13. exercise sheet: Quantum Field Theory

Aufgabe 28:

(a) Show that the following important identity holds for an $N \times N$ matrix A

$$
\ln \operatorname{det} A=\operatorname{tr} \ln A .
$$

(b) Show that the trace of a function of the Laplace operator in continuous spacetime can be written as a simple integral in Fourier space:

$$
\operatorname{Tr} f\left(-\partial^{2}\right)=V_{D} \int \frac{d^{D} p}{(2 \pi)^{D}} f\left(p^{2}\right)
$$

where V_{D} denotes the D dimensional spacetime volume.
Hint: first use the coordinate space representation of the trace, $\operatorname{Tr}[\ldots]=$ $\int d^{D} x\langle x| \ldots|x\rangle$, and introduce intermediate momentum space states. You may use the following normalization for the coordinate-space-momentum-space transition amplitude: $\langle x \mid p\rangle=\exp (i x p) /(2 \pi)^{D / 2}$.

Aufgabe 29:

Consider the functional integral for a theory of a real scalar field with the action

$$
S=\int d^{D} x\left(\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}\right) .
$$

(a) Decompose $\phi=\phi_{0}+\varphi$, where ϕ_{0} is supposed to satisfy the classical equation of motion $\delta S\left[\phi=\phi_{0}\right] / \delta \phi=J$, expand the action to second order in φ, such that the functional integral

$$
Z[J]=\int \mathcal{D} \phi e^{i S-i \int J \phi}
$$

yields a Gauß/Fresnel form. Convince yourself that the integral can be carried out using the continuum version of Exercise 27, implying that this approximation leads to

$$
T\left[J, \phi_{0}\right]=\frac{Z\left[J, \phi_{0}\right]}{Z[0,0]}=e^{i S\left[\phi_{0}\right]-i \int J \phi_{0}} \frac{\operatorname{det}^{-\frac{1}{2}}\left(-\partial^{2}-m^{2}-\frac{\lambda}{2} \phi_{0}^{2}\right)}{\operatorname{det}^{-\frac{1}{2}}\left(-\partial^{2}-m^{2}\right)} .
$$

(b) Show that

$$
W\left[\phi_{0}\right]=-i \ln T\left[J=0, \phi_{0}\right]
$$

generates all one-particle-irreducible (1PI) diagrams to one-loop order. Hint: use Exercise 28 and expand the determinant (or rather the trace) with respect to ϕ_{0}.

Aufgabe 30:

Summer project: re-compute the one-loop polarization tensor in QED that has been discussed in the Lectures. For hints, see Peskin-Schroeder, Section 10.3.

