in quantum-chromodynamics. Furthermore the
discussedmodel is renormalizable in 1C1 dimensions. Fortunately the massless Gross-Neveumodel is equivalent
to the in [1] treated Thirring model in 2 dimensions for one flavor because in this framework the coupling term in
(3.1) is the only suitable candidate. Latter four-fermion theory considers an interacting term of the form�

 
�Ex� 
� �Ex�� � � �Ex� 
� �Ex�� (3.2)

and can be solved analytically as a conformal field theory. The Gross-Neveu model becomes also analytically
manageable in a large Nf expansion but its discussion would exceed the frame of this thesis.

3.2 Symmetries and their Breaking
The theory under consideration does not have the full symmetry of the free theory which was discussed in sec. 2.2.
For the massless Gross-Neveu model, the continuous chiral symmetry is broken into a discrete chiral symmetry
in 1C 1 dimensions, though the other properties remain valid. The mass term breaks the characteristic, discrete
chirality explicitly and should be set to zero to respect this feature of the theory.

At the level of the ground state of the theory a symmetry of the action can disappear in the context of spontaneous
symmetry breaking. This process goes hand in hand with the development of a non-zero chiral condensate

h  i � 1

V

X
Ex2ƒ
h �Ex� �Ex�i ¤ 0 (3.3)

and marks a phase transition from a symmetry preserving phase to a broken symmetry phase. Because these
condensates act like mass terms regarding the action, this can be viewed as a dynamical fermionic mass generation.
In the presented model, this phenomenon is affected by different coupling constants and temperatures. Furthermore
it is possible to get condensates of order n 2 N as a derivative of the partition function (2.10)

h�  �ni D 1

VZ
@nZ
@mnD

: (3.4)

Another useful tool for detecting phase transitions is the susceptibility

� D h�  �2i � �h  i�2 ; (3.5)

which shows a (finite) peak at critical values of the parameters. It should be noted that other comparable four-
fermion theories like the Thirring model or the Nambu-Jona-Lasinio model show a (full) continuous chirality.
But since the theorem of Mermin and Wagner [3] holds also for quantum field theories [5], it yields that a
continuous symmetry can not be broken spontaneously in one or two spacetime dimensions at T > 0 because of
divergence problems with the inevitably occurring Goldstone bosons.
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3 THE GROSS-NEVEU MODEL

3.3 Bosonization by Hubbard-Stratonovich Transformation
The quartic term in in the spinor-fields in (3.1) represents the self-interaction of the fermions. But this would
increase the difficulty of further calculations enormously. It is convenient to rewrite it based on [2], using polar
coordinates to evaluate the important Gaussian integral

1Z

�1
dx exp

���x2� D
r
�

�
for � 2 RC: (3.6)

Based on this, the function f W R! R; y 7! f .y/ � exp
�
y2
�
can be transformed into

f .y/ D
r
�

�

Z
dx exp

���x2 C y2� with x 7! x C yp
�

(3.7)

D
r
�

�

Z
dx exp

h
��x2 � 2

p
�xy

i
; (3.8)

where the translational invariance of the measure was used, as well as the shift was chosen to cancel all quadratic
terms in y. This general expression can now be evaluated for the spinor fields at a fixed lattice site Ex0 2 ƒ and the
coupling strength of the model under consideration. The substitutions

y � gp
2

�
 
�Ex0� �Ex0�� ; (3.9)

x � � �Ex0� ; (3.10)

� � 1

2g2
; (3.11)

lead back to the current problem. The recently introduced scalar field � W ƒ! R can be expressed as just derived
at each lattice site Ex0 and a multiplication of it over the entire lattice results in

exp
�
g2

2

�
  

�2� D
�
�

�

�V=2 Z
D� exp

����2 � � �  �� : (3.12)

Apart from the mathematics, the demonstrated calculation has a simple physical meaning: Instead of looking at
interacting fermions, it is also possible to regard non-interacting particles on the lattice that move in the scalar field
� . Therefore a bilinear action in the fermionic fields is recovered, which is necessary to apply e.g. (2.12). In the
end, the partition function of the Gross-Neveu model can be expressed as

Z D
�
�

�

�V=2 Z
D�D D exp

�� �=@ �mD C �
�
 � ��2� (3.13)

QZ �
��
�

�V=2
Z D

Z
D� det

�
=@ �mD C �

�
exp

����2� ; (3.14)

where the fermionic fields are integrated out.
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3 THE GROSS-NEVEU MODEL

After this introduction of the auxiliary scalar field, it also has another physical meaning in terms of the chiral
condensate due to the identities of Takahashi-Ward. They can be derived due to the following argument: The
integrand of (3.13) vanishes at infinite scalar fields �

�Ex0� ! ˙1 evaluated at each fixed lattice site Ex0 2 ƒ.
Because of the fundamental theorem of calculus it is possible to state locally

0 D
Z

D�D D 
d

d�
�Ex0� exp

�� �=@ �mD C �
�
 � ��2� (3.15)

D
Z

D�D D 
�
 
�Ex0� �Ex0�C 2�� �Ex0�� exp �� �=@ �mD C �

�
 � ��2� : (3.16)

This expression can be averaged over all Ex0 2 ƒ to obtain a first identity

h  i D �2�h�i; (3.17)

which connects the expectation value of the scalar field and the chiral condensate. A broken chiral symmetry goes
therefore hand in hand with a non-vanishing average � field, if the coupling strength is not infinite. Taking the
derivative with respect to �

�Ex0� and � � Ey0� for fixed Ex0; Ey0 2 ƒ leads to another important Takahashi-Ward
identity, which can be derived analogously as

h� �Ex0� � � Ey0�i D 1

4�2
h �Ex0� �Ex0� � Ey0� � Ey0�i C 1

2�
ıEx0; Ey0 : (3.18)

Setting Ex0 D Ey0 and averaging over all lattice sites Ex0 points the way to

h�2i D 1

4�2
h�  �2i C 1

2�
: (3.19)

The scalar field should transform as � 7! �� under the chiral symmetry to preserve this symmetry at the level of
the partition function. The expectation value of �2 can be also calculated similarly to condensates as a derivative
of the partition function with respect to � like

h�2i D 1

V QZ
@ QZ
@�
D 1

VZ
@Z
@�
C 1

2�
: (3.20)

3.4 Previous pertinent Results
The number of lattice sites in time directionN0 is per construction a tool to implement different temperatures. The
present model cannot show spontaneous symmetry breaking. The following conclusive proof of this statement can
be found in [4]:

The thermodynamic potential of the system should be minimized in thermodynamic equilibrium. It has to
be regarded as a overall potential for each allowed phase. Assuming a small number of phase transitions b, the
thermodynamical potential also has to be minimized at each intersection point of different phases. For this reason
the number of different phases has to increase rapidly, because the first derivative of the thermodynamic potential
with respect to b depends logarithmically on b. Thus, b will rise until this derivative vanishes and thermodynamic
equilibrium is reached. Therefore a small number of different phases would intermingle with each other more and
more and cannot be separated. The above contradiction concludes the proof. A phase in one spatial dimension has
always just two phase borders independently of its size. Thus, the arbitrarily mixed phases that were discussed in
the proof do not really exist. In higher dimensions the margin of a phase scales with its size and forbids this effect.

[19, 18] discussed in detail that apart from the phase of the theory in the continuum there might appear also
a lattice artifact phase. Such saturation effects are expected if the interaction dynamics prevail free fermion like
behavior for strong couplings.
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4 REFORMULATION OF THE THERMODYNAMICS IN GROSS-NEVEU MODELS

4 Reformulation of the Thermodynamics in Gross-Neveu Models
In this section three different ways of calculation rules for the partition function (3.13) are derived and discussed.
They all enable a different viewpoint on the abstract object Z .

