9. exercise sheet: Quantum Field Theory

Aufgabe 20:

Consider ϕ^{3} theory with Langrange density

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m_{0}^{2} \phi^{2}-\frac{g}{3!} \phi^{3} .
$$

in D dimensional spacetime and study the 2-point correlator $G^{(2)} \equiv G$.
(a) Compute the 2-point correlator $G\left(p^{2}\right)$ to order g^{2} in momentum space. Hint: let $G\left(p^{2}\right)=$ $G^{[0]}\left(p^{2}\right)+G^{[2]}\left(p^{2}\right)+\ldots$ be the perturbative expansion of G where $G^{[0]}\left(p^{2}\right)=i \Delta_{\mathrm{F}}\left(p^{2}\right)$, and $G^{[2]}\left(p^{2}\right)$ denotes the nontrivial one-loop correction to order g^{2}. This correction corresponds to the diagram (cf. exercise 18):

(NB: there is another so-called tadpole diagram which you have also found in exercise 18; this tadpole only adds an irrelevant momentum independent contribution which can be disregarded in the following).
Write this one-loop correction as

$$
G^{[2]}\left(p^{2}\right)=\frac{i}{p^{2}-m_{0}^{2}+i \epsilon}\left(-i \Sigma\left(p^{2}\right)\right) \frac{i}{p^{2}-m_{0}^{2}+i \epsilon},
$$

and determine $\Sigma\left(p^{2}\right)$. Further technical hints can be found below.
(b) Show that Σ and accordingly G develop a branch cut for $p^{2}>4 m_{0}^{2}$ (According to the Lehmann-Källen representation, this corresponds to scattering states with rest energy $>2 m_{0}$).
(c) In order to investigate the one-particle pole, a resummation of a class of higher loopcorrections is necessary. For this, consider the sum of all contributions to G which consists of chains of diagrams of the type $G^{[2]}$:

Show that a resummation of these diagrams yields the following form of the 2-point correlator:

$$
G\left(p^{2}\right)=\frac{i}{p^{2}-m_{0}^{2}-\Sigma\left(p^{2}\right)} .
$$

(d) Convince yourself that the physical mass m of the one-particle state is no longer given by m_{0}, but receives a correction which is determined by the (transcendental) equation

$$
m^{2}=m_{0}^{2}+\Sigma\left(m^{2}\right)
$$

Show that the wave function renormalization Z is given by

$$
Z=\frac{1}{1-\frac{\partial \Sigma\left(p^{2}=m^{2}\right)}{\partial p^{2}}}
$$

(e) Now consider a $D=3$ dimensional spacetime and determine m^{2} and Z in the limit $g^{2} / m_{0}^{3} \ll 1$.
(f) What happens in the limit $D \rightarrow 4$? For this, consider $D=4-\epsilon$ and isolate potential divergencies by expanding the result about $\epsilon=0$.

Further technical hints:
The technical difficulty consists in the evaluation of a D dimensional momentum space integral of a product of two Feynman-propagators, $\int \frac{d^{D} q}{(2 \pi)^{D}} \Delta_{\mathrm{F}}(q) \Delta_{\mathrm{F}}(p-q)$. There are several techniques to deal with this. One possibility is to introduce the propertime representation for the propagators,

$$
\frac{1}{A+i \epsilon}=-i \int_{0}^{\infty} d s_{1} e^{i(A+i \epsilon) s_{1}}
$$

e.g., using $A=q^{2}-m^{2}$. Thereby, the q integral turns into a Fresnel integral (a Gauß integral with purely imaginary argument in the exponential). For the computation of the Fresnel integral, perform a rotation of the time direction to Euclidean time, $q^{0} \rightarrow i q_{\mathrm{E}}^{0}$, such that $q^{2}=q_{\mu} q^{\mu} \rightarrow-q_{\mathrm{E}}^{2}=-q_{\mathrm{E}}^{\mu} q_{\mathrm{E}}^{\mu}$.
For the remaining propertime integral with integration variable s_{1} and s_{2} use the following substitution:

$$
s:=s_{1}+s_{2}, \quad v:=\frac{s_{2}-s_{1}}{s_{2}+s_{1}} \quad \Rightarrow \quad \int_{0}^{\infty} d s_{1} \int_{0}^{\infty} d s_{2} \cdots=\frac{1}{2} \int_{0}^{\infty} d s s \int_{-1}^{1} d v \ldots
$$

(Convince yourself that this is a correct substitution).
The s integral can be carried out analytically. E.g., assuming that $p^{2}<4 m_{0}^{2}$, the contour in the complex s plane can be rotated such that $s \rightarrow-i s$. The resulting integral corresponds to the Euler representation of the Γ function.
There is no need to carry out the remaining v integral in general. A special case is considered in part (e).

Solution of part (a):

$$
\Sigma\left(p^{2}\right)=-\frac{g^{2}}{(3!)^{2}} \frac{1}{(4 \pi)^{D / 2}} \Gamma(2-(D / 2)) \int_{0}^{1} d v\left(m_{0}^{2}-\frac{\left(1-v^{2}\right)}{4} p^{2}\right)^{\frac{D}{2}-2}
$$

