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This documentation explains how to compile and run a computer pro-
gram that calculates homogeneous (i.e. ε = constant), toroidal figures of
equilibrium. The program is one of the electronic resources associated with
the book Relativistic Figures of Equilibrium by R. Meinel et al. and can be
downloaded by following links from the Cambridge University Press site
http://www.cambridge.org/9780521863834

The notation used in this documentation complies with that of the book
and equation numbers refer to those in the book.

Compiling the Program

The directory Source contains all the files necessary to compile an executable
version of the program. Note however, that these files are not intended to be
manipulated by the user and do not contain much in the way of comments.

One example of how to compile the code (using the ‘gcc’ compiler) is
gcc -lm -O2 *.c -o name of executable

Running the Program

The program must be run from a directory, which contains a file called
InitialData and one called Config, otherwise a segmentation fault will re-
sult. InitialData contains a complete description of a spacetime containing
a toroidal figure of equilibrium that is understandable to the program. Begin-
ning with this spacetime, Config is altered by the user to direct the program
toward another configuration. The program produces files as output that
can be renamed and used in place of the original InitialData.

The Config File

An example of the file Config can be found in the subdirectory Example. An
explanation as to the meaning of each of the entries is presented below:
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test Name of Sequence The name of the main output files is cho-
sen to be test.000, test.001, test.002,

etc.

10 Newton itmax The maximum number of Newton-Raphson
iterations before giving up.

1.e-8 Newton tol The method has converged (by definition)
when the sum of the squares of the compo-
nents in the solution vector from (3.24), FF̃,
is smaller than this number.

10 ns and nt The number of spectral coefficients in each
dimension of each domain.

5 -A This and the next line contain two integers
defining which two physical parameters are
to be prescribed. A list of the numbering
of the parameters can be found in the file
Parameterlist, e.g. 5 corresponds to the ra-
dius ratio −A = %i/%o (3.46) and 8 to V0 (see
1.27).

8 V0 See one line above.

0.5 Goal val Param 0 The prescribed value that the first parameter
(−A in this example) reaches at the and of
the sequence.

-1.0 Goal val Param 1 The prescribed value for the second param-
eter (V0 in this example).

3 # of Sols in Seq This number of solutions will be generated,
where at each step, the prescribed parame-
ters are advanced incrementally.

50 50 nx and ny. . . A file called PhysQuant CylCoord.dat is
produced in the terminating step in the
sequence that contains information about
the metric functions and the matter on an
equidistant grid in %-ζ-space. These two pa-
rameters specify how many grid points in
each of the two directions are to be used.

0.4 0.0 rhomin&zetamin. . . One corner of the rectangular grid mentioned
above is located at the point specified by
these two paramters [i.e. in this example
(%, ζ) = (0.4, 0.0)]. Note that % and ζ both
have to be non-negative. One can infer the
value of any quantity for negative ζ because
of the reflectional symmetry with respect to
the equatorial plane ζ = 0.
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0.7 0.15 rhomax&zetamax. . . The other corner of the rectangular grid
is located at the point specified by these
two paramters [i.e. in this example (%, ζ) =
(0.7, 0.15)].

Interpreting the Output

This ring program makes use of a total of four domains instead of the five
depicted in Fig. 3.13. Domain 2 was removed in such a way that s = 0 of the
new domain 1 is a section of the equatorial plane running from the coordinate
origin to the point % = r1. The coordinate mapping in this domain reads

x̃ =
xms(1 − t)

x0 + xm(1 − 2t)
+ 1 − s,

ỹ =
xmst

x0 + xm(1 − 2t)
+

(1 − s)tx1

xm − x1

.

The equations for the remaining two domains are unchanged.
The program prints out a table on the screen and writes three files entitled

surface.dat, ergosphere.dat and PhysQuant CylCoord.dat. All numer-
ical values are in units with G = c = 1 and where the third ‘dimensional
quantity’ is the energy density ε.

The table printed out on the screen contains the following entries:

M gravitational mass M
calculated by applying
the divergence theorem
to (1.57) and choosing
the surface of the star for
the surface integral

J angular momentum J
from (1.57) calculated in
the same manner as M

3



M0 baryonic mass M0, see
(1.58)

Ebind binding energy, M0 −M

Rcirc i circumferential radius
Rcirc

i for (% = %i, ζ = 0),
see p. 149

Rcirc o circumferential radius
Rcirc

o for (% = %o, ζ = 0),
see p. 149

z relative redshift z, see
(1.28)

V0 V0, see (1.27)

rho i inner radius %i, see
(3.44)

rho o outer radius %o, see
(3.45)

r ratio %i/%o Omega angular velocity Ω, see
(1.18)

beta i inner mass-shed param-
eter β, see (3.51)

beta o outer mass-shed param-
eter β, see (3.51)

p max the maximal value for p h max the maximal value for h

x0 the domain parameter
x0 = %2

0 from Fig. 3.13
x1 the domain parameter

x1 = %2
1 from Fig. 3.13

Test: Two tests of the accuracy of the solution are presented.
These shows how well the identities |M∞/M − 1| and
|J∞/J − 1| are fulfilled.
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Figure 1: An example of the gnuplot output for the coordinate shape of a
ring possessing an ergosphere.

The file surface.dat contains values for x = %2 and y = ζ2 at points
on the surface of the ring beginning at the inner edge and ending at the
outer one. The first two columns in ergosphere.dat contain x and y val-
ues for points along the boundary of the ergosphere (if one exists) and the
third column contains the value of e2U at that point (see Subsection 1.6.2).
The fourth column indicates which domain the point lies in. By typing
gnuplot surface and ergo.plt or gnuplot surface.plt a picture is gen-
erated showing the ring and its ergosphere (if one exists) in meridional cross-
section in the %-ζ plane. The picture should look something like Fig. 1 and
includes ‘negative % values’ in order to give a better impression of the three-
dimensional figure.

The file PhysQuant CylCoord.dat contains 16 columns of values printed
out at each of the gridpoints specified by the Config file. The first two
columns contain values of x and y. The next three contain the value for
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Figure 2: An example of the gnuplot output showing the pressure distribu-
tion of a ring.

the metric function u and the derivatives u,x and u,y respectively. The next
9 columns contain such values for the functions B, ω and α. The last two
columns contain values for h, p from (1.22) and (1.23). Typing gnuplot

PhysQuant CylCoord.plt produces two plots similar to Figs 2 and 3 below.
A colour coding showing the distribution of pressure within the ring is shown
in the %-ζ plane. In the second plot, isobaric surfaces beginning with the
surface (p = 0) and increasing in increments of 0.006 can be seen. Note that
the rectangle chosen does not begin at the axis.

Questions regarding this program can be addressed to David Petroff:
D.PetroffATtpi.uni-jena.de
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Figure 3: An example of the gnuplot output showing the pressure distribu-
tion of a ring together with isobaric lines.
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