4.1 Dual Formulation
The concepts of this formulation are based strongly on [18]. The basic idea is to separate the scalar field integration
from the spinor fields and recover the integration rule (2.12) to simplify the representation of the partition function
enormously. Hence, it is useful to introduce a mass parameter mS for the scalar field like

mD 7! m � mD CmS: (4.1)

Now it is time to use that the spinors are Grassmann valued and all square and higher terms in the Taylor series
of the exponential function of the linear term in � vanish

exp
�� .� �mS/  

� D Y
Ex2ƒ

�
1 � �� �Ex� �mS

�
 0

�Ex� 0 �Ex�� � �1 � �� �Ex� �mS
�
 1

�Ex� 1 �Ex�� ; (4.2)

where lower indices describe the both spin components out of J WD f0; 1g. The essential step now is to introduce a
binary parameter kj

�Ex� for j 2 J and Ex 2 ƒ that contains the exponent of the latter terms

QZ D
Z

D�D D exp
h
� OD �  .� �mS/  � ��2

i
(4.3)

D
Z

D�D D exp
h
� OD � ��2

i Y
Ex2ƒ

Y
j2J

X
kj .Ex/2J

��
�
�Ex� �mS

�
 j

�Ex� j �Ex��kj .Ex/ : (4.4)

The products and the sum can be interchanged, which leads to a sum over all spin configurations K WD J2V . To
complete the wanted separation, set the sum over all spin k field configurations k

�Ex� � P
j2J

kj
�Ex�, such that it

holds:

QZ D
X
k2K

I.k/ � w.�; k/; (4.5)

where I.k/ contains the integrated fields and w.�; k/ can be viewed as a weight arising from the scalar field
integration. As the notation suggests, these two are essentially configuration dependent.

By use of a Taylor series it becomes clear due to vanishing square contributions of the Grassmann algebra
that only these spinors have a remarkable effect regarding the fermionic integral, where kj

�Ex; k� D 0 holds. Hence,
the reduced operator ODŒk� can be introduced as the known columns and rows of the Dirac operator where this
condition is valid. All other columns and rows are replaced with the corresponding numbers of the identity matrix,
since it does not change the determinant. Then it follows by (2.12), that

I.k/ D
Z

D D exp
h
� OD 

i Y
Ex2ƒ

Y
j2J

�
 j

�Ex� j �Ex��kj .Ex;k/ (4.6)

D det
�
ODŒk�

�
: (4.7)

The weight function can be evaluated as a product of Gaussian integrals, well-known out of real analysis. For this
reason a notable interim result is

Z
d�
�Ex� exp ����2 �Ex�� ��� �Ex�CmS

�k.Ex/ D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

r
�

�
; k
�Ex� D 0

mS

r
�

�
; k
�Ex� D 1

p
�

2�3=2
Cm2S

r
�

�
; k
�Ex� D 2

; (4.8)
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4 REFORMULATION OF THE THERMODYNAMICS IN GROSS-NEVEU MODELS

and the weights depend on the normalized number of lattice sites nj .k/ that are filled with j 2 f0; 1; 2g fermions.
These ones are not influenced by local configuration differences, if the total filling numbers remains constant.
n0.k/ can be dropped, since all nj .k/ have to be summed up to one for a fixed k 2 K. All in all the weights can be
summarized as

w.�; k/ D
Z

D� exp
����2� Y

Ex2ƒ
.�� �Ex�CmS/

k.Ex/ (4.9)

D
��
�

�V=2
m
n1.k/V
S

�
1

2�
Cm2S

�n2.k/V
: (4.10)

The prefactor in (4.10) cancels that one from the Hubbard-Stratonovich transformation, which was dropped
using QZ instead of Z in this section. At the end it can be stated that

Z D
X
k2K

det
�
ODŒk�

�
�mn1.k/VS

�
1

2�
Cm2S

�n2.k/V
: (4.11)

Introduce the notation with index S for the limit mD ! 0 and consistently an index D for the case mS ! 0. The
partition function and the chiral condensate in the dual formulation including a mass inside the Dirac-operator is
given by2

ZD D
X
k2K

det
�
ODŒk�

�
� 0n1.k/

�
1

2�

�n2.k/V
(4.12)

h  iD D 1

VZ
X
k2K

@ det
�
ODŒk�

�

@mD
� 0n1.k/V

�
1

2�

�n2.k/V
: (4.13)

Analogously it holds in the case of a mass parameter dependency of the weights

ZS D
X
k2K

det
�
=@Œk�

� �mn1.k/VS

�
1

2�
Cm2S

�n2.k/V
(4.14)

h  iS D 1

VZ
X
k2K

det
�
=@Œk�

� �mn1.k/VS

�
1

2�
Cm2S

�n2.k/V
�

2
64n1.k/V

mS
C 2mSn2.k/V

m2S C
1

2�

3
75 : (4.15)

It seems practical to use one of the two special cases to simplify explicit calculations. In general, the determinants
in the above formulas are difficult to evaluate analytically for any configuration within the sum of all configurations.
The above presented special cases are reasonable, since the universal expression, which is derived in app. A.1
would be

h  i D � 1
V
htr OD�1i C hn1i

mS
C 2mShn2i
m2S C

1

2�

; (4.16)

if a familiar notation for the expectation value of the configuration dependent observables e.g. nj .k/ is defined.
The single occupation expectation value hn1i goes quicker than linear to zero in the complete massless regime,
since it would break down the weights to zero.

2The convention 00 � 1 is used.
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4 REFORMULATION OF THE THERMODYNAMICS IN GROSS-NEVEU MODELS

4.2 Local Effective Potential Formulation
Another way to understand the physical meaning of the partition function is to study the behavior of one fermion
inside an effective potential, which is caused by the other particles on the lattice. The idea of performing a Taylor
series of all terms/   from former calculations should also be used in this section. Right from the starting point
(4.4), a fixed lattice site Ex0 2 ƒ is picked and the integral over the scalar field at this lattice site is moved outwards.
The physical effects at this lattice site are influenced by all fermions at the remaining latticeƒ0 D ƒ n fEx0g and for
the special configurations K .k0/ WD fk 2 Kjk �Ex0� D k0g it holds

QZ D
Z

d�
�Ex0� exp ����2 �Ex0��

2X
k0D0

��� �Ex0�Cm�k0 ak0 with (4.17)

ak0 �
X

k2K.k0/

2
4
Z

D D exp
�� D � Y

Ex2ƒ

Y
j2J

�
 j

�Ex� j �Ex��kj .Ex/
3
5 (4.18)

�
2
4 Y
Ex2ƒ0

Z
d�
�Ex� exp ����2 �Ex�� ��� �Ex�Cm�k.Ex/

3
5 : (4.19)

The parameters ak0 for k0 D 0; 1; 2 contain all remaining integrals (complete fermionic integration over ƒ and
reduced scalar field integration overƒ0) and are therefore the most complex variables of this reformulation. Those
are dependent on the coupling and the mass parameter m. To calculate condensates effectively a local mass is
placed on point Ex0, such that

m 7! mC ıEx; Ex0mloc: (4.20)

Therefore the expansion coefficients ak0 depend on the global mass m but are independent of the local mass
parameter mloc, which is after the introduction of the ak0 set to zero. The ideas of the dual formulation can be
followed to obtain a determinant representation of the expansion coefficients ak0 . For this reason notice that the
term in (4.19) is also a weight function w0 .�; k/ on the reduced lattice ƒ0 and because of that it yields

ak0 D
X

k2K.k0/
det

�
ODŒk�

�
� w0.�; k/: (4.21)

