4. exercise sheet: Quantum Field Theory

Aufgabe 9:

A Lorentz transformation is a linear transformation of a 4 -vector

$$
v^{\mu} \rightarrow v^{\mu}=\Lambda_{\nu}^{\mu} v^{\nu},
$$

that preserves the norm

$$
v^{2}=g_{\mu \nu} v^{\mu} v^{\nu} \equiv v^{\mu} v_{\mu}, \quad g=(+,-,-,-) .
$$

(a) Show that Λ satisfies the identity:

$$
g_{\kappa \lambda}=g_{\mu \nu} \Lambda^{\mu}{ }_{\kappa} \Lambda^{\nu}{ }_{\lambda} .
$$

(b) Consider infinitesimal Lorentz transformations $\Lambda^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}+\epsilon^{\mu}{ }_{\nu}, \epsilon^{\mu}{ }_{\nu} \ll 1$. Show that

$$
\epsilon_{\kappa \lambda}+\epsilon_{\lambda \kappa}=0
$$

holds such that Lorentz transformations are specified in terms of 6 independent parameters (in 4 spacetime dimensions).
(c) Now consider a scalar field $\phi(x)$ and the corresponding Klein-Gordon Lagrangian $\mathcal{L}=$ $\mathcal{L}(\phi, \partial \phi)$. Use the transformation property of a scalar field, $\phi \rightarrow \phi^{\prime}=\phi(\Lambda x)$, under Lorentz transformations to derive the associated Noether current J^{μ}. Show that this current can be written as:

$$
J^{\mu}=\frac{1}{2} \epsilon_{\kappa \lambda} \mathcal{J}^{\mu \kappa \lambda}, \quad \mathcal{J}^{\mu \kappa \lambda}=T^{\mu \kappa} x^{\nu}-T^{\mu \nu} x^{\kappa}
$$

where $T^{\mu \nu}$ is the canonical energy-momentum tensor of the Klein-Gordon field.
(d) Convince yourself that the quantity

$$
L^{k}:=-\frac{1}{2} \epsilon^{k i j} \int d^{d} x J^{0 i j}
$$

can be interpreted as an angular momentum of the field, in analogy to the field momentum \mathbf{P} (Hint: for this, show that the corresponding momentum densities satisfies a relation that is reminiscent to $\mathbf{L}=\mathbf{x} \times \mathbf{P}$.)

Aufgabe 10:

Show that the normalization of the 1-particle states chosen in the lecture

$$
|\mathbf{p}\rangle=\sqrt{2 E_{\mathbf{p}}} a^{\dagger}(\mathbf{p})|0\rangle
$$

implies that the inner product is Lorentz-invariant, i.e,

$$
\langle\mathbf{q} \mid \mathbf{p}\rangle=\left\langle\mathbf{q}^{\prime} \mid \mathbf{p}^{\prime}\right\rangle
$$

where $\mathbf{q}^{\prime}, \mathbf{p}^{\prime}$ are the momentum coordinates with respect to a Lorentz-transformed frame.
Hint: it is sufficient to show the invariance with respect to a Lorentz boost along a specific direction, say the 3 -direction, such that $p^{3}=\gamma\left(p^{3}-\beta E_{\mathbf{p}}\right)$ und $E_{\mathbf{p}}^{\prime}=\gamma\left(E_{\mathbf{p}}-\beta p^{3}\right)$.

