11. EXERCISE SHEET: QUANTUM FIELD THEORY

Aufgabe 24:

- (a) Use the Feynman rules of QED to compute the scattering amplitude for a 2-to-2 process of distinguishable fermions to lowest order; verify that this is given by a one photon exchange.
- (b) Consider the non-relativistic limit and compute the effective one-body potential between the fermions (analogously to the Yukawa potential discussed in the lectures).
- (c) Verify that the fermion-fermion as well as the anti-fermion-anti-fermion potential is repulsive, whereas the fermion-anti-fermion potential is attractive.
- (d) By noting that the sign change between repulsion and attraction arises from a factor of $-g_{00} = -1$ in the vector boson propagator, discuss the sign of the gravitational force between fermions/anti-fermions mediated by a one-graviton exchange with a propagator being proportional to $\sim \frac{1}{2}((-g_{\mu\rho})(-g_{\nu\sigma}) + (-g_{\mu\sigma})(-g_{\nu\rho}))$. What is your prediction for the ALPHA experiment at CERN, trying to measure the gravitational force between matter and anti-matter?

Aufgabe 25:

(a) Use the defining property of the Dirac algebra,

$$\{\gamma_{\mu}, \gamma_{\nu}\} = 2g_{\mu\nu},$$

to show that $\gamma_5 := i\gamma^0\gamma^1\gamma^2\gamma^3$ anti-commutes with all γ^{μ} , i.e., $\{\gamma_5, \gamma^{\mu}\} = 0$, independently of the representation of the Dirac matrices.

- (b) Show also that $\gamma_5^2 = 1$ holds independently of the representation.
- (c) γ -trace technology: Show that

$$tr[\gamma_{\mu}\gamma_{\nu}] = 4g_{\mu\nu}, tr[\gamma_{5}] = 0, tr[\gamma_{\mu}\gamma_{\nu}\gamma_{5}] = 0, tr[(odd \# of \gamma_{\mu}s)\gamma_{5}] = 0.$$