To complete this, notice that the whole integrand inside of the scalar field integral at Ex0 is shifted to the exponent
to get the effective potential U

�
�
�Ex0�� defined by

U
�
�
�Ex0�� � ��2 �Ex0� � ln

2
4 2X
k0D0

��� �Ex0�Cm�k0 ak0
3
5 such that (4.22)

QZ D
Z

d�
�Ex0� exp ��U �� �Ex0��� : (4.23)

The curve shape of the effective potential could determine the local physics because the largest contribution to the
partition function will come from the minima of that function. However, the order parameter can not be obtained
directly out of a curve discussion, since this minimum does not get deeper with increasing volume. The local
effective potential mentioned here bases on the above strict mathematical derivation. It should not be confused
with the global effective potential, whose curve shape determines the global physics in the right way. Nevertheless,
a global minimum of U

�
�
�Ex0�� that might be called �M is just a valid candidate for the expectation value of the

scalar field at this lattice site, if the corresponding probability amplitude lies symmetrically to its peak at �M. With
the latter assumptions, it is expected that inside a homogeneous phase of spontaneously broken symmetry

h�i ¤ 0) �M ¤ 0; (4.24)

whereas the reverse statement is not clear. The dynamically generated mass has to be calculated directly, since
the probability density is dependent on the scalar field. For the sake of completeness, those expectation values are
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4 REFORMULATION OF THE THERMODYNAMICS IN GROSS-NEVEU MODELS

listed below by calculating the real Gaussian integrals (the integral over the local scalar field and the sum over the
expansion coefficient can be interchanged) as

h� �Ex0�i D 1

QZ

Z
d�
�Ex0� exp ��U �� �Ex0��� � �Ex0� (4.25)

D �
a1

2�
C 2a2m

2�

a0 Cma1 C a2

2�
C a2m2

(4.26)

and similarly

h�2 �Ex0�i D 1

QZ

Z
d�
�Ex0� exp ��U �� �Ex0��� �2 �Ex0� (4.27)

D
3a2

2�
C a0 Cma1 Cm2a2

a2 C 2� .a0 Cma1 Cm2a2/
: (4.28)

The expectation value of the scalar field vanishes for m D 0 () a1 D 0), as a spontaneous symmetry breaking
is not present. Assuming translational invariance, a local solution might reveal also global characteristics of the
system. It must be kept in mind, however, that the dynamics of a single fermion may not show the totality of all
physical processes taking place.

The local chiral condensate can be extracted out of (4.26) and the local Takahashi-Ward identities yield

h �Ex0� �Ex0�i D �2�h� �Ex0�i (4.29)

D a1 C 2a2m
a0 Cma1 C a2

2�
C a2m2

(4.30)

and similarly

h� �Ex0� �Ex0��2i D 4�2h�2 �Ex0�i � 2� (4.31)

D 2a2

a0 Cma1 C a2

2�
C a2m2

: (4.32)

Since the main interest lies in local observables, this result is also clear by simple differentiation of the partition
function with respect to mloc. If the partition function of a system is known, as well as the expectation values of
chiral condensates of the order 0, 1 and 2, it is possible to calculate the expansion coefficients. To see this, notice
that that integration over � and the summation over the ak0 commute and it holds for the objects

Ec �

0
B@
h� �Ex0� �Ex0��0i
h� �Ex0� �Ex0��1i
h� �Ex0� �Ex0��2i

1
CA , OA �

r
�

�

Z

0
B@
1 m m2 C 1

2�
0 1 2m

0 0 2

1
CA and Ea �

0
@ a0
a1
a2

1
A ; (4.33)

that the condensate is given as a matrix product

Ec D OA � Ea: (4.34)

The matrix OA is invertible and the expansion coefficients ak0 can be calculated as

Ea D OA�1 � Ec with OA�1 D
r
�

�
Z

0
BBB@
1 �m m2

2
� 1

4�
0 1 �m
0 0

1

2

1
CCCA : (4.35)
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4.3 Loop Formulation
There is also a formulation of the partition function which opens an immediate, descriptive perspective of it. The
following discussion basically follows [19], where it was used to escape the sign problem in 2C 1 dimensions. The
implementation of this formulation on the computer, which might be part of other works, is expected to improve
current Monte Carlo simulations. Therefore the derivation, especially the signs of appearing terms, is going to be
presented with many intermediate steps.

4.3.1 Derivation

The calculation starts with the substitution of the complex valued fermionic fields  ; into real valued Majorana
fields

�1 �
p
2Re and �2 �

p
2 Im : (4.36)

These fermions are their own anti-particles and therefore charge conjugated with themselves. A conjugation of the
particle charge is done by the use of the charge conjugation matrix

OC D
�

0 C1
�1 0

�
: (4.37)

This substitution can be summarized as

 7! 1p
2
.�1 C i�2/ (4.38)

 7! �1p
2

�
�T1 � i�T2

� OC (4.39)

  7! �1
2
�T1�1 C

�1
2
�T2�2 (4.40)

 =@ 7! 1

2
�T1
OC =@�1 C 1

2
�T2
OC =@�2 (4.41)

D D 7! .�1/VD�1D�2: (4.42)

The constant factor, which results from the change of the measure can be neglected, since an even number of lattice
sites is assumed. The sign of the mass term is reversed, as well as the sign of the derivative term remains. The
partition function has now a new representation as

QZ D
Z

D�
2Y
lD1

D�l exp
��1
2
�Tl

�
OC =@Cm � �

�
�l C

�1
2
��2

�
: (4.43)

Now the same steps (Taylor series, interchanging of sum and product, ...) as done in the dual formulation in
sec. 4.1 can be performed to end up with

QZD,S D
X
k2K

wD,S.�; k/

Z 2Y
lD1

D�l exp
��1
2
�Tl
OC =@Œk��l

�
: (4.44)

The product of integrals at the end of (4.44) factorizes and therefore a new formulation of the determinant of
reduced derivative operators is found

det
�
=@Œk�

� D
�Z

D� exp
��1
2
�T OC =@Œk��

��2
: (4.45)

This calculation corresponds to the strictly mathematical result (2.13). The integrand can be expanded and if the
Grassmann valued Majorana spinor � is enumerated with numbers j 2 f1; : : : ; V g on the lattice (such that both
spin components belong to �j 2 R2) and the relevant components of the derivative are counted in the same way, it
holds

q
det

�
=@Œk�

� D
Z VY
jD1

d�j
VY
rD1

�
1 � 1

2
�Tj
OC =@Œk�jr�r

�
; (4.46)
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up to a constant and therefore negligible sign. If the specific k 2 K is not trivial, some lattice sites are blocked
and have to be canceled out of the previous equation, since they are forbidden. Like in the essential step of the
dual formulation an exchange of the both product signs in (4.46) leads to a sum over configurations. To reveal the
characteristics of these configurations, it can be verified by explicit Grassmann integration

Z
d�j

�
�j�

T
j

�˛ D ı˛;1
�

0 �1
C1 0

�
D ı˛;1 OC T for all j 2 f1; : : : ; V g and ˛ 2 N0: (4.47)

The required configuration space N.k/ represents all linking configurations of allowed lattice sites among each
other. Inside of such a configurationN 2 N.k/ there have to be closed loops on the lattice, such that every regarded
lattice site j contributes exactly one �j�Tj to the integrand. The loops L 2 N have to be pairwise disjoint and L
can cross one fixed lattice site at most one time. The remaining integration for one closed loop is written down in
a weight W .L/ and in summary

q
det

�
=@Œk�

� D X
N2N.k/

Y
L2N

W .L/ : (4.48)

The introduced notation is visualized in fig. 4.1. The major advantage of this expansion is its graphical representa-
tion, which will be used actively in this thesis.

