2. EXERCISE SHEET: QUANTUM FIELD THEORY

Aufgabe 4:

Proof the Noether theorem for classical field theory.

- (a) Assume that $\phi \to \phi + \delta \phi$ is an infinitesimal symmetry transformation such that the Lagrangian density changes at most by a total derivative $\mathcal{L} \to \mathcal{L} + \delta \mathcal{L}$, where $\delta \mathcal{L} = \partial_{\mu} K^{\mu}$. Now express the variation of $\mathcal{L} = \mathcal{L}(\phi, \partial \phi)$ in terms of the variation of the field $\delta \phi$.
- (b) Use the equations of motion to show that the 4-current J^{μ} satisfies a continuity equation:

$$\partial_{\mu}J^{\mu} = 0, \quad J^{\mu} = \pi^{\mu}\delta\phi - K^{\mu}, \quad \pi^{\mu} := \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}$$

(c) Show that this implies (under suitable conditions) the conservation of the Noether charge $Q := \int d^d x J^0$, where d is the number of space dimensions.

Aufgabe 5:

Consider a scalar field theory defined in terms of some Lagrangian $\mathcal{L}(\phi, \partial \phi)$ which is invariant under spacetime translations by a constant 4-vector a^{μ} , i.e., $\phi(x) \rightarrow \phi(x-a)$ leaves the equations of motion invariant. Show that the Noether theorem implies that the energymomentum tensor is conserved:

$$0 = \partial_{\mu} T^{\mu\nu}, \quad T^{\mu\nu} = \pi^{\mu} \partial^{\nu} \phi - g^{\mu\nu} \mathcal{L}, \quad \pi^{\mu} := \frac{\partial \mathcal{L}}{\partial(\partial_{\mu} \phi)}$$

- (a) Derive the infinitesimal field transformation $\delta \phi$ in terms of a first order Taylor expansion assuming that a^{μ} is chosen infinitesimally.
- (b) Analogously, derive the infinitesimal transformation of the Lagrangian $\delta \mathcal{L}$ and determine the form of K^{μ} .
- (c) Derive the desired result from the Noether theorem. Discuss also the corresponding Noether charge.

Aufgabe 6:

For the field theory of a complex scalar field with Lagrangian $\mathcal{L} = \partial_{\mu}\phi^*\partial^{\mu}\phi - U(\phi^*\phi)$, show that the invariance under phase transformations $\phi \to \exp(i\alpha)\phi$ implies the existence of a Noether current of the form $J^{\mu} = -2\mathrm{Im}(\phi^*\partial^{\mu}\phi)$ (up to irrelevant constant factors).

Aufgabe 7:

Consider the Lagrangian of an interacting real scalar field

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4.$$

Derive the equation of motion in both ways, using (a) the Euler-Lagrange equation and (b) the canonical equations of motion of the Hamilton formalism.