## 3. EXERCISE SHEET: QUANTUM FIELD THEORY

## Aufgabe 8:

Quantize the complex free scalar field.

(a) Start from the Lagrangian density for the classical complex scalar field,

$$\mathcal{L} = (\partial_\mu \phi^*)(\partial^\mu \phi) - m^2 |\phi|^2,$$

and then construct the Hamiltonian density:  $\mathcal{H} = \pi^* \pi + \nabla \phi^* \cdot \nabla \phi + m^2 |\phi|^2$ . Then replace the canonical variables by corresponding operators, in particular  $\phi^*, \pi^* \to \phi^{\dagger}, \pi^{\dagger}$ .

(b) Now quantize the field operators by introducing ladder operators  $a_1, a_2$  and  $a_1^{\dagger}, a_2^{\dagger}$  for the real field components  $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2)$ . Next, define

$$a(\mathbf{p}) = \frac{1}{\sqrt{2}}(a_1(\mathbf{p}) + ia_2(\mathbf{p})), \quad b(\mathbf{p}) = \frac{1}{\sqrt{2}}(a_1(\mathbf{p}) - ia_2(\mathbf{p})),$$

and show that these "complex" ladder operators satisfy two independent ladder operator algebras.

- (c) Express the complex field and momentum density operators in a suitable way in terms of  $a, a^{\dagger}, b$ , and  $b^{\dagger}$ .
- (d) Show that the Hamilton operator can be written as

$$H = \int \frac{d^d p}{(2\pi)^d} \,\omega_{\mathbf{p}}(a^{\dagger}(\mathbf{p})a(\mathbf{p}) + b^{\dagger}(\mathbf{p})b(\mathbf{p})) + \text{zero-point energies}$$

(which implies that both sets of states generated by  $a^{\dagger}$  and  $b^{\dagger}$  contribute positively to the energy spectrum).

(e) Consider the Noether charge  $Q = i \int dx (\phi^{\dagger} \partial^0 \phi - \phi \partial^0 \phi^{\dagger})$ , and show that the ladder operators  $a^{\dagger}$  and  $b^{\dagger}$  generate field excitations with opposite charges.