Figure 4.1: Notation for the loop expansion. One specific linking configuration N.k/ is represented by available
green points and blocked black sites. The green arrows connect the accessible lattice sites with each
other, such that every green lattice site is exactly once an intermediate point of the loop L 2 N . The
distribution of the loops is given by N 2 N.k/.

After the derivation of the loop formalism the weightsW .L/ can be simplified as follows, using a new counting
method to sort the crossed lattice sites from an index 1 to the length of the loop L

W .L/ D
�
1

2

�L LY
lD1

Z
d�l�Tl OC =@Œk�l;lC1�lC1 (4.49)

D
�
1

2

�L Z  
LY
lD1

d�l

!
�T1
OC =@Œk�1;2

 
LY
lD2

�l�
T
l C =@Œk�l;lC1

!
�1; (4.50)

where the periodic boundary condition �LC1 � �1 for closed loops is assumed. Now (4.47) can be applied in two
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steps to (4.50), because the charge conjugation matrix is squared to the negative identity to arrive at

W .L/ D
��1
2

�L Z
d�1�T1 OC

 
LY
lD1

=@Œk�l;lC1

!
�1 (4.51)

D
��1
2

�L Z
d�11d�

2
1

2X
j;r;sD1

�
j
1
OCjs
 
LY
lD1

=@Œk�l;lC1

!

sr

�r1 (4.52)

D
��1
2

�L 2X
j;r;sD1

OCrj OCjs
 
LY
lD1

=@Œk�l;lC1

!

sr

(4.53)

D �
��1
2

�L
tr

 
LY
lD1

=@Œk�l;lC1

!
: (4.54)

The elements of the derivative are essentially components of the 
 -matrices multiplied with the constant Slac
derivative interaction factor @Œk�l;lC1. A single, directional step inside a loop with length L has to be either in time
(� D 0) direction or in spatial (� D 1) direction. The number of links in � direction of the spacetime is therefore
stored in

L D n0 C n1: (4.55)

It remains the calculation of the trace of an (unsorted) product of n� times the matrix 
�. Sorting them goes hand
in hand with a negative sign for every swap of different matrices, which are gathered in sign .L/ 2 f�1; 1g and it
holds

W .L/ D �sign .L/
��1
2

�L
tr
�


n0
0 


n1
1

� LY
lD1

@Œk�l;lC1: (4.56)

Both numbers n0 and n1 have to be even, such that the weight as a trace over conventional traceless 
 -matrices is
non-vanishing but rather the trace of the identity. All in all it holds

W .L/ D

8̂
<
:̂
sign .L/

��1
2

�L�1 LQ
lD1

@Œk�l;lC1 for n0; n1 2 2N0;
0 in all other cases.

(4.57)

Since fig. 2.2 depict the action principle of the Slac derivative, the discussed loops have not to be only between
neighboring lattice points, but at least be structured either in horizontal or vertical, but none diagonal steps. An
even length (in each direction) is also required to end up with a nonzero determinant of the reduced Dirac operator
and therefore a contribution to the partition function.

4.3.2 Sign of Closed Loops

In high dimensional spacetimes even the sign of loops is hard to compute. In 1C1 dimensions this can be specified
graphically. It is not possible to cross a fixed lattice site twice, at the level of the Pfaffian and the introduced
Majorana fermions, but this will be neglected for the moment. It is technically advantageous to introduce an
equivalence relation� on the sequence space JL, which connects loops of equal length and same sign. The highest
ordered loop, which executes all of its even number of temporal steps before doing its even number of spatial
steps has of course the sign C1. The sign of an arbitrary loop can be determined by swapping zeros and ones
(with a negative sign) until all zeros are at the beginning of the sequence and all ones at the end. The sequence
representation of a loop is well-defined because its sign is independent of the starting point choice. Non-disjoint
loop objects can be also glued together (summation of loops) by first moving within one loop and if the cross point
is reached, the second loop is next. The remaining steps of the first loop should be walked at the end.

Start the argumentation for nearest neighborhood interaction with the smallest loops, which have length
0; 2; 4; : : : . The case of full blocking of the spacetime lattice gives a 1 for the searched determinant, which
is also directly produced by the dual formulation, as it will be discussed later. All loops of length L D 2 have sign
C1 and they are shown in fig. 4.2a. For L D 4 there are loops with sign C1 and also the quadratic loop that has
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sign �1, since its sequence is 0101 (while starting in the upper right point). A graphical presentation of these loops
is depicted in fig. 4.2b.

(a) L D 2. (b) L D 4.

Figure 4.2: The basic shortest loops, which can be constructed by interchanging of sequence elements. The only
negative sign has the quadratic loop which includes a non-vanishing area between the connected lattice
sites.

The sequence representation has by definition the property that a block of two identical numbers can be swapped
with every other element without changing the sign. Therefore a loop L4 of length L D 4 can be glued to an
arbitrary loop L and the sign after gluing

sign .LC L4/ D sign .L4/ � sign .L/ : (4.58)

The sign is changing if and only if a quadratic loop is added. Therefore it holds by mathematical induction that the
number of inner squares of a loop defines its sign

sign .L/ D

8̂
<
:̂
C1 ;

P
�2L

1 2 2N0
�1 ;

P
�2L

1 2 2N0 C 1:
(4.59)

In total the sign of loop weights of even (odd) length is positive for an odd (even) number of included squares.
The above proof deals only with the interaction of neighboring fermions, which should be dominant but still a

special case, if the non-locality of the Slac-derivative is respected. The general approach might be to first transform
an arbitrary polygon shaped loop to an equivalent rectangle. Then it is possible to reduce the steps within a loop at
the one site of the rectangle in � direction with more interacting steps than its parallel site, to nearest neighboring
interaction steps. After performing this procedure for both spacetime directions, the number of included squares
is obtained as a product of the number of reduced steps in each direction. The sign of an arbitrary loop should
therefore only be negative if the number of interaction steps at one side of the spanned rectangle is odd in both
spacetime directions, which means an odd number of included squares is present.

But instead of the Pfaffian, determinants describing Dirac fermions contribute to the partition function. That
is why the mentioned single cross constrained can be softened to a double cross constraint for further purposes. To
know the sign of the configuration via e.g. the presented loop formalism enables an easy approach (reweighting)
to potentially bypass the sign problem.

20



5 STRONG COUPLING EXPANSION FOR THE PARTITION FUNCTION

5 Strong Coupling Expansion for the Partition Function
In this section an explicit calculation of the leading terms in the dual formulation (4.11) regarding the inverse
coupling � is presented and the consequences are outlined. The partition function is worked out up to the five terms
of biggest impact in the case of a strong fermionic interaction. In the framework of the Gross-Neveu model, a
strongly coupled theory is described by

g!1, �! 0: (5.1)

Each lattice site can be occupied by a maximum of two fermions and all in all 0 � n � 2V spin lattice sites
can be blocked, which motivates the following definition of the configurations

Kn WD fk 2 Kj
X
Ex2ƒ

X
j2J

kj
�Ex� D ng � K; such that (5.2)

Zn D
X
k2Kn

det
�
ODŒk�

�
�mn1.k/VS

�
1

2�
Cm2S

�n2.k/V
: (5.3)

that represent the n-fold grid. Therefore a separated consideration of these configurations with a high occupation
number generates the leading terms in powers of �, according to the weights. This is where the dependency in �
and mS is hidden, whereas the prefactors and the mass mD result from the determinants.

