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9. exercise sheet: Quantum Field Theory

Aufgabe 20:

Consider φ3 theory with Langrange density
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φ3.

in D dimensional spacetime and study the 2-point correlator G(2) ≡ G.

(a) Compute the 2-point correlatorG(p2) to order g2 in momentum space. Hint: letG(p2) =
G[0](p2) +G[2](p2) + . . . be the perturbative expansion of G where G[0](p2) = i∆F(p2),
and G[2](p2) denotes the nontrivial one-loop correction to order g2. This correction
corresponds to the diagram (cf. exercise 18):

(NB: there is another so-called tadpole diagram which you have also found in exercise
18; this tadpole only adds an irrelevant momentum independent contribution which
can be disregarded in the following).

Write this one-loop correction as

G[2](p2) =
i

p2 −m2
0 + iε

(
− iΣ(p2)

) i
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,

and determine Σ(p2). Further technical hints can be found below.

(b) Show that Σ and accordingly G develop a branch cut for p2 > 4m2
0 (According to the

Lehmann-Källen representation, this corresponds to scattering states with rest energy
> 2m0).

(c) In order to investigate the one-particle pole, a resummation of a class of higher loop-
corrections is necessary. For this, consider the sum of all contributions to G which
consists of chains of diagrams of the type G[2]:

Show that a resummation of these diagrams yields the following form of the 2-point
correlator:

G(p2) =
i

p2 −m2
0 − Σ(p2)

.



(d) Convince yourself that the physical mass m of the one-particle state is no longer given
by m0, but receives a correction which is determined by the (transcendental) equation

m2 = m2
0 + Σ(m2).

Show that the wave function renormalization Z is given by

Z =
1

1− ∂Σ(p2=m2)
∂p2

.

(e) Now consider a D = 3 dimensional spacetime and determine m2 and Z in the limit
g2/m3

0 � 1.

(f) What happens in the limit D → 4? For this, consider D = 4− ε and isolate potential
divergencies by expanding the result about ε = 0.

Further technical hints:
The technical difficulty consists in the evaluation of a D dimensional momentum space

integral of a product of two Feynman-propagators,
∫

dDq
(2π)D

∆F(q)∆F(p− q). There are several
techniques to deal with this. One possibility is to introduce the propertime representation
for the propagators,

1

A+ iε
= −i

∫ ∞
0

ds1 e
i(A+iε)s1 ,

e.g., using A = q2−m2. Thereby, the q integral turns into a Fresnel integral (a Gauß integral
with purely imaginary argument in the exponential). For the computation of the Fresnel
integral, perform a rotation of the time direction to Euclidean time, q0 → iq0

E, such that
q2 = qµq

µ → −q2
E = −qµEq

µ
E.

For the remaining propertime integral with integration variable s1 and s2 use the following
substitution:

s := s1 + s2, v :=
s2 − s1

s2 + s1

⇒
∫ ∞

0

ds1

∫ ∞
0

ds2 · · · =
1
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∫ ∞
0

ds s

∫ 1

−1

dv . . .

(Convince yourself that this is a correct substitution).
The s integral can be carried out analytically. E.g., assuming that p2 < 4m2

0, the contour in
the complex s plane can be rotated such that s → −is. The resulting integral corresponds
to the Euler representation of the Γ function.
There is no need to carry out the remaining v integral in general. A special case is considered
in part (e).

Solution of part (a):

Σ(p2) = − g2
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