5.1 Calculation of the Leading Terms
In the case of total blocking of the lattice (n D 2V ) the whole reduced Dirac operator is the identity matrix and just
one configuration k 2 K2V with n2.k/ D 1 should be regarded. Therefore the major contribution to the partition
function, which has to be expanded in terms of � for later investigations is given by

Z2n D
�
m2S C

1

2�

�V
: (5.4)

For n D 2V � 1 the matrix ODŒk� is almost the identity, where the mass mD appears on exactly one position
on the diagonal. This is the place, where a fermion is removed from a lattice site and there are 2V different
configurations with the same weight, such that

Z2n�1 D 2VmDmS

�
m2S C

1

2�

�V�1
: (5.5)

For n D 2V � 2 the fermions on positions j and l are replaced and the reduced Dirac operator is not diagonal
in position space for the first time. The non trivial block inside the matrix ODŒk�

0
BBBBB@

mD 0 : : : 0 =@jl
0 1 0
:::

: : :
:::

0 1 0

�=@jl 0 : : : 0 mD

1
CCCCCA
; (5.6)

changes the determinant depending on how many particles are removed from the same lattice site. After a simple
Laplace expansion the determinant is just

det
�
ODŒk�

�
D m2D C =@2jl : (5.7)

Replacing the two fermions from the same lattice site x has the bigger impactZ�2V�2 within the presented expansion
in �, but self-interaction by the Slac derivative is forbidden:

@� .x; x/ D 0 such that =@
2
jl D 0: (5.8)
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5 STRONG COUPLING EXPANSION FOR THE PARTITION FUNCTION

There are V different configurations (for replacing two particles from the same lattice site) with the same weight
and it holds

Z�2V�2 D Vm2D
�
m2S C

1

2�

�V�1
: (5.9)

The terms for odd n act like mixed terms of .mD CmS/
˛ with ˛ 2 N in powers ofmD andmS. That becomes clear

by performing a Taylor series of Z2n which delivers the missing terms in powers of mS. For clarity reasons set
mD ! 0 to evaluate the determinant of an antisymmetric matrix of odd dimensions, which vanishes. Also it is
possible to set mS ! 0, that leads to vanishing weights for each configuration with odd n. After calculating the
general determinants the first limit is regarded to look only at the terms with even n in further calculations.

The last contribution to the configurations with n D 2V � 2 form the ones, where two particles are removed
from two different lattice sites, which contributes the term Z��2V�2 to the partition function. After explicit addition
over the spin indices inside the reduced Dirac operator it holds

Z��2V�2 D
VX
xD1

VX
yDx

h
4m2D C 2 .@0.x; y//2 C 2 .@1.x; y//2

i
�m2S

�
m2 C 1

2�

�V�2
(5.10)

The sum over the elements of the Slac derivative can be evaluated analytically, as shown in app. A.2

VX
xD1

VX
yDx

2
�
@�.x; y/

�2 D V�2

3

 
1 � 1

N 2
�

!
; (5.11)

which has a constant part and one which falls off quickly in the thermodynamic limit. The interim goal

Z��2V�2 D
V�2

3

�
2 � 1

N 2
0

� 1

N 2
1

�
m2S

�
m2S C

1

2�

�V�2
(5.12)

has been achieved. The contributions to the latter are the loops shown in fig. 4.2a.
All configurations for n D 2V �3 do not contribute to the partition function formD ! 0, whereas the next case

n D 2V � 4 with partition function Z��2V�4 is now determined. The fermions on positions j; l; o; p are removed
and the general determinant is given after Laplace expansion in position space by

det
�
ODŒk�

�
D det

0
BB@

mD =@jl =@jo =@jp
�=@jl mD =@lo =@lp
�=@jo �=@lo mD =@op
�=@jp �=@lp �=@op mD

1
CCA (5.13)

D m4D Cm2D
h
=@
2
jl C =@2jo C =@2jp C =@2lo C =@2lp C =@2op

i
(5.14)

C =@2jp=@2lo C =@2jo=@2lp C =@2jl =@2op C 2=@jl =@jp=@lo=@op � 2=@jo=@jp=@lo=@lp � 2=@jl =@jo=@lp=@op: (5.15)

Equation (5.14) generates loops of length 2 with two blocked lattice sites that contain the mass mD and therefore
vanish. The term in highest order in powers of � is formed by the configurations, where 4 fermions are placed
on just 2 different lattice sites x and y. A summation over the spin indices and the already discussed determinant
yields

Z��2V�4 D
VX
xD1

VX
yDx

h
.@0.x; y//

2 C .@1.x; y//2
i2 �

m2S C
1

2�

�V�2
; (5.16)

where the product of the squared Slac derivative elements does not generate a mixed term, since the temporal and
spatial interaction can not act together. With a calculation similarly to the steps done in app. A.2 it holds

VX
xD1

VX
yDx

�
@�.x; y/

�4 D V�4

90

 
1C 10

N 2
�

� 11

N 4
�

!
: (5.17)
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5 STRONG COUPLING EXPANSION FOR THE PARTITION FUNCTION

The different prefactor compared to equation (5.11) can be identified as the length-dependent factor inside of the
loop weight. Thus, the partition function contribution can be written as

Z��2V�4 D
V�4

90

�
2C 10

N 2
0

C 10

N 2
1

� 11

N 4
0

� 11

N 4
1

��
m2S C

1

2�

�V�2
: (5.18)

The known decay terms occur again, whereas the determinant is still proportional to the volume. The corresponding
loops are those ones from fig. 4.2a too, but every lattice site get touched twice. All other configurations with
n D 2V � 4 are either proportional to the mass mS or of lower order in � and therefore less important.

Using analogous calculations, it can be shown that the dominant term of the configurations defined by n D
2V � 6, where 6 fermions are distributed over 3 lattice sites (see the corresponding loops at fig. 4.2b), has a
vanishing determinant. For this reason, the presented strong coupling expansion should be a good compromise
between a sufficient clarity, an adequate mathematical effort and a wide possible scope. The derived partition
function used for later purposes is

Z D Z2n C Z��2n�2 C Z��2n�4 CO
�
�3�V

�
; (5.19)

where the first summand has been expanded in orders of �.

5.2 Results
The behavior of the order parameter for strong couplings can be determined using the partition function (5.19). All
terms in (5.19) satisfy the second Takahashi-Ward identity (3.19) independently. For this purpose it has to be
respected that the expansion in � is done after taking the derivatives with respect to m or �.

5.2.1 Chiral Condensate

In fig. 5.1 it is shown, that the chiral condensate rises with increasing � up to a nearly constant value. This is
an effect of the external symmetry breaking, since it changes with the mass. A global maximum of the curves is
found only for masses up to cutoff mass m� � 0:3. There is a monotonously rising condensate for m > m� in
dependency of �. Agreeing to the results of [19] in 2 C 1 dimensions, the condensate is not dependent on � at
smaller couplings inside the strong coupling region.
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Figure 5.1: Chiral condensate for strong couplings on a 10 � 11 lattice in dependency of the inverse coupling �
for different mass parameters. The condensate is normalized by the mass to set a physical scale.

The mass-dependency of h  i can be also investigated and the results should be discussed shortly. For small
masses the condensate rises linearly with the mass up to a maximum value, whose position depends on the coupling.
The coupling strength has no effect for very big masses, since the interaction between the fermions is too weak to
influence this noticeably. For a vanishing fermionic mass the condensate vanishes completely, which is expected
since no spontaneous symmetry breaking should appear.
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5 STRONG COUPLING EXPANSION FOR THE PARTITION FUNCTION

5.2.2 Local Effective Potential

Out of the condensates the local effective potential is displayed in fig. 5.2 for fixed � and variablem to investigate its
validity for the global system. In the massless case there are two global minima of the symmetric effective potential
visible. For this reason, the dynamical generated mass at lattice site Ex0 has two preferred, non-vanishing values
�l
�Ex0� < 0 and �r �Ex0� > 0, which do not respect the chiral symmetry of the Gross-Neveu Lagrangian. The curve

diverges at the origin, since the logarithm of a negative number is undefined. Presumably, this phenomenon is a
lattice artifact for strong couplings. Form D 0 the appearance of a non-zero expectation value of the condensate is
not expected, as it was discussed in sec. 3.4. The right and the left minimum of the shown local effective potential
for massless fermions enable occupation with the same probability, because of its symmetrical curve shape. For
this reason there will be consistently a vanishing expectation value of the scalar field. However, the graph in fig. 5.2
is in agreement with the corresponding result in [18] in 2 C 1 dimensions. The curve shape moves in positive
�
�Ex0� direction if the fermions get massive, since � andm act similarly inside the Lagrangian. Another important

difference is that the left global minimum prevails the right local one in the massive case. This process goes hand
in hand with the formation of a non-zero expectation value of the chiral condensate in the framework of explicit
symmetry breaking. The divergence in fig. 5.2 disappears only for unphysically high masses that dominate the
interaction.
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�
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��

m D 0
m D 10
m D 30

Figure 5.2: Local effective potential in dependency of the local scalar field on a 10�11 lattice for different masses,
but constant inverse coupling � D 0:01. The value ofm was chosen very large to illustrate the general
effect of changing m on the curve shape of the local effective potential.

It is not clear how neighboring lattice sites to Ex0 will be influenced by the behavior of the one fermion at Ex0
which can be described by the local effective potential. Therefore it is interesting to study the behavior of �l

�Ex0� in
dependency of � andm, to discover its quality as an order parameter like the local chiral condensate. In fig. 5.3 this
comparison is shown. The minimum of U

�
�
�Ex0�� fits to the condensate for small masses in their � dependency

for very small � and couplings that are too weak to be described correctly with the strong coupling expansion.
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Figure 5.3: Comparison between the minima of the local effective potential �l
�Ex0� and the directly calculated

local chiral condensate h �Ex0� �Ex0�i for strong couplings in dependency of the inverse coupling �
for a constant mass m D 0:24. Both functions do not converge for strong couplings.

Furthermore for constant �, �l
�Ex0� decreases almost linearly with increasing mass and crosses the condensate

at one point for very small masses. An agreement of the curve shapes is found only for unphysically high masses,
but the convergence is at the higher masses the smaller � is recognized. However, it is advisable to regard small
inverse couplings to really take a look into the strong coupling regime.

Unfortunately, the presented results restrict the validity of the minimum of the local effective potential compared
to the massive condensate at strong couplings. However, the strong coupling expansion must be considered
realistically in its physical applicability, since � ! 0 covers mainly phenomena in the infrared range due to the
asymptotic freedom. This corresponds to the physics of large lattice spacings, which does not correspond to the
continuum physics in the context of the considered model.
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6 WEAK COUPLING EXPANSION FOR THE PARTION FUNCTION

6 Weak Coupling Expansion For The Partion Function
An approach toweak coupling applied to the dual formulation is presented in this section. The principle is analogous
to sec. 5 but it is expected to describe more realistic physics, because of the asymptotic freedom of Gross-Neveu
models in 1C 1 dimensions. Firstly important properties of the used inverse Dirac operator without a mass

OF � =@
�1 (6.1)

are discussed. As well as for the propagator, this turns out to be useful to calculate the leading terms in the weak
coupling regime

g! 0, �!1 (6.2)

afterwards. Now the terms with very low n 2 N0, according to the definition (5.2) have the biggest impact on the
partition function. This corresponds to a small occupation of the lattice ƒ.

6.1 Duality
Actually the determinant of almost the whole Dirac operator, with only a few deletions, should be calculated, if
the dual formulation is used as before. But this leads to a hard analytical description and should be avoided. It
is possible to describe the Pauli blocking of lattice sites occupied with fermions analogously with free sites for
corresponding holes. A formula within the scope of the regarded determinants can be derived, following this idea.
The scalar field can be integrated out of (4.5) and the fermionic sources � and � can be introduced to get

QZ D
X
k2K

w.�; k/
Y
Ex2ƒ

Y
j2J

 
@

@�j
�Ex�

@

@�j
�Ex�

!kj .Ex/ Z
D N D exp

�� =@ C � �  �� ; (6.3)

where the sources should be set to zero at the end. The argument of the exponential function can be rewritten by
adding and subtracting � OF� to arrive at

� =@ C � �  � D �
�
 C OF�

�
=@
�
 C OF�

�
� � OF�; (6.4)

since conjugation is hermitian conjugation in the Euclidean spacetime. The following substitution is now possible

 ! � �  C OF� and  ! � D  C OF�: (6.5)

Integration over the new fields � and � leads to

QZ D
X
k2K

w.�; k/
Y
Ex2ƒ

Y
j2J

 
@

@�j
�Ex�

@

@�j
�Ex�

!kj .Ex/ Z
D N�D� exp

h
��=@� � � OF�

i
(6.6)

D det =@
X
k2K

w.�; k/
Y
Ex2ƒ

Y
j2J

 
@

@�j
�Ex�

@

@�j
�Ex�

!kj .Ex/
exp

h
�� OF�

i
: (6.7)

This is indeed the statement of (2.12). Integration and differentiation are the same for the Grassmann valued
sources, as mentioned before. For this reason, the product inside the previous expression is just a 1 after setting the
sources to zero, if kj

�Ex� D 0. The other case kj �Ex� D 1 leads via the known Gaussian integral to the determinant.
The sources are turned off and it can be stated that

QZ D det =@
X
k2K

w.�; k/

Z
D�D� exp

�
�� OF Œk��

�
(6.8)

D det =@
X
k2K

w.�; k/ det
�
OF Œk�

�
; (6.9)

where the operator OF Œk� has the columns and rows of OF if kj
�Ex� D 1 and that one from the identity otherwise.

It can be pictured as the same reduction like discussed for the dual formulation but instead of the configuration
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6 WEAK COUPLING EXPANSION FOR THE PARTION FUNCTION

of fermions k, the corresponding configuration of holes k is examined. Consistently k has just inverted elements
compared to k.

The hermitian mass parameter can be also substituted into the fields �; � with an analogous substitution to
(6.4), to obtain a massive result like (6.9).

The main result for the investigation of the duality is then given after matching the result to the dual formulation:

det
�
ODŒk�

�
D det

�
OD
�
det

�
OD�1Œk�

�
: (6.10)

This equation can be also found in [12]. A direct recycling of the results of the strong coupling expansion is not
possible, since matrix inversion and the discussed, simultaneous row and column deletion do not commute with
each other. Nonetheless there is a duality, since among other things the terms of odd lattice occupation number n
lead to vanishing determinants in the framework of strong and weak couplings.

6.2 Matrix Elements of the Propagator
A formula for calculating the elements of the propagator OD�1 is derived in the following paragraph. The expression
of the squared momentum operator =p can be symmetrized to obtain a block-diagonal matrix, which has 2�2 blocks
with determinants equal to the discrete squared momenta Ep2 on its diagonal. Therefore it holds in momentum
space for the whole Dirac operator, where matrix inversion is a trivial inversion of 2 � 2 blocks on the diagonal:

OD�1 D �i =p CmD

� Ep2 �m2D
: (6.11)

Thus, the matrix elements of the propagator in momentum space can be easily evaluated. It’s application to the
wavefunction evaluated at two lattice sites x and y in momentum space reads

hxj OD�1jyi D
i
Ep2ƒp

i =p �mD

Ep2 Cm2D
 p.x/ 

�
p .y/: (6.12)

Since the eigenfunctions are symmetrically normalized plane waves, it holds after an inverse, discrete Fourier
transform that

hxj OD�1jyi D 1

V

i
Ep2ƒp

�
i =p �mD

� � exp ��i Ep � �Ex � Ey��
Ep2 Cm2D

: (6.13)

The sum over the momentum operator contribution is purely imaginary, because the lattice momenta were chosen
anti-symmetrically around zero, but the real part of it is a momentum inversion symmetric cosine. The sum over
the mass contribution is also real, since the anti-symmetric sinus contribution vanishes. That is why the matrix
elements of the propagator in position space are purely real and can be displayed in compact form, as it follows

hxj OD�1jyi D �1
V

2
664

i
Ep2ƒp

=p � sin �
Ep2 Cm2D

C
i
Ep2ƒp

mD � cos �
Ep2 Cm2D

3
775 ; (6.14)

where the dependence of the lattice sites x and y is included in the angle � � Ep � �Ex � Ey�. The latter uncovers that
the whole, massless propagation matrix is anti-symmetrical and forbids self-interaction.
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6.3 Calculation of the Leading Terms
The determinants inside the terms with highest impact on the weak coupling case could be evaluated numerically
by matrix inversion after row and column reduction. But it is more efficient to calculate those terms at least
partly in momentum space, since the discrete Fourier transform does not change the determinant as a unitary
transformation.

It seems useful to set mS D 0, because single fermionic occupation steps of all lattice sites are avoided with
vanishing weights.

For n D 0 the determinant of the whole Dirac operator is an overall factor for each term of the following
expansion and can be neglected. But for completeness it should be calculated at this point too. After a explicit
choice of the 
 -matrices a 2 � 2 block on the diagonal of OD has in momentum space the form

ip0.j /

0 C ip1.l/
1 �mD1 D

�
ip1.l/ �mD ip0.j /

ip0.j / �ip1.l/ �mD

�
; (6.15)

for indices j 2 f1; : : : ; N0g and l 2 f1; : : : ; N1g. Therefore the determinant is given by

det
�
OD
�
D

N1Y
lD1

N0Y
jD1

h
.p0.j //

2 C .p1.l//2 Cm2D
i

(6.16)

D
N1Y
lD1

N0Y
jD1

"�
�

N0
.N0 � .2j � 1//

�2
C
�
�

N1
.N1 � .2l � 1//

�2
Cm2D

#
: (6.17)

Furthermore the easiest term in the weak coupling expansion is just

Z0 D det
�
OD
�
: (6.18)

All terms with an odd occupation number n vanish in the regarded limit mS ! 0 as the weights are equal to zero.
The next term, which stands in the line is the sum over all configurations with n D 2. The cases of placing two

fermions on the same lattice site Z�2 and on different grid points have to be treated separately. The second case
contribution vanishes, since mS ! 0. Placing two fermions on the same lattice site is discussed in the following
paragraph: The momentum operator part of the latter vanishes since it forbids self propagation. But the mass
ensures a term

Z�2 D det
�
OD
�X
x2ƒ

det
�
hxj OD�1jxi

�
� 1
2�

(6.19)

D
det

�
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�

2V �

2
664

i
Ep2ƒp

mD

Ep2 Cm2D

3
775

2

; (6.20)

where the translational invariance of the determinant simplifies the summation over x dramatically. The latter
expression is similar to Z��2V�2 in the strong coupling regime. An analytical expression for the appearing finite sum
over the lattice momenta is unfortunately not known. But it is approximately of the same structure as the sum in
(A.2.7), that was used to derive the former terms for a strong fermionic interaction.

For n D 4 only the contribution Z��4 where 4 fermions are distributed to 2 lattice sites x and y has to be
investigated. The determinant of the reduced propagator for a single configuration is given by

det
�
D�1Œk�

� D det
� hxj OD�1jxi hxj OD�1jyi
hyj OD�1jxi hyj OD�1jyi

�
: (6.21)

This can be evaluated similarly to (5.13-5.15), but it has to be noticed that the propagator is not anti-symmetric in
the massive case. Applying the structure of the matrix elements (6.14) to the latter leads to the following result

� .x; y/ � det
�
D�1Œk�

�
(6.22)
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: (6.23)
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Summation over x and y is necessary to finally get the partition function for those configurations as

Z��4 D
det

�
OD
�

4�2

V�1X
xD1

VX
yDxC1

� .x; y/ : (6.24)

With the same techniques it can be found that the mass independent contribution to the configurations for n D 6
vanishes like in the analogous strong coupling case. That is why the following result should be a well-founded
approach to the complicated weak coupling regime: The partition function for weak couplings is finally given by

Z D Z0 C Z�2 C Z��4 CO
 �
1

�

�4!
; (6.25)

which is already expanded in terms of the inverse coupling.
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6.4 Results
The partition function for weak couplings (6.25) offers access to the chiral condensate for big � after taking the
derivative with respect tomD. The condensate of second order is determined by use of the second Takahashi-Ward
identity (3.19) out of the derivative of Z with respect to �, because of its easier implementation on a computer.
Analogously, the expectation value of the scalar field can be obtained by applying the first Takahashi-Ward
identity (3.17) to the condensate.

6.4.1 Chiral Condensate

The expressions which were derived in the previous subsection can be treated analytically to obtain a weak coupling
expansion for the condensate, but their values are evaluated numerically for suitable parameters m and �. The
scalar field expectation value for different intermediate steps of the weak coupling expansion is shown in fig. 6.1.
It is visible that the curves already converge to each other for small interactions between the fermions. For �!1
the dynamically generated mass is zero, as it is expected from the free theory.
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Figure 6.1: Expectation value of the scalar field for weak couplings on a 12 � 11 lattice in dependency of the
inverse coupling � form D 0:2. The results for three major contributions to the partition function with
respect to � are compared with each other.

The results for extreme couplings can be compared to Monte Carlo simulation data from [21] in dependency
of �. This comparison is displayed together in fig. 6.2. It is visible that the weak coupling scalar field increases
with increasing coupling strength and fits to the simulation data for � � 5. The curve which was derived for
strong couplings crosses also the simulation data at small 0 < � � 0:05. Nevertheless, in this area the simulations
suffer from a strong sign problem and are not as reliable as for weak couplings. The weak coupling condensate is
proportional to the chosen mass parameter m for infinitely small couplings (at � ! 1). The condensate for an
arbitrary coupled system should be somewhere between those two extreme cases. All in all the strong coupling
expansion covers a smaller sector of the physics at the positive � axis than the other expansion. The latter is shifted
up to bigger values for bigger fermionic masses as it was expected.
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Figure 6.2: Expectation value of the scalar field for weak and strong couplings on a 12� 11 lattice in dependency
the inverse coupling � for m D 0:05. Moreover, comparable Monte Carlo simulation data points are
shown [21]. The simulation shows an unreliable curve shape for strong couplings � < 0:01 and a peak
of magnitude over 20 at � � 0:2 .

6.4.2 Local Effective Potential

The local effective potential for a weakly coupled system is displayed in fig. 6.3. U
�
�
�Ex0�� lies symmetrically

around the axis �
�Ex0� D 0 describing the non-massive case. This agrees with the expectations that were discussed

in sec. 3.4. A nonzero mass m leads to a non-trivial minimum of the local effective potential, which can be
recognized too. This observation is based on explicit symmetry breaking. The undefined space in the middle of the
figure which was found for strong couplings in fig. 5.2 disappears. In summary, the local effective potential shows
the expected phenomena and therefore offers a promising, qualitative description of weakly coupled Gross-Neveu
models.
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Figure 6.3: Local effective potential for weak couplings in dependency of the local scalar field on a 12� 11 lattice
for different masses, but constant inverse coupling � D 30. The minimum of the potential in the
massive case is at �l

�Ex0� D �0:158˙ 0:001, but the other curve is symmetric.

It remains to investigate the change of the minimum �l
�Ex0� of the local effective potential compared to the

corresponding behavior of the dynamically generated mass. This is the content of fig. 6.4. It is noticeable that
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6 WEAK COUPLING EXPANSION FOR THE PARTION FUNCTION

�l
�Ex0� changes more the larger the curve change of the scalar field expectation values is. The bigger the masses

the less reliable is the linear relation between both curves. The absolute value of �l
�Ex0� becomes larger for bigger

m, which is expected. The minimum of the effective potential gets trivial if and only if the the expectation value of
the scalar field vanishes. However, fig. 6.4 shows a similar result according to the reliability of the local effective
potential as it was observed for strong couplings. In order of the theoretical problems described in sec. 4.2 and
especially the non-symmetrical curve shape of the effective potential, which does not behave as needed for V !1,
the obtained results should not surprise. A more detailed weak coupling expansion up to higher orders of the order
parameters with respect of � would not really change that result, since the convergence in fig. 6.1 was found at
low � compared to the convergence area of �l

�Ex0�. Thus, it is possible to use �l
�Ex0� as a candidate of an order

parameter for weak couplings, but there are the investigated deviations, that have to be kept in mind.
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Figure 6.4: Expectation value of the scalar field and minimum of the local effective potential for weak couplings
on a 12� 11 lattice in dependency the inverse coupling �. Both functions converge to zero for �!1
respectively. The vertical axes are scaled differently.
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7 CONCLUSIONS

7 Conclusions
In this section, the main results of this thesis are listed as well as a summary of the present work is stated.
Furthermore an outlook for further investigations in this field is presented.

7.1 Summary
The present thesis dealt with the analytical calculation of the partition function within the Gross-Neveu model in
1C 1 dimensions for one irreducible flavor on a spacetime lattice. Slac fermions are used to respect the important
symmetries, especially the discrete chiral symmetry of this quantum field theory even at non-zero lattice spacing.
Furthermore this fermionic formulation is free of doubling problems and therefore a reasonable choice.

First, the foundation of this work was laid with the derivation of a dual formulation. The local dynamics can be
described by a local effective potential that was introduced strictly mathematically. Furthermore, a physical system
is determined by the expansion coefficients of this quantity which can be calculated out of the most important
observables. The descriptive loop formulation of the partition function was derived, discussed and an investigation
of the important sign of closed loops was presented. Concretely, the number of included squares is a measure for
this sign. A graphically constructed claim was proven by means of an introduced equivalence relation and this can
be used for a better understanding of the sign problem.

The main result of this thesis is the analytical calculation of the partition function in case of extremely strong
and very weak coupling:

The first two terms in order of the inverse coupling � were evaluated exactly for strong couplings. Bases on
that, the behavior of the chiral condensate and the dominant minimum of the local effective potential were shown.
The local effective potential shows divergence problems and exhibits a non-trivial position of its minimum even
for massless fermions. Moreover the latter is not proportional to the chiral condensate and is therefore no reliable
order parameter.

Afterwards, the three leading order terms of the partition function for weak couplings were calculated by use of
a duality relation that connects a hole formulation (with help of the propagator) with the usual fermion formulation
on the lattice. The local effective potential shows the expected explicit symmetry breaking caused by the mass and
fulfills the chiral symmetry in the massless limit. The condensate and the minimum of the local effective potential
are not proportional to each other for weak couplings. Based on the results of this work, the global minimum of the
local effective potential acts just in the extremest cases of physics (free and infinitely strong interacting fermions)
in the framework of the present model as an order parameter, whereas a non-vanishing dynamically generated mass
goes hand in hand with a non-trivial curve shape of the local effective potential. A comparison with simulation
data out of conventional Monte Carlo simulations confirms that both extreme coupling expansions describe the
physically expected areas of given coupling strength in the right way. It is obvious that the weak coupling expansion
contains the more interesting physics, as the model shows.

7.2 Outlook
It is probably the nearest subject for further works to apply the discussed expansion for strong and weak couplings
to the two flavor Gross-Neveu model. In [20] it was shown by use of Monte Carlo simulations that those models
for finite flavor number Nf � 2 show a similar phase transition like in the large Nf limit. To find the fundamental
difference betweenNf D 1 andNf � 2 concerning an analytical approach would lead to fascinating insights into the
deep heart of physically relevant Gross-Neveu models. Furthermore, the validity of the local effective potential
describing spontaneous symmetry breaking is an interesting topic for further investigations. Despite the evidence
discussed, the concrete duality between the extreme cases dealt with in this work remains in the dark and could
be uncovered with investigations based on this work. Afterwards it might be possible to calculate all terms of the
partition function expanded with respect to � analytically.

In the future, it is also interesting to apply an analytical approach to strongly and weakly coupled Gross-Neveu
models in higher dimensions. Thus, it is possible to search for phase transitions apart from the discussed model
in 1 C 1 dimensions and its mathematical advantages. Furthermore a chemical potential could be introduced to
generalize the dual formulation.
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A APPENDIX

A Appendix

A.1 General Chiral Condensate in Dual Formulation
Starting with (4.11), there are three mass m D mD C mS dependent factors, which lead via the multiplication
derivative rule to three expectation values, which have to be added together to get h  i. After the presented
calculations for mD ! 0 it remains to show that

@ det
�
ODŒk�

�

@mD
D � det

�
ODŒk�

�
tr
�
OD�1Œk�

�
: (A.1.1)

This is a special case of Jacobi’s formula, which holds for m dependent quadratic matrices OA, OB and says

@
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�
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�
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�
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�
; (A.1.2)

because the Dirac operator depends only linear on the mass m.

Proof.
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where p OB.x/ denotes the characteristic polynomial of OB . The only non-vanishing parts of it in the limit � ! 0 are:

� the term of order n in x which is just 1 and

� the term of order n � 1 in x which is � tr OB .
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A APPENDIX

A.2 Calculation of the Sum over Squared Slac Derivative Elements
In this section the expression in (5.11), which is the sum over squared elements of the Slac derivative is calculated.
Starting from the sum over the upper right rectangle inside the derivative matrix, by anti symmetry of this object it
holds
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2
�
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The representation in position space derived in sec. 2.3 can be now inserted. Using � for the other spacetime index,
the Slac derivative in � direction includes due to translational invariance N� times the same element sequence,
which contains N� times the numbers given in (2.19). Hence it yields
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With the help of a known technique from complex analysis it holds for the finite sum inside the limit

N��1į
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The last and the first previous step are based on a series which can be found among others in [11]. Performing a
Taylor series inside the limit in (A.2.4) leads the way to the result
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